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Abstract Recent theoretical models and field observations suggest that fluvial bedload flux can be
estimated from seismic energy measured within appropriate frequency bands. We present an application of the
Tsai et al. (2012, https://doi.org/10.1029/2011gl050255) bedload seismic model to an ephemeral channel
located in the semi‐arid southwestern US and incorporate modifications to better estimate bedload flux in this
environment. To test the model, we collected streambank seismic signals and directly measured bedload flux
during four flash‐floods. Bedload predictions calculated by inversion from the Tsai model underestimated
bedload flux observations by one‐to‐two orders of magnitude at low stages. However, model predictions were
better for moderate flow depths (>50 cm), where saltation is expected to dominate bedload transport. We
explored three differences between the model assumptions and our field conditions: (a) rolling and sliding
particles have different impact frequencies than saltating particles; (b) the velocity and angle of impact of rolling
particles onto the riverbed differ; and (c) the fine‐grained alluvial character of this and similar riverbeds leads to
inelastic impacts, as opposed to the originally conceptualized elastic impacts onto rigid bedrock. We modified
the original model to assume inelastic bed impacts and to incorporate rolling and sliding by adjusting the
statistical distributions of bedload impact frequency, velocity, and angle. Our modified “multiple‐transport‐
mode bedload seismic model” decreased error relative to observations to less than one order of magnitude across
all measured flow conditions. Further investigations in other environmental settings are required to demonstrate
the robustness and general applicability of the model.

Plain Language Summary The conveyance of sediments in rivers, especially of coarse‐grained
sediment on the riverbed, is a basic geomorphic mechanism influencing short‐term river ecology, management,
and engineering as well as long‐term landscape evolution. To better predict bedload transport rates, researchers
have used seismic sensors to record ground vibration due to the impacts of bedload particles on the riverbed. We
revised a physics‐based model developed by Tsai et al. (2012, https://doi.org/10.1029/2011gl050255) to
estimate bedload sediment transport in an ephemeral channel in the semi‐arid southwestern US. To test the
model, we collected nearby seismic signals during flash floods and simultaneously monitored water depth and
bedload transport at one‐minute intervals. We modified the original model to better represent alluvial rivers by
adding a representation of rolling and sliding particles to the hopping particles already considered in the physics
of seismic waves generated by bedload transport. Our modified “multi‐mode bedload seismic model” yields a
better result compared to the original Tsai et al. (2012, https://doi.org/10.1029/2011gl050255) model in our test
river. The modified model is not only applicable for the ephemeral channels on which this study is focused but
also is potentially applicable to a wide range of river conditions in different environmental settings.

1. Introduction
Bedload transport is a fundamental geomorphic process that plays a crucial role in shaping landscapes, with far‐
reaching implications for other inter‐disciplinary fields such as geomorphology, ecology, hydrology, river en-
gineering, and water resources management. Sediment budgets are necessary in both perennial and ephemeral
channels for a variety of applications, such as irrigation and floodplain engineering, reservoir sedimentation
management, habitat restoration, and flood risk mitigation (Badoux et al., 2014; Garcia, 2008; Schleiss
et al., 2016; Totschnig et al., 2011; Wilcock, 2004). Given this practical demand, many bedload transport models
have been proposed (Ancey, 2020a). However, we are far from having a fully effective and predictive model of
the underlying physics of fluvial bedload transport (Ancey, 2020b), in part due to its stochastic behavior
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(Einstein, 1936; Furbish et al., 2012; Yager et al., 2018). For a long time, hydraulics‐based modeling has been the
primary tool for estimating bedload flux, with various studies presenting empirically derived estimates of average
bedload transport rates under different geomorphic conditions (e.g., Meyer‐Peter & Müller, 1948; Parker, 1990;
Wilcock & Crowe, 2003; Yager et al., 2012). Most of these studies have failed to provide general applicability to a
wide range of river conditions (e.g., roughness, armoring, grain size distribution (GSD)) or their predictive
capability is not better than one order of magnitude (Ancey, 2020b; Schneider et al., 2015). One example of a
complication besetting these efforts is the variable presence of winnowed “bed armor” layers, which may delay
bed mobilization and which are prevalent in perennial rivers but rare in ephemeral channels (Laronne &
Reid, 1993; Venditti et al., 2017).

A potential path around the challenges of hydraulics‐based modeling is the widespread monitoring of bedload
flux. Indirect methods for monitoring bedload transport—for example, hydrophones, pipe and plate microphones,
geophones (e.g., Burtin et al., 2016; Geay et al., 2017; Gray et al., 2010; Rickenmann et al., 2014)—can serve as
an alternative approach to dangerous and temporally limited manual direct sampling (e.g., Bunte & Abt, 2005;
Bunte et al., 2008; Emmet, 1979) and costly continuously sampling installations (e.g., Reid et al., 1995).
Moreover, several pioneering studies have demonstrated the potential of using seismic monitoring methods to
quantify fluvial processes (e.g., Burtin et al., 2008; Farin et al., 2019; Gimbert et al., 2014; Govi et al., 1993; Hsu
et al., 2011; Larose et al., 2015; Schmandt et al., 2013; Tsai et al., 2012) with respect to both theoretical and
experimental aspects. In a benchmark study on fluvial seismology, Tsai et al. (2012) developed a framework to
relate seismic data to bedload transport by modeling seismic energy produced by the impact of individual particles
onto the riverbed and integrating across all grain size classes within the channel. Based upon this framework,
others began relating event‐induced seismic power to a variety of environmental processes based on the physics of
impulsive events. For example, Gimbert et al. (2014) proposed a physical model for seismic noise generated by
turbulence. Others (Farin et al., 2019; Kean et al., 2015; Lai et al., 2018; Yan et al., 2023) developed and improved
models for debris flows, while Gimbert et al. (2019) further advanced the bedload seismic model. Seismic ap-
proaches have recently been used to record the seismic energy generated by bedload transport and turbulent flow
in several regions worldwide (e.g., Bakker et al., 2020; Burtin et al., 2016; Chao et al., 2015; Lagarde et al., 2021;
Polvi et al., 2020), demonstrating that not only acoustic (Antoniazza et al., 2023; Nasr et al., 2022) but also
seismic approaches for monitoring fluvial processes may be deployed in diverse regions to study bedload
transport, river morphology, and landscape evolution.

