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Abstract 
The growth rate of a microorganism is a simple yet profound way to quantify its impact on the 10 

world. The absolute growth rate of a microbial population reflects rates of resource assimilation, 11 

biomass production, and element transformation, some of the many ways that organisms affect 12 

Earth’s ecosystems and climate. Microbial fitness in the environment depends on the ability to 13 

reproduce quickly when conditions are favorable and adopt a survival physiology when 14 

conditions worsen, which cells coordinate by adjusting their relative growth rate. At the 15 

population level, relative growth rate is a sensitive metric of fitness, linking survival and 16 

reproduction to the ecology and evolution of populations. Techniques combining ‘omics and 17 

stable isotope probing enable sensitive measurements of growth rates of microbial assemblages 18 

and individual taxa in soil. Microbial ecologists can explore how the growth rates of taxa with 19 

known traits and evolutionary histories respond to changes in resource availability, 20 

environmental conditions, and interactions with other organisms. We anticipate that quantitative 21 

and scalable data on the growth rates of soil microorganisms, coupled with measurements of 22 

biogeochemical fluxes, will allow scientists to test and refine ecological theory and advance 23 

process-based models of carbon flux, nutrient uptake, and ecosystem productivity. 24 

Measurements of in situ microbial growth rates provide insights into the ecology of populations 25 

and can be used to quantitatively link microbial diversity to soil biogeochemistry.26 
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Introduction 27 

Achieving growth in the face of a changing environment is a fundamental challenge for 28 

microorganisms living in soil. Microbial growth requires the coordination of a cell’s system-29 

level physiology, including the extraction of energy and substrates from the environment, 30 

synthesis of hundreds of molecules at appropriate concentrations, and the events of cell division. 31 

All of this coordination has to be done in such a way that allows the cell to modify its activities 32 

depending on changes in its surrounding environment – often on a very short time scale. Over 33 

billions of years of evolution, soil microorganisms developed strategies for growing in extreme 34 

cold and heat, in highly acidic and alkaline habitats, on the inside and outside of plant roots, and 35 

on mineral surfaces. Soil microorganisms have wide-ranging metabolic capabilities and can 36 

capitalize on diverse redox pairs and reactions that occur not only within, but also among, cells 37 

representing multiple domains of life1.  38 

As soil microorganisms grow, they assimilate, transform, and redistribute key elements in 39 

their environment2, with far-reaching consequences for Earth’s ecosystems and climate. 40 

Microorganisms aid in the process of extracting phosphorus and sulfur from their geological 41 

reservoirs, where they typically reside for thousands to millions of years, moving them into 42 

biological systems with much shorter residence times, typically ranging from weeks to months3,4. 43 

Assimilation and retention of nutrients like nitrogen and phosphorus in microbial biomass can 44 

constrain plant growth and limit the capacity of ecosystems to capture carbon (C) from the 45 

atmosphere5. Microbial redox transformations determine whether organic C molecules in soil 46 

reach the atmosphere as CO2 or as CH4, potentially amplifying the impact of the gas on Earth’s 47 

climate.  48 
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Soil microorganisms exist in a range of physiological states, from dormancy to exponential 49 

growth, with profoundly different consequences for soil C and nutrient cycling. Relative growth 50 

rate, the rate of increase in mass or abundance per unit time relative to starting size, captures 51 

such variation and is a powerful index of how microorganisms adjust their physiology in 52 

response to the environment. Since traits that confer stress tolerance can hinder the ability of 53 

cells to grow quickly6, many microbial species have developed distinct phenotypes for survival 54 

in stressful versus growth-conducive environments. These phenotypes vary profoundly, not only 55 

in their rates of growth, but also in their central C metabolic networks7, cell sizes, and 56 

macromolecular compositions8. At the population level, growth concepts are intimately linked 57 

with fitness and capture the nuances that arise as microorganisms interact with each other and 58 

their surroundings (we use the term growth to refer to gross growth, rather than net growth which 59 

is a function of both growth and mortality rates). Along with per capita mortality rate, per capita 60 

growth rate, a measure of the average individual growth rate in a population, reflects how well 61 

microorganisms compete for resources and respond to challenges associated with stress and 62 

predation. Measures of relative growth, like per capita growth rate, are especially useful for 63 

understanding how growing microorganisms respond to the environment and can also be used to 64 

quantify the intensity of interactions, such as competition, predation, and mutualism14. 65 

