W) Check for updates

Proceedings of the ASME 2023

International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference

IDETC-CIE2023
August 20-23, 2023, Boston, Massachusetts

DETC2023-116429

HEAT SINK DESIGN OPTIMIZATION VIA GAN-CNN COMBINED DEEP-LEARNING

Nathan Flynn, Xiaoping Qian*
n8flynn@outlook.com

Department of Mechanical Engineering
University of Wisconsin-Madison, Madison, WI

ABSTRACT

This work proposes a combined deep learning based ap-
proach to improve thermal component heat sinks involving tur-
bulent fluid flow. A Generative Adversarial Network (GAN) is
trained to learn and recreate the new ellipse based heat sinks.
Simulation data for new designs is efficiently generated using
OpenFOAM 7 (Open Source Computational Fluid Dynamics
software) along with high throughput computing. To improve
the speed of design evaluation, a Convolutional Neural Network
(CNN) is trained to predict the entire temperature field for a given
design. The trained CNN is able to predict the entire temperature
field for the design with a mean average error of 1.140 degrees
kelvin in 0.04 seconds (22,500 times faster than the simulation).
A combined model is formed using the trained CNN and GAN net-
works to create and simulate new designs. The combined model
optimizes the latent representation of 64 random designs on a
Graphical Processing Unit (GPU) in ten minutes. The optimized
designs perform fourteen degrees kelvin better on average than
the non-optimized designs. The highest preforming design out-
performs any design in the training data by 1.83 degrees kelvin.

1. INTRODUCTION

Improving the performance of heat sinks via design opti-
mization is important to be able to more effectively pull heat
away from demanding electrical components such as processors.
Typical approaches to this problem involve using an optimiza-
tion scheme such as shape [1] or topology optimization [2] to
improve the performance of a given design. Shape and topology
optimization involves optimizing a design using an objective,
such as minimizing pressure drop in a fluid channel. Shape opti-
mization optimizes the shape of an initial design, while topology
optimization creates large topological changes from the initial
design. To evaluate the objective function the design must be
simulated whenever the design is updated, which can be compu-
tationally expensive over many iterations.

*Corresponding author: Email: gian@engr.wisc.edu

Another approach to optimizing fluid related problems in-
volves the use of deep-learning methods such as regression based
surrogate models which allow the prediction of an output based
on an input such as the channel length in a fluid problem [3]. Sur-
rogate models use machine learning models to learn how to relate
the input of a simulation to an output to replace the simulation.
The surrogate models are then paired with a genetic algorithm or
optimization method to improve the performance of the design by
changing some portion of the geometry, such as optimizing the
length of the baffles in a micro-channel [4]. The drawback of this
approach is that full simulations are required to be able to pre-
dict only a few of the desired outputs (temperature of the outlet,
pressure drop, etc) but not other desired outputs (entire solution
field for temperature or pressure) and the geometries have to be
relatively simple.

Recent advances in deep learning have created models such
as the Generative Adversarial Networks (GAN) which are able
to create new designs by learning the distribution of a given
set of input designs [5]. With GAN’s ability to generate new
data and designs, they have been recently paired with topology
optimization-based approaches to produce new optimal struc-
tures. In another paper, a GAN is used in combination with trans-
fer learning to create topologically-optimized designs to seen
and un-seen boundary conditions while testing the model [6].
In another paper, previously generated topological designs are
used alongside new designs generated by a GAN to generate aes-
thetically optimal and high performance designs [7]. Lastly, a
Variational Auto-Encoder GAN (VEGAN) is used alongside a
database of optimized airfoil designs to be able to create new
designs that have equivalent or slightly better performance than
the training data [8]. The issues with these TO-based models is
that rely on high performance data, either from a data base or data
created through topology optimization.

Recently, a GAN and Convolutional Neural Network (CNN)
combined based approach is able to produce optimal micro-
structure based designs by using inverse design based method
to achieve a desired compliance [9]. The method developed by

Copyright © 2023 by ASME

G20z ¥snbny |0 uo Jasn uosipepy uisuodsip JO Aissaaun Aq Jpd 62191 L-€202019P-€20BE0IBE0N LY0190.L/€Z0VE0LYEON L OEL8/€202TID-0 LAAI/Pd-sBuIpeso0id/310-0 L3AI/B10"swsE uonos|joojepBipawse//:djy wol papeojumoq

https://crossmark.crossref.org/dialog/?doi=10.1115/DETC2023-116429&domain=pdf&date_stamp=2023-11-21

Tan et al. [9] is successfully used to generate training micro
structure based images from scratch, generate new realistic data
with a GAN and then predict the performance of a given design
using a Le-Net CNN architecture. This method is applied to a
relatively simple problem and inverse design produces desired
structures.

In this paper, a similar combined deep learning approach is
applied to a conjugate heat-transfer design optimization problem.
The problem involves optimizing the design of a heat sink using
both steady state and turbulent air flow. The GAN is used to
create new designs from a set of randomly generated fin struc-
tures with elliptical cross sections using a Python library called
"ellipse packing" [9]. The CNN evaluates the performance of
the design by predicting the entire temperature field for a given
design. The two models are separately trained and then combined
into a single model. The combined model is used along side an
optimizer to directly improve the performance of a batch of 64
randomly generated heat sink designs.

