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Abstract
Coral diseases contribute to the rapid decline in coral reefs worldwide, and
yet coral bacterial pathogens have proved difficult to identify because 16S
rRNA gene surveys typically identify tens to hundreds of disease-associate
bacteria as putative pathogens. An example is white band disease (WBD),
which has killed up to 95% of the now-endangered Caribbean Acropora
corals since 1979, yet the pathogen is still unknown. The 16S rRNA gene
surveys have identified hundreds of WBD-associated bacterial amplicon
sequencing variants (ASVs) from at least nine bacterial families with little
consensus across studies. We conducted a multi-year, multi-site 16S rRNA
gene sequencing comparison of 269 healthy and 143 WBD-infected Acro-
pora cervicornis and used machine learning modelling to accurately predict
disease outcomes and identify the top ASVs contributing to disease. Our
ensemble ML models accurately predicted disease with greater than 97%
accuracy and identified 19 disease-associated ASVs and five healthy-
associated ASVs that were consistently differentially abundant across
sampling periods. Using a tank-based transmission experiment, we tested
whether the 19 disease-associated ASVs met the assumption of a pathogen
and identified two pathogenic candidate ASVs—ASV25 Cysteiniphilum litor-
ale and ASV8 Vibrio sp. to target for future isolation, cultivation, and confir-
mation of Henle-Koch’s postulate via transmission assays.

INTRODUCTION

The global rise in coral disease epizootics associated
with human-induced climate change has caused
unprecedented coral declines (Bruno et al., 2007;
Burge et al., 2014; Harvell et al., 1999), especially in
the greater Caribbean where white band disease
(WBD) has killed up to 95% of the now-endangered
Acropora corals since 1979 (Aronson & Precht, 2001;
Gladfelter, 1982), and stony coral tissue loss disease
(SCTLD) is currently causing die-offs in more than
21 common coral species (Alvarez-Filip et al., 2022;
Precht et al., 2016). Despite the devastating impacts of
coral diseases, specific coral pathogens have been
identified in only five of the 20 or more described coral

diseases (Sutherland et al., 2004). Coral bacterial
pathogens have proved difficult to identify because
culture-independent, genetic analyses typically identify
hundreds of disease-associated amplicon sequencing
variants (ASVs)/operational taxonomic units (OTUs)
as candidate pathogens (e.g., Gignoux-Wolfsohn &
Vollmer, 2015) coupled with difficulties culturing these
putative coral pathogens to fulfil Henle-Kochs postulate
in controlled transmission experiments. Large numbers
of disease-associated bacteria have led to the emerg-
ing view that many coral diseases are caused by a dys-
biosis between the coral host, its symbiotic algae and
its associated microbiome in stressed or compromised
corals (Voolstra et al., 2024), even for host-specific
coral diseases with clear transmission dynamics like
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the Caribbean Acropora WBD host-disease system
(Gignoux-Wolfsohn et al., 2012).

WBD is a highly transmissible, host-specific bacterial
pathogen (Gignoux-Wolfsohn et al., 2017;Kline &
Vollmer, 2011; Sweet et al., 2014) that infects the Carib-
bean staghorn coral A. cervicornis (Kline & Vollmer, 2011;
Ritchie & Smith, 1998), its congener the elkhorn coral
A. palmata (Gladfelter, 1982), and their hybrids A. prolifera
(van Oppen et al., 2000; Vollmer & Palumbi, 2002). Trans-
mission occurs via direct contact, snail vectors and through
the water column through tissue lesions (Gignoux-
Wolfsohn et al., 2012). Its transmission and progression
can be arrested with broad-spectrum antibiotics (Kline &
Vollmer, 2011; Sweet et al., 2014) and bacterial quorum-
sensing inhibitors (Certner & Vollmer, 2015, 2018). Histori-
cally two forms of WBD have been described based on
the gross appearance of the disease lesions with WBD
type 1 originally described as having a sharp distal disease
lesion containing algal symbionts (Gladfelter, 1982) and
WBD type 2 differentiated by containing a section of
bleached tissue at the margin of the tissue lesion
(Ritchie & Smith, 1998). In reality, WBD lesions—as a dis-
ease sign—advance at different rates even within individ-
ual coral colonies (Miller et al., 2014; Vollmer, pers. obs.),
which has caused some to use the term WBD to describe
these advancing disease lesions (Aronson & Precht, 2001;
Gignoux-Wolfsohn et al., 2017; Kline & Vollmer, 2011;
Vollmer & Kline, 2008) and others to favour the more gen-
eral term of rapid tissue loss (RTL; Miller et al., 2014;
Williams & Miller, 2005) further complicating the matter
(sensu Miller et al., 2014).

While Henle-Kochs postulate has not been fulfilled
for WBD, early bacterial culturing identified a strong
association of Vibrio charcharia (now synonymized with
V. harveyi) on WBD-infected Acropora cervicornis
(Ritchie & Smith, 1998) and in situ grafting of uncharac-
terized Vibrio cultures elicited WBD disease signs (Gil-
Agudelo et al., 2006). Multiple genetic surveys have
since identified hundreds of disease-associated ASVs/
OTUs as potential WBD pathogens from at least nine
bacterial families with little consensus across studies.
Our prior field surveys and tank-based transmission
assays in Panama using A. cervicornis identified ASVs/
OTUs belonging to Vibrionaceae, Flavobacteriaceae
(Certner & Vollmer, 2018; Gignoux-Wolfsohn &
Vollmer, 2015), Campylobacteraceae, Francisellaceae
and Pasteurellaceae (Gignoux-Wolfsohn et al., 2017)
as likely WBD pathogens. In situ, transmission assays
to A. cervicornis and A. palmata in Florida by Rosales
et al. (2019) identified four ASVs from the families
Vibrionaceae, Sphingomonadaceae, Rhodobactera-
ceae and Cryomorphaceae that were significantly
associated with disease outcomes, including one ASV,
Sphingobium yanoikuyae (family Sphingomonadacea),
that was identified as the most likely WBD pathogen
based on its high frequency on diseased corals.

Parasitic infection by the alpha-proteobacterium ‘Can-
didatus Aquarickettsia rohweri’ has also been associ-
ated with increased WBD susceptibility in A. cervicornis
(Casas et al., 2004; Klinges et al., 2020).

Most 16S rRNA amplicon sequencing-based ana-
lyses of coral disease associations incorporate tens of
samples comparing diseased versus healthy corals
from a single location, single time point and/or single
transmission experiment (e.g., Rosales et al., 2019),
which, coupled with relatively high coral microbial diver-
sity, has resulted in the apparent disagreement in bac-
terial disease associations across coral disease
studies. In this study, we obtained 16S rRNA amplicon
sequencing data from 412 corals from five A. cervicornis-
dominated reefs in Bocas del Toro, Panama every
6 months for 2 years. We then used bacterial ASV abun-
dances and machine learning (ML) classifiers to produce
highly accurate disease prediction models and identified
the top bacterial ASV features as candidate pathogens.
We compared our ML approach to more traditional differ-
ential abundance analyses using mixed models to identify
ASVs that were associated with disease over our 2 years
of field sampling. Finally, we used a tank-based transmis-
sion experiment to identify which of our top bacterial
ASVs met our expectations of being WBD pathogens.