Absolute growth rate, or the rate of change in mass or abundance per unit time, is useful for 66 

quantifying microbial contributions to element fluxes. Measurements of absolute growth rates 67 

relative to soil quantity (i.e., the rate of change in mass or abundance of microorganisms per unit 68 

time per unit mass or volume of soil) reflect rates of microbial element assimilation and use. 69 

Along with absolute mortality rate, absolute growth rate sets the standing stock of microbial 70 

biomass and ultimately drives changes in the taxonomic makeup of entire communities. Soil 71 
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microorganisms can exhibit rapid rates of turnover (the rate at which microorganisms in 72 

populations or communities are replaced via growth and mortality), often with minimal changes 73 

in population size or biomass. For this reason, microbial biomass and abundance alone are poor 74 

predictors of element flux15,16. Measurements of absolute growth, along with other quantitative 75 

metrics of physiologically active microorganisms, would provide a powerful means for testing 76 

the impacts of microbial biodiversity on C and nutrient cycling at the ecosystem scale17. 77 

There is a rich history of measuring growth rates in soil microbial ecology, including decades 78 

of measurements in culture18,19 and in situ20–24. Many recent developments in soil ecology invoke 79 

microbial growth rates to conceptually link microbial physiology to ecosystem services such as 80 

climate mitigation25, pollution reduction26, and food supply27. In situ measurements of growth 81 

rate, including those of specific taxonomic groups16,28,29 and individual cells30, enable rigorous 82 

tests of the controls over the ecology of these organisms where they live and grow and how that 83 

connects to larger scale ecological processes31–33.  84 

 85 

Measurements of microbial growth rates in soil 86 

 Methods measuring soil microbial growth rates in situ capture different processes, from 87 

the synthesis of biomolecules that make up individual cells, to the expansion of populations, to 88 

the gross production of biomass carbon at the assemblage level (Figure 1 and Supplementary 89 

Table 2). Such methodological diversity is reflected in published estimates of relative growth 90 

rates of soil microbial assemblages, which span at least four orders of magnitude from 0.0009 91 

day-1 to 1.98 day-1. Syntheses of in situ growth rate measurements can be used to identify sources 92 

of variation within and between methods. Linear model analysis of published estimates of 93 

assemblage-level growth rates indicates that method, ecosystem type, and soil depth can be 94 
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significant predictors of in situ growth (Figure 2a; whole model R2 = 0.24; ecosystem: F3, 276 = 95 

7.10, p<0.001; method: F5, 276 = 71.90, p < 0.001; depth: F2, 276 = 9.75, p < 0.001; see 96 

Supplementary Methods). Environmental factors like carbon availability24, soil moisture34, 97 

temperature, pH, and seasonality35 are important determinants of soil microbial growth too. 98 

Systematic reviews and metanalyses are needed to comprehensively synthesize growth rate 99 

measurements and quantify the relative importance of environmental and methodological factors 100 

across ecosystems and under future climate scenarios.  101 

Methodological variation may arise from multiple sources. For example, incubations may be 102 

biased if temperatures are held below or above those typical of the organisms’ natural habitat and 103 

shorter incubations are less sensitive at detecting, and may thus exclude, taxa with slower growth 104 

rates compared to longer incubations (but see Caro et al. 2023). Methodological variation may 105 

also be a product of methods targeting different biomolecules, such as DNA, proteins, or lipids, 106 

which may have variable rates of synthesis and degradation that are contingent on the cell’s 107 

physiological state. During exponential growth, cells synthesize macromolecules at near-constant 108 

differential rates and divide at a particular cell mass or size. Under these conditions of balanced 109 

growth, relative growth rate sets key cellular phenotypes like cell size and the mass fractions of 110 

nucleic acids, proteins, and lipids. In nature, relationships between replicative growth and rates 111 

of macromolecular synthesis may not always be so tightly coupled. Applying multiple methods 112 