2. DESIGN PROBLEM

The design problem is a turbulent (Re = 4520), steady state,
conjugate heat-transfer problem with conduction and convection.
The fluid domain is a 74 x 66 mm rectangle and the design domain
is a 64 x 64 mm square that is centered within the fluid domain.
A graphical representation of the problem, initial and boundary
conditions is shown in Fig. 1.

outlet

dar no — slip BC
// 4
fluid 64 mm
solid 74 mm
ar _ 0
dy =
ar 0 _
dy ~ -
slip BC —» slip BC
v
Y A4
otia = 297k
. To i = 297k
- w
hsouia =15

* 66 mm —|

FIGURE 1: DESIGN PROBLEM PARAMETERS

Fluid flows from the inlet at the bottom to the outlet at the
top. The white ellipses within the design domain represent the
solid fins of the heat sink. The goal of this project is to generate
optimal structures that dissipate a 1 W /m? load on the heat sink.
The fluid is air and the solid is 6061 Aluminum Alloy (Al). The
material properties for the solid and fluid are shown in Table 1.
Performance of a given design is measured by calculating the
average solid temperature. The best design has the lowest average
solid temperature.

TABLE 1: DESIGN PROBLEM MATERIAL PROPERTIES

Parameters Solid Fluid
Material 6061 Al Air
Molecular Weight (g/mol) 63.5 28.966

p (kg/m?) 2719 1.225

cp (J/kg/K) 871 1006.43

u (kg/m/s) - 1.7884¢ — 05
Pr - 0.71

3. PROPOSED METHOD

The proposed method to solve this problem involves using
a combined deep-learning optimization framework composed of
a design generator and a design evaluator. The design generator
(g) creates new designs (X) from a given input latent space vector
(a compressed representation of an image) z shown in Eq. (1).

X =2(2) ey

The design evaluator, f, uses the design (X) as the input and
outputs the temperature field (Y) for that design shown in Eq. (2).

Y = f(X) 2

The combined model consists of both the design generator (g) and
the design evaluator (f) used in combination shown in Eq. (3).

Y = f(2(2) 3)

The loss function for the combined model is the average temper-
ature shown in Eq. (4).

> (Y-X)
Loss = T X 4)
The Wasserstein Generative Adversarial Network with Gradient
Penalty (WGAN-GP) [10] creates the generator model in Eq. (1)
and the U-NET CNN model [11] creates the evaluator model in
Eq. (2). Training of both models is done separately. The WGAN-
GP is trained on images of randomly generated fin designs with
elliptical cross sections. After training, the WGAN-GP is used
to create new designs by passing a random latent space vector (z)
into the GAN. Simulation is preformed on the new designs using
OpenFOAM 7 (an open-source computational fluid dynamics
package) to produce the temperature field for a given design.
The U-NET maps the designs to their corresponding temperature
field. Once training for both models is complete, a combined
model is formed using the generator of the GAN and the U-NET
CNN. Optimization is performed on the input to the generator
(z) using Average Stochastic Gradient Decent (ASGD) within a
Python library called PyTorch to minimize Eq. (4)

3.1 Design generation

To generate heat sink designs, an open source Python library
called "ellipse packing" from GitHub creates random elliptical
structures [12]. The number of mesh points in the x and y di-
rection and the scale of the major and minor axes is controlled
with the library. Examples shown in Fig. 3. The placement of the

Copyright © 2023 by ASME

G20z ¥snbny |0 uo Jasn uosipepy uisuodsip JO Aissaaun Aq Jpd 62191 L-€202019P-€20BE0IBE0N LY0190.L/€Z0VE0LYEON L OEL8/€202TID-0 LAAI/Pd-sBuIpeso0id/310-0 L3AI/B10"swsE uonos|joojepBipawse//:djy wol papeojumoq

ellipses is random and is created by producing an evenly space
grid of points. Next, Delaunay Triangulation is used to form a
mesh of triangles. Finally, formation of Steiner In-ellipses is ac-
complished by inscribing the ellipses within the triangles shown
in Fig. 2.

Grid generation

Steiner Inellipse

60 1

40 A

20 1

60 -

40 A

20 1

0

Delaunay Triangulation o

20 1

40 1

)

60

%

%

\g

0 25 50 0 25 50 0 25 50

FIGURE 2: DESIGN GENERATION METHOD

Each image is gray-scale and has a resolution of 64 x 64
pixels. To generate 100,000 unique designs, randomization is
done using the NumPy random function between the following
settings; number of grid points in the x and y direction between
2 and 10, the scale of the major axis between 0.5 and 2.75, and
the minor axis between 0.5 and 1.25.

