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ARTICLE INFO ABSTRACT

Handling Editor: Lixiao Zhang Frequent coastal harmful algal blooms (HABs) threaten the ecological environment and human health. Biscayne
Bay in southeastern Florida also faces algal bloom issues; however, the mechanisms driving these blooms are not
fully understood, emphasizing the importance of HAB prediction for effective environmental management. The
overarching goal of this study is to offer a robust HAB predictive framework and try to enhance the under-
standing of HAB dynamics. This study established three scenarios to predict chlorophyll-a concentrations, a
recognized representative of HABs: Scenario 1 (S1) using single nonlinear machine learning (ML) algorithms,
hybrid Scenario 2 (S2) combining linear models and nonlinear ML algorithms, and hybrid Scenario 3 (S3)
combining temporal decomposition and ML (TD-ML) algorithms. The novel-developed S3 TD-ML hybrid models
demonstrated superior predictive capabilities, achieving all R? values above 0.9 and MAPE under 30% in tests,
significantly outperforming the S1 with an average R? of 0.16 and the S2 with an R? of —0.06. S3 models
effectively captured the algal dynamics, successfully predicting complex time series with extremes and noise. In
addition, we unveiled the relationship between environmental variables and chlorophyll-a through correlation
analysis and found that climate change might intensify the HABs in Biscayne Bay. This research developed a
precise predictive framework for early warning and proactive management of HABs, offering potential global
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applicability and improved prediction accuracy to address HAB challenges.

1. Introduction

Coastal harmful algal bloom (HAB) is a prominent environmental
phenomenon that affects human activities and ecosystems in coastal
areas worldwide (Hallegraeff et al., 2021). HABs result from the rapid
overgrowth of certain microscopic algae called phytoplankton, thriving
in favorable environmental conditions, often leading to ocean surface
hypoxia, discoloration, and the production of toxins harmful to marine
life and human health (Anderson et al., 2021). The formation of coastal
HABs is affected by the comprehensive influence of various environ-
mental factors (Yan et al., 2024b). For example, excess nutrients by
human activities, such as nitrogen and phosphorus, can cause ecosystem
imbalances and create proper conditions for algal blooms (Dai et al.,
2023). Coastal HABs have become a growing concern due to their
ecological impacts on the food web and biodiversity and economic im-
pacts on fisheries, tourism, and human health, especially under climate
change (Wells et al., 2015). Climate change impacts, sea surface tem-
perature rise, elevated pCO,, and ocean acidification, leading to po-
tential changes in nutrient dynamics and physical environmental
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conditions, have created favorable conditions for the proliferation of
certain harmful algal species (Glibert, 2020). As these conditions
increasingly favor the formation of specific HABs, the future frequency,
intensity, and geographic range of these blooms may continue to
expand, intensifying the challenges to coastal ecosystems and human
societies (Gobler, 2020). Mitigating blooms and their detrimental in-
fluences requires a comprehensive understanding of their causes and
effective management strategies, including timely HAB prediction (Deng
et al., 2021). Therefore, ensuring the accuracy of HAB prediction is
necessary to better respond to this global environmental challenge and
to protect the ecological environment and human well-being in coastal
areas.

Various prediction methods have been developed to address the HAB
issues (Yan et al., 2024b). Process-based models require detailed
comprehension but face challenges in accurately expressing life pro-
cesses due to complexities in unknown algae dynamics (Flynn and
McGillicuddy, 2018). Traditional empirical-statistical models, which
use empirical formulas or statistical fits to correlate environmental
variables with HAB indicators, sometimes struggle to capture complex
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nonlinear relationships and lack predictive accuracy (Franks, 2018).
Both approaches have their contribution to studying HAB dynamics but
often encounter limitations in accurately capturing complex interactions
and maintaining predictive accuracy under varied conditions. By
contrast, machine learning algorithms provide a significant edge in HAB
prediction by uncovering complex relationships without the need for
explicit mathematical modeling of unknown processes. Recent studies
have employed more granular daily and hourly data to predict HABs
using sophisticated machine learning and deep learning techniques,
demonstrating the potential for enhanced accuracy (Yan et al., 2024b).
For instance, Barzegar et al. (2020) utilized a hybrid CNN-LSTM deep
learning model to predict short-term water quality variables, show-
casing the benefits of high-frequency data in capturing the rapid dy-
namics of environmental processes. Similarly, Mozo et al. (2022)
developed a chlorophyll soft-sensor based on machine learning models
for algal bloom predictions, further emphasizing the efficacy of
fine-resolution data. Still, it is crucial to note that the effectiveness of
machine learning in HAB prediction heavily relies on the completeness
and quality of the data used (Asnaghi et al., 2017). For example, it has
been observed that using monthly data for predicting HABs by a single
ML algorithm often leads to poor results (Yajima and Derot, 2017). This
can be attributed to harmful algae exhibiting rapid and dynamic changes
over shorter intervals (Handy et al., 2008). Monthly data may not cap-
ture these variations effectively compared to finer data, resulting in less
accurate predictions (Jackson-Blake et al., 2022). The limitation of un-
representative features can hinder the model’s ability to capture the
complex and nuanced patterns essential for machine learning, which
relies on these features to learn and generalize from the data. Given that
geoscience data acquisition is often constrained in terms of time and
space, exploring research on data processing methods, creating hybrid
models, and conducting feature engineering are vital steps to enhance
model performance within the bounds of limited data availability (Guo,
2017; Zhang, 2003).

Hybrid models in predictive analytics are an advanced approach that
combines different modeling techniques to effectively address the lim-
itations of single-model approaches, enabling more reliable predictions
of complex data patterns (Zhu et al., 2023). Time series data can be
predicted by combining linear and nonlinear hybrid models, as data
comprising both linear, including linear trends and seasonal patterns,
and nonlinear parts, like oscillatory patterns and complex in-
terrelationships (Zhang, 2003). Similarly, when considering time series
as a signal composed of multiple sub-signals with different frequencies,
predictions can be made by summing each sub-signal exhibiting autor-
egressive characteristics (Zhu et al., 2023). This data decomposition
approach to signal processing is an effective strategy for extracting dy-
namic features from time-series data, which weakens the noise and
transforms the signal into a form that can be readily processed and
analyzed for subsequent processing (Zuo et al., 2020). Combining tem-
poral decomposition with machine learning (TD-ML) enables the hybrid
model to extract underlying information and capture both local and
global patterns to enhance prediction performance, and such hybrid
models are beginning to be applied to some parameter prediction in
geosciences (Chen et al., 2021; Tian et al., 2017). However, the potential
of hybrid models for predicting coastal HABs is still underutilized, and a
comparative study could reveal the best hybrid modeling techniques for
accurate HAB prediction (Zhu et al., 2023).