EXPERIMENTAL PROCEDURES

Field sampling

Surveys and collections occurred on five distinct
A. cervicornis thicket-dominated reef sites (>1500 m2) in
Coral Cay, Bocas del Toro, Panama (Table S1). At each
site, permanent 50-m belt transects were established in
July 2015 and surveyed every 6 months in January and
July of each year until July 2017. Video surveys of the
50-m belt transects (1 m on both sides) were used to cal-
culate A. cervicornis abundance (presence per m2 quad-
rat) and record WBD prevalence as the percentage of
A. cervicornis quadrats with WBD. Between January
2016 and July 2017, 20 healthy (asymptomatic) and
10 disease samples were haphazardly collected at each
site (5 or 1 m apart). Diseased and healthy branches
were collected underwater and transported immediately
to the surface where 1 cm of the disease interface was
sampled using sterilized bone cutters, placed directly
into sterile 5 mL cryovials containing 2 mL of CHAOS
DNA buffer (4 M guanidine thiocyanate, 0.5%
N-lauroyl-sacosine, 25 mM Tris (pH 8) 0.1 M beta mer-
captoethanol, Fukami et al., 2004) and stored at !20"C
for genetic analysis (Table 1). Twice as many healthy
versus diseased colonies were sampled to determine if
the microbial genetics could identify asymptomatic
(i.e., disease infected) corals among apparently healthy
individuals.

2 of 20 SELWYN ET AL.ENVIRONMENTAL MICROBIOLOGY

 14622920, 2024, 9, D
ow

nloaded from
 https://envirom

icro-journals.onlinelibrary.w
iley.com

/doi/10.1111/1462-2920.16700 by N
ortheastern U

niversity, W
iley O

nline Library on [01/08/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



White band disease prevalence

Acropora cervicornis abundance and WBD prevalence
were modelled using a generalized linear mixed model
with a logit link function using sampling time as a
fixed effect and a random effect of the site with signifi-
cance assessed using a likelihood ratio test (Bates
et al., 2015). Pairwise contrasts were used to identify
significant differences between sampling times using
the Westfall p-value adjustment to control the family-
wise error rate (Hothorn et al., 2008; Westfall, 1997).
Bocas del Toro experiences two annual temperature
peaks, with one crest between April and June and the
other between September and November (Figure 1B;
Kaufmann & Thompson, 2005). To investigate the rela-
tionship between seawater temperature, WBD preva-
lence and A. cervicornis abundance (Figure 1A,C,D),
we used linear regressions to relate the logit trans-
formed marginal mean of WBD prevalence and
A. cervicornis abundance at each sampling time-point
to the preceding hot season’s mean temperature, maxi-
mum temperature, and the number of weeks with a
mean temperature of above 30"C. We also used linear
regression to relate A. cervicornis abundance to WBD
prevalence within the same time point. Sea surface
temperature data was acquired from the Smithsonian
Tropical Research Institute’s Bocas del Toro weather
station (9"21002.9600N, 82"15028.2700W; Paton, 2019).

Microbiome characterization

Genomic DNA was extracted from each coral sample
using GenElute DNA extraction kits. 16S rRNA ampli-
con sequencing of the V3-V4 region was produced
using Klindworth et al.’s (2013) protocol, V3-V4
(341F/785R) primer sets, and four lanes of Illumina
MiSeq 2 # 300 bp sequencing. Sequenced reads can
be found in the NCBI Bioproject: PRJNA1106053. 16S
rRNA gene reads were quality trimmed, overlapped

and assembled into ASVs using the DADA2 denoising
algorithm and pipeline in R (Callahan et al., 2016; R
Core Team, 2022). Chimeras were removed and taxon-
omy was assigned to each ASV first using a Bayesian
taxonomic classifier based on the NCBI 16S microbial
database and classified to the lowest taxonomic level
possible with greater than 80% classification confi-
dence (Gao et al., 2017). Any unclassified sequences
were further attempted to be classified via the naïve
Bayesian classifier implemented in DADA2 using DECI-

PHER and the suggested threshold of 0.5 (Wright, 2016)
and the Silva database (Quast et al., 2013). ASV
sequences were aligned using DECIPHER and a neighbour-
joining tree of the aligned ASV data was constructed
using PHANGORN (Schliep, 2011). The resulting ASV table,
taxa table, and 16S rRNA gene tree were imported into
PHYLOSEQ (McMurdie & Holmes, 2013) and merged with
the sample metadata for downstream analyses.

Samples were pruned to keep only samples with
more than 1000 16S rRNA gene reads and ASVs identi-
fied as cyanobacteria, mitochondria, and chloroplast
sequences were removed as host or algal contaminants.
After comparing rarified alpha diversity metrics, ASVs
were further filtered to retain ASVs found in at least 10%
of samples and across all four sampling time points to
remove low abundance ASVs. Read counts of the
remaining ASVs were normalized for variable sequencing
depth using the trimmed mean of the M-values method
with singleton pairing including the normalization of the
effective library size implemented in EDGER (Robinson &
Oshlack, 2010; TMMwsp; Robinson et al., 2010). Normal-
ized read counts plus a pseudo-count of 0.5 were con-
verted to log2 counts per million reads with all subsequent
analyses being performed on these normalized and log-
transformed counts per million. This normalization
method, termed Elib-TMM has similar performance to the
popular ANCOM-BC normalization method but also
allows for full contrasts and post hocs within modelling
frameworks including linear mixed-models with interac-
tions and post hocs (Lin & Peddada, 2020).

TAB LE 1 Sampling and sequencing summary showing the number of coral fragments that passed quality filtering sampled from each time in
the field and each experimental condition in the tanks. It also shows mean sequencing depth for healthy and diseased corals along with t-test-
derived p-values indicating if there are significant differences in the number of reads from healthy and diseased fragments.

Source Time Exposure Genotypes

Fragments Reads

Healthy Diseased Healthy Diseased p-Value

Field January 2016 — 100 63 37 8864 ± 1200 9164 ± 1107 0.867

July 2016 — 104 72 32 10,725 ± 1238 14,593 ± 1564 0.054

January 2017 — 94 60 34 7194 ± 985 6850 ± 727 0.769

July 2017 — 114 74 40 5941 ± 689 5548 ± 591 0.651

Total — 412 269 143 8212 ± 532 8817 ± 580 0.443

Tank Pre — 6 18 — 4892 ± 671 — —

Post Control 30 — 6813 ± 908 — —

Disease 25 6 5795 ± 836 3076 ± 541 0.003
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Community composition analysis

Differences in the alpha diversity metrics of ASV
richness as well as both Shannon and inverse Simpson
diversity indices were analysed using linear mixed
models to test for differences in microbiome alpha
diversity based on coral health and sampling time with
a random effect of sampling location. To account for

heteroscedasticity, the variance was modelled sepa-
rately across sampling sites, times and coral health
states. The richness and inverse Simpson diversity
were transformed, using square-root and log transfor-
mations respectively, to meet the normality assumption
of linear models, as is standard in the field. To visualize
differences between healthy and diseased micro-
biomes and between sampling times and locations, we

F I GURE 1 (A) Mean daily sea surface temperature ("C, black) and degree heating weeks (DHW;"C-weeks, red) during the study period.
(B) Mean daily sea surface temperature visualized over one year, generated from data from 2000 to 2023, showing two annual peak times:
April–June and September–November. (C) Mean White Band Disease prevalence in Acropora cervicornis colonies across sampling times.
(D) Acropora cervicornis abundance (m!2). (E) Relationship between mean WBD prevalence observed at each timepoint and the number of
weeks ≥30"C during the preceding peak temperature season. In all panels, letters indicate significant groupings and error bars mark the 95%
confidence intervals.
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estimated the microbial distance between coral sam-
ples using the Bray-Curtis distance as a measure of
beta diversity (Bray & Curtis, 1957). These distances
were visualized using a non-metric multidimensional
scaling (NMDS) plot (Legendre & Legendre, 2012;
Oksanen et al., 2013). We used a permutational
ANOVA on the Bray-Curtis distances between coral
samples with 10,000 permutations to test for differ-
ences in the microbial community composition based
on coral health, sampling time and sampling site.