FIGURE 3: EXAMPLE ELLIPSE FIN DESIGNS

3.2 Design simulation

Temperature field data for the design evaluator is generated
using simulations from OpenFOAM 7 to produce the temperature
field for each design. The kEpsilon model is used to simulate tur-
bulent fluid flow. Conversion of the designs into a mesh friendly
format for OpenFOAM is accomplished by filtering the gray-scale
images to a solid (1) and fluid (0) representation. The gray-scale
images have pixel value ranges from O to 255, where 255 and
0 represent a solid and fluid pixel respectively. Any pixel value

Raw design Filtered design

1: Solid

Pixel value

0: Fluid

FIGURE 4: IMAGE FILTERING

greater than or equal to 90 is changed to 1 and any pixel value
less than 90 is changed to 0. An example is shown in Fig. 4.
The solid/fluid threshold of 90 is selected by trial and error. The
purpose of this threshold is to ensure that no fluid pixels ended
up inside of the solid domain. If this happens, the simulation
fails to run. Image processing is applied on-top of filtering to fill
in potential voids using the SciPy Python library. The binary fill

Original Holes filled

FIGURE 5: FILLING VOID EXAMPLE

holes function within SciPy invades the complement of the image
from the boundary of the image using binary dilation. Once the
invasion step is complete, only the holes remain in the image be-
cause there is no connection from them to the boundary. A final
step is done to fill in the holes to create a void free design [13]
shown in Fig. 5 where the red pixels denote filled in holes. The
design (64 x 64) is then added to the center of the fluid domain
(74 x 66) and then is meshed in OpenFOAM 7. To improve the

Design

mperature (K)

0: Fluid
FIGURE 6: DESIGN AND TEMPERATURE FIELD
accuracy of the simulation, the mesh is refined to increase the

number of cells from 4884 (74 x 66) to 19,536 (148 x 132). The
output temperature field of the simulation is then mapped back

Copyright © 2023 by ASME

G20z ¥snbny |0 uo Jasn uosipepy uisuodsip JO Aissaaun Aq Jpd 62191 L-€202019P-€20BE0IBE0N LY0190.L/€Z0VE0LYEON L OEL8/€202TID-0 LAAI/Pd-sBuIpeso0id/310-0 L3AI/B10"swsE uonos|joojepBipawse//:djy wol papeojumoq

into the 74 x 66 domain and the fluid region is trimmed off to
leave the 64 x 64 temperature field. An example of the input and
output of the simulation is shown in Fig. 6.

3.3 Design performance metric and benchmark

The average solid temperature is used to record performance,
EQ. (5). In this equation, Y represents the temperature field
prediction, and X;,;;4 is the filtered version of X only containing
solid pixels, example is shown in Fig. 4.

Y- X . > 90
Tavgaoiia = LW Xoota) -y 1 X2 25 (5)
) Z XS()lid 0 X< 735

A simple parallel fin design is constructed and simulated as a
benchmark to compare to the results from the combined model.
The parallel fin design and performance is shown in Fig. 7.

Parallel fin benchmark
Average solid temp = 320.88, Volume fraction = 0.2

Design Temperature field

||||||||||||| LSOIId |||||||||||||i
0: Fluid

FIGURE 7: PARALLEL-FIN BENCHMARK

Woow W oW ow
Q = [] P
w Qo w Qo w
Temperature (K)

w
(=1
(=1

3.4 Scaling simulation runs

Each simulation takes about 2 minutes to run on a single
core (Intel 6700K at 4.00 GHz). Assuming 2 minutes per run,
conducting 500,000 simulations using a single core would take
around 2 years. The Center for High Throughput Computing
(CHTC) at the University of Wisconsin-Madison is used to gen-
erate simulation data. The Center has over 20,000 cores available
and is managed using HTCondor software. Using this resource
for data generation made it possible to complete this project in a
reasonable amount of time [14]. An OpenFOAM 7 Docker image
is used to run the simulation at the CHTC [15]. To balance out
the workload on all of the servers nodes, the simulations need
to be broken up into smaller amounts of work. For a batch of
500,000 simulations, creation of 5,000 jobs is required, with each
job containing 100 simulations worth of work. Each job runs on a
single node of the server, allowing results for 500,000 simulations
to be generated in less than a day.

3.5 Design generator

A GAN is used to create new designs from a set of existing
designs. A traditional GAN is made up of two components, a
generator and a discriminator. The discriminator is trained using
existing images and the generator produces images that look simi-
lar to the existing images. The discriminator scores the generated
images on the probability that the image came from the existing
image data set [5]. Training of the two models is accomplished by

playing a min-max game. If the generator creates an image that
fools the discriminator, the discriminator learns from that image
and improves the discriminator model. Similarly, the generator
model improves when the discriminator rejects images created by
the generator due to the generated images being too different from
the training set of images. GANs take a random uniform distri-
bution vector between 0 and 1 called the latent space z. GANs
learn how to decompress this latent space into the full design
space (latent space vector 100D to 64x64 image). Designs can be
changed by moving within the latent space and certain areas of
this space are attributed to certain features in the images. In this
paper the latent space is a 100D vector similar to the work done
by Lipton et al. [16].

The Wasserstein Generative Adversarial Network with Gra-
dient Penalty (WGAN-GP) [10] is used to generate new designs
(implementation by [17] in Pytorch). The WGAN-GP is the suc-
cessor to the Deep Convolutional GAN (DCGAN) which aims
at eliminating common problems with the network; model col-
lapse and vanishing gradients. Model collapse is a common issue
within GAN’s and causes the model to produce the same group
of images. The WGAN-GP reduces the chance of model collapse
by using a different loss formulation. Wasserstein loss uses Earth
Mover Distance (the minimum cost to transport the mass of one
distribution into another to make them the same). The gradient
penalty (GP) is added to the loss formulation to add more stability
than the original WGAN alone [10].