To address the need for improved coastal water quality management,
this study identified several vital gaps from previous studies: the absence
of robust and accurate HAB prediction models using monthly data and a
lack of comparative analysis among various hybrid models for HAB
prediction (Alexandre et al., 2021). The overarching goal is to develop
an improved monthly framework to predict HABs and enhance under-
standing of HAB dynamics in Biscayne Bay. To fill the gaps, we aim to
design and compare three scenarios for predicting chlorophyll-a (Chl-a)
concentration, an indicator of HABs (Lee et al., 2022): Scenario 1 (S1)
single Support Vector Machine (SVM), Scenario 2 (S2) Seasonal
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Autoregressive Integrated Moving Average (SARIMA) combined with
SVM, and Scenario 3 (S3) Complete Ensemble Empirical Mode Decom-
position with Adaptive Noise (CEEMDAN) and Variational Mode
Decomposition (VMD) combined with SVM. Additionally, correlation
coefficients will be applied to explore the physical mechanisms of the
best-performing scenario. Biscayne Bay, adjacent to Miami-Dade County
in South Florida, is chosen as our case study site due to its recent history
of HAB-induced environmental issues, such as fish kills and seagrass
die-off, which underscore the critical need for understanding and miti-
gating the consequences of anthropogenic activities on the bay’s
ecosystem (Alexandre et al., 2021; Santos et al., 2020). The HAB pre-
diction framework developed in this study, which includes a compre-
hensive flow chart detailed in the ‘Methods’ section, is designed for
Biscayne Bay but is also transferrable in other coastal regions. Its pri-
mary purpose is to provide early warning of HABs, offering practical
tools for proactive management to protect diverse coastal ecosystems.
Additionally, the correlation analysis conducted is expected to improve
our understanding of HAB dynamics, assisting stakeholders in Biscayne
Bay and potentially in similar environments globally.

2. Methods and materials
2.1. Study area

Biscayne Bay, located east of Miami-Dade County and situated along
the southeastern coast of Florida, stretches approximately 97 km from
north to south and encompasses an area of about 700 square kilometers
(Fig. 1a). The bay is characterized by its intricate network of shallow
waters, seagrass beds, and coral reefs. The extensive seagrass beds
contribute to the bay’s water quality by filtering pollutants and
providing a habitat for countless organisms. The downstream Biscayne
Bay holds significant importance for upstream Miami-Dade County. The
bay has recreational opportunities, contributing to the vibrant tourism
industry, and the economic value extends to fisheries, providing suste-
nance for local communities. However, the delicate balance between
urbanization and the environment has challenged maintaining the bay’s
health. Urban runoff, pollution, and climate change threaten the water
quality and marine ecosystems of Biscayne Bay. Recently, fish die-offs
and seagrass degradation are the most prominent two threats caused
by HABs to the ecosystem and economics in the bay. We selected 11
stations with long time-series water quality records to study the HABs in
Biscayne Bay (Fig. 1a).

2.2. Data collection

Our study employed a consistent dataset with uniform features for all
stations, utilizing monthly data to develop predictive models from 1997
to 2020. The target variable applied in all predictive models,
chlorophyll-a (Chl-a), was collected and analyzed monthly by the
Miami-Dade Division of Environmental Resources Management (DERM)
using the standardized method SM 10200-H, involving manual sampling
at a consistent depth of 0.10 m. The water quality data used in the S1 and
S2 predictive models, including ammonia nitrogen (AN), nitrate/nitrite
(NOx), dissolved oxygen (DO), pH, water temperature (WT), turbidity
(TBD), and total phosphorus (TP), were provided by the DERM collected
monthly for all stations. The climate data employed in the S1 and S2
predictive models comprised air temperature (AT), specific humidity
(SH), wind speed (WS), precipitation (PR), and shortwave radiation flux
(SRF), which were obtained from the North American Land Data
Assimilation System (NLDAS) Primary Forcing Data L4 Monthly 0.125 *
0.125° V002, located in Greenbelt, Maryland, USA, at the Goddard Earth
Sciences Data and Information Services Center (GES DISC) (Xia et al.,
2012). The land use data for 2001, 2004, 2006, 2008, 2011, 2013, 2016,
and 2019, applied in the S1 and S2 predictive models, were processed to
obtain the developed percent (DP) feature (Dewitz and U.S. Geological
Survey, 2021). This metric represents the ratio of developed area to the
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Fig. 1. Overview of water quality stations data and model results. a Study area

and locations of water quality stations. b Monthly chlorophyll-a concentration

and its trend of station BB02, BBO5A, and BB09. ¢ Monthly chlorophyll-a concentration and its trend of station BB14, BB17, and BB39A. d Monthly chlorophyll-a
concentration and its trend of station CDO1A, SP01, and BB47. e Monthly chlorophyll-a concentration and its trend of station BB50 and BB51. f R-squared results in

test datasets of each station for Scenario 1 (S1). g R-squared results in test datasets
station for Scenario 3 (S3).

total land area excluding open water and wetlands, which are significant
in the regions studied. Excluding these areas is crucial to ensure
comparability of the data across different watersheds. Because each
watershed can have a very different percentage of water and wetlands,
including these in the developed area calculation could lead to

of each station for Scenario 2 (S2). h R-squared results in test datasets of each

significant discrepancies when comparing the level of urbanization
across regions. We divided Miami-Dade County (upstream of Biscayne
Bay) into northern, central, and southern watersheds according to
sub-watershed shapefile provided by the South Florida Water Manage-
ment District (SFWMD). Details on the watershed division are available
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in our previous study (Yan et al., 2024a). The DP was calculated for each
watershed from the National Land Cover Database (NLCD) data pro-
vided by the U.S. Geological Survey. We kept the developed percent
uniform across all downstream water quality stations within the same
watershed. Each year’s DP was applied uniformly across all months of
that year. To address gaps in the land use data outside the
NLCD-provided years, we employed linear interpolation and polynomial
extrapolation methods to fill the data gaps in the study period
(1997-2020). All collected data were subjected to rigorous quality
assurance and quality control (QA/QC).

2.3. Core model development

All predictive scenarios aimed to predict the next time step, the
following month’s chlorophyll-a concentration. In our study, we created
individual models for each sampling station, employing the dataset
unique to each station to predict its chlorophyll-a levels. To develop and
compare robust methods for predicting HABs, S1 and S2 utilized various
environmental inputs and selected 11 water quality stations in Biscayne
Bay based on data availability (Fig. 1a). In Scenario 1 (S1), we employed
all variables from the preceding three months to predict the following
month’s Chl-a concentration by a single SVM model (Fig. 2). In the
hybrid Scenario 2 (S2), we initially used SARIMA to predict the linear
component of Chl-a time series. We used the SVM model with all vari-
ables to predict the residual or nonlinear section of Chl-a, obtained by
subtracting the linear part from the original data. Next, we added the
predicted nonlinear part to the linear component, resulting in the pre-
dicted Chl-a time series (Fig. 2). In the TD-ML hybrid Scenario 3 (S3), we
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started by applying the CEEMDAN algorithm to decompose the original
Chl-a time series into high-frequency IMFs (IMF1 and IMF2) and low-
frequency IMFs (all IMFs except IMF1 and IMF2). For the high-
frequency IMFs, we further applied the VMD algorithm to perform a
secondary decomposition, generating multiple modes. Using PACF
analysis, we determined significant time steps as predictors by identi-
fying when partial autocorrelation coefficients for modes and IMFs
surpassed the confidence threshold. Finally, we summed all predicted
sub-sequences to obtain the ultimate Chl-a time series (Fig. 2).