Differential abundance analysis

To act as a point of comparison with our ML approach,
differential abundance analyses were performed on the
field 16S rRNA amplicon sequencing data for each
ASV using linear mixed-effects models with fixed
effects of coral health state (diseased or healthy) and
sampling time and a random effect of sample location
(Bates et al., 2015) with high-quality Elib-TMM normali-
zation while allowing for full linear mixed-model con-
trasts and post hocs (Lin & Peddada, 2020, 2024). The
significance of fixed effects was assessed using F-tests
and Kenward-Roger’s method of calculating denomina-
tor degrees of freedom (Kenward & Roger, 1997).
These p-values were then adjusted to control the false
discovery rate and used to identify ASVs significantly
associated with coral health state, sampling time point
and interaction (Benjamini & Hochberg, 1995). To iden-
tify the subset of disease/healthy associated ASVs that
were consistently differentially abundant across all four
field time points, we performed a post hoc analysis to
compare ASV abundance between healthy and dis-
eased corals within each time point. We used Fisher’s
exact test to identify the genera overrepresented
among those associated with diseased or healthy
corals.

Machine learning model training and ASV
feature identification

Bacterial ASVs associated with diseased corals were identi-
fied using an ensemble set of six distinct ML subcomponent
models (lasso logistic regression; Friedman et al., 2010;
Tibshirani, 1996), random forest (RF) (Ho, 1995; Wright &
Ziegler, 2017), multilayer perceptron (Collobert et al., 2011;
Falbel & Luraschi, 2023; Kuhn & Falbel, 2022), linear
support vector machine (SVM) (Cortes & Vapnik, 1995;
Karatzoglou et al., 2004, 2022), partial least squares
(Rohart et al., 2017) and K-nearest neighbours
(Cover & Hart, 1967; Fix & Hodges, 1989; Schliep &
Hechenbichler, 2016). Prior to model fitting, the dataset
was split into training (75%) and testing (25%) sets to
reduce overfitting with all model tuning being done
using the training set and the test set being used to

evaluate the final model metrics (e.g., accuracy). The
ASV counts were normalized using the Yeo Johnson
transformation and then centred and scaled (Yeo &
Johnson, 2000). The models were chosen to represent
a diversity of ML classification models with the thought
that they may independently select similar or different
features (i.e., ASVs) for predicting coral disease state
(Bol!on-Canedo & Alonso-Betanzos, 2019).

Model hyperparameters were individually tuned to
identify the parameter combination that minimizes the
Brier score, a metric designed to penalize misclassifica-
tions and reward confident, correct classifications
(Brier, 1950; Kruppa et al., 2014). All model hyperpara-
meters were tuned by fitting the models on the training
dataset using 10-fold cross-validation repeated 10 times.
Each model was fit to the training dataset using an initial
random grid with 50 random combinations of parameters.
This random grid of fitted hyperparameters was used to
initialize up to 200 iterations of Bayesian hyperparameter
optimization to identify the parameter combination mini-
mizing the Brier score (Wu et al., 2019).

Practically equivalent high-quality models of coral
disease classification were defined as models that were
80% likely to be within 1% overall quality as the best-fit
model. The overall quality metric used to compare
models was a composite metric combining model accu-
racy, area under the receiver operator curve (ROC
AUC), and Brier score (Derringer & Suich, 1980). Model
accuracy is simply the percentage of coral fragments
correctly classified (identified) as diseased or healthy.
ROC AUC is an aggregate measure of model perfor-
mance (true vs. false classifications) across all possible
classification thresholds (Fawcett, 2006). Brier score
rewards models that correctly classify coral fragments
with more confidence (Brier, 1950). We combined
these classification metrics into a composite metric to
ensure that the models accurately and confidently pre-
dicted coral disease state. The overall quality metric for
the repeated cross-validation fitted results was fitted
using a hierarchical Bayesian model to identify differ-
ences in model quality (Kuhn & Silge, 2022). Random
effects for repeats and folds within repeats were
included to account for the repeated measurements of
these data subsets (Kuhn & Silge, 2022). To ensure
the models were not simply ‘learning the data’, we
evaluated all models for accuracy, Brier score, and
ROC AUC on the testing dataset after identifying the
set of practically equivalent models. This ensures that
the model quality metrics are similar when assessing
data the models were not trained on.

Within each model, we identified ASVs important to
classifying coral disease state for all of the top-quality
models by calculating Monte Carlo-based Shapley
Additive explanation (SHAP) values (Greenwell, 2023;
Shapley, 1953; Štrumbelj & Kononenko, 2014). SHAP
values were calculated independently for each model
and ASV using 500 simulations with ASV importance
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being calculated as the mean of the absolute values of
the SHAP values (Molnar, 2022). Using an ensemble
feature selection approach to take advantage of the
strengths of different ML model types (Bol!on-Canedo &
Alonso-Betanzos, 2019; Pes, 2020; Pudjihartono
et al., 2022), ASVs that were consistently highly ranked
were identified by modelling ASV rankings across
models using a generalized linear mixed model with a
gamma distribution, a fixed effect of ASV identity, and
a random effect of ML model with dispersion modelled
separately for each ASV (Brooks et al., 2017). We then
used post hoc tests to identify ASVs with significantly
above-average rankings after adjusting for false discov-
ery rate (Benjamini & Hochberg, 1995). We used rank-
based overlap (RBO) to determine the correlation
among ASV rankings for each ML model, the ensemble
ranking list, and the null model list (Webber et al., 2010).
To determine if the ensemble ranking appropriately repre-
sents the ML model rankings, we used a beta regression
to compare the mean pairwise RBO among the ML
models to the RBO between the ensemble and each ML
model and to the RBO between the null model and
ML models.

To identify which of the top ASVs in the ML model
results are consistently associated with diseased or
healthy corals in the field, we performed a post hoc
analysis on the differential abundance models to com-
pare ASV abundance between healthy and diseased
corals within each timepoint.

Comparing differential abundance and
machine learning

In our differential abundance and ML analyses, we
identified ASVs that we defined as important and/or
consistent. In the ML analysis, the important ASVs
were identified as those with significantly better than
average rankings and the consistent ASVs were a sub-
set of these ASVs that were consistently differentially
abundant between disease and healthy samples
across all four field timepoints. Similarly, in our differen-
tial abundance analyses, important ASVs differed sig-
nificantly in their abundance between diseased and
healthy corals in the main effect of disease state
and consistent ASVs were the subset of these ASVs
which differed across all four time points. We used
logistic regression to compare the percentage of impor-
tant ASVs identified as consistent based on the method
of determination (DA or ML) and if the ASV was healthy
or disease-associated, as well as the interaction of the
two. Then ASVs were grouped into categories based
on whether the ASV was identified as important
(or consistent) by ML, DA, both or neither.

We compared the ASV ML subcomponent rank
across categories with more than five ASVs using
linear mixed-effects models using the log of the

subcomponent rank as the dependent variable
explained by subcomponent model interacting with the
consistency category (ML, DA, both or neither) nested
within the importance category (ML, DA, both or nei-
ther) of each ASV and a random effect of ASV identity
to account for the repeated measurements.

We calculated the Spearman correlation coefficient
in diseased corals between every ASV and the ASVs
identified as important and consistent by both ML and
DA to understand how the ML subcomponents arrived
at their rankings. We modelled the correlation with a
mixed model with the consistency category nested
within the importance category with random effects of both
the focal ASV and correlated important/consistent ASV.