Use of the conventional loss function for the generator and the
critic is unreliable to gauge model convergence due to both net-
works playing a min-max game during training causing the loss
function for both the generator and the discriminator to fluctuate.
The other way to gauge model performance is through visual in-
spection of the images. The challenge with visual inspection is
that it is a qualitative approach. A new set of quantitative metrics
emerged to remedy this issue called Inception Score (IS) [18]
and Fréchet Inception Distance (FID) [19]. The Inception Score
is used to evaluate the quality of the images being produced.
Fréchet Inception Distance is used to measure the diversity of the
images. A Python library called pytorch-gan-metrics is used to
calculate both the FID and IS scores [20].

To train the GAN, simulation is preformed on 100,000 de-
signs and evaluated using Eq. 5. From the pool of designs, the
GAN training set of designs is made up of 50K randomly selected
designs. Examples of training data is shown in Fig. 3. The orig-
inal implementation from [17] is used along side a learning rate
value of le — 4 for both the critic and generator. The decreased
learning rate along with the other original settings is found to
produce the best diversity in the designs.

Once the WGAN-GP is trained the generator from the model
is separated and the last layer of the model is changed from the
hyperbolic tangent function (tanh) to the sigmoid function. The
tanh function is used during training to restrict the output of the
GAN between -1 and 1. The sigmoid function replaces the tanh
function to restrict the output between 0 and 1. A comparison
is done for the same image using the Sigmoid function and scal-
ing the tanh functions output between 0 and 1 show in Fig. 9.
The Sigmoid function produces similar images to the scaled tanh
function and reduces the number of computational steps to scale

Copyright © 2023 by ASME

G20z ¥snbny |0 uo Jasn uosipepy uisuodsip JO Aissaaun Aq Jpd 62191 L-€202019P-€20BE0IBE0N LY0190.L/€Z0VE0LYEON L OEL8/€202TID-0 LAAI/Pd-sBuIpeso0id/310-0 L3AI/B10"swsE uonos|joojepBipawse//:djy wol papeojumoq

FIGURE 8: COMBINED MODEL FLOWCHART

Sigmoid filter Tanh filter and scaling

1".!,1.14:‘ N P L -‘*

Il-lr.‘-' '-l. L II".

F"l ..-Ill' Al

!lti Fl T *"'1

¥ !
I."l||. l"-li

-n\‘"l'i

FIGURE 9: IMAGE FILTERING COMPARISON

the image between 0 and 1. A random latent space vector is
generated between 0 and 1 using the PyTorch random function
and then is fed into the generator to create new designs. In total,
the generator created 750,000 new designs to train the evaluator
with the designs corresponding simulation data.

3.6 Design evaluator

To evaluate all of the WGAN-GP’s generated designs a CNN
is used to predict the temperature field of the design. The U-NET
CNN architecture is selected for its ability to execute pixel by pixel
based regression. It was originally designed for fast biomedical
pixel based segmentation tasks [11]. Since its inception, the U-
NET architecture has been used for a variety of engineering based
tasks. Recently, the U-NET is used to predict a temperature field
for various heat source intensities, sizes, and layouts within a 200
x 200 grid problem [21]. Later, the same model is used along side
an optimization framework to create the best heat-source layout
for various electronics [22]. In this work, the U-NET CNN takes
the 64 x 64 input design in the form of an image and outputs a 64

x 64 temperature field prediction. The implementation from [21]
is used to create the model within PyTorch.

Mean absolute error (MAE) is used to keep track of the U-
NET’s performance during training, shown in Eq. (6) where N
represents the mesh size. In this case is 64 from the 64 x 64
design. MAE represents the average prediction error per pixel in
terms of Kelvin (K). In Chen et al. [21] they were able to achieve
a MAE between 0.02 and 0.5 K depending on the complexity of
problem.

1

MAE——2

™M=
M=

|7;; - Y] (6)

1l
—_
1l
—_

i=1j

Before training the network, the temperature field data is nor-
malized to aid in training. The temperature field data has values
that range from 298K to 1100K. Using equation Eq. (7) with a
X, = 100 and X,y = 297 K, the data is normalized between O
and 1. A similar approach is done by Chen eta. [21] to train the
U-NET on a heat source layout problem.

X - Xm
Xstd

Xo = @)

To train the network, simulation of the 750K GAN generated
designs is done using HTC to produce temperature field data. Of
the 750K sets of data, only 550K sets is used to train the U-NET
CNN. With 50K of the data being used to test the model after
training. Of the 500K sets of data, 80% (400K) is used to directly
train the model and the remaining 20% (100K) is used to evaluate
the MAE during training (validation data). A surplus of 200K
designs is used as a margin of safety. Occasionally, the GAN
produces designs with fluid inclusions in solid regions, causing
the simulation to fail without image processing to fill in the voids.

