PORTLAND PRESS

Review Article

I told you to stop: obscurin's role in epithelial cell migration

Kamrin D. Shultz, Yasmin F. Al Anbari and Nathan T. Wright

Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A.

Correspondence: Nathan T. Wright (wrightnt@jmu.edu)

The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influence cell migration. Here, we follow each of these pathways, examine how these pathways modulate epithelial cell migration, and discuss the cross-talk between these pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase (PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell migration. While obscurin's effect on the PI3K pathway agrees with the literature, obscurin's effect on the RhoA pathway runs counter to most other RhoA effectors, whose activation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and this may also influence cell motility. When taken together, obscurin's ability to modulate three independent cell migration pathways is likely why obscurin knockout cells experience enhanced epithelial to mesenchymal transition, and why obscurin is a frequently mutated gene in several types of cancer.

Introduction

Epithelial cell migration is utilized by the body in such diverse events as organ development, normal tissue regeneration, and wound healing [1–4]. During these processes, epithelia partially revert to less differentiated mesenchymal cells, allowing for more efficient migration [1]. This decision and subsequent action is complex, involving the coordination of dozens of independent pathways, and is tightly regulated by a wide variety of cellular factors [5–7]. While there are many kinds of single cell and collective cell migration, this review focuses on cell migration associated with cells that undergo a specific progression towards cancer called epithelial to mesenchymal transition (EMT) [5,7,8]. For these cells to achieve tumor formation, invasiveness, and metastasis, they hijack and dysregulate normal cellular migration pathways. Stated more precisely, precancerous epithelial cells that reflect reversible changes in behavior due to phenotypic plasticity, rather than simply a loss of differentiation, and also become more motile are described as going through EMT [5,7,8].

Obscurin, cancer, and cell migration

The giant cytoskeletal protein obscurin has recently emerged as a central player in controlling epithelial cell migration [9–13]. This is an unexpected development; obscurin was only discovered in the early 2000s, and initially was thought to primarily be involved in sarcomeric organization [14,15]. Obscurin derived its name due to the early difficulties in working with it — obscurin mRNA requires 100% DMSO to unfold it and the protein was originally extremely difficult to solubilize [16]. In addition, the protein is often expressed in low levels, is large (up to 870 kDa), has multiple isoforms, and initially had poor antibody reactivity [10]. These technical hurdles made it an unappealing candidate for most exploratory works. However in 2006 obscurin was linked to cancer when a meta-analysis of breast and colorectal cancers identified obscurin as the second most-mutated gene, behind p53 [17]. This same study also cataloged multiple obscurin mutations resulting in premature stop codons, thereby truncating the obscurin protein so that only the non-signaling N-terminus is expressed in these cancers. Subsequent studies revealed that adding obscurin back to breast cancer cells lacking

Received: 13 May 2024 Revised: 2 July 2024 Accepted: 11 July 2024

Version of Record published: 25 July 2024

obscurin suppresses cancer progression in mice [12,13]. The emergence of this promising anti-cancer application underscores the need to answer two fundamental questions about obscurin: what is obscurin's normal role in epithelial-derived cells, and relatedly why does obscurin ablation lead to cancer?

In muscle, the N-terminus of obscurin binds to the giant sarcoplasmic organizer titin and the C-terminus binds to the sarcoplasmic reticulum via an interaction with ankyrin-G, -B, and small ankyrin-1 [15,18-20]. It is the only protein known to link the contractile apparatus to the surrounding membrane system, and it tends to be distributed in a ribbon-like pattern near the M-disk and Z-line [21,22]. Obscurin's tandem repeat architecture allows it to physically link various subcellular structures together, which helps in sarcomeric organization and function [23-26]. As one would expect, disruption of obscurin dysregulates both sarcomeric organization and normal muscle contraction. In nonmuscle tissues obscurin is often expressed at lower levels, and can localize cytosolically, nuclearly, at the membrane, and at distinct intracellular structures, depending on the cell type [10,27]. The reason for this complex localization pattern is not understood; neither titin nor the same isoforms of ankyrins are expressed in epithelial cells, and so it seems unlikely this giant protein organizes the cytoskeleton in the same way it does in myocytes [28,29]. On the other hand the obscurin localization pattern suggests that it must have many epithelial cell targets, however there have been no colocalization studies on the subject [30]. The obscurin C-terminal region contains multiple signaling domains interspersed among the cytoskeletal structural domains (Figure 1) [23,27]. In particular, the obscurin RhoGEF domain activates RhoA, and the PH domain inactivates phosphoinositide-3-kinase (PI3K) [31-33]. Both of these targets are important for epithelial cell homeostasis and movement [34,35]. In addition, the first of the two kinase domains in the obscurin B isoform, denoted SK1, specifically phosphorylates N-cadherin [36,37].

As an overview, epithelial cells migrate by extending lamellipodia (sheet-like projections) and/or filopodia (narrow cellular protrusions) at their leading edge [1]. These extensions are created and supported by a mesh of cross-linked and polymerizing actin filaments [38,39]. As these filaments push the membrane outward, transmembrane molecules such as integrins and cadherins fasten the leading edge of the cell to the surface below [40]. Simultaneously, the adhering molecules at the lagging edge of the cell are removed from the

Figure 1. Obscurin signaling inhibits motility-related pathways.

Obscurin modulates RhoA activity through its RhoGEF domain (residues 5697–5880; accession number CAC44768), inhibits PI3K through interaction with the PH domain (residues 5880–6010), and phosphorylates cadherin through its first kinase domain in the Obscurin B isoform (residues 6450–6721; accession number NP_001092093). The obscurin-RhoA pathway leads to decreased cell motility, in contrast with how many other RhoA effectors act. The obscurin inhibition of PI3K also leads to decreased cell migration. The obscurin-cadherin pathway is only fully described in myocytes, and potentially links into RhoA signaling.

membrane through either protease cleavage or internalization, and the lagging edge retracts towards the rest of cell via actomyosin contraction [41,42]. Each of these processes involves input from multiple upstream signals. For instance, RhoA promotes actin stress fibers and actomyosin contraction at the lagging strand, but in lower levels also promotes actin polymerization at the leading strand [43]. In a partially parallel pathway, PI3K also stimulates actin polymerization at the leading edge [44–46].

Since RhoA, PI3K, and cadherin are all involved in cell adhesion and migration signaling, obscurin is potentially involved in three separate pathways that control cell motility [47–49]. Obscurin is not known to interact with any other oncoproteins, and thus this connection to various migration pathways is an attractive mechanism to explain how obscurin links to cancer. In the following sections we will delineate each of these pathways with an emphasis on examining obscurin's role in controlling cell migration.

RhoA

The obscurin Rho-GEF domain activates the RhoA/ROCK pathway in skeletal muscle [33]. In epithelial cells, knockdown of obscurin decreases RhoA and ROCK activity, and this leads to increased cell migration [12,31,50]. This relationship is different from almost all other RhoA signaling pathways; normally a decrease in RhoA activation leads to decreased epithelial cell migration [39,51–53]. Given this surprising and paradoxical relationship, it is worthwhile examining the normal RhoA pathway, obscurin's relationship to this pathway, and why obscurin may act the way it does.