Seismic noise induced by bedload transport, turbulent flow, and other ambient processes such as wind and rain
generate signals in distinctive frequency bands (e.g., Burtin et al., 2008; Gimbert et al., 2014; Tsai et al., 2012). As
such, a physics‐based model aimed at relating seismic signals to bedload flux may be an effective means to
distinguish and isolate bedload transport from other fluvial processes. The original model for bedload (Tsai
et al., 2012) assumes that the vertical component of the impact of particles on the riverbed dominates energy
transfer. This model was constructed for rivers where the saltating mechanism of transport is assumed to be
dominant under intense flows. Evaluation of this model in an ephemeral gravel‐bed river has resulted in sub-
stantial overestimation of bedload flux (Lagarde et al., 2021). By comparing inverted bedload flux using the Tsai
et al. (2012) model and field observations, Lagarde et al. (2021) explored the role of grain size both in seismic
energy delivery and transport mode and found that large particles dominate energy transfer. Therefore, it is crucial
to have appropriate constraints on the motion of the largest grains when inverting river seismic signals for bedload
flux. To better model seismic noise generated by bedload transport, several subsequent studies assumed oblique
impacts between mobile particles and stationary bed particles (Farin et al., 2019; Gimbert et al., 2019) with
statistical distributions of the deviated plane of the impacts, calculated based on grain size distributions and
assumed rounding. Gimbert et al. (2019) introduced a method to stochastically incorporate a hop time distribution
(inverse of temporal impact frequency) that conceptually encompasses all three transport regimes (rolling,
sliding, and saltating). Based on flume experiment data at the grain scale, the authors presented a wide distribution
of hop times with a higher average impact frequency than predicted by previously existing saltation models (Sklar
& Dietrich, 2004). Farin et al. (2019) developed a theoretical model for seismic signals generated by debris flows,
in which they used the average downstream bedload velocity to characterize the impacts of debris onto a channel
bed comprised of other rounded grains. Their approach of incorporating an irregular bed is also applicable to
alluvial environments.

The Tsai et al. (2012) model was developed assuming a bedrock river environment, which we hereafter refer to as
the “saltation‐mode bedload seismic model.” This model has opened a path for quantitative analysis of bedload
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seismic signals and has been applied in a number of sites since its publication (e.g., Chao et al., 2015; Dietze
et al., 2019; Roth et al., 2016; Schmandt et al., 2013). Yet, recent studies with high‐quality benchmark data have
demonstrated that the model does not fully capture all of the physical processes relevant in alluvial rivers (e.g.,
Bakker et al., 2020; Lagarde et al., 2021; Schmandt et al., 2017). We aim to generalize the model for alluvial
conditions. First, we evaluate the Tsai et al. (2012) model in a sandy gravel‐bed alluvial channel with extensive
field observations. We then developed a modified model, termed “multi‐mode bedload seismic model,” with the
goal of improving the quantification of bedload flux in this ephemeral environment. By combining recent
theoretical advances (Farin et al., 2019; Gimbert et al., 2019; Tsai et al., 2012) and our field observations, we also
aim to provide a sufficiently general model to extend to other environmental settings, such as gravel or boulder
bed rivers.

2. Theoretical Background
The movement of bedload generates seismic noise on the riverbed. This propagates as seismic waves, where the
resulting vibration or displacement can be picked up by a receiver. Bedload transport initiates ground motion that
can be described by a source function (F), typically quantified by a force history. Green's function (G) quantifies
the alterations of seismic waves as they travel along the path from the source to the receiver. A mathematical
expression (Aki & Richards, 2002) describes ground displacement s(t, x) at location x à 〈x, y, z〉 by the
convolution of a source F(t, x0) at location x0 à 〈x0, y0, z0〉 with the Green's function G(t, x, x0):

sÖt, xÜ à FÖt, x0Ü ∗ GÖt, x, x0Ü: Ö1Ü

Using a Fourier transform, the ground velocity _uÖ f , xÜ at location x is expressed in the frequency domain as:

_uÖ f, xÜ à 2πif FÖf, x0ÜGÖf, x, x0Ü, Ö2Ü

where F(f, x0) is Fourier's transform of F(t, x0) and G( f, x, x0) is Fourier's transform of G(t, x, x0), t denotes the
time domain, f denotes the frequency domain, and i is an imaginary unit. One can arrive at an equation expressing
the power spectral density (PSD) of the ground velocity _uÖ f , xÜ in the frequency domain by employing the force
history F( f, x0) to characterize the bedload impact onto riverbed, and the Green's function G( f, x, x0) to describe
seismic waves traveling through the ground.