Copyright © 2023 by ASME

G20z ¥snbny |0 uo Jasn uosipepy uisuodsip JO Aissaaun Aq Jpd 62191 L-€202019P-€20BE0IBE0N LY0190.L/€Z0VE0LYEON L OEL8/€202TID-0 LAAI/Pd-sBuIpeso0id/310-0 L3AI/B10"swsE uonos|joojepBipawse//:djy wol papeojumoq

3.7 Combined Model GAN + CNN

Once training of both WGAN-GP and U-NET is completed,
the generator from the WGAN-GP and the U-NET model is com-
bined to form the model shown in Fig. 8. The combined model
functions as follows: a random latent space variable is generated
with 64 designs and then the latent space variable z is passed into
generator of the GAN. The output of the GAN (a set of images)
is passed directly into the U-NET as an input as shown in Eq. (3).
To optimize the latent space variable (z) the loss function below
in Eq. (4) is used. This loss function approximates the average
temperature of each pixel. In this formulation, the design X is
not filtered to decrease computational time. The ASGD optimizer
from PyTorch is used with a learning rate of 9¢ > to optimize the
latent representation of the designs. The loss is back propagated
into z and z is optimized to minimize the loss function. Stochastic
gradient clipping is employed on the latent space variable after
each optimization step to improve convergence [23]. Post pro-
cessing is preformed on the designs using the binary fill holes
function to fill in any voids in the designs.

4. RESULTS
4.1 GAN

Training the GAN with 50K images took about 8 hours on
an RTX 4080. To monitor convergence of the GAN, Inception
Score (IS) and Frechet Inception Distance (FID) values are
computed every epoch as shown in Fig. 10. Inception Score
measures the diversity of the images, while Fréchet Inception
Distance measures the quality of the images. The convergence of
training the GAN is monitored using both metrics (IS and FID).
Training of the GAN is stopped when both metrics plateau. The
GAN is trained for a total of 200 epochs with an image batch
size of 64. A version of the model parameters is saved for every
iteration and the final model version is selected based on the
model having the smallest IS and highest FID score possible.
This happens to be the model at iteration 155, which is denoted
by the blue star in Fig. 10.

Once training the WGAN-GP is completed, the generator

Monitoring GAN convergence

5.8 1 F 300

5.6 280
_ 541 I
2 9]
of 3
5 52 —— FID 240 gg
bR — s 8w
QG s0- % Selected model F220 5y
T 2
T o
T s L200

4.6 180

aa - 160

0 25 50 75 100 125 150 175 200
Epochs

FIGURE 10: GAN TRAINING EVALUATION

model is separated from the Network and generates 750K new
designs by feeding random noise into the generator via the latent
space z, examples shown in Fig. 11. The images appear to be

-
—
e
-
-
-
-
-

-

.|| n'lr llh '|1 '|'- .I" 1\

FIGURE 11: GAN GENERATED DESIGNS

nosier that the original training data because GANs approximate
the original training data. Image filtering on the images still
produces meaningful and high performance designs.

The volume fractions of the designs produced by the
GAN and the training data is compared to training data in
Fig. 12, computed using EQ (8). A large portion of the

Old training data vs new volfrac distribution

6_
—— GAN designs
5 —— Training designs
41
2
53
o
(o]
2 4
1]
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Volume fraction

FIGURE 12: VOLUME FRACTION DISTRIBUTION

designs in the training data have a volume fraction between
0.1 and 0.3. While the GAN’s designs seem to have a larger
emphasis on volume fractions falling in the range of 0.15 to
0.35. This is most likely due to the GAN’s images being more
grainy than the original images, causing the volume fraction to
increase. The GAN produced a small amount of designs outside
of the training data volume fraction range (0 to 0.1 and 0.3 to 0.6).

1 X>2
Xsolid = {0 X < g (8)
255

Z Xsnlid

Volprac = S ea

Copyright © 2023 by ASME

G20z ¥snbny |0 uo Jasn uosipepy uisuodsip JO Aissaaun Aq Jpd 62191 L-€202019P-€20BE0IBE0N LY0190.L/€Z0VE0LYEON L OEL8/€202TID-0 LAAI/Pd-sBuIpeso0id/310-0 L3AI/B10"swsE uonos|joojepBipawse//:djy wol papeojumoq

The average solid temperatures of the training data and the
output of the GAN is shown in Table 2. The GAN is able to create

TABLE 2: GAN DESIGN PERFORMANCE

Average solid temperature ~ Average [K] Best [K] Worst [K]
Training data 333.62 312.56 499.87
GAN 335.27 312.23 1117.75

designs that preformed two degrees worse on average compared to
training data and produced a design that is slightly better than the
best design in the training data. The volume fraction of the design
versus its temperature is shown in Fig. 13 (the data is truncated
below 500 K to zoom in on the majority of the data). The scatter
plot shows that volume fraction isn’t a good indicator of design
performance and that placement, spacing, and orientation of the
ellipses is important.

Volume fraction versus temperature

30

Temperature (K)
(-
(02]
Number of points per pixel

0.2 0.4
Volume fraction

FIGURE 13: DESIGN VOLUME FRACTION VS TEMPERATURE

Velocity plots for the worst (avg temp of 1053.69 K), middle
(avg temp of 325.79 K), and top 3 designs (avg temp of 312.39
K) from each category shown in Fig. 14. The top row is the best
designs, the middle row is the mediocre designs, and the bottom
row represents the worst designs. The red coloring indicates high
fluid velocity and blue represents low fluid velocity. The worst
designs comprise of very few fins and did not take advantage of
the fluid flow, as most of the fluid went past the fins. The middle
preforming designs made better use of the fluid flow and had
smaller fins staggered evenly. The best preforming designs had
small evenly spaced fins with even flow throughout the heat sink.