In developing our models, we adopted a temporal segmentation
approach by designating the initial 80% of the chronological data from
1997 to 2015 as the training set, with the remaining 20% from 2016 to
2020 used for testing. As our models are created to predict future HABs
based on past observations, employing a temporal split ensures that the
training data exclude future information (Deng et al., 2021). This
strategy crucially underpins the validity of our models in predicting the
subsequent monthly time step, reflecting real-world scenario prediction
capabilities and maintaining the temporal continuity essential for ac-
curate prediction (Cerqueira et al., 2020). For S1 and S2, SVM models
were trained using three distinct feature selection methods: all features,
forward selection, and backward elimination. These feature selection
methods iteratively determined the best combination of features, aiming
to maximize model performance while minimizing redundancy among
the predictors. Our entire codebase and models were developed in Py-
thon 3.8.8, with GIS visualizations implemented in ArcGIS Pro 3.0.1.
The SVM regressor employed belongs to the ‘sklearn.svm.SVR’ module
from the ‘sklearn 1.1.3° library, while SARIMA modeling utilized the
‘sm.tsa.arima.model. ARIMA’ module from the ‘statsmodels 0.13.5’
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library. The SARIMA hyperparameters were tuned using the ‘pm.
auto_arima’ function from the ‘pmdarima 2.0.2’ library. For the
decomposition, CEEMDAN was implemented using the ‘PyEMD 1.4.0°
library, and VMD employed the ‘vmdpy’ library.

2.3.1. Support vector regression (SVR)

SVR is a Support Vector Machine (SVM) used for regression chal-
lenges (Hearst et al., 1998). It is performed by mapping input features
into a higher-dimensional space where a linear regression function is
constructed. The SVR aims to find a function that deviates from the
actual observed targets y by a value no greater than ¢ for each training
example, and at the same time, is as flat as possible to ensure model
generalization. It handles non-linear relationships by employing kernel
functions, primarily using radial basis functions in our study, which
effectively capture complex patterns in environmental data. The
formulation for SVR focuses on minimizing the error within a certain
threshold e and can be represented as:

1 o
in gl + C3_(E+e) M

subject to:

Yi— <W7Xi> -b < €+fi-,
W, x;)) +b -y <e+¢&, (2)
§i7§i* Z 07

where w is the weight vector, b is the bias, ¢ and &* are slack variables,
and C is the regularization parameter.

2.3.2. Seasonal Autoregressive Integrated Moving Average (SARIMA)

SARIMA is an extension of the ARIMA model that includes seasonal
terms (Williams and Hoel, 2003). It is particularly useful for modeling
time series data with seasonality. The model consists of several param-
eters: autoregressive (AR) terms, differencing order, moving average
(MA) components, and additional seasonal elements. In our study,
SARIMA was utilized to model the linear and seasonal components of
chlorophyll-a concentrations, capturing underlying patterns that repeat
over fixed periods. The SARIMA model is typically noted as SARIMA (p.d,
q)(P,D,Q),, where the non-seasonal part of the model (ARIMA (p,d,q))
and the seasonal part (P, D, Q) are defined as follows:

(oo

_ Z (DL’S> (1-1°)'X, = <1 + Z GkLk> (1 + zQ: @mL””> & 3)
m=1

j=1

where L is the lag operator, ¢, @ are the autoregressive terms, 6, © are
the moving average terms, and d, D are the orders of differencing.

2.3.3. Complete ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN)

CEEMDAN is an advanced time series decomposition technique that
improves upon the traditional Empirical Mode Decomposition (EMD) by
adding noise-assisted data analysis (Torres et al., 2011). This method
decomposes a time series into intrinsic mode functions (IMFs) that are
simple oscillatory modes at different scales. CEEMDAN helps mitigate
mode mixing and provides a more stable and representative decompo-
sition, crucial for accurately capturing the multi-scale dynamics of
environmental time series. While CEEMDAN is more of an algorithmic
procedure than a formula-based one, its core lies in recursively applying
noise-assisted data analysis to decompose a signal into IMFs. Each IMF C;
must satisfy two conditions: (1) The number of extrema and
zero-crossings must differ at most by one. (2) The mean value of the
envelope defined by the local maxima and minima is zero.
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2.3.4. Variational Mode Decomposition (VMD)
VMD is a non-recursive technique for decomposing a time series into
a predefined number of quasi-orthogonal modes called intrinsic mode
functions (Dragomiretskiy and Zosso, 2014). Each mode is smooth and
has a compact spectral bandwidth, optimized through an iterative pro-
cess. VMD is particularly effective in handling non-stationary and
non-linear signals, as it allows for extracting high-frequency compo-
nents and trends without prior assumptions about the data. VMD de-
composes a signal into K modes by solving the following constrained
variational problem:
2
} “@

K
min
{uc} { kX:I:

where u(t) are the modes, and wy are the center frequencies of the
modes, which are also optimized as part of the problem.

3(t) + % [(8(t) + jmt) * uy(t)]e 7t

2.4. Model performance evaluation

The choice of metrics to evaluate the model performance is predi-
cated on the continuous or categorical nature of the target variable
within the study. As our study’s continuous chlorophyll-a indicates
HABs without a definitive threshold for categorizing HAB occurrences,
we employed regression metrics to assess the model performance. After
obtaining results from predicting the test dataset using the predictive
models, we evaluated all scenarios across various stations using three
key metrics: R? (Coefficient of Determination), MAE (Mean Absolute
Error), and MAPE (Mean Absolute Percentage Error). R? signifies the
amount of target variance clarified by the features, offering an insight
into the fit quality and its predictive capability of the created models for
unseen data, gauged by the proportion of explained variance. The MAE
is a risk measurement representing the anticipated value of absolute
error loss or L1-norm loss. The MAPE serves as a regression evaluation
metric designed to emphasize relative errors, remaining unaffected by
overall scaling adjustments of the target variable. Higher R? values and
smaller MAE and MAPE values indicate enhanced accuracy and stronger
predictive capabilities of the model. To perform these assessments, we
employed functions from the sklearn.metrics module, namely r2_score,
mean_absolute_error, and mean_absolute_percentage_error (Pedregosa
et al., 2011).