For both rank and correlation models, we assessed
the significance of the independent terms using F-tests
and Kenward-Roger’s method of calculating denomina-
tor degrees of freedom (Kenward & Roger, 1997). For
both metrics, we performed a post hoc analysis to iden-
tify differences between the group of ASVs identified as
important and consistent by both ML and DA with all
other categories. In the model of subcomponent ranks,
we performed an additional post hoc comparing rank-
ings of all pairs of ML models (lasso logistic regression,
multilayer perceptron, RF and linear SVM) within each
importance/consistency category to identify differences
in subcomponent model behaviour.

Tank transmission validation of top ML
associations

We used 16S rRNA amplicon sequencing data from a
tank-based disease transmission experiment con-
ducted in July 2017 to identify which of the consistently
differentially expressed top ASVs predicted by the ML
ensemble models displayed expected signatures of a
pathogen rather than an opportunist. Six replicate frag-
ments from six healthy coral genotypes were collected
from Sebastian’s reef, Bocas del Toro for the experi-
ment and experimentally lesioned with a Waterpik to
facilitate transmission (Gignoux-Wolfsohn et al., 2012).
They were then distributed into three disease and three
healthy-exposure 18-L recirculating tanks at ambient
seawater temperatures. The three disease exposure
tanks were dosed with 50 mL of disease slurry pro-
duced from 10 WBD-infected coral fragments while
three healthy exposed tanks were dosed with 50 mL of
healthy slurry created from 10 healthy fragments. Slur-
ries were produced by liberating diseased or healthy
coral tissue from the skeleton of sampled corals using
a Waterpik containing filtered seawater (FSW) and nor-
malizing the slurry doses to a standard ocular density
of 0.6 at 600 nm. Two polyps from each coral fragment
were sampled at three time points: when they were
placed in the tanks (day 0), 2 days after exposure (day
2) and 8 days post-exposure or when WBD symptoms
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developed, whichever occurred first (day 8). Diseased
corals were removed from the tank to prevent disease
amplification. The 16S rRNA gene data from the tank
samples were sequenced and assembled with the field
sample collections.

Differential abundance of the top ASVs from the ML
models was analysed in the tank exposure experiment
using a before-after control-impact design to identify
ASVs associated with disease exposure and/or disease
outcome. To account for the repeated measurements,
we included random effects for coral fragments nested
within the genotype and tank. The fixed effect treat-
ments analysed were disease exposure and disease
state (i.e., outcome) of the coral at the sampling time-
point. We used a set of a priori contrasts to categorize
the top ASVs into likely pathogens compared to likely
opportunists (Vega Thurber et al., 2020). The specific a
priori contrasts tested for changes in abundances
(1) across time following exposure to the diseased
slurry as well as (2) between fragments that were
exposed to diseased versus healthy slurries and
(3) between disease exposed fragments that became
infected versus remained healthy. These a priori con-
trasts were considered jointly to distinguish likely patho-
gens from opportunists. Specifically, both likely
pathogens and opportunists were expected to have sig-
nificantly higher abundances after exposure to the dis-
ease slurry. Likely pathogens were further expected to
exhibit higher abundances in fragments that become
infected compared to healthy fragments. Conversely,
likely opportunists were predicted to exhibit higher
abundances in disease-exposed compared to healthy
slurry-exposed fragments, regardless of whether the
coral fragment becomes infected.

We then examined the prevalence of the top puta-
tive pathogen ASVs in the field 16S rRNA gene data
using a logistic regression model with fixed effects of
ASV identity, sampling time, and health state and a ran-
dom effect of the sampling site. To assess changes in
prevalence through time, we used polynomial contrasts
along with pairwise planned contrasts between healthy
and diseased corals across ASVs.

RESULTS

White band disease prevalence

Between July 2015 and July 2017, annual seawater
temperatures showed strong intra- and inter-
annual variation (Figure 1A) with two typical peak
heating events per year occurring on or around
May and October (Figure 1B). Prolonged seawater
temperatures above 30"C are associated with
coral thermal stress events in the region and can
lead to significant coral bleaching (Brown, 1997),
which was observed across the Caribbean and at our

study sites in Bocas del Toro, Panama in January
2016, exacerbated by the 2015/2016 El Niño (SVV
unpublished data; Muñiz-Castillo et al., 2019).
Degree heating weeks (DHW) above 30"C exceeded
5 weeks in January 2016, July 2016 and July 2017
(Figure 1A).

WBD prevalence varied significantly through time
(χ 2

(4) = 99.98, p < 0.0001, Figure 1C) ranging from a
high of 56.9% (±3.4% SE) in January 2016 to lows of
28.0% (±2.9% SE) and 23.2% (±2.8% SE) in July 2015
and January 2017, respectively. WBD prevalence was
significantly associated with the number of weeks with
mean temperatures greater than 30"C during the pre-
ceding seasonal temperature peak (F(1,3) = 15.1,
p = 0.03, Figure 1E), but not the maximum or mean
temperature of this period (F(1,3) = 1.9, p = 0.26,
F(1,3) = 3.7, p = 0.15, respectively).

Acropora cervicornis declined significantly in abun-
dance over the 2 years between July 2015 and July 2017
(χ 2

(4) = 19.58, p = 0.0006, Figure 1D) dropping signifi-
cantly from 0.81 m!2 (±0.06 SE) in July 2015 to 0.74 m!2

(±0.07 SE) in July 2016 and then gradually to 0.69 m!2

(±0.08 SE) in July 2017. This decline was not significantly
correlated with the concurrent or preceding WBD preva-
lence at each site (F(1,3) = 0.07, p = 0.81, F(1,3) = 0.19,
p = 0.71, respectively), or the preceding peak mean tem-
perature (F(1,3) = 3.5, p = 0.16), maximum temperature
(F(1,3) = 1.8, p = 0.27), or weeks above 30"C
(F(1,3) = 1.2, p = 0.36).

16S rRNA amplicon sequencing analyses

16S V3-V4 rRNA amplicon sequencing was obtained
for 412 A. cervicornis (269 healthy and 143 diseased)
fragments across the five sites and four time points
(Table 1). We identified 9355 bacterial ASVs, including
604 ASVs that were present in more than 10% of all
individuals. Of these, 342 were present across all four
sampling times and present on corals in our July 2017
tank transmission validation experiment. These 9355
bacterial ASVs spanned 60 microbial classes,
137 orders, and 305 families (Figure 2). All three post-
rarified alpha diversity metrics significantly differ
depending on sampling time (richness: χ 2

(3) = 113.9,
p < 0.0001, Shannon: χ 2

(3) = 51.7, p < 0.0001, and
inverse Simpson diversity: χ 2

(3) = 30.7, p < 0.0001)
with the maximum diversity across all metrics being
observed during July 2017 (richness = 118 ± 15,
Shannon = 2.95 ± 0.29, inverse Simpson = 7.7 ± 1.7).
There were no significant interactions between time
and coral health (richness: χ 2

(3) = 1.2, p = 0.29, Shan-
non: χ 2

(3) = 2.6, p = 0.45, and inverse Simpson diver-
sity: χ 2

(3) = 1.3, p = 0.71). Healthy corals were found
to have 11.5 (± 4.9, χ 2

(1) = 6.2, p = 0.013) more micro-
bial ASVs than diseased corals with no significant dif-
ferences in either Shannon or inverse Simpson’s
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diversity metrics (χ 2
(1) = 0.75, p = 0.39, χ 2

(1) = 0.61,
p = 0.43, respectively).