Like other small GTPases, RhoA only binds to and activates its downstream targets while also bound to GTP [54–57]. While RhoA possess the ability to slowly hydrolyze GTP into GDP [58], the predominant RhoA GTP hydrolysis mechanism and subsequence GDP replacement for a new GTP molecule involves the use of GTPase-Activating Proteins (GAPs) and guanine nucleotide exchange factors (GEFs) [59,60]. Select GEFs bind to RhoA and facilitate the exchange of GDP for GTP, leading to a conformational change that allows direct RhoA binding to its downstream effectors [61]. GAPs bind to RhoA and stimulate more efficient GTP hydrolysis into GDP, thus returning RhoA to its original conformation and deactivating the molecule [62,63]. There are over 20 GEFs and GAPs that regulate RhoA activity, and many are associated with cell motility [60]. RhoA activity can also be modulated by phosphorylation at Ser-26 and Ser-188 and ubiquitination at Lys-6 and Lys-162 [64–66]. Both of these posttranslational modifications inhibit RhoA activity.

RhoA's ability to affect cell migration is nuanced. Moderate early RhoA activation near the leading edge of a migrating cell promotes membrane ruffling and lamellae formation (Figure 2) [43,67–70]. Higher RhoA activation later in migration at the trailing edge of the cell promotes actin stress fiber formation and enhances actin/myosin contraction [71–73]. Both processes are vital for migration, and changing the amount, timing, and location of RhoA activation in migrating epithelia can dramatically slow down migrating cells; both constitutively active RhoA and complete inhibition of RhoA through ROCK-inhibiting drugs leads to decreased epithelial cell migration [74,75]. In the former case, the lack of migration is caused by too many stable and immovable stress fibers, a loss of cell polarization, and increased focal adhesions, all of which act to freeze the migrating cell

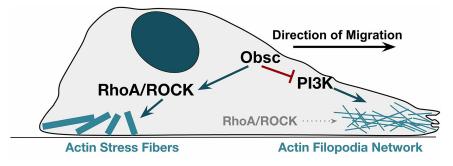


Figure 2. Spatiotemporal effects of obscurin targets on epithelial cell migration.

Increased RhoA/ROCK at the lagging cell edge leads to stress fiber formation and actomyosin contraction, while more moderate and earlier RhoA/ROCK activation proximal to the leading edge leads to actin filament stabilization, membrane ruffling, and lamellipodia extension. At the leading edge, PI3K activation also contributes to increased F-actin filopodia stability and increased cell motility, and obscurin blocks this activation.

[75]. In the latter case, the lack of central stress fibers and actomyosin contraction likely prevents efficient force production and keeps the cells tethered to one location [74].

Obscurin's effect on cell motility shows how subtle alterations in RhoA activity influence cell migration. Since obscurin is one of many RhoA effectors, knockdown of either all of obscurin or just the RhoGEF domain does not completely ablate RhoA function, but instead merely dampens activity [31]. Either this amount of dampening, or the obscurin-dependent subcellular location of decreased RhoA activity, results in markedly increased cell migration [9,11,31]. This is in contrast with almost all other RhoA activators, whose activity tends to stimulate motility across a wide range of cell types, and whose down-regulation decreases RhoA activity and leads to a decrease in cell migration [76–81]. Other than obscurin, there are only a handful of specific instances where the down-regulation of a RhoA activator results in enhanced cellular migration [82,83]. While obscurin-mediated migration inhibition is linked to changes in actin dynamics [11,50], these other RhoA-linked migration inhibitors are associated with changes in microtubule regulation. The exact reason for obscurin's unique role in suppressing cell migration remains unknown, and the molecular mechanism of how obscurin uses RhoA to suppress cell migration is a current area of active research.

While RhoA has multiple downstream effectors that are involved in migration pathways, arguably the two most important are ROCK and mDia [43,84]. mDia is a formin protein that negatively autoregulates its own activity [85]. RhoA binds to mDia and releases this autoinhibition, allowing mDia to directly bind to and stabilize both microtubules and actin filaments [85–88]. In the context of cell migration, mDia accelerates actin fiber growth and actin nucleation, and plays a role in both filopodia formation and adherens junction stabilization [89]. Stress fiber formation requires both mDia and ROCK; neither protein, on its own, is sufficient to initiate this change in the cytoskeleton [43,90]. Given mDia's role in stress fiber formation, and given obscurin ability to both activate RhoA and stimulate stress fiber formation, it is likely that obscurin indirectly modulates mDia activity [11,31].

ROCK1/2 (Rho-associated kinase) are dimeric kinases that are activated upon RhoA binding to their C-terminal Rho-binding PH domain [91]. ROCK modulates the activity of dozens of downstream effectors via phosphorylation [92,93]. Here we will primarily examine how ROCK affects the actin cytoskeleton, but it also acts to destabilize microtubules via interactions with Map2, CRMP2, and Doublecortin, destabilize intermediate filaments via interactions with GFAP, vimentin, and NF-L, and control NO signaling, to name just some of its many roles [94–100]. There are over 1000 review articles on the RhoA/ROCK pathway; this minireview is only examining a small subset of these in relation to obscurin signaling. A more complete list of ROCK targets can be found in multiple other reviews including [93,101].

Since obscurin activates RhoA, it also indirectly activates ROCK. In the context of migration and changes in cytoskeletal dynamics, activated ROCK phosphorylates LIM kinase, which phosphorylates cofilin thereby inhibiting cofilin-mediated disassembly of F-actin [43]. ROCK also phosphorylates adducin, which stabilizes the actin-spectrin interaction near the plasma membrane and enhances cell contraction [102]. ROCK's activation of FHOD, another formin protein that is up-regulated in EMT, leads directly to stress fiber formation and increases cell motility [103,104]. ROCK activates ezrin, part of the ERM protein complex, that directly links the actin cytoskeleton to the plasma membrane [105,106]. On the other side of the actomyosin complex, ROCK both phosphorylates myosin light chain (MLC) and inhibits MLC phosphorylase through multiple pathways, which serves to amplify actin/myosin contraction [107,108]. As would be expected given these multiple pathways, chemical inhibition of ROCK inhibits cell migration. The two most common ROCK inhibitors are Y27432 and fasudil, and both are used extensively to study ROCK-associated pathways despite also having offtarget effects on migrating cells [109]. Like RhoA, ROCK activation must be spatiotemporally regulated; for instance, the presence of stress fibers and actomyosin contraction at the leading edge stops migration [43]. Studies on how obscurin influences ROCK have suggested that while both unchecked ROCK activation or deactivation prevents cell motility, intermediate obscurin-dependent modulation of ROCK activity can actually lead to an increased rate of cell migration in some circumstances [50]. These studies suggest that attention to RhoA and ROCK subcellular localization, instead of simple western blot analysis on whole-cell activity, may resolve the discrepancies of how obscurin-dependent ROCK signaling fits into these otherwise well-studied pathways.