2.5. Correlation analysis

We initially employed Pearson correlation coefficients to examine
the relationships between chlorophyll-a and its decomposed IMFs and
other environmental variables. This method was chosen because it can
detect linear associations between variables. It provides a useful over-
view of the potential connections with chlorophyll-a, which can com-
plement exploratory environmental data analysis after developing high-
precision TD-ML predictive models that cannot capture the environ-
mental effects on chlorophyll-a. While Pearson correlation typically
assumes that the underlying data distributions are normal, our pre-
liminary assessments revealed that our data were not normally distrib-
uted. Despite this, Pearson coefficients were used to give an initial
estimate of linear correlations, which are informative for our supple-
mented environmental relationship analysis. The Pearson correlation
coefficient, developed in ‘pandas.DataFrame.corrwith’ module from the
‘pandas 1.4.2’ library, is a commonly used tool to describe the correla-
tion between two variables. The correlation coefficient ranges from —1
to 1, with 0 indicating no correlation. The closer the absolute value is to
1, the stronger the correlation, where negative values indicate a negative
correlation and positive values show a positive correlation.
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3. Results and discussion

3.1. Limitations and challenges in HAB prediction using single machine
learning models

Chl-a concentrations and upward trends were higher in the north bay
than in other areas during the study period. The average Chl-a con-
centration recorded across all sampling stations from 1997 to 2020 was
1.37 pg/L. Notably, the most northern station BB02 exhibited the
highest average concentration during this period, recording 4.12 pg/L.
Most sites exhibited an increasing trend in Chl-a concentrations, except
for BB51, while the north bay displayed particularly pronounced trends,
with slopes exceeding 0.003 (Fig. 1b, c, 1d, 1e). Given the presence of
extreme values of Chl-a concentrations and the lack of significant
autoregressive characteristics, it is challenging to rely solely on con-
ventional univariate time series forecasting methods for Chl-a concen-
tration prediction. To improve the prediction accuracy of the HABs, Chl-
a concentration in this study, we incorporated related environmental
variables, such as ammonia nitrogen, water temperature, NOx, total
phosphorous, turbidity, dissolved oxygen, pH, air temperature, wind
speed, shortwave radiation, specific humidity, precipitation, and
developed percent, to the S1 and S2 predictive models (Ly et al., 2021).
Fig. 1f revealed that the single SVM prediction models did not perform
satisfactorily in predicting HABs in Biscayne Bay. None of the stations
achieved an R? exceeding 0.5, with BB51 having the highest at 0.41 and
BBO5A the lowest at 0.01. Additionally, almost all stations had a Mean
Absolute Percentage Error (MAPE) exceeding 30%, with BB39A having
the lowest at 32% and CDO1A the highest at 85% (Table 1).

Machine learning (ML) has been extensively applied in geosciences
and environmental science research fields, showing promise in pre-
dicting HABs (Bergen et al., 2019). However, regarding HAB prediction,
ML model applications to monthly data have been limited in existing
research. While researchers often interpolate monthly time series data to
a finer scale for better accuracy, this may introduce errors (Deng et al.,
2021; Lepot et al., 2017). Alternatively, modeling monthly data directly
may not precisely capture the rapid life cycles of algal species (Silva
et al., 2023; Yajima and Derot, 2017). These challenges highlight the
need for effective HAB prediction strategies, particularly with sparse
data. As a starting point, we applied S1 single ML models to evaluate
their effectiveness in HAB prediction without the uncertainties of
extensive interpolation.

The limitations of low prediction accuracy in S1 underscore the
challenges of predicting HABs and provide valuable support for the
complexities of the environmental factors influencing Chl-a concentra-
tion. Key challenges include the difficulty of modeling sporadic algal
growth events with extreme Chl-a values, as conventional ML methods
struggle to predict these irregularities accurately across various aquatic
environments (Qi and Majda, 2020; Yajima and Derot, 2017). Also,
sparse monthly data fails to capture the rapid life cycles of diverse algal
species, including various algal species such as chlorophytes, cyano-
bacteria, and diatoms, in Biscayne Bay (Alexandre et al., 2021;
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Wachnicka et al., 2020). Studies found that these species often have
relatively short life cycles, and bloom events can last from a few days to
several weeks or months that do not align perfectly with monthly in-
tervals, leading to inaccuracies in HAB predictions (Pokrzywinski et al.,
2022; Silva et al., 2023). Additionally, the lack of significant autore-
gressive characteristics in Chl-a data, implying that Chl-a might not
exhibit strong temporal dependencies, hampers the model’s capabilities
to utilize past observations effectively. Our previous research in Bis-
cayne Bay indicated that most stations exhibited weak autoregressive
characteristics, contributing to the lower prediction accuracy (Yan et al.,
2024a). Last, critical features inadequacies limit the models’ ability to
fully capture the complex HAB dynamics. The complexity of algal
growth in aquatic ecosystems involves various interacting factors,
posing significant challenges in our study due to limited data availability
(Wells et al., 2020). The scarcity of hydrodynamic and biological data
and a small sample size hindered our algorithm’s learning of Chl-a
concentration patterns, underscoring the need for comprehensive data
collection to improve predictive model effectiveness in complex envi-
ronmental studies like HAB prediction (Xia et al., 2020). In particular,
the absence of salinity data, a critical factor in the HAB dynamics,
notably impacted the S1 scenario’s predictive accuracy (Wells et al.,
2020). As Biscayne Bay is influenced by various inflows from the up-
stream rivers and canals, these sources modify the salinity gradients
within the bay, especially affecting algal bloom dynamics (Chin, 2020).
The lack of consistent salinity measurements across all stations, due to
limitations in the data collection, meant that our models could not ac-
count for this variability. All these absence of hydrodynamic and bio-
logical data (such as algae predators) and inadequate temporal
resolution of datasets likely contributed to the less robust predictive
performance observed, as evidenced by the low R2, high MAE, and high
MAPE values across most stations, indicating a need for more sophisti-
cated and integrated modeling approaches for accurate HAB prediction.

3.2. Evaluation of SARIMA and SVM hybrid models for HAB prediction

Fig. 1g showed that the hybrid models combining SARIMA and SVM
failed to predict Chl-a concentration accurately, and the results exhibi-
ted significant differences. In the first stage of $2, the R? of the SARIMA
models, except for BB02, BB09, and BB17, was negative. The R? of SVM
models was close to zero in the second stage. When combining both, the
R? results at all stations remained below 0.4, with BB02 achieving the
highest at 0.38 and CDO1A the lowest at —0.48. The MAPE for all sta-
tions exceeded 30%, with BB39A having the lowest at 32% and BB50 the
highest at 80% (Fig. 1g and Table 1). Interestingly, except for a few
stations, the performance of S1 was even superior to that of S2. Given
the less-than-optimal results with S1 and S2, we pursued further en-
hancements by introducing an additional scenario, S3, which integrates
temporal decomposition and machine learning.