Based on the physics of bedload transport, contact mechanics, and the theory of seismic waves traveling through
the subsurface, Tsai et al. (2012) developed a mathematical relationship between the seismic signals generated by
bedload transport and its flux. This allows for the estimation of bedload flux based on the seismic energy recorded
by a seismometer located outside of a river. They assumed (a) Hertzian impacts (Hertz, 1882) for contacts be-
tween particles and the riverbed, (b) that particles that impact vertically and elastically on the riverbed mainly
generate Rayleigh waves, (c) negligible rolling and sliding particles, (d) an infinitely long straight source of
impacts, (e) impacts occur randomly in time, and (f) the impact rate is directly related to bedload flux (Lamb
et al., 2008; Sklar & Dietrich, 2004). Hertzian impacts are characterized by contact times that are much shorter
than the recording frequency. They are typically represented by a Dirac delta function, the Fourier transform of
which is equal to one. This implies that the power spectra of Hertzian impacts encompass all frequencies.
Rayleigh waves, one of the commonly observed seismic surface waves, exhibit an elliptical trajectory similar to
ocean waves, thereby inducing both vertical and horizontal ground motion in the travel direction. This is in
contrast to Love waves, which exhibit only horizontal motion transverse to the travel direction. Rayleigh waves
are widely regarded as the predominant surface waves produced by bedload transport (Dammeier et al., 2011;
Sánchez‐Sesma et al., 2011). The seismic energy (Pv) generated per unit grain size class (D) based on Tsai
et al. (2012) is expressed as

PvÖ f, DÜ à C1WqbDws
VpUbHb|ÇÇ{zÇÇ}

ÖIÜ

· π2f 3m2wi
2

ρs
2v3

c v2
u|Ç{zÇ}

ÖIIÜ

· χÖβÜ|{z}
ÖIIIÜ

: Ö3Ü

The parameters in Equation 3 have been named as in the original development of the Tsai et al. (2012) model and
are listed in Table 1. Here, the Tsai et al. (2012) model can be interpreted as a product of three components labeled
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in Equation 3: (I) a bedload impact frequency model that represents how bedload is transported by fluid flow and
impacts the riverbed, (II) a seismic model that represents how seismic waves uniformly generated by bedload
along the channel travel through the ground layers and are integrated at the receiver (seismometers), and (III) an
attenuation model that represents how seismic wave amplitudes decay temporally and spatially.

3. Methods
3.1. Study Site Overview
The Arroyo de Los Pinos (ADLP), a direct tributary of the middle Rio Grande in New Mexico, USA, hosts a
variety of instruments to monitor sediment and water flow during the summer monsoon season. Three Reid‐type
slot samplers (Reid et al., 1980) were placed in the arroyo bed for direct bedload monitoring in 2018, in
conjunction with pressure transducers that record water depth and pipe microphones embedded in the channel
upstream of the samplers that record bedload impacts (Halfi et al., 2020; Mizuyama et al., 2010; Stark
et al., 2021). A broadband seismic station was installed in 2017 on the channel bank, and additional seismic nodes
were installed during 2019–2022 (Bilek, McLaughlin, Cadol, Laronne, Stark, et al., 2023). The channel has an
anastomosing morphology as it crosses the Pliocene and Pleistocene ancestral Rio Grande floodplain and alluvial
fan deposits in the lower watershed (Stark et al., 2021). Near the confluence with the Rio Grande, where the
morphology is constrained to a single channel by levees, the channel consists of a sand‐and‐gravel thalweg and
somewhat coarser bars. The spatially averaged bed material consists of approximately 30% sand (D < 2 mm), 55%
granules (2 < D < 8 mm), 10% medium‐to‐coarse gravel (8 < D < 64 mm), and 5% cobbles (D > 64 mm). For
details of the sediment flux monitoring methods and grain size analysis, refer to Stark et al. (2021).

3.2. Seismic Data: PSD Calculation and Relevant Frequency Ranges
We used seismic data collected from a long‐term broadband seismometer located ⇠20 m from the sediment
samplers to compute the PSD during flood periods for comparison with the theoretical model PSD calculations.
As an example, seismic data and a hydrograph from a flood (2021‐07‐05; year‐month‐day) demonstrate the
increase in seismic power associated with the arrival of the flood over a range of frequencies (Figure 1). We
computed the PSD of the vertical component of the seismic signals collected during floods by first removing the
instrument response and then using Welch's method (Welch, 1967) with a window length of 214 and a 50%
window overlap. Median PSD was computed over 1‐min windows; this is the PSD used for model comparison.

Seismic noise can arise from numerous sources besides bedload movement, including water flow, wind, or in-
teractions between floodwater and vegetation (e.g., Gimbert et al., 2014; Schmandt et al., 2017). At the ADLP, we
have previously studied and characterized various noise sources, from anthropogenic noise to concurrent fluvial

Table 1
Parameters Used by Tsai et al. (2012) for Calculating Power Spectral Density From Bedload Flux

Model component Parameters Unit Description of parameters Source
Bedload impact frequency model qbD m2/s Volumetric bedload flux Dependent variable

C1 – Constant, account for rise and fall time Theory
W m Average channel‐bed width Field data
ŵs m/s Depth‐average particle settling velocity Empirical
Vp m3 Particle volume Field data
Ub m/s Vertically averaged streamwise bedload velocity Empirical
Hb m Bedload layer height Empirical

Seismic model f Hz Frequency Seismic data
m kg Particle mass Field data
wi m/s Particle speed Empirical
ρs kg/m3 Particle density Field data
vc m/s Rayleigh‐wave phase velocity Field data
vu m/s Rayleigh‐wave group velocity Field data