NMDS and PERMANOVA analyses of the 342
shared ASVs show that the composition of the bacterial
communities differed significantly across all levels
(Table S2, Figure S1) with disease state accounting
for 12% of the variation (F(1,372) = 104.4, p < 0.0001),
site explaining 15% of the variation (F(4,372) = 31.6,
p < 0.0001) and time explaining 12% of the variation
(F(3,372) = 32.8, p < 0.0001). The significant interac-
tions between disease state, site and time (Table S2)

indicate that the healthy and diseased microbiomes dif-
fer at each sampling time and location.

Differential abundance analyses initially showed
that 244 out of the 342 ASVs (71.3%) differed signifi-
cantly due to disease state (Figure 3); 82 ASVs from
19 genera were significantly more abundant on dis-
eased corals and 162 ASVs from 45 genera were sig-
nificantly more abundant on healthy corals. Further
identification of ASVs which were consistently signifi-
cantly differentially abundant in each sampling time
reduced the number of disease-associated ASVs to

F I GURE 2 Microbial community compositions of (A) healthy, and (B) diseased coral fragments collected from the field and (C) coral
fragments in the tank experiment. Colours indicate the major microbial families present in the coral microbiomes with different shades showing
the dominant genera in each family.
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F I GURE 3 (A) Plot of the microbial community composition and (B) number of ASVs for each (C) combination of significant main effects
(health state and/or time) of the linear mixed effects model. Points in panel C indicate that the ASVs are significant for the shown term. The
above columns in panel B show the number of ASVs that are significant for that combination of terms and, in panel A, the microbial family
composition of those ASVs (colours). (D) The total number of healthy-associated, disease-associated, and time-associated ASV panel.
The darker shaded bars in panels B and D show the number of ASVs consistently differentially abundant across sampling time points.
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32 in 11 genera and dramatically reduced the number
of healthy-associated ASVs to two ASVs in two genera.
The two consistently healthy associated ASVs were
Qipengyuania sp. (ASV40) and Candidatus Pelagibac-
ter ubique (ASV207) the closest relative to the Rickett-
siales (Le et al., 2014). Over-representation analyses
of the consistently disease-associated genera identified
Thalassotalea (four out of nine ASVs, p = 0.002), Shi-
mia (two out of five ASVs, p = 0.044) and Neptuniibac-
ter (two out of three ASVs, p = 0.015) were all
significantly overrepresented among the disease asso-
ciated genera relative to their abundance overall. The
other consistently disease-associated ASVs include
four Arcobacteraceae strains, one identified as Halar-
cobacter bivalviorum (ASV10); a Cellvibrionaceae,
Pseudoteredinibacter isoporae (ASV31); a Crocinitomi-
caceae, Crocinitomix sp. (ASV594); 10 strains of
Endozoicomonadaceae, six of which are identified as
Endozoicomonas atrinae with the remaining four being
unidentified; the Fastidiosibacteraceae Cysteiniphilum
litorale (ASV25); five strains of Oceanospirillaceae, includ-
ing the two overrepresented, unidentified Neptuniibacter
sp.; a Pseudoalteromonadaceae Pseudoalteromonas
sp. (ASV39); one additional unidentified Roseobactera-
ceae; a Rubritaleaceae Rubritalea sp. (ASV965); and one
Vibrionaceae, Vibrio sp. (ASV8).

Model training and ASV identification

All six of the predictive ML models had high classifica-
tion accuracy metrics (i.e., correctly predicting disease
state using the ASV abundance data) of at least 92.7%
with four of the six models possessing equivalent high-
quality prediction metrics in the training dataset
(Table 2). The multilayer perceptron (MLP) had the
highest train-set quality (97.9% ± 0.3%) with the SVM
(97.6% ± 0.2%, equivalence probability= 99.2%), lasso
regression (97.4% ± 0.3%, equivalence probability= 97.7%)
and RF (97.2% ± 0.2%, equivalence probability = 82.5%) all
being equivalently effective models at classifying

healthy and diseased corals based solely on their
microbiomes.

Only 12 out of 412 coral samples were misclassified
by any ML model. None of the 12 misclassifications
were misclassified by all four equivalently effective
models. Nine samples were misclassified by only one
model, two samples were misclassified by both the
MLP and SVM models, and one sample was misclassi-
fied by the MLP, RF and lasso regression models. Rel-
atively even ratios of healthy and diseased samples
were misclassified (5/269 healthy vs. 7/143 disease,
χ 2

(1) = 2.07, p = 0.15). High classification accuracies
(97%+) and equal ratios of misclassifications between
disease states (4.9% disease, 1.9% healthy) indicate
that asymptomatic or presymptomatic corals were not
common. We found no difference in the relative fre-
quency of misclassifications between sampling sites
(χ 2

(4) = 2.68, p = 0.61), although there was an overa-
bundance of misclassifications in January 2016 (7 out
of 12, χ 2

(3) = 9.30, p = 0.03).

ASV feature importance

To identify the most important and consistent bacterial
ASVs contributing to the high predictive accuracies
across the four equivalent ML models, we ranked ASVs
based on SHAP values for each ML model and devel-
oped an ensemble ASV ranking. The ASV ranks across
the top four ML models were highly correlated at 0.73
(±0.03), indicating that the top ASVs were consistent
across models. Ensemble rankings identified a set of
24 ASVs that had significantly above-average feature
importance ranks across the four models (Figure 4A).
Nineteen ASVs were predictive of diseased corals and
five ASVs were predictive of healthy corals (Figure 4B).
Twelve of the 19 disease-associated ASVs were con-
sistently significantly more abundant in diseased corals
in the field across sampling times (Figure 4C), whereas
one of the five healthy-associated ASVs (ASV40—
Qipengyuania sp.) was consistently significantly more

TAB LE 2 Model quality metrics showing the overall metric used to identify equivalent models and the components of the overall metric:
accuracy, the area under the receiver operator curve (ROC/AUC) and Brier score. Lastly, the probability that each model is practically equivalent
(within 1%) to the best overall model.

Algorithm Overall (%) Accuracy (%) ROC/AUC Brier score Equivalence (%)

MLP 97.9 ± 0.3 (98.9) 98.0 ± 0.3 (99.0) 0.995 ± 0.001 (1) 0.017 ± 0.002 (0.01) 100.0

SVM 97.6 ± 0.2 (98.8) 96.7 ± 0.3 (98.1) 0.996 ± 0.001 (1) 0.015 ± 0.002 (0.007) 99.2

LASSO 97.4 ± 0.3 (97.4) 97.4 ± 0.3 (97.1) 0.997 ± 0.001 (0.998) 0.022 ± 0.002 (0.021) 97.7

RF 97.2 ± 0.2 (97.8) 97.7 ± 0.3 (98.1) 0.994 ± 0.001 (0.999) 0.026 ± 0.002 (0.022) 82.5

KNN 94.3 ± 0.4 (95.3) 95.4 ± 0.4 (96.2) 0.972 ± 0.004 (0.98) 0.044 ± 0.003 (0.038) 0.0

PLS 92.7 ± 0.2 (93.0) 98.0 ± 0.2 (99.0) 0.997 ± 0.001 (1) 0.094 ± 0.001 (0.096) 0.0

Null 53.0 ± 0.1 (53.0) 65.4 ± 0.1 (65.4) 0.5 ± 0 (0.5) 0.226 ± 0 (0.226) 0.0

Note: Numbers indicate the mean ± SE evaluated on the training data. Numbers in parentheses indicate the value when assessed on the test set. The solid line
separates ML models that possess equivalently high-quality prediction metrics in the training dataset.
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abundant in healthy corals across time. The 12
disease-associated ASVs by rank importance included
one Cysteiniphilum sp. (ASV25), one Vibrio sp. (ASV8),
one Thalassotalea sp. (ASV30), three Endozoicomo-
nas sp. (ASV108, ASV 361, and ASV1057), two
Acrobacteraceae (ASV7 and ASV59), one Shimia
sp. (ASV322) and three Oceanspirillaceae—two Neptu-
niibacter spp. and one uncharacterized (ASV26).

