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The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influ-
ence cell migration. Here, we follow each of these pathways, examine how these path-
ways modulate epithelial cell migration, and discuss the cross-talk between these
pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase
(PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell
migration. While obscurin’s effect on the PI3K pathway agrees with the literature, obscur-
in’s effect on the RhoA pathway runs counter to most other RhoA effectors, whose acti-
vation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and
this may also influence cell motility. When taken together, obscurin’s ability to modulate
three independent cell migration pathways is likely why obscurin knockout cells experi-
ence enhanced epithelial to mesenchymal transition, and why obscurin is a frequently
mutated gene in several types of cancer.

Introduction
Epithelial cell migration is utilized by the body in such diverse events as organ development, normal
tissue regeneration, and wound healing [1–4]. During these processes, epithelia partially revert to less
differentiated mesenchymal cells, allowing for more efficient migration [1]. This decision and subse-
quent action is complex, involving the coordination of dozens of independent pathways, and is tightly
regulated by a wide variety of cellular factors [5–7]. While there are many kinds of single cell and col-
lective cell migration, this review focuses on cell migration associated with cells that undergo a specific
progression towards cancer called epithelial to mesenchymal transition (EMT) [5,7,8]. For these cells
to achieve tumor formation, invasiveness, and metastasis, they hijack and dysregulate normal cellular
migration pathways. Stated more precisely, precancerous epithelial cells that reflect reversible changes
in behavior due to phenotypic plasticity, rather than simply a loss of differentiation, and also become
more motile are described as going through EMT [5,7,8].

Obscurin, cancer, and cell migration
The giant cytoskeletal protein obscurin has recently emerged as a central player in controlling epithe-
lial cell migration [9–13]. This is an unexpected development; obscurin was only discovered in the
early 2000s, and initially was thought to primarily be involved in sarcomeric organization [14,15].
Obscurin derived its name due to the early difficulties in working with it — obscurin mRNA requires
100% DMSO to unfold it and the protein was originally extremely difficult to solubilize [16]. In add-
ition, the protein is often expressed in low levels, is large (up to 870 kDa), has multiple isoforms, and
initially had poor antibody reactivity [10]. These technical hurdles made it an unappealing candidate
for most exploratory works. However in 2006 obscurin was linked to cancer when a meta-analysis of
breast and colorectal cancers identified obscurin as the second most-mutated gene, behind p53 [17].
This same study also cataloged multiple obscurin mutations resulting in premature stop codons,
thereby truncating the obscurin protein so that only the non-signaling N-terminus is expressed in
these cancers. Subsequent studies revealed that adding obscurin back to breast cancer cells lacking
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obscurin suppresses cancer progression in mice [12,13]. The emergence of this promising anti-cancer applica-
tion underscores the need to answer two fundamental questions about obscurin: what is obscurin’s normal role
in epithelial-derived cells, and relatedly why does obscurin ablation lead to cancer?
In muscle, the N-terminus of obscurin binds to the giant sarcoplasmic organizer titin and the C-terminus

binds to the sarcoplasmic reticulum via an interaction with ankyrin-G, -B, and small ankyrin-1 [15,18–20]. It
is the only protein known to link the contractile apparatus to the surrounding membrane system, and it tends
to be distributed in a ribbon-like pattern near the M-disk and Z-line [21,22]. Obscurin’s tandem repeat archi-
tecture allows it to physically link various subcellular structures together, which helps in sarcomeric organiza-
tion and function [23–26]. As one would expect, disruption of obscurin dysregulates both sarcomeric
organization and normal muscle contraction. In nonmuscle tissues obscurin is often expressed at lower levels,
and can localize cytosolically, nuclearly, at the membrane, and at distinct intracellular structures, depending on
the cell type [10,27]. The reason for this complex localization pattern is not understood; neither titin nor the
same isoforms of ankyrins are expressed in epithelial cells, and so it seems unlikely this giant protein organizes
the cytoskeleton in the same way it does in myocytes [28,29]. On the other hand the obscurin localization
pattern suggests that it must have many epithelial cell targets, however there have been no colocalization
studies on the subject [30]. The obscurin C-terminal region contains multiple signaling domains interspersed
among the cytoskeletal structural domains (Figure 1) [23,27]. In particular, the obscurin RhoGEF domain acti-
vates RhoA, and the PH domain inactivates phosphoinositide-3-kinase (PI3K) [31–33]. Both of these targets
are important for epithelial cell homeostasis and movement [34,35]. In addition, the first of the two kinase
domains in the obscurin B isoform, denoted SK1, specifically phosphorylates N-cadherin [36,37].
As an overview, epithelial cells migrate by extending lamellipodia (sheet-like projections) and/or filopodia