4.2 U-NET
Training the CNN took around 8 hours on an RTX 4080.
Mean average error (MAE) is employed on the validation data to

Velocity for worst, middle, and best designs
312.

L 1.00
0
F075 £
2
L 050 ©
s g

mperature = 1053.69 K L 025

N | b |
NN B
‘ ;. 0.00
J -0.25

FIGURE 14: VELOCITY FOR THE GAN’S BEST, MEDIOCRE, AND
WORST DESIGNS

keep track of how the model is doing. The loss for the training
model is shown in Fig. 15. The model is able to achieve an

U-NET CNN training
Min Error = 1.140

N
o

=
o

=
o

=
N

=
[N}

Mean Average Error (K)

20 40 60 80 100 120 140 160
Steps (thousand)

[oF

FIGURE 15: CNN TRAINING RESULTS

MAE of 1.140 K, about double the results for the complicated
heat source layout case from [21]. Once training the model is
complete, it can produce accurate predictions shown in Fig. 16.
The left most figure is the design itself, the middle figure is the
true temperature field, and the right most image is the predicted

Simulated temperature
Avg solid temp: 323.792

Predicted temperature
Avg solid temp: 323.434

Filtered Design

Temperature (K)

FIGURE 16: EXAMPLE OUTPUT OF U-NET CNN

Copyright © 2023 by ASME

G20z ¥snbny |0 uo Jasn uosipepy uisuodsip JO Aissaaun Aq Jpd 62191 L-€202019P-€20BE0IBE0N LY0190.L/€Z0VE0LYEON L OEL8/€202TID-0 LAAI/Pd-sBuIpeso0id/310-0 L3AI/B10"swsE uonos|joojepBipawse//:djy wol papeojumoq

temperature field. Averaged over the 10,000 iterations, the CNN
took about 0.004 seconds to make a single temperature field
prediction. On average, the simulation took about 90 seconds
to run. The CNN ran about 22,500X faster than the simulation,
making it an excellent tool to run optimizations (optimization
requires many solutions) or explore the performance of many
designs quickly.

4.3 Optimization results

Using the combined architecture shown in Fig. 8, the WGAN-
GP generates 64 designs by passing a randomly generated latent
variable z from the PyTorch rand function between O and 1 (la-
tent space has a shape of 64x100x1x1) into the GAN. The GAN
then decompresses the latent variable z into full scale designs
(from 64x100x1x1 to 64x1x64x64). Optimization is preformed
on the latent space representations of the designs using ASGD
within PyTorch. Optimization takes 10 minutes on the GPU over
the course of 10,000 iterations. Simulation is preformed on the
original and optimized designs to get the before and after temper-
atures shown in Table 3.

TABLE 3: DESIGN OPTIMIZATION RESULTS

Average solid temperature Average [K] Best [K] Worst [K]
Before optimization 336.05 315.35 441.88
After optimization 321.96 310.73 453.11

On average, the optimized designs improved by fourteen de-
grees kelvin. Optimization is also able to produce a design better
than the training data with an average temperature of 310.73K.
The best design from optimization out-preformed the best design
in the 550K designs generated by the GAN to train the CNN or the
GANSs training data by 1.83 degrees K. The worst design ended up
getting worse after optimization going from 441.88K to 453.11
K. A visual representation for the optimization improvement can
be seen in Fig. 17 where optimization improves the performance
of the majority of the designs.

Extraction is preformed on highest preforming design from
the 64 optimized designs. The before and after design is shown

Pre and post optimization for 64 samples

—— Before optimization

0.03 - —— After optimization

0.025 A

Density

0.015 A

0.01 4

0.005 A

0.0 T T 7 ———
300.0 350.0 400.0 450.0
Temperature (K)

FIGURE 17: TEMPERATURE DISTRIBUTION BEFORE AND AFTER
OPTIMIZATION

in Fig. 18. The left side of the figure is the design before opti-
mization and the right side is after optimization. The design in
the top changes to minimize the hot-zone in the original design.
The hot zone size after optimization is decreased and the overall
scale of the temperatures is decreased as well.

Original design
Avg temp = 318.04 K
volfrac = 0.231

Optimized design
Avg temp = 310.73 K
volfrac = 0.329

Fluid
335

330
325
320 £
3
©
315 5
£
310
8
305
300

FIGURE 18: BEST DESIGN OPTIMIZATION BEFORE AND AFTER

5. CONCLUSION

In this work, we propose a combined GAN and CNN ap-
proach based on a deep learning model that is capable of pro-
ducing improved designs from poor-performance training data
on a conjugate heat transfer optimization problem. The WGAN-
GP model learns from a wide distribution of images from the
training data with acceptable quality without experiencing model
collapse. The U-NET CNN model is able to predict the cor-
responding temperature field with an MAE of 1.140K with a
22,500x speed up compared to the simulation model. Combining
the generator from the GAN and CNN form the combined model
and optimization is preformed on the latent space representation
of the designs with an average improvement of fourteen degrees
over 64 non-optimized designs. The combined model is able to
produce designs that out-preformed the training data. The best
design had an average temperature of 310.73 K, 1.83 K better
than any of the designs in the training data.