Despite integrating linear and nonlinear components, the S2 hybrid
models underperformed in predicting Chl-a concentrations, with most
stations showing negative R? values in the first stage using SARIMA

Table 1

Metrics of the prediction results of test sets for all scenarios and water quality stations.
Stations S1 R? S1 MAE S1 MAPE S2 R? S2 MAE S2 MAPE S3 R? S3 MAE S3 MAPE
BB02 0.37 1.51 0.40 0.38 1.38 0.37 0.93 0.51 0.16
BBO5A 0.01 1.03 0.44 —0.02 1.10 0.55 0.96 0.22 0.13
BB09 0.13 1.05 0.59 0.13 1.08 0.58 0.97 0.22 0.13
BB14 0.04 0.74 0.48 —0.06 0.86 0.60 0.97 0.17 0.13
BB17 0.06 1.07 0.65 0.17 1.07 0.73 0.92 0.40 0.27
BB39A 0.09 0.17 0.32 0.11 0.17 0.32 0.96 0.05 0.12
CDO1A 0.05 0.65 0.85 —0.48 0.72 0.75 0.93 0.19 0.24
SPO1 0.13 0.53 0.44 0.04 0.55 0.53 0.97 0.11 0.10
BB47 0.18 0.29 0.36 -0.27 0.43 0.62 0.95 0.10 0.19
BB50 0.30 0.41 0.46 —0.24 0.61 0.80 0.95 0.12 0.16
BB51 0.41 0.22 0.45 -0.39 0.32 0.57 0.94 0.07 0.13
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models. This inadequacy might stem from the complex algal dynamics
and the non-obvious seasonal patterns in Biscayne Bay (Gobler, 2020;
Xia et al., 2019). In contrast to other successful prediction applications,
consistent periodicity datasets, such as the sunspot and Canadian lynx
datasets, aid in accurate S2-similar predictions (Belmahdi et al., 2020;
Junior et al., 2019), Chl-a time series are characterized by high vari-
ability and unpredictable environmental influences (Millette et al.,
2019). These substantial disturbances from external factors obscure
underlying periodicity, weakening the S2 models’ capacity for effective
prediction. The unsuccessful linear modeling in S2’s first stage led to
meaningless residuals in the second stage, reflecting the overall in-
adequacy of SARIMA and SVM components in this context. These find-
ings highlight the necessity for advanced and continuously refined
modeling techniques in hybrid approaches to accurately predict HABs,
particularly for complex environmental datasets without apparent
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periodicity. Additionally, given the challenges encountered, the S2
predictive framework is not recommended for other complex time series
with similar irregularities.

3.3. Superior performance of TD-ML hybrid model in HAB prediction

The limitations of the S1 and S2 predictive models led us to adopt a
novel hybrid approach involving two-stage temporal decomposition of
Chl-a concentration time series into IMFs and modes, coupled with ML
algorithm fitting and aggregation for prediction. This method enhances
prediction accuracy by capturing the complex dynamics of Chl-a con-
centrations by temporal decomposition (see decomposition results in SI
Figs. S1, S2, S3), and utilizes SVM for fitting each nonlinear smoother
IMF, showcasing its effectiveness even in data with extreme values and
noise (Ding et al., 2022; Potnuri et al., 2023). The S3 framework,

al4 b 18 -
- Perfect Fit 15 —— BB02 Chl-a Observation
=== Linear Fit of All ® BBO02 Chl-a Prediction
S4,] © BBO2 -
§>12 BBO5SA 3
= BB09 =)
K} BB14 ,‘-P\
§101 BB17 =
= BB39A C.1s
8 © CDO1A S 15 —&— BBO05A Chl-a Observation
é 8 SPO1 'E 12 BBO5A Chl-a Prediction
© = 9
= [) ad
z 2 4 ® ] 5,
S S o s
o O 31" 208 0888y
K] © 0 "% ue
= —
(&) 2d18
5 ‘é d 15 —e— BB09 Chl-a Observation
[0} S
5 5 12 BBO09 Chl-a Predlctlog
el T
o o 9 I
o 6 i - I\
g 8 b by ! \pos Pon » : P oo a_gfe $
6 8 10 12 14 2016 2017 2018 2019 2020 2021
Observed Chlorophyll-a Concentration (ug/L) Time (year)
18 18
i 15 —&— BB14 Chl-a Observation f 15 —&— BB17 Chl-a Observation
= BB14 Chl-a Prediction BB17 Chl-a Prediction
S 12 12 ¢
B g 9 ®
B 6  § 6 /\ e
5 g 2 Nl A L ola o a M
0 Sofgefentgs § b od L. - \;\r\d S PR R, Ses A & 0 ool moee o wv e \U""h*‘“” ; "ﬁ, ~ \, o r O Garen
18 18
9\ 15 —&— BB39A Chl-a Observation h 15 —&— CDO1A Chl-a Observation
- BB39A Chl-a Prediction CDO1A Chl-a Prediction
D 12 L
= 9 9
@
=z 6 6
O 3 A 3 e A - A = [ [ ] q
ol = Eosenn Bons@ 0t e -\’\’.\% I 12080 “ng B o8B Iﬁ"‘p’-h-‘/ & ©
i 18 —j 18 -
15 —&— SP01 Chl-a Observation 15 —&— BB47 Chl-a Observation
= SP01 Chl-a Prediction BB47 Chl-a Prediction
S 12 12
8 = :
= 6 & 6
O 3. Pe vw ~— Y N 3 s Fa, 2 .
o e - — —elette - — 0 ooy - a0e"npeef0000y §
k 18 — ] 18 -
_ 15 —&— BB50 Chl-a Observation 15 —e— BB51 Chl-a Observation
o BB50 Chl-a Prediction BB51 Chl-a Prediction
3 12 12
z 6 :
O 34 . 2000 31 2
0*“""{‘0 4 ‘,‘nf,; vrdev‘ul~cm Euanofes o O.ﬁdﬂrﬁ ; $ BopoccatBonnnssee — |
2016 2017 2018 2019 2020 2021 2016 2017 2018 2019 2020 2021
Time (year) Time (year)

Fig. 3. Prediction results of the test dataset for each water quality station in Scenario 3 (S3). a Test dataset scatter plots of observation chlorophyll-a con-
centration (x-axis) versus prediction chlorophyll-a concentration (y-axis) for all water quality stations. The sample point lies on the perfect fit when the prediction is
identical to the observation. b-1 Observation and prediction time-series plots in the 2016-2020 test period for each water quality station. The blue shading is the

+20% error range of the observation data.
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requiring minimal data and avoiding additional environmental vari-
ables, emerges as a promising, cost-effective solution for predicting and
managing HABs.

Fig. 1h and 3 demonstrated the exceptional performance of the
hybrid model in S3 for predicting HABs at all stations, surpassing the
accuracy achieved in S1 and $2. The R? values consistently exceeded 0.9
in S3, with BB09, BB14, and SP01 reaching the highest at 0.97 and BB17
achieving the lowest at 0.92 (Fig. 1h). Furthermore, the MAPE remained
below 30% in S3, with SPO1 having the lowest at 0.10 and BB17 the
highest at 0.27 (Table 1). The remarkable precision of the S3 hybrid
model was further substantiated by Fig. 3, where all the predicted test
samples exhibited an impressive fit to the observed values, indicating
high accuracy in predicting both moderate and extreme Chl-a concen-
trations. This outcome solidified the robust predictive capability of the
hybrid models within the S3 prediction framework across all stations in
Biscayne Bay, which significantly surpasses that of the previous related
study (Yan et al., 2024a).