PI3K

PI3Ks are enzymes that phosphorylate the 3 carbon of the inositol headgroup in phosphatidylinositol 4,5 bisphosphate (PIP2), converting PI(4,5)P2 into phosphatidylinositol 3,4,5 trisphosphate (PIP3) [110]. Although

this phospholipid makes up <1% of the cellular plasma membrane, it is enriched in the inner membrane and in lipid rafts, and is linked to efficient membrane-associated signaling [111]. PI3K consists of a regulatory domain, most commonly p85, and a catalytic domain, most commonly p110 [112]. The p85 SH3 domain binds to the obscurin PH domain, and this inhibits PI3K catalysis [32]. The obscurin PH domain also preferentially binds to PIP2 [113]. This acts to sequester PIP2 away from PI3K and inhibits the formation of PIP3. Thus, the obscurin PH domain utilizes two independent mechanisms to inhibit PIP3 production.

Via decreased PIP3 levels, the obscurin PH domain inhibits the AKT/mTOR pathway [114–116]. Under normal circumstances in epithelia, PIP3 recruits AKT to the plasma membrane, where it is phosphorylated by PDK, among others [117,118]. Activated AKT effectively activates mTORC1 [119]. This multifunctional complex consists of multiple proteins including mTOR, Rictor, SIN1, mLST8, and others, and is involved in many cell signaling cascades, but for the purposes of this review is associated with increased actin polymerization, filopodia extension, and increasing cell migration in epithelia [44–46]. Obscurin's ability to functionally repress mTORC1 may partially explain why obscurin down-regulation is associated with increased epithelial migration and other EMT phenotypes. AKT also activates RhoA by down-regulating the RhoA GAP DLC [120]. Thus, obscurin has the ability to both up-regulate RhoA activation through its RhoGEF domain and to indirectly down-regulate RhoA through its PH domain. Other than this and a handful of other examples, there is scant evidence of robust PI3K-RhoA pathway cross-talk [121]. Thus while many of the downstream actions are similar, these two pathways seem to largely act independently of each other. One outstanding question is how the cell synthesizes and incorporates information from these competing pathways to regulate migration.

Both PIP3 and the mTORC1 complex also activate the mTORC2 complex [122,123]. mTORC2 stimulates actin polymerization, leads to more cell protrusions and filopodia, and activates migration both in neutrophils and in gliomas [124–126]. This is brought about by mTORC2-dependent increases in actin polymerization and RhoGTPase activity [127]. Again, these downstream phenotypes align with changes in obscurin expression; obscurin can down-regulate mTORC2, leading to slower cell migration. Conversely, obscurin down-regulation is predicted to up-regulate mTORC2 activation, and this possibly accounts for some of the observed increase in cell motility.

Cadherin

Potentially one additional obscurin-mediated migration involves the kinase domain at the C-terminus of the obscurin B isoform. In skeletal muscles, this kinase (SK1) phosphorylates N-Cadherin at Ser-788, which disrupts the binding between N-cadherin and p120-catenin at the intercalated disk [36,37]. This disengages p120-catenin from the cadherin/catenin/actin complex and allows p120-catenin to interact with and down-regulate RhoA. In muscle, this series of events is associated with increased cell adhesion, altered actin remodeling, and altered cell-cell communication [37,128]. Normally epithelial cells do not express N-cadherin, but cells undergoing EMT switch from E- to N-cadherin, and this switch is associated with increased cell motility [129,130]. While obscurin-dependent phosphorylation of N-cadherin has only been shown in myocytes, the rest of this molecular mechanism, including N-cadherin phosphorylation, p120 dissociation, and the resulting increased migration, is known to occur in melanoma [30,130]. Since this hypothetical pathway feeds into the RhoA pathway, discussed above, it is possible that this could be another way for obscurin to modulate RhoA activity [31,50]. However, given the unique relationship between obscurin and the RhoA pathway, more studies are needed examining this still-hypothetical pathway's effect on cell migration.

Concluding remarks

Obscurin co-ordinates multiple independent motility pathways to signal epithelial cells to stop moving. This is driven through a RhoA interaction with the obscurin RhoGEF domain, a PI3K interaction with the obscurin PH domain, and perhaps through a cadherin phosphorylation via the SK1 domain in obscurin B. The cellular context of these downstream effectors matter; each of these independent pathways have the hypothetical capacity to either increase or decrease cell migration, depending on spatiotemporal factors. Likely due to these nuances, multiple studies now show that obscurin knockout and knockdown in epithelial cells leads to EMT and conversely that the addition of obscurin into epithelial-derived cancer cells could be a potential cancer treatment [13]; this is paradoxical to how many other RhoA effectors function but generally agrees with other PI3K signaling pathways. Many questions remain. Why is obscurin signaling so different from other RhoGEF signals? What upstream molecules regulate obscurin function? What role, if any, do the rest of the tandem structural domains play in regulating obscurin localization and function in epithelial-derived cells? Does

obscurin co-ordinate these motility pathways or is each pathway independent? Is there additional cross-talk between these signaling pathways? The obscurin community is actively researching these topics; several recent papers describe proteins that phosphorylate obscurin and how this influences obscurin function [36,131,132]. Answering these questions will allow further exploration not only of the basic biology of how cells move, but may also lead to new anticancer applications that take advantage of these surprising obscurin-influenced pathways.

Perspectives

- Obscurin is a giant cytoskeletal protein that has recently been implicated in cell motility and cancer progression.
- Obscurin contains at least three signaling domains- A RhoGEF domain, a PH domain, and a kinase domain- that feed into various motility pathways and signal cells to stop moving.
- Future work will center on studying the molecular mechanisms of how obscurin fits into various motility pathways, disentangling the cross-talk between these pathways, and delineating what role the obscurin structural domains play in regulating motility.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

This work was funded through the National Science Foundation (#2024182 to N.T.W.)

Author Contribution

K.D.S. wrote, edited, and made the figures. Y.F.A. edited the manuscript. N.T.W. wrote, edited, secured funding, and proposed the idea.

Acknowledgements

We would like to thank Stephanie Ouderkirk for useful discussions and proofreading.

Abbreviations

EMT, epithelial to mesenchymal transition; GAP, GTPase-Activating Protein; GEF, guanine nucleotide exchange factor; MLC, myosin light chain; PI3K, phosphoinositide-3-kinase.