Attenuation model χ(β) – Attenuation of seismic waves Seismic data
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and meteorological processes, such as turbulence, hydraulic jumps, rainfall, and thunder (McLaughlin
et al., 2023). Frequency response is fundamentally dependent on attenuation, which is based on the distance
between the river and seismic station, and which affects higher frequencies more than lower frequencies. At our
field site, we comprehensively analyzed the frequency response to determine the optimum frequency bands
generated by bedload transport (McLaughlin et al., 2023). Based on that site‐specific analysis and previous
studies that suggest that bedload transport‐related seismic signals are typically observed at frequencies >15 Hz,
particularly when the river‐station distance is small (Roth et al., 2016; Schmandt et al., 2013, 2017), we focused
on a 30–80 Hz frequency range for our tests of seismic‐bedload models. This range of frequencies incorporates
most of the range expected for bedload transport and excludes most frequencies that may be significantly
influenced by confounding sources of seismic noise, such as seismic noise in the 1–10 Hz range that are from the
interstate highway or railroad across the valley from the monitoring station or noise below 30 Hz that is from a
nearby hydraulic jump (McLaughlin, 2022). This interpretation is consistent with theoretical predictions of
seismic frequencies generated by bedload (Tsai et al., 2012) and turbulence (Gimbert et al., 2014) for our field site
(Figure 1b). For a GSD and flow depth typical of the site, predicted bedload PSD begins to exceed turbulence PSD
at ⇠30 Hz.

We also observed that rainfall noise occurs in a broad window of frequency (e.g., 1–400 Hz) at 6 out of the 21 flow
events from 2018 to 2023. At our field site, we have installed a rain gauge near the seismic sensor and have
analyzed rainfall radar data for each event. McLaughlin (2022) compared the rainfall intensity with seismic PSD
in different frequency bands and concluded that rainfall noise affects all recorded frequencies and thus needs to be
carefully considered when analyzing seismic data for the purpose of bedload monitoring. However, the 30–80 Hz
frequency band is not excessively influenced by rainfall and is therefore reasonable for this study.

3.3. Modification of the Physics‐Based Model
To adapt the saltation‐mode bedload seismic model (Tsai et al., 2012) to an alluvial setting, modifications can be
applied to several of its components: impact frequency, impact angles on bed particles, and impact elasticity.
Force due to particle impacts is assumed to be proportional to the particle terminal fall speed in the Tsai
et al. (2012) model, whereas in the multi‐mode bedload seismic model, we assume that force is proportional to
downstream bedload speed. We assume inelastic impacts and account for oblique impact angles on the bed
particles by integrating various angles, as described by Farin et al. (2019). We first begin by reviewing a key
assumption in Tsai et al. (2012) model.

If impacts are assumed to be random in time, the PSD Pv(D, f ) for a unit grain size D of the ground velocity time
series _uÖt,xÜ measured at a seismic station has the same spectral shape as the square of an individual impact
transformed to the frequency domain, _uÖ f , xÜ , and an amplitude proportional to the number of impacts (Tsai

Figure 1. (a) Hydrograph (bottom) and spectrogram (top) for flood on the Arroyo de los Pinos starting at 22:00 on 2021‐07‐
05, local time (4:00 on 2022‐07‐06, UTC time). (b) Power spectral density (PSD) based on the theoretical models of Tsai
et al. (2012) for bedload transport and Gimbert et al. (2014) for turbulence. We used a 20 m source‐receiver distance,
hydrologic parameters measured at the monitoring station, and the grain size distribution of bedload trapped during this flood
to produce the PSD curves.
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et al., 2012). Therefore, we can relate the PSD per unit grain size in the frequency domain to bedload flux and
impact characteristics:

PvÖ f ,DÜ àZ
R
RD

impactj _uÖ f ,xÜj2dx, Ö4Ü

where R is the length of the river, and RD
impact is the total rate of impacts for grain size class D in a unit length of

river, with RD
impact à nD= tD, where nD is the number of impacting particles of grain size D per unit length of river,

and tD is the characteristic timescale between impacts for grain size D (Tsai et al., 2012). We keep this funda-
mental assumption.

Lamb et al. (2008) previously noted that

RD
impact à

nD
tD

à qbDW
Vps , Ö5Ü

where qbD is the volumetric sediment flux per unit width per unit grain size D, W is river width, Vp is particle
volume, and s is the characteristic length scale between impacts.

A particle transported as bedload can experience three modes of transport: rolling, hopping, and sliding depending
on hydraulic and river conditions (Gilbert, 1914). Tsai et al. (2012) focused on saltating particles. Instead, we use
a probability distribution that represents the likelihood that a particle undergoes different transport modes. This
could be conveniently done by relating the distribution of particle hop times to their transport mode. A shorter hop
time indicates that particles are likely in a rolling or possibly sliding mode, with the time representing a period of
time between impacts with bed protrusions rather than a true hop time, whereas a longer hop time indicates that
particles are likely in a saltating mode. Small hop times can also occur due to multiple saltation impacts and
ricochets, such as additional rebounds off nearby surfaces that occur after the initial bounce of a grain on the
riverbed (Gimbert et al., 2019). Gimbert et al. (2019) included the probability density function of hop times
between impacts in the Tsai et al. (2012) model. Their approach is described by

PTÖ f ,xÜ àZ
D
Z

R
Z

t
pt ÖtDÜ

nD
tD
j _uÖ f ,xÜj2dtDdxdD: Ö6Ü

We can identify s with the hop length of saltating particles. Similarly, for a rolling particle, we can define s as the
distance of rolling or sliding between distinct impacts onto bed elements such as grains or pockets. Rewriting
Equation 5, we can solve for nD as

nD à qbDW
Vp

s
tD

à qbDW
VpUb

à pÖDÜ qbW
VpUb

, Ö7Ü

where Ub is the average stream‐wise speed of bedload in all transport modes, and p(D) is the GSD function. To
quantify the characteristic length between impacts, we used the product of bedload velocity and hop time
(s à UbtD). The characteristic length scale (s) varies based on the hop times and bedload velocity to represent
different transport mechanisms (e.g., high values of s can be interpreted as saltation, low values of s can be
interpreted as rolling or sliding). The uncertainty in this equation is amplified bidirectionally by both bedload
velocity and hop time distribution. We estimated bedload velocity using empirical equations to be introduced
later, while the hop time distribution is based on flume data from Gimbert et al. (2019).