(narrow cellular protrusions) at their leading edge [1]. These extensions are created and supported by a mesh
of cross-linked and polymerizing actin filaments [38,39]. As these filaments push the membrane outward,
transmembrane molecules such as integrins and cadherins fasten the leading edge of the cell to the surface
below [40]. Simultaneously, the adhering molecules at the lagging edge of the cell are removed from the

Figure 1. Obscurin signaling inhibits motility-related pathways.

Obscurin modulates RhoA activity through its RhoGEF domain (residues 5697–5880; accession number CAC44768), inhibits

PI3K through interaction with the PH domain (residues 5880–6010), and phosphorylates cadherin through its first kinase

domain in the Obscurin B isoform (residues 6450–6721; accession number NP_001092093). The obscurin-RhoA pathway leads

to decreased cell motility, in contrast with how many other RhoA effectors act. The obscurin inhibition of PI3K also leads to

decreased cell migration. The obscurin-cadherin pathway is only fully described in myocytes, and potentially links into RhoA

signaling.
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membrane through either protease cleavage or internalization, and the lagging edge retracts towards the rest of
cell via actomyosin contraction [41,42]. Each of these processes involves input from multiple upstream signals.
For instance, RhoA promotes actin stress fibers and actomyosin contraction at the lagging strand, but in lower
levels also promotes actin polymerization at the leading strand [43]. In a partially parallel pathway, PI3K also
stimulates actin polymerization at the leading edge [44–46].
Since RhoA, PI3K, and cadherin are all involved in cell adhesion and migration signaling, obscurin is poten-

tially involved in three separate pathways that control cell motility [47–49]. Obscurin is not known to interact
with any other oncoproteins, and thus this connection to various migration pathways is an attractive mechan-
ism to explain how obscurin links to cancer. In the following sections we will delineate each of these pathways
with an emphasis on examining obscurin’s role in controlling cell migration.

RhoA
The obscurin Rho-GEF domain activates the RhoA/ROCK pathway in skeletal muscle [33]. In epithelial cells,
knockdown of obscurin decreases RhoA and ROCK activity, and this leads to increased cell migration
[12,31,50]. This relationship is different from almost all other RhoA signaling pathways; normally a decrease in
RhoA activation leads to decreased epithelial cell migration [39,51–53]. Given this surprising and paradoxical
relationship, it is worthwhile examining the normal RhoA pathway, obscurin’s relationship to this pathway, and
why obscurin may act the way it does.
Like other small GTPases, RhoA only binds to and activates its downstream targets while also bound to GTP

[54–57]. While RhoA possess the ability to slowly hydrolyze GTP into GDP [58], the predominant RhoA GTP
hydrolysis mechanism and subsequence GDP replacement for a new GTP molecule involves the use of
GTPase-Activating Proteins (GAPs) and guanine nucleotide exchange factors (GEFs) [59,60]. Select GEFs bind
to RhoA and facilitate the exchange of GDP for GTP, leading to a conformational change that allows direct
RhoA binding to its downstream effectors [61]. GAPs bind to RhoA and stimulate more efficient GTP hydroly-
sis into GDP, thus returning RhoA to its original conformation and deactivating the molecule [62,63]. There
are over 20 GEFs and GAPs that regulate RhoA activity, and many are associated with cell motility [60]. RhoA
activity can also be modulated by phosphorylation at Ser-26 and Ser-188 and ubiquitination at Lys-6 and
Lys-162 [64–66]. Both of these posttranslational modifications inhibit RhoA activity.
RhoA’s ability to affect cell migration is nuanced. Moderate early RhoA activation near the leading edge of a