References

- 1 Lu, P. and Lu, Y. (2021) Born to run? Diverse modes of epithelial migration. Front. Cell Dev. Biol. 9, 704939 https://doi.org/10.3389/fcell.2021.704939
- 2 Trepat, X., Chen, Z. and Jacobson, K. (2012) Cell migration. Compr. Physiol. 2, 2369–2392 https://doi.org/10.1002/cphy.c110012
- Puri, S., Sun, M., Mutoji, K.N., Gesteira, T.F. and Coulson-Thomas, V.J. (2020) Epithelial cell migration and proliferation patterns during initial wound closure in normal mice and an experimental model of limbal stem cell deficiency. *Investig. Ophthalmol. Vis. Sci.* 61, 27 https://doi.org/10.1167/IOVS. 61.10.27
- Thiery, J.P., Acloque, H., Huang, R.Y.J. and Nieto, M.A. (2009) Epithelial-mesenchymal transitions in development and disease. *Cell* 139, 871–890 https://doi.org/10.1016/j.cell.2009.11.007
- 5 Akhmetkaliyev, A., Alibrahim, N., Shafiee, D. and Tulchinsky, E. (2023) EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin? *Mol. Cancer* 22, 90 https://doi.org/10.1186/s12943-023-01793-z
- Haensel, D. and Dai, X. (2018) Epithelial-to-mesenchymal transition in cutaneous wound healing: where we are and where we are heading. *Dev. Dyn.* **247**, 473–480 https://doi.org/10.1002/dvdy.24561
- Babaei, G., Aziz, S.G.G. and Jaghi, N.Z.Z. (2021) EMT, cancer stem cells and autophagy: the three main axes of metastasis. *Biomed. Pharmacother.* **133**, 110909 https://doi.org/10.1016/j.biopha.2020.110909
- 8 Maharati, A. and Moghbeli, M. (2023) Pl3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. *Cell Commun. Signal.* **21**, 201 https://doi.org/10.1186/s12964-023-01225-x

- 9 Shriver, M., Stroka, K.M., Vitolo, M.I., Martin, S., Huso, D.L., Konstantopoulos, K. et al. (2015) Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. *Oncogene* **34**, 4248–4259 https://doi.org/10.1038/onc.2014.358
- 10 Ackermann, M.A., Shriver, M., Perry, N.A., Hu, L.-Y.Y.R. and Kontrogianni-Konstantopoulos, A. (2014) Obscurins: Goliaths and Davids take over non-muscle tissues. *PLoS One* 9, e88162 https://doi.org/10.1371/journal.pone.0088162
- 11 Tuntithavornwat, S., Shea, D.J., Wong, B.S., Guardia, T., Lee, S.J., Yankaskas, C.L. et al. (2022) Giant obscurin regulates migration and metastasis via RhoA-dependent cytoskeletal remodeling in pancreatic cancer. *Cancer Lett.* **526**, 155–167 https://doi.org/10.1016/j.canlet.2021.11.016
- 12 Guardia, T., Zhang, Y., Thompson, K.N., Lee, S.J., Martin, S.S. and Kontrogianni-Konstantopoulos, A. (2023) OBSCN restoration via OBSCN-AS1 long-noncoding RNA CRISPR-targeting suppresses metastasis in triple-negative breast cancer. *Proc. Natl Acad. Sci. U.S.A.* 120, e2215553120 https://doi.org/10.1073/pnas.2215553120
- 13 Guardia, T., Eason, M. and Kontrogianni-Konstantopoulos, A. (2021) Obscurin: a multitasking giant in the fight against cancer. *Biochim. Biophys. Acta Rev. Cancer* **1876**, 188567 https://doi.org/10.1016/j.bbcan.2021.188567.Obscurin
- 14 Sanger, J.W. and Sanger, J.M. (2001) Fishing out proteins that bind to titin. J. Cell Biol. 154, 21–24 https://doi.org/10.1083/jcb.200106072
- 15 Young, P., Ehler, E. and Gautel, M. (2001) Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. *J. Cell Biol.* **154**, 123–136 https://doi.org/10.1083/jcb.200102110
- 16 Kontrogianni-Konstantopoulos, A., Jones, E.M., van Rossum, D.B. and Bloch, R.J. (2003) Obscurin is a ligand for small ankyrin 1 in skeletal muscle. Mol. Biol. Cell 14, 1138–1148 https://doi.org/10.1091/mbc.e02-07-0411
- 17 Sjöblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D. et al. (2006) The consensus coding sequences of human breast and colorectal cancers. *Science* **314**, 268–274 https://doi.org/10.1126/science.1133427
- Maiweilidan, Y., Klauza, I. and Kordeli, E. (2011) Novel interactions of ankyrins-G at the costameres: the muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C. *Exp. Cell Res.* **317**, 724–736 https://doi.org/10.1016/j.yexcr.2011.01.002
- 19 Cunha, S.R. and Mohler, P.J. (2008) Obscurin targets ankyrin-B and protein phosphatase 2A to the cardiac M-line. J. Biol. Chem. 283, 31968–31980 https://doi.org/10.1074/jbc.M806050200
- 20 Kontrogianni-Konstantopoulos, A. and Bloch, R.J. (2005) Obscurin: a multitasking muscle giant. *J. Muscle Res. Cell Motil.* **26**, 419–426 https://doi.org/10.1007/s10974-005-9024-7
- 21 Ackermann, M.A., Hu, L.R., Bowman, A.L., Bloch, R.J. and Kontrogianni-konstantopoulos, A. (2009) Obscurin interacts with a novel isoform of MyBP-C slow at the periphery of the sarcomeric M-band and regulates thick filament assembly. *Mol. Biol. Cell* **20**, 2963–2978 https://doi.org/10.1091/mbc.E08