Tsai et al. (2012) assumed impacts on a plane bed, but the average impact of particles onto a riverbed consisting of
rounded grains can be estimated by using a coefficient fj and averaged downstream bedload velocity Ub (Farin
et al., 2019). This is given by

FjÖ f Ü à Ö1 á γÜmUb fj, Ö8Ü
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where γ is a restitution coefficient equal to 0 for fully inelastic impacts and 1 for fully elastic impacts and m is the
particle mass. fj is a dimensionless speed ratio that accounts for the impulse directed in the normal direction
relative to the impact plane between the mobile particle and the stationary riverbed particles.

Following previous authors (Aki & Richards, 2002; Farin et al., 2019; Gimbert et al., 2014; Tsai et al., 2012), we
assume a horizontally homogenous medium and Rayleigh waves that decay with depth, enabling approximation
of the displacement Green's function as a one‐dimensional surface‐wave propagation:

Gjz Öf ,x; x0Ü ≈ Njz
k

8ρsvcvu

ÅÅÅÅÅÅÅ
2

πkr

r
e�

πf r
ÖvuQÜ, Ö9Ü

where vc is the Rayleigh‐wave phase velocity, vu is group velocity, k is angular wave number, r is source‐to‐
receiver distance, Q is seismic quality factor (inverse of attenuation), and Njz are dimensionless numbers
describing the relative amplitude of the x‐, y‐, and z‐dimensional components of ground motion (Tsai & Ati-
ganyanun, 2014). Because we both model and analyze only vertical ground motion, we neglect the influence of
Love waves.

The ground velocity in the frequency domain can then be expressed by substituting Equations 8 and 9 into
Equation 2 as follows:

_uÖ f ,xÜ à 2πifX
j
Ö1 á γÜmUb fiNjz

k
8ρsvcvu

ÅÅÅÅÅÅÅ
2

πkr

r
e�πf r=ÖvuQÜ , Ö10Ü

where j stands for the force components in the x, y, and z directions.

Finally, substituting Equations 5 and 10 into Equation 4, we obtain a full parametric expression of the total PSD
generated by particles impacting the riverbed:

PTÖ f ,xÜ àZ
D
Z

R
Z

t
pt ÖtDÜ

pÖDÜ qbW
VpUbtD

����� 2πifX
j
Ö1 á γÜmUb fjNjz

k
8ρsvcvu

ÅÅÅÅÅÅÅ
2

πkr

r
e�

πf r
ÖvuQÜ

�����2dtDxdD: Ö11Ü

Equation 11 can be simplified using the following three assumptions: (a) the river is infinitely long and straight,
(b) the approximated attenuation model χ(β) of Tsai et al. (2012) can be used, and (c) we focus on the vertical
component of seismic energy generated by bedload (the N11 term). Note that in Equation 12, we used fz to reduce
the seismic power into a single average value according to oblique impact geometry and directions of impact
(Farin et al., 2019). This yields:

PTÖ f ,xÜ àZ
D
Z

t
pt ÖtDÜ · pÖDÜ qbW

VpUbtD
·
�� N11Ö1 á γÜUb fz

��2 · π2f 3m2

4ρs
2v3

c v2
u

· χÖβÜ dtDdD: Ö12Ü

These modifications are relevant to both the originally conceptualized bedrock setting, as well as our application
to an alluvial setting. Because the new model (Equation 12) conceptually incorporates impacts from rolling,
sliding, as well as saltating particles, we call it the “multiple‐transport‐mode bedload seismic model” to indicate
that it may encompass all three modes of transport, and we use the term “multi‐mode model” for short. Similarly,
we refer to the original Tsai model as the “saltation‐mode bedload seismic model” or simply “saltation‐mode
model.” Although identifying the Tsai et al. (2012) model as the saltation‐mode model might be construed to
mean that it is most appropriate for saltation‐only situations, this is not necessarily the case. The Gimbert
et al. (2019) observations of complex and ricocheting hop impacts suggest that hop‐time‐based models, such as
our multi‐mode model, offer advantages even in cases where saltation is the only transport mode. But we selected
the names based on the processes that are being conceptually incorporated into each model. To explore the
relative performance of each approach, we tested the sensitivity of both models to variation in depth, grain size,
hop time, and bedload velocity while keeping other model parameters constant.