In future work, the combined model could be applied to a
higher resolution images 512 x 512, or even 3D designs by chang-
ing the layers in the GAN and CNN. Finally, this combined model
could be applied to a different set of fluid or engineering related
problems.

ACKNOWLEDGMENTS

The authors want to acknowledge the support from NSF
grants #1941206 and #2219931.

Copyright © 2023 by ASME

G20z ¥snbny |0 uo Jasn uosipepy uisuodsip JO Aissaaun Aq Jpd 62191 L-€202019P-€20BE0IBE0N LY0190.L/€Z0VE0LYEON L OEL8/€202TID-0 LAAI/Pd-sBuIpeso0id/310-0 L3AI/B10"swsE uonos|joojepBipawse//:djy wol papeojumoq

REPRODUCIBILITY

Code can be found at https://github.com/FlynnDesigns/Research

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Zhang, Ruochun and Qian, Xiaoping. ‘“Parameter-free
Shape Optimization of Heat Sinks.” 2020 19th IEEE In-
tersociety Conference on Thermal and Thermomechanical
Phenomena in Electronic Systems (ITherm): pp. 756-765.
2020. DOI 10.1109/1Therm45881.2020.9190501.

Sun, Sicheng, Liebersbach, Piotr and Qian, Xi-
aoping. “3D topology optimization of heat
sinks for liquid cooling.” Applied Thermal En-
gineering Vol. 178 (2020): p- 115540. DOI

https://doi.org/10.1016/j.applthermaleng.2020.115540.
URL https://www.sciencedirect.com/science/article/pii/
S1359431120330222.

Jiang, Ping, Zhou, Qi and Shao, Xinyu. Surrogate model-
based engineering design and optimization. Springer
(2020).

Shi, Haoning, Ma, Ting, Chu, Wenxiao and Wang,
Qiuwang. “Optimization of inlet part of a microchan-
nel ceramic heat exchanger using surrogate model
coupled with genetic algorithm.” Energy Conver-
sion and Management Vol. 149 (2017): pp. 988-996.
DOI https://doi.org/10.1016/j.enconman.2017.04.035.
URL https://www.sciencedirect.com/science/article/pii/
S019689041730345X.

Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville, Aaron
and Bengio, Yoshua. “Generative Adversarial Networks.”
(2014). DOI 10.48550/ARXIV.1406.2661. URL https://
arxiv.org/abs/1406.2661.

Behzadi, Mohammad Mahdi and Ilies, Horea T. “GANTL.:
Toward Practical and Real-Time Topology Optimization
With Conditional Generative Adversarial Networks and
Transfer Learning.” Journal of Mechanical Design
Vol. 144 No. 2 (2021). DOI 10.1115/1.4052757. URL
https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/144/2/021711/6806350/md_144_2_021711.
pdf, URL https://doi.org/10.1115/1.4052757. 021711.

Oh, Sangeun, Jung, Yongsu, Kim, Seongsin, Lee,
Ikjin and Kang, Namwoo. “Deep Generative Design:
Integration of Topology Optimization and Genera-
tive Models.” Journal of Mechanical Design Vol.
141 No. 11 (2019). DOI 10.1115/1.4044229. URL
https://asmedigitalcollection.asme.org/mechanicaldesign/
article-pdf/141/11/111405/6578473/md_141_11_111405.
pdf, URL https://doi.org/10.1115/1.4044229. 111405.
Wang, Yuyang, Shimada, Kenji and Farimani, Amir Barati.
“Airfoil GAN: Encoding and Synthesizing Airfoils
forAerodynamic-aware Shape Optimization.” (2021). DOI

(9]

[10]

[11]

[12]
[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

10.48550/ARXIV.2101.04757. URL https://arxiv.org/abs/
2101.04757.

Tan, Ren Kai, Zhang, Nevin L. and Ye, Wenjing. “A deep
learning-based method for the design of microstructural ma-
terials.” STRUCTURAL AND MULTIDISCIPLINARY OP-
TIMIZATION Vol. 61 No. 4 (2020): pp. 1417-1438. DOI
10.1007/s00158-019-02424-2.

Gulrajani, Ishaan, Ahmed, Faruk, Arjovsky, Mar-
tin, Dumoulin, Vincent and Courville, Aaron. “Im-
proved Training of Wasserstein GANs.” (2017). DOI

10.48550/ARXIV.1704.00028. URL https://arxiv.org/abs/
1704.00028.

Ronneberger, Olaf, Fischer, Philipp and Brox, Thomas. “U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation.” (2015). DOI 10.48550/ARXIV.1505.04597.
URL https://arxiv.org/abs/1505.04597.
https://github.com/nicoguaro/ellipse_packing.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.
ndimage.binary_fill_holes.html.

“Center for High Throughput Computing (CHTC).” DOI
https://doi.org/10.21231/GNT1-HW21. URL https://chtc.
cs.wisc.edu.
https://hub.docker.com/r/natsumizu/myopenfoam?7.
Lipton, Zachary C. and Tripathi, Subarna. ‘“Precise Re-
covery of Latent Vectors from Generative Adversarial Net-
works.” DOI 10.48550/ARXIV.1702.04782. URL https:
/larxiv.org/abs/1702.04782.
https://github.com/aladdinpersson/
Machine-Learning-Collection.