Comparing differential abundance and
machine learning

While both the differential abundance and ML
approaches identified different subsets of important
ASVs, 12 ASVs were identified as consistently differen-
tially abundant in both the ML and DA analyses
(Figure 5). We found that ASVs identified as important
by ML were 7.3# (±5.2) more likely to also be con-
sistently compared with those identified by DA
(χ 2

(1) = 5.47, p = 0.019) and that healthy associated
ASVs were 18.7# (±13.4) less likely to be consistently dif-
ferentially abundant compared with disease-associated

ASVs (χ 2
(1) = 67.2, p < 0.0001). Regardless of the

method used to identify ASVs as important healthy-
associated ASVs were less likely to be consistent than
disease-associated ASVs (χ 2

(1) = 1.66, p = 0.20).
We identified seven unique groupings of ASVs

depending on their categorization as important and
consistent by DA and ML analyses, five of which con-
tained more than five unique ASVs to be analysed
(Figure 5D). ML subcomponent ranks differed
significantly depending on both importance (F(2,334) =
184.0, p < 0.0001) and consistency (F(2,334) = 37.0,
p < 0.0001), ML versus DA grouping categories, and
their interaction with the ML subcomponent model
(F(6,1002) = 2.5, p = 0.023; F(6,1002) = 16.8, p < 0.0001;
respectively). There were no significant differences in
subcomponent ranking depending on the subcompo-
nent model alone (F(3,1002) = 2.4, p < 0.064). The
12 ASVs identified as important and consistent by both
approaches had significantly lower (i.e., better) average
ranks (9.15 ± 1.38 SE, all p < 0.0041, Figure 5B) over-
all including against ASVs identified as important but
not consistent by both approaches (23.4 ± 4.08 SE,
t(334) = 3.3, p = 0.0041) or ASVs identified as important

F I GURE 4 (A) Estimated model importance of all ASVs significantly above average showing modelled importance with 95% confidence
intervals along with individual model rankings (colours). (B) SHAP values show the direction and magnitude by which each ASV alters the
probability of coral fragments being diseased. The true disease state of the fragment is shown by the colour and the normalized amount of the
ASV present in the fragment is indicated by the hue. (C) Field modelled estimates and 95% confidence intervals of the log2 fold-change in each
sampling time with points coloured by significant associations with diseased (red) or healthy (blue) corals. White points are non-significant
associations. (D) Tank modelled estimates and 95% confidence intervals of log2 fold-change differences between disease and healthy
exposures (square) or outcomes (diamond). ASVs that were not consistently differentially expressed in the field are marked as ‘nt’, as they were
not tested in the tank experiment. The stylization of ASV names indicates top candidates for potential pathogens (red, bold), opportunists (bold),
and beneficial (blue, bold) bacteria.
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F I GURE 5 (A) Average correlation of the ASVs in each category with the ASVs identified as important and consistent by both ML and DA
analyses in diseased coral fragments. (B) ML subcomponent model ranking across each of the four subcomponents (colours) along with the
average ranking. In panels A and B points represent the mean value with error bars showing the 95% confidence intervals. Points without error
bars show individual ASV values in groups with too few ASVs to model. Different letters at the top of the panels indicate significant differences
among groupings. (C) The number of ASVs identified as healthy (blue), disease (red), or neither (grey) associated in (D) each combination of
important/consistent ASVs identified by ML or DA models. (E) Shows the number of healthy (blue) and disease (red) associated ASVs
depending on if the ASV is identified as important or consistent by either DA or ML models.
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and consistent by DA alone (61.5 ± 6.9 SE, t(334) = 7.5,
p < 0.0001).

We then took the top 12 ASVs that were consistent
and important across both ML and DA and looked at
the average correlation in the disease samples within
and between these top ASVs abundances against the
ASVs in the other groupings (Figure 5A) to identify if
any of the ASV groupings are correlated with the top
ASVs and thus likely to be down-weighted in the ML
feature selection. The average correlation within the
top 12 ASVs was 0.01 (±0.02 SE). All other categories
had similarly low correlations (all p > 0.59) except the
ASVs identified as both important and consistent by DA
alone which were significantly positively correlated with
the top twelve ASVs (0.08 ± 0.01 SE, t(372) = 4.2,
p = 0.0001). This group of ASVs is also the only group-
ing that showed significant differences within its sub-
component ranking across models. Specifically, lasso
logistic regression, which is particularly sensitive to fea-
ture correlations compared with other subcomponent
models, ranked these ASVs 106 (±19 SE) ranks higher
(i.e., poorer) than the other subcomponent models
(t(786) = 5.6, p < 0.0001), thus further down-weighting
the relative importance of these correlated ASVs.

Tank validation of ASV importance

We used 16S rRNA amplicon sequencing data from
our July 2017 tank-based transmission experiment to
verify if the 12 top disease-associated ASVs and one
healthy-associated ASV met the expectations of a path-
ogen or opportunist. 16S rRNA amplicon sequencing
was obtained for six healthy coral genotypes before
and after exposure (days 2 and 8) to disease or control
(healthy) slurries. In the disease-exposed tanks, four
out of the six disease-exposed genotypes developed
WBD, allowing us to compare ASV differential abun-
dances due to disease exposure and disease transmis-
sion outcomes. Our a priori expectations were that
WBD pathogens would increase significantly in the dis-
ease exposure tanks and differ significantly due to
disease exposure as well as disease outcome,
whereas opportunistic bacteria would differ due to dis-
ease exposure and not disease outcome.

Pathogens

Three out of the 12 top disease-associated ASVs met
our expectations for WBD pathogens (Figures 4D and
6A). Our top-ranked candidate, ASV25—Cysteiniphi-
lum litorale, increased by 80-fold over time in the
disease exposure tanks (±58.1 SE, t(20.0) = 6.0,
pfdr = 0.00005), differed 16-fold (±8 SE, t(6.9) = 5.5,
pfdr = 0.006) between the exposure treatments, and
34-fold (±23 SE, t(67.5) = 5.3, pfdr = 0.000009) due to

disease outcome in disease exposed corals. Second
ranked ASV8—Vibrio sp. increased 27-fold (±31 SE,
t(23) = 2.8, pfdr = 0.013), had a ninefold exposure differ-
ence (±7 SE, t(7.0) = 2.8, pfdr = 0.035), and 19-fold out-
come difference (±21 SE, t(68.6) = 2.7, pfdr = 0.021).
Seventeenth ranked ASV38—Neptuniibacter sp. increased
4.2-fold (±1.6 SE, t(16.9) = 3.6, pfdr = 0.007), had a
2.5-fold exposure difference (±0.7 SE, t(6.7) = 3.0,
pfdr = 0.035) and a 2.8-fold outcome difference (±1.0
SE, t(63.2) = 3.0, pfdr = 0.014).