- 22 Gautel, M. (2011) The sarcomeric cytoskeleton: who picks up the strain? Curr. Opin. Cell Biol. 23, 39-46 https://doi.org/10.1016/j.ceb.2010.12.001
- 23 Kontrogianni-Konstantopoulos, A., Ackermann, M.A., Bowman, A.L., Yap, S.V. and Bloch, R.J. (2009) Muscle giants: molecular scaffolds in sarcomerogenesis. *Physiol. Rev.* 89, 1217–1267 https://doi.org/10.1152/physrev.00017.2009
- Whitley, J.A., Ex-Willey, A.M., Marzolf, D.R., Ackermann, M.A., Tongen, A.L., Kokhan, O. et al. (2019) Obscurin is a semi-flexible molecule in solution. *Protein Sci.* **28**, 717–726 https://doi.org/10.1002/pro.3578
- 25 Rossi, D., Palmio, J., Evilä, A., Galli, L., Barone, V., Caldwell, T.A. et al. (2017) A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. *PLoS One* **12**, e0186642 https://doi.org/10.1371/journal.pone.0186642
- 26 Lange, S., Ouyang, K., Meyer, G., Cui, L., Cheng, H., Lieber, R.L. et al. (2009) Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum. J. Cell Sci. 122, 2640–2650 https://doi.org/10.1242/jcs.046193
- 27 Perry, N.A., Ackermann, M.A., Shriver, M., Hu, L.Y.R. and Kontrogianni-Konstantopoulos, A. (2013) Obscurins: unassuming giants enter the spotlight. IUBMB Life 65, 479–486 https://doi.org/10.1002/iub.1157
- 28 Hopitzan, A.A., Anthony, B., Marie-Aline, L., Michel, R. and Kordeli, E. (2005) Ankyrin-G in skeletal muscle: tissue-specific alternative splicing contributes to the complexity of the sarcolemmal cytoskeleton. Exp. Cell Res. 309, 86–89 https://doi.org/10.1016/j.yexcr.2005.04.013
- 29 Krüger, M. and Kötter, S. (2016) Titin, a central mediator for hypertrophic signaling, exercise-induced mechanosignaling and skeletal muscle remodeling. Front. Physiol. 7, 76 https://doi.org/10.3389/fphys.2016.00076
- 30 Perry, N.A., Shriver, M., Mameza, M.G., Grabias, B., Balzer, E. and Kontrogianni-Konstantopoulos, A. (2012) Loss of giant obscurins promotes breast epithelial cell survival through apoptotic resistance. *FASEB J.* **26**, 2764–2775 https://doi.org/10.1096/fj.12-205419
- 31 Perry, N.A., Vitolo, M.I., Martin, S.S. and Kontrogianni-Konstantopoulos, A. (2014) Loss of the obscurin-(RhoGEF) downregulates (RhoA) signaling and increases microtentacle formation and attachment of breast epithelial cells. *Oncotarget* **5**, 8558–8568 https://doi.org/10.18632/oncotarget.2338
- 32 Shriver, M., Marimuthu, S., Paul, C., Geist, J., Seale, T., Konstantopoulos, K. et al. (2016) Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. *Oncotarget* 7, 45414–45428 https://doi.org/10.18632/oncotarget.9985
- 33 Ford-Speelman, D.L., Roche, J.A., Bowman, A.L. and Bloch, R.J. (2009) The rho-guanine nucleotide exchange factor domain of obscurin activates rhoA signaling in skeletal muscle. *Mol. Biol. Cell* **20**, 3905–3917 https://doi.org/10.1091/mbc.E08-10-1029
- 34 Cavanaugh, K.E., Staddon, M.F., Munro, E., Banerjee, S. and Gardel, M.L. (2020) Rhoa mediates epithelial cell shape changes via mechanosensitive endocytosis. Dev. Cell 52, 152–166.e5 https://doi.org/10.1016/j.devcel.2019.12.002
- Reilly, L., Semenza, E.R., Koshkaryan, G., Mishra, S., Chatterjee, S., Abramson, E. et al. (2023) Loss of Pl3k activity of inositol polyphosphate multikinase impairs PDK1-mediated AKT activation, cell migration, and intestinal homeostasis. iScience 26, 106623 https://doi.org/10.1016/j.isci.2023. 106623
- Hu, L.-Y.Y.R. and Kontrogianni-Konstantopoulos, A. (2013) The kinase domains of obscurin interact with intercellular adhesion proteins. *FASEB J.* 27, 2001–2012 https://doi.org/10.1096/fj.12-221317
- Wang, L., Tsakiroglou, P., Gonzales, R., Cho, S., Li, A., dos Remedios, C. et al. (2024) Essential role of obscurin kinase-1 in cardiomyocyte coupling via N-cadherin phosphorylation. *JCl Insight* **9**, e162178 https://doi.org/10.1172/jci.insight.162178
- 38 Garner, R.M. and Theriot, J.A. (2022) Leading edge maintenance in migrating cells is an emergent property of branched actin network growth. *Elife* 11, e74389 https://doi.org/10.7554/eLife.74389
- 39 Schaks, M., Giannone, G., Rottner, K. (2019) Actin dynamics in cell migration. Essays Biochem. 63, 483–495 https://doi.org/10.1042/EBC20190015
- 40 Beningo, K.A., Dembo, M., Kaverina, I., Small, J.V. and Wang, Y.L. (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. *J. Cell Biol.* **153**, 881–887 https://doi.org/10.1083/jcb.153.4.881