could help identify the physiological adjustments that allow microorganisms to strike a balance 113 

between survival and proliferation in soil. For example, in response to C limitation, 114 

microorganisms may undergo reductive division36, simultaneously catabolizing lipids for 115 

energy37 while synthesizing DNA and protein in order to divide into smaller and more stress 116 

resistant cells, which could be explored using stable isotope probing (SIP) approaches to target 117 
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lipid16, DNA28,29,38, and protein39 synthesis concurrently. A wide range of methods are needed to 118 

capture the many strategies microorganisms may use to grow in soil. 119 

 Most measurements quantify relative growth rate, useful for understanding how 120 

microorganisms respond to the environment. Measurements of absolute growth rate are needed 121 

to understand how microorganisms move elements through ecosystems. Converting metrics of 122 

relative growth rate, for example based on rates of tracer uptake per unit time, to absolute growth 123 

rates, in units of mass or number or microorganisms per unit time, can be challenging because 124 

direct measurements of biomass and abundance are difficult to obtain and validate40. Estimates 125 

of absolute growth rate may also require known extraction efficiencies of biomolecules from 126 

soils. For example, SIP-based methods measure growth based on rates of isotope incorporation 127 

into target biomolecules, which require biomolecule extractions from soils. Extractions of DNA, 128 

lipids, or proteins from soil seldom yield complete recovery. Extraction efficiencies may be low, 129 

variable, or – in the case of DNA – may not typically be evaluated. Including recovery 130 

standards41 and developing better constraints on the recovery of necromass-derived biomolecules 131 

would improve the accuracy of absolute growth rate measurements in soil.  132 

 Many approaches quantify growth rate at the scale of whole microbial assemblages, 133 

which result in a single estimate of growth for a soil sample, an aggregate of thousands of 134 

microbial populations. Methods that quantify the growth rates of microbial taxa16,28,29,42 and 135 

single cells30 are promising avenues for developing quantitative links between specific 136 

microorganisms and soil processes. Estimates of growth from over 46,000 measurements of rates 137 

of DNA synthesis show tremendous variation in relative growth rates among bacterial groups in 138 

soil (Figure 2b) and indicate that relative growth rates of soil bacteria are comparable to those of 139 

marine bacteria43, both of which are slow compared to growth rates in culture44. Future 140 
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comparative studies applying multiple approaches are needed to critically compare growth rates 141 

of phylogenetically related microorganisms in nature.  142 

Measurements of growth rate in soil indicate that bacterial groups also vary in their rates 143 

of resource use and their responses to changes in nutrient availability45–47, temperature48–51, 144 

disturbance52–54, mineral composition55, and climate56,57. Microbial contributions to respiration 145 

and C and N assimilation appear to be highly taxon-specific, and variation in microbial 146 

contributions to element fluxes can be meaningful when scaled to the ecosystem level17,58. Such 147 

measurements offer a new set of data for testing and developing microbe-explicit representations 148 

of C and N cycling. Measurements of relative growth rate have shown how interactions among 149 

soil microorganisms – including competition59, mutualism15, and predation60,61 – can influence 150 

element flux, just as interactions between plants and animals can influence ecosystem processes.  151 

Growth rate measurements have a clear place in testing the role of ecological theory in 152 

soil microbial ecology. Like macroscopic organisms, microbial phenotypes in soil are 153 

constrained by their evolutionary histories62,63. Phenomena such as negative density dependence 154 

and r/K selection theory are key for understanding population growth of larger organisms, but 155 

these concepts have failed to be strong predictors of growth patterns of microbes in situ64,65. As 156 

such there is a great need for evidence-based ecological frameworks that are built on direct 157 

observations of soil microbiomes66. Below, we describe how quantitative data on soil microbial 158 

growth rates can be integrated into tests of microbial ecological theory and used to refine 159 

process-based models of element flux and ecosystem productivity. 160 

 161 

Relevance to soil ecology 162 
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The diversity, physiology, and ecology of microorganisms influence biogeochemical 163 

cycling67, soil organic carbon (SOC) formation and loss68, and plant productivity69, with 164 