The field prevalences of these three ASVs are also
consistent with pathogens. Prevalences of all three
ASVs differed due to disease state (χ 2

(1) = 203.3,
p < 0.0001, Figure S2, Table S3) with ASV8—Vibrio
sp. having the highest average prevalence on diseased
corals (95.2% ± 3.1% SE, pASV25 = 0.022, pASV38 =
0.0001) followed by ASV25—Cysteiniphilum litorale
(77.5% ± 5.1% SE, pASV38 = 0.0004), and then ASV38—
Neptuniibacter sp. (43.0% ± 5.6% SE). ASV25—
Cysteiniphilum litorale and ASV38—Neptuniibacter
sp. had low prevalences on healthy corals (2.9%
± 1.2% SE and 1.4% ± 0.9% SE, respectively,
p = 0.59) whereas the prevalence of ASV8—Vibrio
sp. on healthy corals was significantly more elevated at
20.2% ± 7.9% SE (pASV25 = 0.0005, pASV38 = 0.0024).
The prevalence of ASV25—Cysteiniphilum litorale has
declined significantly in healthy corals (plinear = 0.024)
across the four sampling times while remaining rela-
tively constant in diseased samples (plinear = 0.23).
Conversely, the prevalence of ASV8—Vibrio
sp. increased significantly over time in diseased sam-
ples (plinear = 0.01) but has been consistent in healthy
samples (plinear = 0.63). The prevalence of ASV38—
Neptuniibacter sp. has been consistent through time in
healthy (plinear = 0.17) and diseased (plinear = 0.47)
corals.

Opportunists

Two ASVs differed significantly only by disease expo-
sure, as is expected for opportunists (Figures 4D and
6B). A Thalassotalea sp. (ASV30) showed a 10.7-fold
exposure effect (±7.5 SE, t(6.6) = 3.4, pfdr = 0.035) fol-
lowed by the Oceanospirillaceae (ASV26) with a
5.0-fold difference (±2.8 SE, t(6.7) = 2.8, pfdr = 0.035).
Unlike the putative pathogens, these ASVs were not
significantly differentially abundant by diseased versus
healthy outcomes on fragments exposed to the disease
slurry (ASV26: pfdr = 0.058, ASV30: pfdr = 0.17).

DISCUSSION

WBD is endemic in Bocas del Toro, Panama with con-
sistent prevalence above 28.0% (±2.9% SE) and semi-
regular, cyclical flare-ups correlated with warm periods
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(days above 30"C). Unlike the devastating
Caribbean-wide losses during the early stages of the
WBD epizootic (Aronson & Precht, 2001), we docu-
mented a gradual decline in A. cervicornis abundances
of 14.5% over 2 years in Bocas del Toro with the most
significant decline (7.1%) occurring following a bleach-
ing event between July 2015 and January 2016. Differ-
ential abundance analyses of the 16S rRNA gene data
identified 32 disease-associated ASVs from 11 bacterial
genera, including a significant over-representation of
the genera Thalassotalea, Shimia and Neptuniibacter
on diseased corals. In contrast, our ML approach

predicted A. cervicornis disease state with high accu-
racy (97% or higher) and identified 24 ASVs (19 dis-
ease-associated and five healthy-associated) as key
features. Twelve disease-associated ASVs from the
ML models were highly consistent across time, and
three ASVs (i.e., strains)—ASV25 Cysteiniphilum litor-
ale, ASV8 Vibrio sp. and ASV38 Neptuniibacter sp.—
met the expectations of pathogens in our tank-based
transmission experiment and should be targeted for
isolation, cultivation and transmission assays. More-
over, the 97%+ prediction accuracy of the ML models
for disease state across 143 disease and 269 healthy

F I GURE 6 (A) ASVs classified as likely pathogens and (B) ASVs classified as likely opportunists. Each panel shows the ASV abundance
log2 (CPM) from field samples and from each of the three timepoint and exposure type combinations in the tank experiment: pre-exposure, post-
exposure to the diseased slurry and post-exposure to the control (healthy) slurry. Error bars indicate the 95% confidence interval.
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samples suggests that asymptomatic ‘apparently
healthy’ individuals are rare in the field and that WBD is
a single disease syndrome that should not be divided
into subcategories based on disease signs (e.g., WBD
vs. RTL).

WBD pathogen candidates

Our top-ranked pathogen, ASV25, was classified as
Cysteiniphilum litorale, a recently described species in
a novel genus within Fastidiosibacteraceae isolated
from coastal Chinese seawater. ASV25 has a 97%
sequence match (402/415 bp) with multiple Cysteiniphi-
lum strains including strain WZ-4 which caused a skin
infection in a human working at a shrimp farm (Liu
et al., 2017; Xu et al., 2021). In the field, ASV25 was
found at detectable levels on 77.5% ± 5.1% SE of dis-
eased A. cervicornis and only 2.9% ± 1.2% SE of
healthy corals. Cysteiniphilum litorale—previously
described as Francisella-like (Liu et al., 2017; Qian
et al., 2023)—have been associated with WBD
(Gignoux-Wolfsohn et al., 2017; Klinges et al., 2022;
Walton, 2017) and similar Cysteiniphilum litorale ASVs
(ASV 5b79cf6d5a5a9bf0bb866aed449eff44, 6 out of
232 nucleotide differences: 2.6%) have been observed
on A. cervicornis disease grafts in Florida (Rosales
et al., 2019). In addition to causing human skin infec-
tions (Xu et al., 2021), Cysteiniphilum genomes contain
a range of different virulence factors, including a partial
copy of the Francisella pathogenicity island, and closely
related Francisellas are well-known pathogens across
a broad taxonomic range (Cowley & Elkins, 2011;
Nano & Schmerk, 2007; Qian et al., 2023), including in
marine fishes and molluscs (Birkbeck et al., 2011;
Colquhoun & Duodu, 2011).

Our second-ranked pathogen, ASV8 classified as a
Vibrio species (family: Vibrionaceae) with 98% sequence
matches to multiple Vibrio species—including V. harveyi
and the coral pathogen V. corallilyticus (Ben-Haim
et al., 2003; Luna et al., 2010)—but additional multi-gene
sequencing data would be needed to accurately identify
this ASV to species (Thompson et al., 2005). In the field,
ASV8 was found on 95.2% ± 3.1% SE of diseased corals
and 20.2% ± 7.9% SE of healthy corals. Historically, Vib-
rio charcharia (now synonymized with V. harveyi) was
identified as the causal agent of WBD (Ritchie &
Smith, 1998) and elicited WBD/RTL disease signs in in
situ grafting assays on A. cervicornis (Gil-Agudelo
et al., 2006), but 16S rRNA data or cultures were not
submitted with this research. Rosales et al. (2019) identi-
fied an identical Vibrio strain (ASV: 7eb68c2ff12b-
b8a0a46d036c37f8f26e) as associated with WBD/RTL in
A. cervicornis from Florida. Vibrios are well-known marine
pathogens (Farmer III et al., 2015) and have been impli-
cated in numerous coral diseases (Bourne et al., 2009)
including WBD (Gil-Agudelo et al., 2006; Ritchie &

Smith, 1998; Sweet et al., 2014) and coral bleaching
with Vibrio shiloi on Oculina patagonica (Kushmaro
et al., 2001; Rosenberg & Falkovitz, 2004). Vibrio corallii-
lyticus has been implicated in several diseases including
tissue lysis in Pocillopora damicornis (Ben-Haim et al.,
2003), White Syndrome in Montipora (Ushijima
et al., 2014), and was recently identified as a co-infecting
pathogen associated with SCTLD in the Caribbean
(Ushijima et al., 2020). Vibrio coralliilyticus is usually a
coral commensalist that becomes pathogenic at higher
ambient temperatures (Ben-Haim et al., 2003; Ushijima
et al., 2018) by disrupting nutrient exchange between the
coral host and symbionts, causing subsequent destruc-
tion of tissue integrity (Gibbin et al., 2019) and out-
competing other commensal bacteria through active pro-
phage induction (Wang et al., 2022).