migrating cell promotes membrane ruffling and lamellae formation (Figure 2) [43,67–70]. Higher RhoA activa-
tion later in migration at the trailing edge of the cell promotes actin stress fiber formation and enhances actin/
myosin contraction [71–73]. Both processes are vital for migration, and changing the amount, timing, and loca-
tion of RhoA activation in migrating epithelia can dramatically slow down migrating cells; both constitutively
active RhoA and complete inhibition of RhoA through ROCK-inhibiting drugs leads to decreased epithelial cell
migration [74,75]. In the former case, the lack of migration is caused by too many stable and immovable stress
fibers, a loss of cell polarization, and increased focal adhesions, all of which act to freeze the migrating cell

Figure 2. Spatiotemporal effects of obscurin targets on epithelial cell migration.

Increased RhoA/ROCK at the lagging cell edge leads to stress fiber formation and actomyosin contraction, while more

moderate and earlier RhoA/ROCK activation proximal to the leading edge leads to actin filament stabilization, membrane

ruffling, and lamellipodia extension. At the leading edge, PI3K activation also contributes to increased F-actin filopodia stability

and increased cell motility, and obscurin blocks this activation.
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[75]. In the latter case, the lack of central stress fibers and actomyosin contraction likely prevents efficient force
production and keeps the cells tethered to one location [74].
Obscurin’s effect on cell motility shows how subtle alterations in RhoA activity influence cell migration.

Since obscurin is one of many RhoA effectors, knockdown of either all of obscurin or just the RhoGEF domain
does not completely ablate RhoA function, but instead merely dampens activity [31]. Either this amount of
dampening, or the obscurin-dependent subcellular location of decreased RhoA activity, results in markedly
increased cell migration [9,11,31]. This is in contrast with almost all other RhoA activators, whose activity
tends to stimulate motility across a wide range of cell types, and whose down-regulation decreases RhoA activ-
ity and leads to a decrease in cell migration [76–81]. Other than obscurin, there are only a handful of specific
instances where the down-regulation of a RhoA activator results in enhanced cellular migration [82,83]. While
obscurin-mediated migration inhibition is linked to changes in actin dynamics [11,50], these other
RhoA-linked migration inhibitors are associated with changes in microtubule regulation. The exact reason for
obscurin’s unique role in suppressing cell migration remains unknown, and the molecular mechanism of how
obscurin uses RhoA to suppress cell migration is a current area of active research.
While RhoA has multiple downstream effectors that are involved in migration pathways, arguably the two

most important are ROCK and mDia [43,84]. mDia is a formin protein that negatively autoregulates its own
activity [85]. RhoA binds to mDia and releases this autoinhibition, allowing mDia to directly bind to and stabil-
ize both microtubules and actin filaments [85–88]. In the context of cell migration, mDia accelerates actin fiber
growth and actin nucleation, and plays a role in both filopodia formation and adherens junction stabilization
[89]. Stress fiber formation requires both mDia and ROCK; neither protein, on its own, is sufficient to initiate
this change in the cytoskeleton [43,90]. Given mDia’s role in stress fiber formation, and given obscurin ability
to both activate RhoA and stimulate stress fiber formation, it is likely that obscurin indirectly modulates mDia
activity [11,31].
ROCK1/2 (Rho-associated kinase) are dimeric kinases that are activated upon RhoA binding to their