- 41 Pandya, P., Orgaz, J.L. and Sanz-Moreno, V. (2017) Actomyosin contractility and collective migration: may the force be with you. Curr. Opin. Cell Biol. 48. 87–96 https://doi.org/10.1016/i.ceb.2017.06.006
- 42 Paul, N.R., Jacquemet, G. and Caswell, P.T. (2015) Endocytic trafficking of integrins in cell migration. *Curr. Biol.* **25**, R1092–R1105 https://doi.org/10. 1016/j.cub.2015.09.049
- 43 O'Connor, K.L. and Chen, M. (2013) Dynamic functions of RhoA in tumor cell migration and invasion. Small GTPases 4, 141–147 https://doi.org/10.4161/sqtp.25131
- 44 Chin, R. and Toker, A. (2009) Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal. 21, 470–476 https://doi.org/10.1016/j.cellsig.2008.11.015
- 45 Jiang, L., Zhang, J., Xu, Y., Xu, H. and Wang, M. (2022) Treating non-small cell lung cancer by targeting the PI3K signaling pathway. Chin. Med. J. 135, 1272–1284 https://doi.org/10.1097/CM9.000000000002195
- Melick, C.H. and Jewell, J.L. (2020) Regulation of mTORC1 by upstream stimuli. Genes 11, 989 https://doi.org/10.3390/genes11090989
- 47 Loh, C.Y., Chai, J.Y., Tang, T.F., Wong, W.F., Sethi, G., Shanmugam, M.K. et al. (2019) The e-cadherin and n-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. *Cells* 8, 1118 https://doi.org/10.3390/cells8101118
- Jiang, N., Dai, Q., Su, X., Fu, J., Feng, X. and Peng, J. (2020) Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol. Biol. Rep. 47, 4587–4629 https://doi.org/10.1007/s11033-020-05435-1
- 49 Bolado-Carrancio, A., Rukhlenko, O.S., Nikonova, E., Tsyganov, M.A., Wheeler, A., Garcia-Munoz, A. et al. (2020) Periodic propagating waves coordinate rhogtpase network dynamics at the leading and trailing edges during cell migration. *Elife* **9**, e58165 https://doi.org/10.7554/eLife.58165
- 50 Stroka, K.M., Sheng Wong, B., Shriver, M., Phillip, J.M., Wirtz, D., Kontrogianni-Konstantopoulos, A. et al. (2017) Loss of giant obscurins alters breast epithelial cell mechanosensing of matrix stiffness. *Oncotarget* **8**, 54004–54020 https://doi.org/10.18632/oncotarget.10997
- 51 Haiping, L., Yiqian, L., Xiaochuan, Z. and Wang, X. (2020) Current study of RhoA and associated signaling pathways in gastric cancer. Curr. Stem Cell Res. Ther. 15, 607–613 https://doi.org/10.2174/1574888X15666200330143958
- 52 Nikolaou, S. and Machesky, L.M. (2020) The stressful tumour environment drives plasticity of cell migration programmes, contributing to metastasis. *J. Pathol.* **250**, 612–623 https://doi.org/10.1002/path.5395
- 53 Al-Koussa, H., El Atat, O., Jaafar, L., Tashjian, H. and El-Sibai, M. (2020) The role of Rho GTPases in motility and invasion of glioblastoma cells. *Anal. Cell. Pathol.* **2020**, 9274016 https://doi.org/10.1155/2020/9274016
- 54 Scheffzek, K. and Shivalingaiah, G. (2019) Ras-specific GTPase-activating proteins—structures, mechanisms, and interactions. *Cold Spring Harb. Perspect. Med.* **9**, a031500 https://doi.org/10.1101/cshperspect.a031500
- 55 Johnson, D.S. and Chen, Y.H. (2012) Ras family of small GTPases in immunity and inflammation. *Curr. Opin. Pharmacol.* **12**, 458–463 https://doi.org/10.1016/j.coph.2012.02.003
- 56 Ishizaki, T., Maekawa, M., Fujisawa, K., Okawa, K., Iwamatsu, A., Fujita, A. et al. (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. *EMBO J.* **15**, 1885–1893 https://doi.org/10.1002/j.1460-2075.1996.
- Conway, A.-M., James, A.B., O'Kane, E.M., Rakhit, S. and Morris, B.J. (2004) Regulation of myosin light chain phosphorylation by RhoB in neuronal cells. Exp. Cell Res. 300, 35–42 https://doi.org/10.1016/j.yexcr.2004.06.022
- 58 Zhang, B. and Zheng, Y. (1998) Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1. *Biochemistry* 37, 5249–5257 https://doi.org/10.1021/bi9718447
- 59 Van Buul, J.D., Geerts, D. and Huveneers, S. (2014) Rho GAPs and GEFs: controling switches in endothelial cell adhesion. *Cell Adhes. Migr.* **8**, 108–124 https://doi.org/10.4161/cam.27599
- 60 Huveneers, S. and Danen, E.H.J. (2009) Adhesion signaling crosstalk between integrins, Src and Rho. J. Cell Sci. 122, 1059–1069 https://doi.org/10.1242/ics.039446
- 61 Joo, E. and Olson, M.F. (2021) Regulation and functions of the RhoA regulatory guanine nucleotide exchange factor GEF-H1. *Small GTPases* **12**, 358–371 https://doi.org/10.1080/21541248.2020.1840889
- 62 Boueid, M.J., Mikdache, A., Lesport, E., Degerny, C. and Tawk, M. (2020) Rho GTPases signaling in zebrafish development and disease. Cells 9, 2634 https://doi.org/10.3390/cells9122634
- 63 Lawson, C.D. and Der, C.J. (2018) Filling GAPs in our knowledge: ARHGAP11A and RACGAP1 act as oncogenes in basal-like breast cancers. Small GTPases 9, 290–296 https://doi.org/10.1080/21541248.2016.1220350
- Tang, J., Ip, J.P.K., Ye, T., Ng, Y.P., Yung, W.H., Wu, Z. et al. (2014) Cdk5-dependent Mst3 phosphorylation and activity regulate neuronal migration through RhoA inhibition. J. Neurosci. 34, 7425–7436 https://doi.org/10.1523/JNEUROSCI.5449-13.2014
- 65 Lang, P., Gesbert, F., Delespine-Carmagnat, M., Stancou, R., Pouchelet, M. and Bertoglio, J. (1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. *EMBO J.* 15, 510–519 https://doi.org/10.1002/j.1460-2075.1996. th00383 x
- 66 Ellerbroek, S.M., Wennerberg, K. and Burridge, K. (2003) Serine phosphorylation negatively regulates RhoA in vivo. *J. Biol. Chem.* **278**, 19023–19031 https://doi.org/10.1074/ibc.M213066200
- 67 O'Connor, K.L., Nguyen, B.K. and Mercurio, A.M. (2000) Rhoa function in lamellae formation and migration is regulated by the α6β4 integrin and cAMP metabolism. *J. Cell Biol.* **148**, 253–258 https://doi.org/10.1083/jcb.148.2.253
- 68 Nalbant, P., Chang, Y.-C., Birkenfeld, J., Chang, Z.-F. and Bokoch, G.M. (2009) Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge. Mol. Biol. Cell 20, 4070–4082 https://doi.org/10.1091/mbc.E09
- 69 Oshiro, N., Fukata, Y. and Kaibuchi, K. (1998) Phosphorylation of moesin by Rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. *J. Biol. Chem.* **273**, 34663–34666 https://doi.org/10.1074/jbc.273.52.34663
- 70 Kurokawa, K. and Matsuda, M. (2005) Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol. Biol. Cell 16, 4294–4303 https://doi.org/10.1091/mbc.E04
- 71 Kranenburg, O., Poland, M., Van Horck, F.P.G., Drechsel, D., Hall, A. and Moolenaar, W.H. (1999) Activation of RhoA by lysophosphatidic acid and Gα (12/13) subunits in neuronal cells: induction of neurite retraction. Mol. Biol. Cell 10, 1851–1857 https://doi.org/10.1091/mbc.10.6.1851