TD-ML hybrid models are gaining traction in various fields, including
geosciences, for applications like runoff and rainfall prediction (Chen
et al.,, 2021; Unnikrishnan and Jothiprakash, 2020). Despite limited
research in HAB prediction, our study demonstrates that the TD-ML
hybrid model significantly outperforms earlier models, offering robust
predictions for Chl-a concentrations (Table 1). Note that our TD-ML
approach leverages the inherent dynamics of monthly data without
resorting to extensive data interpolation techniques, which may often
introduce errors (Li et al., 2014). Unlike some studies that may generate
frequent data points through interpolation from sparser datasets, our
method respects the original monthly data frequency. This approach
helps avoid creating pseudo-regular patterns that may not exist,
ensuring that our model’s high accuracy reflects its ability to discern
genuine environmental dynamics from the real data provided (Lepot
et al., 2017). Consequently, this method enhances the reliability and
applicability of our predictions in real-world scenarios, where true data
variability and unpredictability are common.

Our S3 results, exhibiting robust predictive performance in Chl-a
prediction, are consistent with a similar study in the coastal areas of
Hong Kong (Zhu et al., 2023). This successful application demonstrates
that the efficacy of TD-ML, which is particularly effective for predicting
time series characterized by extremes, noise, and subtle linear and
seasonal trends - common challenges in HAB prediction (Khan et al.,
2020). The novel hybrid model described by Yu et al. (2024), based on
two-stage data processing and machine learning, further supports our
findings, demonstrating significant improvements in forecasting Chl-a in
reservoirs. Similarly, the ensemble deep learning model developed by
Zhang et al. (2023), which employs a two-layer decomposition and
attention mechanisms, validates our model’s capacity to handle complex
datasets effectively. TD-ML represents a promising approach for pre-
dicting complex time series in geosciences, combining various tech-
niques to enhance insights into intricate temporal dynamics (Zhang
et al., 2024). By leveraging predictive frameworks similar to those
recent innovative studies, the TD-ML model can forecast the occurrences
of HABs and offer potential applications in broader environmental
management contexts (Wang et al., 2023). These include integrating
predictive models with real-time monitoring systems to enable proactive
measures and deploying them in varied ecological settings to tailor
specific mitigation strategies based on predicted bloom dynamics. The
continued exploration and refinement of these models will be crucial for
effectively advancing our ability to manage and mitigate the impact of
HABs.

3.4. Physical mechanisms interpretation of hybrid models in scenario 3

Environmental factors significantly influence HABs and are crucial
for understanding their temporal dynamics (Yu et al., 2021). Factors,
such as nutrient levels, water temperature, and salinity, directly affect
algal growth, a key aspect in HAB prediction (Anderson et al., 2021).
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This study primarily involves models developed independently for each
station. Particularly in the case of traditional ML modeling from S1, our
results were unfavorable, with most station models showing low accu-
racy. Thus, we did not focus on feature importance in models with poor
accuracy because this could lead to biased outcomes. Our novel TD-ML
approach involved decomposing the Chl-a into less interpretable
sub-sequences for machine learning fitting to enhance prediction accu-
racy. This strategy involved a trade-off, potentially sacrificing the
limited interpretability of ML methods. To address this limitation, we
preliminarily explored the physical implications of our S3 models by
analyzing the correlation between Chl-a and its IMFs and other envi-
ronmental variables (Zhu et al., 2023). We acknowledge that the dy-
namics of HABs exhibit significant nonlinearity, so this analysis is just a
glance, capturing only the more apparent linear relationships. This
investigation may provide insights into protecting Biscayne Bay and
similar ecosystems.

The correlation matrix reveals a generally weak association between
most environmental variables and Chl-a concentration, with some
climate factors like water and air temperature, specific humidity, and
precipitation showing positive but weak correlations, suggesting their
potential role in exacerbating HABs (Fig. 4). The dual-directional cor-
relations between inorganic nitrogen and shortwave radiation with Chl-
a signified the ecosystem complexity. Specifically, excess nitrogen might
incite algal growth while potentially altering the dominance of species
by shifting phosphorus or silicon to limiting nutrients, thus suppressing
algal growth (Medina et al., 2022; Wang et al., 2021). The convoluted
correlation of shortwave radiation could unveil how elevated levels of
shortwave radiation either stimulate (below the light saturation point)
or inhibit (above the saturation point) algal growth (Fu et al., 2012). The
positive correlations of total phosphorus and developed percent with
Chl-a concentration at most stations might reflect the impacts of human
activities on downstream coastal environments by enhancing nutrient
influx, thereby stimulating algal proliferation (Glibert, 2020). In the
oligotrophic Biscayne Bay, phosphorus levels are vital in phytoplankton
growth (Millette et al., 2019). The rising levels of phosphorus, coupled
with an increase in developed percent, are likely to augment Chl-a
concentration, aligning with our previous research findings (Yan et al.,
2024a). In our previous research, we developed a predictive model using
aggregated data from all stations (instead of individual models for each
station). The results were slightly better than S1, and based on SHAP
values, we found that developed percentage and total phosphorus were
the most important positive predictors of current chlorophyll-a levels.
However, the previous study’s model was nonlinear, and the linear re-
lationships shown in Fig. 4’s correlation analysis did not reveal such
strong connections. Climate change tends to increase the frequency and
severity of many HABs in the future (Glibert, 2020). The negative cor-
relations of pH with Chl-a across most stations may indicate the acidic
environmental preference of local algae. Moreover, the positive corre-
lations of climatic factors — water temperature, air temperature, relative
humidity, and precipitation — with Chl-a at all stations reflected the
boosting influence of climate change on algal growth, contributing to
more favorable conditions for algal growth (Wells et al., 2020). Coupled
with the fact that bay algae favor acidic environments, it is conceivable
that climate change could intensify the HABs in Biscayne Bay.