Barratt, Shane and Sharma, Rishi. “A Note on the Inception
Score.” (2018). DOI 10.48550/ARXIV.1801.01973. URL
https://arxiv.org/abs/1801.01973.

Heusel, Martin, Ramsauer, Hubert, Unterthiner, Thomas,
Nessler, Bernhard and Hochreiter, Sepp. “GANs Trained by
a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium.” (2017)DOI 10.48550/ARXIV.1706.08500.
URL https://arxiv.org/abs/1706.08500.
https://pypi.org/project/pytorch-gan-metrics/.

Chen, Xianqi, Zhao, Xiaoyu, Gong, Zhigiang, Zhang,
Jun, Zhou, Weien, Chen, Xiaogian and Yao, Wen. “A
Deep Neural Network Surrogate Modeling Benchmark
for Temperature Field Prediction of Heat Source Lay-
out.” (2021). DOI 10.48550/ARXIV.2103.11177. URL
https://arxiv.org/abs/2103.11177.

Sun, Jialiang, Zheng, Xiaohu, Yao, Wen, Zhang, Xiaoya,
Zhou, Weien and Chen, Xiaogian. “Heat Source Layout
Optimization Using Automatic Deep Learning Surrogate
and Multimodal Neighborhood Search Algorithm.” (2022).
DOI 10.48550/ARX1V.2205.07812. URL https://arxiv.org/
abs/2205.07812.

Mai, Vien V. and Johansson, Mikael. “Stability and Con-
vergence of Stochastic Gradient Clipping: Beyond Lipschitz
Continuity and Smoothness.” (2021). URL 2102.06489.

Copyright © 2023 by ASME

G20z ¥snbny |0 uo Jasn uosipepy uisuodsip JO Aissaaun Aq Jpd 62191 L-€202019P-€20BE0IBE0N LY0190.L/€Z0VE0LYEON L OEL8/€202TID-0 LAAI/Pd-sBuIpeso0id/310-0 L3AI/B10"swsE uonos|joojepBipawse//:djy wol papeojumoq

https://github.com/FlynnDesigns/Research
https://doi.org/10.1109/ITherm45881.2020.9190501
https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.115540
https://www.sciencedirect.com/science/article/pii/S1359431120330222
https://www.sciencedirect.com/science/article/pii/S1359431120330222
https://doi.org/https://doi.org/10.1016/j.enconman.2017.04.035
https://www.sciencedirect.com/science/article/pii/S019689041730345X
https://www.sciencedirect.com/science/article/pii/S019689041730345X
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1115/1.4052757
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/144/2/021711/6806350/md_144_2_021711.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/144/2/021711/6806350/md_144_2_021711.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/144/2/021711/6806350/md_144_2_021711.pdf
https://doi.org/10.1115/1.4052757
https://doi.org/10.1115/1.4044229
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/11/111405/6578473/md_141_11_111405.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/11/111405/6578473/md_141_11_111405.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/11/111405/6578473/md_141_11_111405.pdf
https://doi.org/10.1115/1.4044229
https://doi.org/10.48550/ARXIV.2101.04757
https://arxiv.org/abs/2101.04757
https://arxiv.org/abs/2101.04757
https://doi.org/10.1007/s00158-019-02424-2
https://doi.org/10.48550/ARXIV.1704.00028
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028
https://doi.org/10.48550/ARXIV.1505.04597
https://arxiv.org/abs/1505.04597
https://github.com/nicoguaro/ellipse_packing
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_fill_holes.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_fill_holes.html
https://doi.org/https://doi.org/10.21231/GNT1-HW21
https://chtc.cs.wisc.edu
https://chtc.cs.wisc.edu
https://hub.docker.com/r/natsumizu/myopenfoam7
https://doi.org/10.48550/ARXIV.1702.04782
https://arxiv.org/abs/1702.04782
https://arxiv.org/abs/1702.04782
https://github.com/aladdinpersson/Machine-Learning-Collection
https://github.com/aladdinpersson/Machine-Learning-Collection
https://doi.org/10.48550/ARXIV.1801.01973
https://arxiv.org/abs/1801.01973
https://doi.org/10.48550/ARXIV.1706.08500
https://arxiv.org/abs/1706.08500
https://pypi.org/project/pytorch-gan-metrics/
https://doi.org/10.48550/ARXIV.2103.11177
https://arxiv.org/abs/2103.11177
https://doi.org/10.48550/ARXIV.2205.07812
https://arxiv.org/abs/2205.07812
https://arxiv.org/abs/2205.07812
2102.06489

	Abstract
	1 Introduction
	2 Design problem
	3 Proposed method
	3.1 Design generation
	3.2 Design simulation
	3.3 Design performance metric and benchmark
	3.4 Scaling simulation runs
	3.5 Design generator
	3.6 Design evaluator
	3.7 Combined Model GAN + CNN

	4 Results
	4.1 GAN
	4.2 U-NET
	4.3 Optimization results

	5 Conclusion
	Acknowledgments
	Reproducibility
	References