- 72 Spiering, D. and Hodgson, L. (2012) Multiplex imaging of Rho family GTPase activities in living cells. *Methods Mol. Biol.* 827, 215–234 https://doi.org/10.1007/978-1-61779-442-1 15
- 73 Peterson, L.J., Rajfur, Z., Maddox, A.S., Freel, C.D., Chen, Y., Edlund, M. et al. (2004) Simultaneous stretching and contraction of stress fibers in vivo. Mol. Biol. Cell 15, 3497–3508 https://doi.org/10.1091/mbc.E03
- 74 Katoh, K., Kano, Y. and Noda, Y. (2011) Rho-associated kinase-dependent contraction of stress fibres and the organization of focal adhesions. *J. R. Soc. Interface* **8**, 305–311 https://doi.org/10.1098/rsif.2010.0419
- 75 Zhang, Z.G., Lambert, C.A., Servotte, S., Chometon, G., Eckes, B., Krieg, T. et al. (2006) Effects of constitutively active GTPases on fibroblast behavior. Cell. Mol. Life Sci. 63, 82–91 https://doi.org/10.1007/s00018-005-5416-5
- 76 Struckhoff, A.P., Rana, M.K., Kher, S.S., Burow, M.E., Hagan, J.L., Del Valle, L. et al. (2013) PDZ-RhoGEF is essential for CXCR4-driven breast tumor cell motility through spatial regulation of RhoA. J. Cell Sci. 126, 4514–4526 https://doi.org/10.1242/jcs.132381
- 77 Miller, N.L.G., Lawson, C., Chen, X.L., Lim, S.T. and Schlaepfer, D.D. (2012) Rgnef (p190RhoGEF) knockout inhibits RhoA activity, focal adhesion establishment, and cell motility downstream of integrins. *PLoS One* **7**, e37830 https://doi.org/10.1371/journal.pone.0037830
- 78 Shi, G.X., Yang, W.S., Jin, L., Matter, M.L. and Ramos, J.W. (2017) RSK2 drives cell motility by serine phosphorylation of LARG and activation of Rho GTPases. *Proc. Natl Acad. Sci. U.S.A.* **115**, E190–E199 https://doi.org/10.1073/pnas.1708584115
- 79 Ulu, A. and Frost, J.A. (2020) Regulation of RhoA activation and cell motility by c-Jun N-terminal kinases and Net1. Small GTPases 11, 385–391 https://doi.org/10.1080/21541248.2018.1536638
- 80 Guo, Y., Negre, J. and Eitzen, G. (2023) GEF-H1 transduces Fc∈RI signaling in mast cells to activate RhoA and focal adhesion formation during exocytosis. *Cells* **12**, 537 https://doi.org/10.3390/cells12040537
- 81 Phillips, A.H., Ou, L., Gay, A., Besson, A. and Kriwacki, R.W. (2018) Mapping interactions between p27 and RhoA that stimulate cell migration. *J. Mol. Biol.* **430**, 751–758 https://doi.org/10.1016/j.jmb.2018.01.017
- 82 Smart, K., Kramer, A.H., Smart, S., Hodgson, L. and Sharp, D.J. (2023) Fidgetin-like 2 depletion enhances cell migration by regulating GEF-H1, RhoA, and FAK. *Biophys. J.* **122**, 3600–3610 https://doi.org/10.1016/j.bpj.2022.12.018
- 83 Pan, M., Chew, T.W., Pei Wong, D.C., Xiao, J., Ong, H.T., Li Chin, J.F. et al. (2020) BNIP-2 retards breast cancer cell migration by coupling microtubule-mediated GEF-H1 and RhoA activation. *Sci. Adv.* **6**, eaaz1534 https://doi.org/10.1126/sciadv.aaz1534
- 84 Bishop, A.L. and Hall, A. (2000) Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 https://doi.org/10.1042/0264-6021:3480241
- 85 Lammers, M., Rose, R., Scrima, A. and Wittinghofer, A. (2005) The regulation of mDia1 by autoinhibition and its release by Rho●GTP. EMBO J. 24, 4176–4187 https://doi.org/10.1038/sj.emboj.7600879
- 86 Li, F. and Higgs, H.N. (2003) The mouse formin mDia1 Is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 https://doi.org/10.1016/S
- 87 Mizuno, H. and Watanabe, N. (2012) mDia1 and formins: screw cap of the actin filament. *Biophysics* **8**, 95–102 https://doi.org/10.2142/biophysics.8. 95
- 88 Bartolini, F., Moseley, J.B., Schmoranzer, J., Cassimeris, L., Goode, B.L. and Gundersen, G.G. (2008) The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. *J. Cell Biol.* **181**, 523–536 https://doi.org/10.1083/jcb.200709029
- 89 Chesarone, M.A., Dupage, A.G. and Goode, B.L. (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. *Nat. Rev. Mol. Cell Biol.* 11, 62–74 https://doi.org/10.1038/nrm2816
- 90 Nakano, K., Takaishi, K., Kodama, A., Mammoto, A., Shiozaki, H., Monden, M. et al. (1999) Distinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells. *Mol. Biol. Cell* **10**, 2481–2491 https://doi.org/10.1091/mbc.10.8.2481
- 91 Jacobs, M., Hayakawa, K., Swenson, L., Bellon, S., Fleming, M., Taslimi, P. et al. (2006) The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. *J. Biol. Chem.* **281**, 260–268 https://doi.org/10.1074/jbc.M508847200
- 92 Kim, S.A., Han, J. and Kim, I.S. (2021) Rho-kinase as a target for cancer therapy and its immunotherapeutic potential. *Int. J. Mol. Sci.* 22, 12916 https://doi.org/10.3390/ijms222312916
- 93 Hartmann, S., Ridley, A.J. and Lutz, S. (2015) The function of rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front. Pharmacol. 6, 276 https://doi.org/10.3389/fphar.2015.00276
- 94 Amano, M., Kaneko, T., Maeda, A., Nakayama, M., Ito, M., Yamauchi, T. et al. (2003) Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. J. Neurochem. 87, 780–790 https://doi.org/10.1046/j.1471-4159.2003.02054.x
- 95 Arimura, N., Inagaki, N., Chihara, K., Ménager, C., Nakamura, N., Amano, M. et al. (2000) Phosphorylation of collapsin response mediator protein-2 by Rho-kinase: evidence for two separate signaling pathways for growth cone collapse. *J. Biol. Chem.* 275, 23973–23980 https://doi.org/10.1074/jbc. M001032200
- Amano, M., Tsumura, Y., Taki, K., Harada, H., Mori, K., Nishioka, T. et al. (2010) A proteomic approach for comprehensively screening substrates of protein kinases such as rho-kinase. *PLoS One* **5**, e8704 https://doi.org/10.1371/journal.pone.0008704
- 97 Yasui, Y., Amano, M., Nagata, K.I., Inagaki, N., Nakamura, H., Saya, H. et al. (1998) Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. *J. Cell Biol.* **143**, 1249–1258 https://doi.org/10.1083/jcb.143. 5.1249
- 98 Goto, H., Kosako, H., Tanabe, K., Yanagida, M., Sakurai, M., Amano, M. et al. (1998) Phosphorylation of vimentin by RHO-associated kinase at a unique amino- terminal site that is specifically phosphorylated during cytokinesis. *J. Biol. Chem.* **273**, 11728–11736 https://doi.org/10.1074/jbc.273.
- 99 Hashimoto, R., Nakamura, Y., Goto, H., Wada, Y., Sakoda, S., Kaibuchi, K. et al. (1998) Domain- and site-specific phosphorylation of bovine NF-L by Rho-associated kinase. *Biochem. Biophys. Res. Commun.* **245**, 407–411 https://doi.org/10.1006/bbrc.1998.8446
- Sugimoto, M., Nakayama, M., Goto, T.M., Amano, M., Komori, K. and Kaibuchi, K. (2997) Rho-kinase phosphorylates eNOS at threonine 495 in endothelial cells. *Biochem. Biophys. Res. Commun.* 361, 462–467 https://doi.org/10.1016/j.bbrc.2007.07.030
- 101 Amano, M., Nakayama, M. and Kaibuchi, K. (2010) Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67, 545–554 https://doi.org/10.1002/cm.20472