IMF1 and IMF2 represented high-frequency sub-sequences that
contained large-amplitude rapid oscillations and noise, making it chal-
lenging to establish their correlation with environmental variables. The
correlation coefficients between all variables and IMF1 and IMF2 were
below 0.4 at all stations, indicating a weak association (Fig. 4). Other
moderate and low-frequency IMFs also displayed unexplainable peri-
odicity, showing little correlation with environmental variables. The
lowest-frequency IMFs primarily depict linear trends (Karijadi and
Chou, 2022). They illustrated strong association and high correlation
coefficients with pH (mostly negative) and developed percent (mostly
positive). These results indicated that for most stations, as the water
environment became more acidic and the developed percent of the
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a Chla IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 b Chl-a

Ammonia Nitrogen (mg/l) - -0.05 -0.08 -0.04 -003 -020 022 029 AN--0.14

NOx (mg/l)- -0.02 011 -014 -003 005 -010 006 NOx- 0.10

Dissolved Oxygen (mg/l) - -0.02 011 -0.09 -0.06 0.09 -0.07 -0.15 DO - 0.08

[ 10 pH- -020 -0.04 -0.16 -0.16 0.18 0.18 -0.46 pH--0.05
_05 Water Temperature (*\C) - 0.08 -0.10 0.16 013 -0.01 -0.01 0.05 WT - 0.18
Turbidity (NTU) - 0.14 -0.05 006 003 034 031 0.04 TBD - 0.16

Total Phosphorus (mg/l) - 001 -0.06 -0.04 012 008 006 002 TP- 015
--05 Air Temperature (*C) - 0.10 -0.08 0.14 012 0.03 0.04 0.03 AT - 0.16
[ Specific Humidity (kg/kg) - 0.14 -0.09 017 018 004 001 011  sH- 018
~10 Wind Speed (m/s) - 019 003 014 012 004 -0.04 016 Ws- 013
Precipitation (kg/m2) - 0.05 015 043 017 009 003 -003  PR- 0.1

Shortwave Radiation Flux (W/m2) - -0.25 -0.03 -021 -0.28 -0.03 003 004 SRF--0.02
Developed Percent - 0.14 005 -0.05 004 002 -028 DP- 0.12

-0.0

d chka IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 @ Chl-a
Ammonia Nitrogen (mg/l) - 0.07 000 -0.06 001 006 082 007 002  AN- -0.01
NOx (mgfl) - 002 001 -0.03 001 -001 -0.05 006 008 NOx--0.01

Dissolved Oxygen (mg/l) - -0.05 002 -0.12 -0.14 006 008 -006 009 DO - -0.08
pH--034 -0.06 017 -0.01 -0.11 -008 005 041 pH--0.04

Water Temperature (*C) - 0.16 -0.06 0.15 0.19 0.02 0.01 -0.01 0.07 WT - 0.23
Turbidity (NTU) - 0.28 018 009 -0.05 010 011 -010 022 TBD- 0.16

Total Phosphorus (mg/l) - 0.08 0.06 0.00 -0.01 001 003 005 009 TP~ 0.11
Air Temperature (*C) - 0.15 -0.03 0.15 0.14 0.00 0.05 -0.05 0.07 AT - 0.21
Specific Humidity (kg/kg) - 019 004 015 017 001 003 -003 014  SH- 0.21
Wind Speed (mis) - 0.14 -0.02 023 008 003 -0.04 -002 000 WS- 0.17
Precipitation (kg/m2) - 0.1 -0.12 016 019 -0.02 001 002 007 pR- 001
Shortwave Radiation Flux (W/m2) - -0.06 0.02 -0.05 -0.12 0.00 -0.01 -0.01 004 SRF- 022
Developed Percent - 0.29 -0.05 -0.04 -003 -0.06 004 0.21 DP- 0.16

g Chl-a IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 h Chl-a

Ammonia Nitrogen (mg/l) - 0.05 0.11 0.02 -0.04 -0.03 -0.11 -0.00 -0.20 AN - 0.15
NOx (mg/l) - 0.18 0.06 0.08 006 0.08 003 0.00 0.05 NOx- 0.14

Dissolved Oxygen (mg/l) - -0.28 0.05 -0.24 -0.14 -0.07 -0.12 -0.15 -0.04 DO - -0.31
pH--024 0.02 -0.10 -0.17 -0.07 -0.12 -0.21 -0.40 pH--0.23

Water Temperature (*\C) - 0.23 -0.08 0.26 0.12 -0.02 0.05 0.05 0.05 WT - 0.39
Turbidity (NTU) - 0.10 0.05 0.04 0.07 -023 0.09 0.15 0.11 TBD- 0.18

Total Phosphorus (mg/l) - 0.19 0.09 0.09 0.07 0.00 0.01 -0.01 -0.03 TP - 0.13
Air Temperature (*\C) - 0.25 -0.12 027 0.17 0.01 0.06 0.09 0.12 AT - 042
Specific Humidity (kg/kg) - 0.26 -0.11 028 015 000 007 006 014  SH- 042
Wind Speed (m/s) - 0.18 -0.02 0.17 0.11 -0.04 -0.05 -0.03 0.07 WS - 0.22
Precipitation (kg/m2) - 0.26 -0.05 023 018 006 -0.02 -0.05 -0.04 PR- 0.41
Shortwave Radiation Flux (W/m2) - 0.03 -0.11 0.15 -0.02 -0.00 0.01 0.8 002 SRF- 0.36
Developed Percent - 0.07 0.04 -0.00 0.02 0.00 -0.06 0.06 0.39 DP - 0.20

j Chl-a IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 k Chl-a

Ammonia Nitrogen (mg/l) - -0.05 -0.02 0.05 -0.09 -0.15 -0.08 0.30 0.02 AN - -0.01
NOx (mg/l) - -0.00 0.00 0.03 0.01 0.01 0.02 -0.07 -0.06 NOx--0.03

Dissolved Oxygen (mg/l) - -0.09 -0.05 0.02 -0.01 0.08 -0.07 -0.10 -0.13 DO - -0.08
pH- 0.12 0.03 -0.04 -0.01 0.17 0.04 -0.04 0.14 pH- 0.15

Water Temperature (*\C) - 0.06 0.02 0.07 0.06 001 -0.00 0.05 -0.05 WT- 0.04
Turbidity (NTU) - 0.10 0.04 0.03 0.01 0.13 0.09 -0.03 -0.13 TBD - k2

Total Phosphorus (mg/l) - 0.13 0.04 0.04 -0.03 0.13 0.01 0.05 0.10 TP - 0.13
Air Temperature (*\C) - 0.08 0.06 0.06 0.05 0.03 001 0.03 -0.07 AT - 0.05
Specific Humidity (kg/kg) - 0.07 007 005 006 001 -0.01 0.06 -0.06 SH- 0.05
Wind Speed (m/s) - -0.04 0.04 -0.03 0.10 -0.07 -0.06 -0.10 -0.01 WS- -0.05
Precipitation (kg/m2) - 0.12 0.07 0.06 0.01 0.04 0.02 -0.05 0.16 PR - 0.06
Shortwave Radiation Flux (W/m2) - -0.04 0.05 -0.16 -0.05 -0.01 0.01 0.06 0.04 SRF- 0.00
Developed Percent - 0.03 -0.06 -0.04 0.02 -0.02 0.03 028 -0.05 DP - -0.01