implications for pollution26, food supply27, and climate25. Quantitative in situ measurements of 165 

microbial growth could offer powerful insight into how microbes contribute to ecosystem 166 

processes and could help discover new tools for managing the soil microbiome to promote 167 

ecosystem services. 168 

  169 

Microbial physiology and soil organic C cycling 170 

The physiological properties of microorganisms play a key role in governing the 171 

formation and loss of SOC stocks70 that are vital for mitigating greenhouse gas emissions and 172 

enhancing the sustainability of agricultural systems71. Measurements of in situ soil microbial 173 

growth could be used to inform and test emerging hypotheses on SOC cycling. For example, 174 

microbial necromass may constitute as much as 50% of the mineral-associated organic matter 175 

pool – the largest and slowest-cycling reservoir of SOC72–74. Thus, fast and efficient microbial 176 

growth and turnover should increase the production of microbial residues and the accrual of 177 

microbial-derived, mineral-associated organic matter68,75. In situ growth rate measurements that 178 

capture absolute growth at the assemblage scale (e.g. isotope ratio mass spectrometry enabled 179 

H218O-DNA-SIP38 and 2H2O-lipid-SIP16) could be used to identify relationships between growth 180 

rate, growth efficiency, and SOC formation at the ecosystem scale. Relationships between 181 

growth rate and growth efficiency, defined as the portion of consumed substrate that is converted 182 

into biomass, are critical for such conceptualizations of SOC formation but poorly defined for 183 

soil microbes. The mechanisms theorized to underpin relationships between growth efficiency 184 

and relative growth rate, such as maintenance requirements, overflow metabolism, and protein 185 
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synthesis costs, are physiological and may therefore be most apparent at the level of individual 186 

microbial cell, species, or population. Whether population scale physiology drives emergent 187 

relationships between microbial growth and SOC formation at the ecosystem scale could then be 188 

tested, for example, with using individual based modeling to couple observations of relative 189 

growth rate and growth efficiency at the population level (e.g. via soil isolates76 or genome-190 

informed trait-based modeling77) to assemblage level measurements of growth rate and rates of 191 

SOC formation.  192 

Microbial processes affecting soil C accrual and persistence are represented in some 193 

numerical models of SOC cycling78–81. Measurements of microbial growth can be used to 194 

parameterize microbe-explicit biogeochemical models and test how microbial physiology 195 

modulates SOC responses to environmental changes. For example, growth rate measurements 196 

could be used to parameterize formulations of microbial dormancy79 and density dependent 197 

growth82 in ecosystem scale models. At the global scale, modeling growth efficiency is key to 198 

predicting the dynamics of soil C stocks83 and growth rate may be an important factor to consider 199 

in these large-scale geochemical models too. Additional measurements of soil microbial growth 200 

rates will provide the data needed to test conceptual and quantitative models of how microbes 201 

influence the soil C cycle. There is a clear need for direct measurements of in situ growth rates 202 

using existing approaches to better understand the roles of the microbial community – and of 203 

individual microbial genes, metabolic pathways, and taxa – as conduits of energy and element 204 

cycling through soils.  205 

  206 

Microbial diversity and ecological strategies  207 
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Amidst a wealth of archived genomic, transcriptomic, and proteomic data, frameworks 208 

categorizing the ecological strategies of soil microorganisms have emerged to integrate these 209 

data with biogeochemical concepts and mechanistic models84–86. Such frameworks are valuable 210 

given that they can effectively reduce complex microbial assemblages into a manageable number 211 

of functional groups and provide a basis for generating effective, hypothesis-driven insights into 212 

soil microbial ecology87. Collectively, these frameworks represent diverse hypotheses about 213 

interactions between microbial community structure and soil processes. Soil microbiologists are 214 

well-positioned to begin experimentally testing these frameworks by coupling in situ 215 

measurements of growth with ‘omics data.  216 

Many microbial frameworks have been derived from classic ecological theory (i.e., 217 

theory primarily developed from conceptual models of plant life history strategies) and these 218 

microbial frameworks often lack experimental validation. For example, ecological strategies are 219 

commonly assigned based on taxonomy85 but tests of whether microorganisms use their assigned 220 