Journal of Geophysical Research: Earth Surface 10.1029/2024JF007761

LUONG ET AL. 7 of 20

 21699011, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JF007761 by N

ew
 M

exico Institute O
f M

ining A
nd Technology, W

iley O
nline Library on [18/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



3.4. Estimation of Average Bedload Velocity
The most uncertain parameters in the multi‐mode model are (a) the characteristic time distribution (hop time or
rolling time between impacts) and (b) stream‐wise bedload velocity. To estimate the total PSD from Equation 12,
one needs explicit distributions for the hop time and grain size. To allow general hop time and grain size dis-
tributions, we developed a script to compute total PSD numerically rather than analytically. We used a truncated
lognormal distribution fitted to flume data from Gimbert et al. (2019) to obtain a hop time distribution and applied
it to all grain sizes. We truncated the curve fit because of the limited range of results reported by Gimbert
et al. (2019). In the final form, PT( f,x) scales linearly with stream‐wise bedload velocity Ub. Thus, a valid
constraint of this velocity is essential. Chatanantavet et al. (2013) presented a linear scaling relation of average
stream‐wise bedload velocity to average downstream water velocity, while others expressed the depth average
stream‐wise bedload velocity in terms of hydraulic variables (Gimbert et al., 2019; Julien & Bounvilay, 2013;
Sklar & Dietrich, 2004). Yet another approach to constrain the average stream‐wise bedload velocity is to es-
timate the average downstream velocity at certain depths using a logarithmic velocity profile (Bathurst, 1978;
Keulegan, 1938; Von Kármán, 1931) and surface velocity observations. For comparison, we present several
equations to estimate average bedload velocity. First, we use the relationship fitted by Sklar and Dietrich (2004) to
a data compilation:

Ub à 1:56
ÅÅÅÅÅÅÅÅÅ
RgD

p ✓ τ∗
τc∗

� 1◆0:56
: Ö13Ü

Next, an empirical equation from Julien and Bounvilay (2013) estimates the stream‐wise rolling bedload velocity
using flume experiments for 1 < D < 30 mm bedload:

Ub à 30:5
ÅÅÅÅÅÅÅÅÅ
RgD

p
τ∗✓D

ks
◆0:583

: Ö14Ü

Additionally, according to Gimbert et al. (2019), the relationship for average downstream cobble velocity is
expressed by

Ub à 1:19
ÅÅÅÅÅÅÅÅÅ
RgD

p ✓ τ∗
τc∗

� 1◆0:3
: Ö15Ü

In the three equations, R, the submerged specific gravity, is equal to ρs /ρf –1, where ρs (≈2,700 kg/m3) and ρf
(≈1,000 kg/m3) are solid and fluid densities, respectively; g (≈9.81 m/s2) is gravitational acceleration; τ* is the
Shield parameter and is calculated as τ∗ à u 2

∗ =RgD; u* is near‐bed shear velocity calculated as u∗ à
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gH sin θ

p
; θ

is the channel slope angle; τc* is the critical Shields parameter and is a function of water depth, grain size and
channel slope (Lamb et al., 2008; Parker, 1990); and ks is bed roughness, which we estimated to be three times the
median grain size (Kamphuis, 1974). We did not directly monitor bedload velocity in the field. However, we
deployed an electromagnetic current velocity meter 15 cm above the bed during one flow event. This instrument
can provide an upper limit on bedload velocity. Based on this limit, we used Sklar and Dietrich (2004) and Julien
and Bounvilay (2013) for estimating bedload velocity.

3.5. Inversion Scheme
We followed the inversion scheme of Lagarde et al. (2021) to invert bedload flux from seismic data. Assuming
that the model adequately describes the physics of seismic signals generated by bedload transport, Lagarde
et al. (2021) calculated PSD* using the Tsai model with the bedload flux term (qb) factored out. In our application,
the following equations were used to obtain the inverted bedload fluxes:

PSD∗ àZ
D
Z

t
pt ÖtDÜ · pÖDÜW

VpUbtD
·
�� N11Ö1 á γÜUb fj

��2 · π2f 3m2

4ρs
2v3

c v2
u

· χÖβÜ dtDdD: Ö16Ü
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If the model accurately quantifies the physics of sediment transport, the PSD observed by the seismometer
(PSDobserved) should equal the computed seismic PSD, PT, equivalent to qb(PSD*). Therefore, bedload flux can be
calculated as the ratio between the observed seismic PSD and PSD*:

qb à
PSDobserved

PSD∗ : Ö17Ü

4. Results
4.1. The Saltation‐Mode Model Results
In applying the saltation‐mode model (Tsai et al., 2012), the predicted PSD is highly sensitive to elastic pa-
rameters, including rock density and the phase and group velocities of Rayleigh waves. For our gravel‐bed al-
luvial channel, we conducted active source surveys at the site to determine a group velocity of ⇠250 m/s and a
phase velocity of ⇠200 m/s at a reference frequency of 1 Hz (Bilek, McLaughlin, Cadol, Laronne, &
Luong, 2023), following the calculation procedures of Lagarde et al. (2021). These are much slower than group
and phase velocities reported for bedrock settings (Tsai et al., 2012), and are similar to the Bakker et al. (2020)
results. Thus, the unconsolidated alluvium within and around the channel considerably reduces the observed
seismic energy when compared to that for bedrock. We also used these surveys to estimate the seismic quality
factor. The quality factor Q does vary slightly between 16 and 26 in the frequency range of 30–80 Hz, but for
simplicity, we use Q ⇠ 20 for our model as that is a reasonable estimate based on our site data and consistent with
many other similar studies (Bakker et al., 2020; Bilek, McLaughlin, Cadol, Laronne, & Luong, 2023; Tsai
et al., 2012).