IMF1
0.00
0.11

0.15
0.05
-0.02
0.23
0.12
-0.02
-0.02
0.02
-0.11
0.02
-0.06

IMF1
-0.01
0.02
0.09
-0.02
0.00
0.09
0.08
-0.01
-0.00
0.03
-0.10
-0.10
0.04

IMF1
0.09
0.14
-0.05
-0.05
0.04
0.07
0.11

-0.02
-0.01
0.06
0.04
-0.04
-0.03

IMF1
-0.02
-0.05
0.02
0.06
-0.04
0.13
0.01

-0.04
-0.04
-0.07
-0.08
-0.05
-0.01
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IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 C Chla IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
-0.00 -0.09 -0.01 0.01 -0.26 -0.37 AN- -0.16 000 -020 -0.16 0.08 -0.30 0.05
0.01 0.01 0.06 0.03 -003 -002 NOx- 0.07 011 -0.04 -0.04 001 002 0.07
-0.07 -0.12 0.10 0.08 -0.03 0.08 DO - -0.14 -007 -0.13 -0.19 0.02 006 0.1
-0.04 -0.06 0.02 0.01 -0.03 -0.19 pH- 020 -0.05 -0.01 -0.06 -0.17 -0.08 -0.24
0.01 037 0.02 -0.02 0.04 0.10 WT- 034 007 026 034 002 0.04 004
-0.05 0.07 0.09 003 021 -025 TBD- -0.13 010 -003 -0.10 0.02 0.06

0.10 0.04 0.01 -0.08 -0.01 0.10 TP- 006 010 -0.06 0.05 0.03 -0.06 0.01
0.04 027 0.02 0.02 0.09 0.08 AT- 034 011 026 033 002 -0.00 -0.00
0.04 031 0.02 0.01 0.06 0.14 SH- 037 009 029 034 002 -0.02 0.08
0.01 021 002 010 001 -003 ws- 024 009 020 015 -0.01 017 -0.05
0.06 028 0.05 0.04 0.05 0.06 PR- 029 -0.02 035 027 002 0.00 005
0.01 -0.11 -0.01 -0.01 0.05 0.05 SRF- 009 006 -003 015 -0.02 001 0.03
-0.03 0.03 -0.07 0.04 -0.10 DP- 022 -0.07 -0.03 -0.01 -0.01 0.18 m

IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 f Chl-a IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
-0.02 0.07 -0.09 028 -0.31 -0.15 AN- 011 0.07 012 -0.01 009 -0.05 -0.12
0.02 -0.09 -0.02 -0.02 0.06 0.07 NOx- 0.14 003 006 016 006 005 -0.01
-0.01 -024 -0.04 -0.05 -0.01 -0.02 DO - -0.00 002 -010 -0.03 011 0.03 0.03
011 -0.02 -0.06 0.10 -0.39 -0.52 pH- -0.14 -003 -0.12 -006 -0.02 017 -0.16
003 037 0.01 -0.01 0.08 0.10 wrT- 014 -0.02 017 011 -005 -002 0.10
0.09 0.07 0.00 -0.03 0.08 -023 TBD- 022 012 0.07 013 0.12 006 -0.02
0.01 0.02 0.03 -0.01 0.02 0.06 TP - -0.03 -0.00 006 -005 -005 -0.11 -0.01
0.03 038 -0.02 0.00 0.09 0.07 AT- 021 -0.01 020 0.17 -0.00 0.03 0.09
0.01 0.36 0.00 -0.04 0.09 0.14 SH- 024 -0.00 020 017 0.01 0.01 017
0.07 020 0.04 -0.12 0.08 0.01 ws- 016 006 008 011 007 001 001
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Fig. 4. The heatmaps of correlation analysis for each station and the developed percent change of upstream Biscayne Bay. a-k Correlation heatmaps be-
tween environmental variables and chlorophyll-a and its IMFs in BBO2, BBO5A, BB09, BB14, BB17, BB39A, CDO1A, SP01, BB47, BB50, and BB51, respectively. 1
Developed percent of northern, central, and southern watersheds of Miami-Dade County, upstream of Biscayne Bay. The developed percent represented the
developed area divided by the total area, and we excluded open water and wetlands to ensure comparability across watersheds. The northern, central, and southern
watersheds were divided by the combination of sub-watersheds provided by the South Florida Water Management District (SFWMD).

upstream land use increased, Chl-a tended to rise.

Fig. 41 shows an upward trend in urbanization across Miami-Dade
County from 1997 to 2020, with the northern watershed increasing
slightly from 95.1% to 96.7%, the central watershed more rapidly from
64.7% to 73.5%, and the southern watershed from 18.7% to 24.5%. The

results indicated that Miami-Dade County was undergoing rapid ur-
banization, particularly with faster growth rates in the southern and
central watersheds compared to the northern. This might be attributed
to the fact that north Miami had already been almost entirely urbanized.
Increased nutrient inputs into the bay due to urbanization may affect
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water quality and chlorophyll-a concentrations or HABs. Fig. 4 showed
that, except for the BB50 and BB51, there was a positive correlation
between Chl-a concentration trends (represented by the lowest-
frequency IMFs) and the developed percent at almost all stations. This
suggested that as the level of development increased, Chl-a concentra-
tion tended to rise. This correlation might be caused by the impacts of
human activities, such as growing air pollution aerosol and wastewater
discharge on the water environment.

Given the high accuracy of the TD-ML predictive framework,
decomposing the target (chlorophyll-a in this paper) appears to be a
beneficial approach. Therefore, we hypothesize that with data that have
a finer temporal frequency, such as daily or hourly, and can better
capture HAB dynamics, we should be able to optimize subsequent pre-
dictive models by first decomposing the target and establishing a cor-
relation matrix with its IMFs. When environmental variables show
strong linear relationships with the target itself and IMFs, representing
seasonality or trends, we should intensify our observation and inter-
pretation of these variables. For instance, it may be necessary to ensure
that feature selection methods will not eliminate these variables. Or we
could explore and incorporate additional environmental features related
to those with strong linear relationships to enhance the model’s pre-
dictive capacity. Although the TD-ML model in this paper does not
depend on environmental data, traditional machine learning predictive
models could greatly benefit from this approach.

4. Conclusions

This research focused on predicting HABs in Biscayne Bay using a
novel hybrid modeling approach. Traditional machine learning methods
and SARIMA-ML cannot accurately predict Chl-a. We utilized a unique
temporal decomposition and machine learning (TD-ML) hybrid model.
This approach effectively decomposed Chl-a time series into sub-
sequences, improving prediction accuracy remarkably. Subsequently,
the study identified the influence of multiple environmental factors on
Chl-a and its IMFs. We proposed the potential increasing trends of HABs
in the bay under the global warming scenario with urbanization. The
comparative findings highlighted the need for advanced modeling
techniques to predict HABs and the potential impacts of human activ-
ities and climate change on algal outbreaks. Overall, the study provided
valuable insights into predicting and managing HABs, offering a robust
predictive framework for understanding complex temporal dynamics
and safeguarding coastal ecosystems against HABs. Furthermore, this
predictive framework holds the prospect of being applied to coastal
regions worldwide, aiding in the prediction of challenging HABs.
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