strategies in nature are rare65. Alternatively, broad ecological strategies can be identified based 221 

on genomic features84 and gene expression88, but our ability to translate microbial genes to 222 

function and rate of function is nascent.  223 

As an essential property of an organism’s life history and metric of competitive ability, in 224 

situ relative growth rate has a direct role in testing frameworks that build on classical ecological 225 

theory. Relative growth rate could be assayed in multiple environments to determine whether 226 

evolutionary adaptation to a selective environment has been accompanied by a loss of 227 

reproductive potential in nonselective environments – in other words, whether a tradeoff has 228 

occurred. For example, the relative growth rate of an organism with a “stress tolerator” strategy84 229 

would be expected to be above average under stressful conditions and below average in the 230 
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absence of environmental stressors. Quantifying the growth of microorganisms where they live 231 

and grow in nature also provides access to a broader suite of trait dimensions than can be 232 

extrapolated from pure culture studies. Direct, in situ relative growth rate measurements could 233 

thus provide powerful, empirical means to develop alternative ways of organizing soil microbial 234 

diversity into ecologically meaningful units. Coupling these with measures of nutrient and 235 

energy fluxes will help test links between community composition and ecosystem dynamics. 236 

 237 

Ecological interactions and soil food webs 238 

Microorganisms influence energy flow and alter rates of nutrient cycling through their 239 

interactions with other microorganisms89. Predation in the rhizosphere changes the taxonomic 240 

structure of prokaryotic communities and alters rates of N mineralization, influencing vegetation 241 

productivity90. Mutualistic interactions between microbial taxa stimulate depolymerization of 242 

complex C compounds91 and antagonistic interactions influence growth rates through negative 243 

density dependence52, altering rates of C flux from microbial biomass to soil82. Taxon-specific 244 

estimates of relative growth rate would be valuable for assessing microbial interactions in which 245 

one soil microorganism influences another by altering its growth, reproduction, or any trait 246 

impacting fitness.  247 

In soil microbial ecology, network analyses of co-occurrence patterns in molecular 248 

abundance datasets are used to infer in situ interactions between microorganisms. These analyses 249 

are based on the premise that microorganisms must co-occur to interact, and that interactions 250 

affecting demography will drive patterns in co-occurrence data. Environmental variability in 251 

time and space, dynamic species distributions, and other ecological complexities weaken and 252 

may obscure relationships between co-occurrence and interactions92. Assessing how the growth 253 



 
   
 

13 
 

rate of one organism impacts the growth of another could constrain inferences about interactions. 254 

Multilayer network analyses could combine independent data streams like growth rate and co-255 

occurrence which would allow inferences to be cross validated, potentially improving the 256 

accuracy of interaction studies.  257 

Growth rates of microbial taxa, along with growth efficiency, could be used to construct 258 

accurate food webs to quantify how energy and elements are transferred between microbial 259 

taxa93. Compound-specific growth estimates (via stable isotope probing of 13C and 15N nutrient 260 

sources) trace the flow of soil nutrients through microorganisms and quantify their rates of 261 

transformation94–96. These approaches identify syntrophic interactions in soil by tracing 262 

biogeochemical fluxes between organisms and nutrient pools97,98 and identifying rates of 263 

biomass production resulting from specific metabolic strategies99,100. There are several key 264 

limitations to such approaches, such as the ability to resolve cross feeding. Experimental designs 265 

that explicitly account for these limitations are especially useful. For example, Hungate et al. 266 

(2021) correct for differences in potential sources of 18O between predatory and non-predatory 267 

soil bacteria (predators derive 18O from labelled prey biomass and soil water while non-predators 268 

derive 18O from soil water alone) in computations of growth rate, finding that obligate predators 269 

respond to increases in prey resource availability by disproportionately increasing their relative 270 

growth rates (compared to non-predator taxa) when C substrates, a common source of energy for 271 

their heterotrophic prey, are added to soil60. Taxon-specific growth rates also provide a means for 272 

assessing the importance of interactions in structuring individual populations. For 273 

example, density dependent population growth (typically measured as net growth) reflects direct 274 