The PSD predicted by the saltation‐mode model strongly depends on the grain size diameter D; PSD is
approximately proportional to D3 (Farin et al., 2019; Tsai et al., 2012). Therefore, constraining the GSD is also
essential to obtain an accurate inversion of bedload flux (Lagarde et al., 2021). To determine the GSD of our data
set derived from a flow event on 05 July 2021, we visually fitted a log‐transformed raised‐cosine distribution
(Tsai et al., 2012) to the active bedload grain size data of more than 10 sieved bedload samples collected in the
Reid‐type slot samplers during this event. The samples that were trapped during the event gave the most accurate
representation of bedload in motion. The cumulative distribution function (cdf) was manually matched to the field
GSD data, and the probability density function (pdf) was derived from the cdf (Figure 2a). Given the dispro-
portionate influence of large grains (Lagarde et al., 2021; Turowski et al., 2015), we prioritized matching the cdf
with the largest grain sizes in the manual selection of log‐raised‐cosine parameters. The median grain size of the
bed material (not necessarily bedload in transport) at the station is approximately 5 mm. In the 05 July 2021 flow
event, the median transported bedload grain size was ⇠10 mm, approximately 10% of the sediment was sand
(<2 mm), 80% was gravel (2–64 mm), and 10% was cobbles (64–256 mm). Using the log‐raised‐cosine GSD fit
(Figure 2a), we inverted the bedload fluxes for the event using Equation 17 (Figure 2b). The inverted bedload
fluxes are approximately one to two orders of magnitude smaller than our field measurements at low flow stages,
but they begin to converge at the highest measured fluxes just before the sampling boxes fill (Figure 2b). The
comparisons are only possible through the first ⇠20 min of the flood because of the limited sampler capacity. The
model yields bedload fluxes of about 20 kg m�1 s�1 at peak discharge, which is only slightly higher than any
width‐averaged flux rates measured hitherto at the station (Stark et al., 2021).

4.2. Sensitivity of the Saltation‐Mode and Multi‐Mode Models
WeestimatedN11 tobe⇠0.352andquality factorQ⇠20(Bilek,McLaughlin,Cadol,Laronne,&Luong,2023)based
on active source studies at the site, following the procedure from Lagarde et al. (2021), and used fzà0.539 according
to Farin et al. (2019) for estimating the average amount of seismic energy transferred to vertical ground motion from
the oblique impacts. We calculated the PSD for both the multi‐mode and saltation‐mode models, in each case
independently varying the values of D, H, tD and Ub, and leaving all other parameters constant (Figure 3). In each
PSD calculation, we used the same parameter values as Tsai et al. (2012), where sediment flux qbà 10�3 m2/s, river
slope θ à 1.4°, W à 50 m, source‐receiver distance r0 à 600 m, phase velocity vc à 1,295 m/s, and group velocity
vu à 945 m/s. As expected, the total PSD varied considerably depending on the choice of grain size diameters. Our
sensitivity analysis shows that modeled PSD varies from a few factors by water depth or to ⇠1 to 2 orders of
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magnitude by hydraulic and sediment parameters (e.g., grain size, hop time, bedload velocity) as well as by seismic
parameters, such as group velocity, and phase velocity.

We also compared the PSD from the multi‐mode model with the saltation‐mode model (Tsai et al., 2012) at
conditions closer to those found at our field station. We used a phase velocity vc ⇠ 250 m/s, and group velocity vu
⇠ 200 m/s at 1 Hz (Bilek, McLaughlin, Cadol, Laronne, & Luong, 2023). We calculated the PSD for four different
stages of flow depth (0.3, 0.7, 1.2, and 2.0 m) in combination with four grain sizes (Figure 4). At low stages
(<0.3 m) and for the same combination of parameters, the PSD generated by the multi‐mode model is slightly
larger than that generated by the saltation‐mode model for D à 3 mm and is slightly smaller for D ≥ 5 mm. From

Figure 3. Sensitivity of the saltation‐mode model (solid lines, Tsai et al., 2012) and multi‐mode model (dashed lines) to
variation in grain size D, flow depth H, hop time tD, and average stream‐wise bedload velocity Ub. We used a 600 m source‐
receiver distance for more direct comparison with the test case in Tsai et al. (2012). (a) Modeled power spectral density
(PSD) according to varied grain size at a flow depth of 2 m. The saltation‐mode model is shown with solid lines and the multi‐
mode model with dashed lines in all four plots. (b) Modeled PSD according to varied flow depth at grain size of 0.05 m.
(c) Modeled PSD according to varied hop time with grain size of 0.1 m (same velocity for both models). (d) Modeled PSD
according to varied bedload velocity with grain size of 0.1 m (same hop time for both models). Note that we used decibel
units (dB), effectively creating a base 10 logarithmic scale. Solid lines are from the Tsai el al. (2012) model, and dashed lines
are from this study.

Figure 2. Results from applying the saltation‐mode model (Tsai et al., 2012) to the 2021‐07‐05 flood. (a) Grain size
distribution of bedload. (b) Time series of inverted and observed bedload flux. Note that observations ceased when the
samplers filled.
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medium to high flow depths (H ≥ 0.7 m), the PSD generated by the multi‐mode model is considerably larger than
that generated by the saltation‐mode model, especially for larger grains (D à 10 mm).

The discrepancy between the two models (Figures 3a and 4a) is mainly due to the different empirical equations
used to estimate the rate and force of impacts. In the multi‐mode model, the impact rate is determined by the
bedload velocity and hop time, whereas in the saltation‐mode model, it is determined by the terminal settling
velocity and the bedload layer thickness. The impact force is determined by downstream bedload velocity in the
multi‐mode model, but terminal settling velocity in the saltation‐mode model. In this comparison, we employed
identical parameters (e.g., a flow depth of 2 m in Figure 3a or 0.3 m in Figure 4a) and chose a fixed hop time of
0.15 s in the multi‐mode model. Depending on the hop time value, the multi‐mode model can yield higher or
smaller PSD compared to the saltation‐mode model at certain grain size classes. For example, with a grain size of
0.05 m at a water depth of 2 m, PSD generated by the multi‐mode model is higher than that generated by the
saltation‐mode model. However, as grain sizes increase, the saltation‐mode model yields higher PSD than the
multi‐mode model; particularly, at D ⇠0.1 m (Figure 3a) or D ⇠0.005 m (Figure 4a) the trend switches from
higher PSD for the multi‐mode model to the saltation‐mode model.