C-terminal Rho-binding PH domain [91]. ROCK modulates the activity of dozens of downstream effectors via
phosphorylation [92,93]. Here we will primarily examine how ROCK affects the actin cytoskeleton, but it also
acts to destabilize microtubules via interactions with Map2, CRMP2, and Doublecortin, destabilize intermediate
filaments via interactions with GFAP, vimentin, and NF-L, and control NO signaling, to name just some of its
many roles [94–100]. There are over 1000 review articles on the RhoA/ROCK pathway; this minireview is only
examining a small subset of these in relation to obscurin signaling. A more complete list of ROCK targets can
be found in multiple other reviews including [93,101].
Since obscurin activates RhoA, it also indirectly activates ROCK. In the context of migration and changes in

cytoskeletal dynamics, activated ROCK phosphorylates LIM kinase, which phosphorylates cofilin thereby inhi-
biting cofilin-mediated disassembly of F-actin [43]. ROCK also phosphorylates adducin, which stabilizes the
actin-spectrin interaction near the plasma membrane and enhances cell contraction [102]. ROCK’s activation
of FHOD, another formin protein that is up-regulated in EMT, leads directly to stress fiber formation and
increases cell motility [103,104]. ROCK activates ezrin, part of the ERM protein complex, that directly links the
actin cytoskeleton to the plasma membrane [105,106]. On the other side of the actomyosin complex, ROCK
both phosphorylates myosin light chain (MLC) and inhibits MLC phosphorylase through multiple pathways,
which serves to amplify actin/myosin contraction [107,108]. As would be expected given these multiple path-
ways, chemical inhibition of ROCK inhibits cell migration. The two most common ROCK inhibitors are
Y27432 and fasudil, and both are used extensively to study ROCK-associated pathways despite also having off-
target effects on migrating cells [109]. Like RhoA, ROCK activation must be spatiotemporally regulated; for
instance, the presence of stress fibers and actomyosin contraction at the leading edge stops migration [43].
Studies on how obscurin influences ROCK have suggested that while both unchecked ROCK activation or
deactivation prevents cell motility, intermediate obscurin-dependent modulation of ROCK activity can actually
lead to an increased rate of cell migration in some circumstances [50]. These studies suggest that attention to
RhoA and ROCK subcellular localization, instead of simple western blot analysis on whole-cell activity, may
resolve the discrepancies of how obscurin-dependent ROCK signaling fits into these otherwise well-studied
pathways.

PI3K
PI3Ks are enzymes that phosphorylate the 3 carbon of the inositol headgroup in phosphatidylinositol 4,5
bisphosphate (PIP2), converting PI(4,5)P2 into phosphatidylinositol 3,4,5 trisphosphate (PIP3) [110]. Although
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this phospholipid makes up <1% of the cellular plasma membrane, it is enriched in the inner membrane and
in lipid rafts, and is linked to efficient membrane-associated signaling [111]. PI3K consists of a regulatory
domain, most commonly p85, and a catalytic domain, most commonly p110 [112]. The p85 SH3 domain
binds to the obscurin PH domain, and this inhibits PI3K catalysis [32]. The obscurin PH domain also preferen-
tially binds to PIP2 [113]. This acts to sequester PIP2 away from PI3K and inhibits the formation of PIP3.
Thus, the obscurin PH domain utilizes two independent mechanisms to inhibit PIP3 production.
Via decreased PIP3 levels, the obscurin PH domain inhibits the AKT/mTOR pathway [114–116]. Under

normal circumstances in epithelia, PIP3 recruits AKT to the plasma membrane, where it is phosphorylated by
PDK, among others [117,118]. Activated AKT effectively activates mTORC1 [119]. This multifunctional
complex consists of multiple proteins including mTOR, Rictor, SIN1, mLST8, and others, and is involved in
many cell signaling cascades, but for the purposes of this review is associated with increased actin polymeriza-
tion, filopodia extension, and increasing cell migration in epithelia [44–46]. Obscurin’s ability to functionally
repress mTORC1 may partially explain why obscurin down-regulation is associated with increased epithelial
migration and other EMT phenotypes. AKT also activates RhoA by down-regulating the RhoA GAP DLC
[120]. Thus, obscurin has the ability to both up-regulate RhoA activation through its RhoGEF domain and to
indirectly down-regulate RhoA through its PH domain. Other than this and a handful of other examples, there
is scant evidence of robust PI3K-RhoA pathway cross-talk [121]. Thus while many of the downstream actions
are similar, these two pathways seem to largely act independently of each other. One outstanding question is
how the cell synthesizes and incorporates information from these competing pathways to regulate migration.
Both PIP3 and the mTORC1 complex also activate the mTORC2 complex [122,123]. mTORC2 stimulates