interactions among individuals within a population, such as competition for resources which can 275 

be assessed by quantifying relationships between population density and relative growth rate in 276 
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situ52. Growth rate is a clear and promising metric for defining ecological interactions, offering a 277 

way to quantitatively link interactions between individual taxa to the trajectory of entire 278 

populations and the flow of elements within the soil microbiome. 279 

 280 

Conclusion 281 

There is an urgent need to improve our quantitative understanding of how microorganisms 282 

contribute to soil processes, given their central role in ecosystem C storage, nutrient cycling, and 283 

productivity. Growth rate integrates the many ways that microbes affect soil processes and is a 284 

sensitive metric for studying cell and population-level responses to challenges in nature, 285 

including challenges from biotic interactions and changes in environmental conditions. Moving 286 

forward, diverse approaches are needed to accurately estimate the full range of microbial growth 287 

rates in soil and comprehensive reviews, metanalyses, and comparative studies will be critical for 288 

quantifying biological and methodological sources of variation. Understanding how microbial 289 

growth rates vary in soil will enable greater cohesion between emerging ecological concepts, 290 

microbial identity, and biogeochemistry. As soil ecological concepts and models are developed, 291 

it is critical that quantitative and sensitive measurements of in situ microbial growth be used 292 

alongside measurements of biogeochemical fluxes to understand how individual microbial taxa 293 

and whole assemblages influence soil processes. 294 

  295 
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Figure captions: 565 

Figure 1: There are a range of methods to measure soil microbial growth rates in situ. a) 566 
Isotope tracing approaches capture the synthesis of various biomolecules, such as DNA, lipids, 567 
and proteins, providing an approximation of gross microbial growth. b) Biomolecules have 568 
variable rates of synthesis depending on a cell’s physiological state and biochemical 569 
composition, which may contribute to variation among growth rate estimates in soil. Many 570 
methods capture the growth rate of entire assemblages of microorganisms in a sample. These 571 
measurements are useful for understanding how microorganisms, in aggregate, affect element 572 
fluxes but cannot capture the growth dynamics of individual populations. SIP stands for stable 573 
isotope probing and qSIP stands for quantitative stable isotope probing. c) Some methods 574 
leverage ‘omics technologies to pair growth rate measurements with taxonomic information. 575 
These methods quantify the growth rates of individual taxa, allowing researchers to test 576 
hypotheses in microbial ecology. The figure shows a hypothetical heat map of taxon-specific 577 
growth rates in two distinct environments, an approach that can be used to explore whether 578 
microbial adaptations to a selective environment is accompanied by a loss of reproductive 579 
potential in nonselective environments (i.e. whether a tradeoff has occurred). 580 
 581 
Figure 2: Relative growth rates of soil microbial assemblages and individual taxa in 582 
multiple ecosystems. a) Published estimates of relative growth rates of soil microbial 583 
assemblages in agricultural, forest, grassland, and tundra ecosystems. Measurements were made 584 
using isotope ratio mass spectrometry (IRMS) enabled H218O-DNA stable isotope probing (SIP), 585 
H218O-DNA quantitative stable isotope probing (qSIP), thymidine (Tdr) incorporation, leucine 586 
(Leu) incorporation, 2H2O-lipid-SIP, or soil C mass balance modeling. The middle line 587 
corresponds to the median, lower and upper edges correspond to the first and third quartiles, and 588 
whiskers extend to the highest and lowest point within 150% of the interquartile range. The y-589 
axis is log transformed. Study information is in Supplementary Dataset 1.b) Distribution of 590 
relative growth rates of amplicon sequence variants measured by H218O-DNA-qSIP in five 591 
ecosystems: tropical forest, temperate grassland, temperate conifer forest, boreal forest, and 592 
moist acidic tundra. The x-axis is log transformed. c) Distribution of relative growth rates of 593 
bacterial and archaeal phyla. The middle line corresponds to the median, lower and upper edges 594 
correspond to the first and third quartiles, and whiskers extend to the highest and lowest point 595 
within 150% of the interquartile range. The x-axis is log transformed. Study information is in 596 
Supplementary Dataset 2.597 
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