The final ASV implicated as a potential pathogen is
ASV38, classified as a Neptuniibacter species (family:
Oceanospirillaceae) with a 98% sequence match to an
unpublished HIMB1269 strain isolated from the coral
Porites compressa in Hawaii. Neptuniibacters are not
generally associated with marine diseases and instead
are found in low carbon and nutrient surface waters
(N. caesariensis; Arahal et al., 2007), salt pans
(N. halophilus; Chen et al., 2012), associated with sea
cucumber larvae (N. victor; Kudo et al., 2023) or scallop
hatcheries (N. pectenicola and N. marinus; Diéguez
et al., 2017). In the field, ASV38—Neptuniibacter
sp. was found on only 43.0% ± 5.6% SE of diseased
corals and 1.4% ± 0.9% SE of healthy corals; its rela-
tively low prevalence on diseased corals suggests it is
a disease-associated opportunist rather than a patho-
gen that may be reacting to quorum sensing molecules
(Rezzonico & Duffy, 2008) produced by a quorum
sensing pathogen (Certner & Vollmer, 2015, 2018).

Rosales et al. (2019) previously identified the most
likely WBD pathogen in Florida as Sphingobium yanoi-
kuyae (family: Sphingomonadacea). Two Sphingobium
sp. ASVs were present in our dataset but were at low
prevalence (1.9% ± 1.7% SE; 15/270 healthy and
4/143 diseased corals) and were removed with our low
prevalence (10%) filter prior to analysis. Parasitic Aqua-
rickettsia sp. have also been associated with increased
disease susceptibility in nursery-raised A. cervicornis
genotypes in Florida (Klinges et al., 2020). Twenty-one
Aquaricketssia ASVs (MD3-55 sp.) were detected in
our dataset, but each was present at low prevalence
in our data (1.3% ± 0.3% SE) and was also removed
by the low prevalence filter.

Out of the top candidate pathogens identified in our
ML models and tank experiments, we believe that
ASV25, C. litorale and ASV8, Vibrio sp., represent the
most likely primary WBD pathogens given that related
ASV strains from both genera have previously been
associated with WBD, and include pathogenic marine
strains. Both ASV25, C. litorale, and ASV8, Vibrio sp.,
had similarly high prevalences on diseased corals

MACHINE LEARNING TO IDENTIFY WHITE BAND DISEASE PATHOGENS 15 of 20ENVIRONMENTAL MICROBIOLOGY

 14622920, 2024, 9, D
ow

nloaded from
 https://envirom

icro-journals.onlinelibrary.w
iley.com

/doi/10.1111/1462-2920.16700 by N
ortheastern U

niversity, W
iley O

nline Library on [01/08/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



(77.5% and 95.2%, respectively), but ASV25,
C. litorale, had much lower prevalence on healthy
corals than ASV8, Vibrio sp. (2.9% vs. 20.2%, respec-
tively). The low prevalence of ASV25 C. litorale on
healthy corals suggests it is most likely an extrinsic
pathogen, whereas the high prevalence of ASV8, Vibrio
sp., on healthy corals coupled with Vibrios being well-
known opportunistic coral pathogens (Munn, 2015)
suggest it is a primary intrinsic pathogen or secondary
opportunistic commensal (Vega Thurber et al., 2020),
which could be directly tested through strain-based
infection and co-infection experiments after both ASV
strains are brought into pure culture.

Machine learning versus differential
abundance analyses

Research into coral diseases has relied heavily on 16S
rRNA amplicon sequencing and differential abundance
analyses to identify ASVs that are associated with
diseased corals, which typically identifies hundreds
of disease-associated ASVs as candidate pathogens
(e.g., Gignoux-Wolfsohn et al., 2017). Previous research
using ML techniques to identify coral disease micro-
biomes has been broadly successful (70%+ accuracy)
but hampered by a small sample size (<100), reducing
the advantage of ML over traditional statistical methods
(Barque et al., 2024). Differential abundance analyses of
our 16S rRNA gene data identified 87 disease-associated
ASVs, 32 of which were consistent in the field, whereas
our ML approach narrowed this list to 19 disease-
associated microbial ASVs, 12 of which were consistent
in the field. Both ML and DA identified a greater propor-
tion of healthy-associated ASVs as important which were
not also consistent than they did with disease-associated
ASVs. This likely reflects the high degree of temporal vari-
ability in healthy microbiomes.

ML approaches have several advantages over dif-
ferential abundance-based methods to identify ASVs
associated with disease states. ML classification
models more fully utilize the features of the filtered ASV
data to predict disease states as well as identify the top
ASV features contributing to those predictions. For
example, ML models can incorporate interactions
among ASVs and use the simple presence/absence of
an ASV in a diseased/healthy state rather than only
using the ASV abundance as in DA methods. By com-
paring top ASV features across subcomponent models
using an ensemble approach, we were able to identify
highly consistent features across a range of ML classi-
fiers, each of which has different approaches for han-
dling interactions and collinearity among features,
feature selection and prioritization (Pes, 2020). High
predictive accuracy and correspondence across top
ASV features (mean feature rank correlation = 0.73)
suggest that the biological signatures of the disease

associations in the 16S rRNA gene data are strong.
Moreover, in comparing the ML versus DA analyses,
12 of the top ASVs identified by our ML analysis as
important and consistent were also identified as impor-
tant and consistent in DA analyses (average rank low
correlation), whereas the 22 ASVs identified as impor-
tant and consistent by the DA analyses alone were
poorly ranked by the ML models and showed significant
positive correlations the with top 12 ASVs. This
demonstrates one of the key advantages of the ML
approach—namely, that it can account for intercorre-
lated features during model selection and deprioritizes
lower-ranked ASVs in our ensemble rank test. In our
case, these 22 ASVs had significantly poorer ranks in
the lasso subcomponent model (Figure 5B). Biologi-
cally, these 22 differentially abundant ASVs are likely
opportunists associated with the disease microbiome,
which the ML methods excluded as ‘follower’ ASVs
during model selection.

Integrating ML and differential abundance approaches
in a hypothesis-driven manner allowed us to limit the
number of consistently disease-associated ASVs to
12, from 32 based on solely differential abundance ana-
lyses, which was further reduced to a tractable number of
putative pathogens by utilizing an additional tank-based
experiment and a priori assumptions about the behaviour
of a pathogenic microbe when infecting a host. The
importance of identifying a relatively small number of
pathogenic ASV sequence strains is that their sequence
identities can be used to isolate and grow these ASVs in
culture to test their transmissibility in controlled, tank-
based experiments to fulfil the Henle-Koch postulates
(Evans, 1976; Fredricks & Relman, 1996; Henle, 1938;
Koch, 1893).

Conclusions

Our ML approach demonstrates that ML-based modelling
of 16S rRNA gene-based ASV abundances can be used
to accurately predict coral disease states and identify top
pathogens from hundreds of disease-associated ASVs.
Using ML coupled with tank-based transmission data, we
identified two ASVs as the most likely pathogens—ASV25
Cysteiniphilum litorale and ASV8 Vibrio sp. Previous work
has identified identical or related Cysteiniphilum and Vibrio
ASVs as potential WBD pathogens (Gignoux-Wolfsohn
et al., 2017; Gil-Agudelo et al., 2006; Klinges et al., 2022;
Ritchie & Smith, 1998; Rosales et al., 2019; Sweet
et al., 2014; Walton, 2017) and thus both ASV strains
should be the top targets for isolation, cultivation, genetic
characterization and confirmation of Henle-Koch’s postu-
late via transmission assays.
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