actin polymerization, leads to more cell protrusions and filopodia, and activates migration both in neutrophils
and in gliomas [124–126]. This is brought about by mTORC2-dependent increases in actin polymerization and
RhoGTPase activity [127]. Again, these downstream phenotypes align with changes in obscurin expression;
obscurin can down-regulate mTORC2, leading to slower cell migration. Conversely, obscurin down-regulation
is predicted to up-regulate mTORC2 activation, and this possibly accounts for some of the observed increase in
cell motility.

Cadherin
Potentially one additional obscurin-mediated migration involves the kinase domain at the C-terminus of the
obscurin B isoform. In skeletal muscles, this kinase (SK1) phosphorylates N-Cadherin at Ser-788, which dis-
rupts the binding between N-cadherin and p120-catenin at the intercalated disk [36,37]. This disengages
p120-catenin from the cadherin/catenin/actin complex and allows p120-catenin to interact with and down-
regulate RhoA. In muscle, this series of events is associated with increased cell adhesion, altered actin remodel-
ing, and altered cell-cell communication [37,128]. Normally epithelial cells do not express N-cadherin, but cells
undergoing EMT switch from E- to N-cadherin, and this switch is associated with increased cell motility
[129,130]. While obscurin-dependent phosphorylation of N-cadherin has only been shown in myocytes, the
rest of this molecular mechanism, including N-cadherin phosphorylation, p120 dissociation, and the resulting
increased migration, is known to occur in melanoma [30,130]. Since this hypothetical pathway feeds into the
RhoA pathway, discussed above, it is possible that this could be another way for obscurin to modulate RhoA
activity [31,50]. However, given the unique relationship between obscurin and the RhoA pathway, more studies
are needed examining this still-hypothetical pathway’s effect on cell migration.

Concluding remarks
Obscurin co-ordinates multiple independent motility pathways to signal epithelial cells to stop moving. This is
driven through a RhoA interaction with the obscurin RhoGEF domain, a PI3K interaction with the obscurin
PH domain, and perhaps through a cadherin phosphorylation via the SK1 domain in obscurin B. The cellular
context of these downstream effectors matter; each of these independent pathways have the hypothetical cap-
acity to either increase or decrease cell migration, depending on spatiotemporal factors. Likely due to these
nuances, multiple studies now show that obscurin knockout and knockdown in epithelial cells leads to EMT
and conversely that the addition of obscurin into epithelial-derived cancer cells could be a potential cancer
treatment [13]; this is paradoxical to how many other RhoA effectors function but generally agrees with other
PI3K signaling pathways. Many questions remain. Why is obscurin signaling so different from other RhoGEF
signals? What upstream molecules regulate obscurin function? What role, if any, do the rest of the tandem
structural domains play in regulating obscurin localization and function in epithelial-derived cells? Does
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obscurin co-ordinate these motility pathways or is each pathway independent? Is there additional cross-talk
between these signaling pathways? The obscurin community is actively researching these topics; several recent
papers describe proteins that phosphorylate obscurin and how this influences obscurin function [36,131,132].
Answering these questions will allow further exploration not only of the basic biology of how cells move, but
may also lead to new anticancer applications that take advantage of these surprising obscurin-influenced
pathways.

Perspectives
• Obscurin is a giant cytoskeletal protein that has recently been implicated in cell motility and

cancer progression.

• Obscurin contains at least three signaling domains- A RhoGEF domain, a PH domain, and a
kinase domain- that feed into various motility pathways and signal cells to stop moving.

• Future work will center on studying the molecular mechanisms of how obscurin fits into
various motility pathways, disentangling the cross-talk between these pathways, and delineat-
ing what role the obscurin structural domains play in regulating motility.
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