- 102 Unsain, N., Stefani, F.D. and Cáceres, A. (2018) The actin/spectrin membrane-associated periodic skeleton in neurons. *Front. Synaptic Neurosci.* **10**, 10 https://doi.org/10.3389/fnsyn.2018.00010
- 103 Gardberg, M., Kaipio, K., Lehtinen, L., Mikkonen, P., Heuser, V.D., Talvinen, K. et al. (2013) FH0D1, a formin upregulated in epithelial-mesenchymal transition, participates in cancer cell migration and invasion. *PLoS One* **8**, e74923 https://doi.org/10.1371/journal.pone.0074923
- 104 Breitsprecher, D. and Goode, B.L. (2013) Formins at a glance. J. Cell Sci. 126, 1-7 https://doi.org/10.1242/jcs.107250
- 105 Matsui, T., Yonemura, S., Tsukita, S. and Tsukita, S. (1999) Activation of ERM proteins in vivo by Rho involves phosphatidylinositol 4-phosphate 5-kinase and not ROCK kinases. *Curr. Biol.* **9**, 1259–1262 https://doi.org/10.1016/s0960-9822(99)80508-9
- 106 Kawaguchi, K. and Asano, S. (2022) Pathophysiological roles of actin-binding scaffold protein, ezrin. Int. J. Mol. Sci. 23, 3246 https://doi.org/10.3390/ijms23063246
- 107 Srinivasan, S., Das, S., Surve, V., Srivastava, A., Kumar, S., Jain, N. et al. (2019) Blockade of ROCK inhibits migration of human primary keratinocytes and malignant epithelial skin cells by regulating actomyosin contractility. *Sci. Rep.* **9**, 19930 https://doi.org/10.1038/s41598-019-56447-2
- 108 Wang, Y., Zheng, X.R., Riddick, N., Bryden, M., Baur, W., Zhang, X. et al. (2009) ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circ. Res. 104, 531–540 https://doi.org/10.1161/CIRCRESAHA.108.188524
- 109 Barcelo, J., Samain, R. and Sanz-Moreno, V. (2023) Preclinical to clinical utility of ROCK inhibitors in cancer. *Trends Cancer* **9**, 250–263 https://doi.org/10.1016/j.trecan.2022.12.001
- 110 Paplomata, E. and O'regan, R. (2014) The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. *Ther. Adv. Med. Oncol.* **6**, 154–166 https://doi.org/10.1177/1758834014530023
- 111 Hilgemann, D.W. (2007) Local PIP2 signals: when, where, and how? Pflugers Arch. Eur. J. Physiol. 455, 55–67 https://doi.org/10.1007/s00424-007-0280-9
- 112 Jean, S. and Kiger, A.A. (2014) Classes of phosphoinositide 3-kinases at a glance. J. Cell Sci. 127, 923-928 https://doi.org/10.1242/jcs.093773
- 113 Ackermann, M.A., King, B., Lieberman, N.A.P., Bobbili, P.J., Rudloff, M., Berndsen, C.E. et al. (2017) Novel obscurins mediate cardiomyocyte adhesion and size via the PI3K/AKT/mTOR signaling pathway. J. Mol. Cell. Cardiol. 111, 27–39 https://doi.org/10.1016/j.yjmcc.2017.08.004
- 114 Deng, S., Leong, H.C., Datta, A., Gopal, V., Kumar, A.P. and Yap, C.T. (2022) PI3K/AKT signaling tips the balance of cytoskeletal forces for cancer progression. Cancers 14, 1652 https://doi.org/10.1016/s0960-9822(00)80071-8
- 115 Jiménez, C., Portela, R.A., Mellado, M., Rodríguez-Frade, J.M., Collard, J., Serrano, A. et al. (2000) Role of the PI3K regulatory subunit in the control of actin organization and cell migration. J. Cell Biol. 151, 249–261 https://doi.org/10.1083/jcb.151.2.249
- 116 Xu, W., Yang, Z. and Lu, N. (2015) A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. *Cell Adhes. Migr.* **9**, 317–324 https://doi.org/10.1080/19336918.2015.1016686
- 117 Yang, S., Du, Y., Zhao, X., Wu, C. and Yu, P. (2022) Reducing PDK1/Akt activity: an effective therapeutic target in the treatment of Alzheimer's disease. *Cells* 11, 1735 https://doi.org/10.3390/cells11111735
- 118 Osaki, M., Oshimura, M. and Ito, H. (2004) PI3K-Akt pathway: its functions and alterations in human cancer. *Apoptosis* **9**, 667–676 https://doi.org/10.1023/B:APPT.0000045801.15585.dd
- 119 Rinne, N., Christie, E.L., Ardasheva, A., Kwok, C.H., Demchenko, N., Low, C. et al. (2021) Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. *Cancer Drug Resist.* **4**, 573–595 https://doi.org/10.20517/cdr.2021.05
- 120 Tripathi, B.K., Grant, T., Qian, X., Zhou, M., Mertins, P., Wang, D. et al. (2017) Receptor tyrosine kinase activation of RhoA is mediated by AKT phosphorylation of DLC1. *J. Cell Biol.* **216**, 4255–4270 https://doi.org/10.1083/jcb.201703105
- 121 Bao, H.R., Chen, J.L., Li, F., Zeng, X.L. and Liu, X.J. (2020) Relationship between pi3k/mtor/rhoa pathway-regulated cytoskeletal rearrangements and phagocytic capacity of macrophages. Braz. J. Med. Biol. Res. 53, e9207 https://doi.org/10.1590/1414-431X20209207
- Hong-Brown, L.Q., Brown, R.C., Navaratnarajah, M., Huber, D.S. and Lang, C.H. (2011) Alcohol-induced modulation of rictor and mTORC2 activity in C₂C₁₂ myoblasts. *Alcohol Clin. Exp. Res.* **35**, 1445–1453 https://doi.org/10.1111/j.1530-0277.2011.01480.x
- 123 Kim, L.C., Cook, R.S. and Chen, J. (2017) MTORC1 and mTORC2 in cancer and the tumor microenvironment. *Oncogene* **36**, 2191–2201 https://doi.org/10.1038/onc.2016.363
- 124 Oh, W.J. and Jacinto, E. (2011) mTOR complex 2 signaling and functions. Cell Cycle 10, 2305-2316 https://doi.org/10.4161/cc.10.14.16586
- 125 Diz-Muñoz, A., Thurley, K., Chintamen, S., Altschuler, S.J., Wu, L.F., Fletcher, D.A. et al. (2016) Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. *PLoS Biol.* **14**, e1002474 https://doi.org/10.1371/journal.pbio.1002474
- 126 Chantaravisoot, N., Wongkongkathep, P., Kalpongnukul, N., Pacharakullanon, N., Kaewsapsak, P., Ariyachet, C. et al. (2023) mTORC2 interactome and localization determine aggressiveness of high-grade glioma cells through association with gelsolin. Sci. Rep. 13, 7037 https://doi.org/10.1038/s41598-023-33872-y
- 127 Senoo, H., Wai, M., Matsubayashi, H.T., Sesaki, H. and lijima, M. (2020) Hetero-oligomerization of Rho and Ras GTPases connects GPCR activation to mTORC2-AKT signaling. *Cell Rep.* **33**, 108427 https://doi.org/10.1016/j.celrep.2020.108427
- 128 Derangeon, M., Bourmeyster, N., Plaisance, I., Pinet-Charvet, C., Chen, Q., Duthe, F. et al. (2008) Rhoa GTPase and F-actin dynamically regulate the permeability of Cx43-made channels in rat cardiac myocytes. *J. Biol. Chem.* **283**, 30754–30765 https://doi.org/10.1074/jbc.M801556200
- 129 Nieman, M.T., Prudoff, R.S., Johnson, K.R. and Wheelock, M.J. (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. *J. Cell Biol.* **147**, 631–643 https://doi.org/10.1083/jcb.147.3.631
- 130 Cao, Z.Q., Wang, Z. and Leng, P. (2019) Aberrant N-cadherin expression in cancer. Biomed. Pharmacother. 118, 109320 https://doi.org/10.1016/j.biopha.2019.109320
- 131 Fleming, J.R., Rani, A., Kraft, J., Zenker, S., Börgeson, E. and Lange, S. (2021) Exploring obscurin and speg kinase biology. *J. Clin. Med.* **10**, 984 https://doi.org/10.3390/jcm10050984
- 132 Koch, D., Kho, A.L., Fukuzawa, A., Alexandrovich, A., Vanaanen, K.J., Beavil, A. et al. (2023) Obscurin Rho GEF domains are phosphorylated by MST-family kinases but do not exhibit nucleotide exchange factor activity towards Rho GTPases in vitro. *PLoS One* **18**, e0284453 https://doi.org/10.1371/journal.pone.0284453