Based on the comparison of both models at our field site (Figure 4), we calculated the ratio of PSD between the
multi‐mode and saltation‐mode models for different grain sizes (Figure 5). At high water depths (e.g., >0.7 m),
the multi‐mode model produces greater seismic power than the saltation‐mode model for small grain sizes
because the hop time is fixed at 0.15 s for all conditions in the multi‐mode model, and greater depths produce
higher bedload velocity leading to higher impact frequency and force. However, for the saltation‐mode model,
impact frequency and force are controlled by fall velocity, which is small for small grains. For sizes approaching
200 mm, the saltation‐mode model produces greater PSD than that of the multi‐mode model, as a result of higher
impacting forces per impact. The tradeoff between more impacts in the multi‐mode model versus greater energy
per impact in the saltation‐mode model begins to favor the saltation‐mode model for larger grain sizes. At low
water depth (e.g., <0.3 m), the multi‐mode model produces less seismic power than the saltation‐mode model
even for small grains because the shear stress and bedload velocity decrease, resulting in lower calculated bedload
impact velocity while fall velocity remains relatively constant as depth decreases. Thus, there is a transition or a
crossover in Figure 5 from the multi‐mode PSD being greater to the saltation‐mode PSD being greater. As water
depths decrease, the ratio PSDmulti‐mode model/PSDsaltation‐mode model also decreases. For small grains (<4 mm), the

Figure 4. Comparison of power spectral density between the saltation‐mode model (Tsai et al., 2012) and multi‐mode model.
For this comparison, we used a 20 m source‐receiver distance, which is less than the value used in Figure 3 and is
representative of our field station. For all plots, we considered grain sizes in the range 3–10 mm, the dominant grain sizes at
our field station. (a) Flow depth of 0.3 m; (b) flow depth of 0.7 m; (c) flow depth of 1.2 m; (d) flow depth of 2.0 m. In all
comparisons we used a fixed 0.15 s hop time. The saltation‐mode model is shown with solid lines and the multi‐mode model
with dashed lines in all four plots.
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multi‐mode model produced more seismic power at all tested depths down to
0.3 m. Both models have the same peak frequencies (Figures 3 and 4) for the
same seismic parameters (e.g., group and phase velocities, quality factor).

At our field site, we also monitored flow velocity using an electromagnetic
current meter (ECM) and obtained a velocity of ⇠2.5 m/s at 15 cm above the
bed during a 40‐cm‐deep flow event. Our estimation of Ub ⇠ 2 m/s at 40 cm
flow depth from the empirical equations is consistent with the upper
constraint provided by the ECM data (Figure 6). For sand and small‐gravel
grain sizes, and from low stage up to a depth of 40 cm, the Julien and
Bounvilay (2013) equation yields similar results to that of Sklar and Die-
trich (2004). From medium to high water depths, the results of the Julien and
Bounvilay equation substantially exceed those of the Gimbert et al. (2019)
and the Sklar and Dietrich equations due to the unbounded limit of the
expression (Figure 6). Hence, we used the Julien and Bounvilay (2013)
equation for small flow depths (<0.4 m), where it was trained, and the Sklar
and Dietrich (2004) equation for higher flow depths (>0.4 m).

4.3. Results From the Multi‐Mode Model
We used a truncated lognormal distribution to represent the distribution of
bedload hop times because it had a better visual fit to the hop‐time curve

derived from the data of Gimbert et al. (2019) than uniform, normal, truncated normal, or untruncated lognormal
distributions. The long tail toward the right can capture the observed distribution that includes some long hops,
but with a majority being relatively short (Figure 7). In the flume data from Gimbert et al. (2019), the hop times
fall in the range of 0.03–0.50 s for pebbles and cobbles; these are an order of magnitude shorter than the empirical
saltation equations used in Tsai et al. (2012). To estimate average stream‐wise bedload velocity, we employed the
equation proposed by Julien and Bounvilay (2013) for low and medium stages (H < 40 cm) when our bedload size
was consistent with their training data, and for higher stages (40 cm < H), we used the Sklar and Dietrich (2004)
equation. Inverted bedload fluxes from the multi‐mode model were consistently smaller than the observations for
the entire flood, but within a factor of two (Figure 7b).

4.4. Comparison Between the Two Models With Additional Field Data
We also applied the inversion method (Equation 17) to seismic data from
three additional flow events with strongly differing hydrographs to obtain
bedload flux estimates (Figure 8). At low water depths (⇠20–30 cm), the
inverted bedload flux based on the saltation‐mode model (blue points in
Figure 8) overestimated the extent of seismic noise generated by bedload
movement, hence underestimating the bedload flux compared with field
observations (blue points in Figure 8). The multi‐mode model also under-
estimated bedload flux relative to the observations for one flood (Figures 7b
and 8b) but improved upon the Tsai et al. (2012) model, especially at low
discharges when saltation is least likely (Figure 8). Mean relative error
decreased from approximately 90%–74% using the multi‐mode model. At
high flows, for which we have no observational bedload flux data, the two
models switched, and the saltation‐mode model produced higher bedload
estimates than the multi‐mode model. Peak predictions of the saltation‐mode
model of up to 200 kg s�1m�1 were much higher than the maximum bedload
transport rates of 12 kg s�1m�1 observed to this point (Stark et al., 2021),
while peak predictions of the multi‐mode model of up to 20 kg s�1m�1 were
closer to observations (Figure 8). Predictions using the multi‐mode model
were within an order of magnitude of observations, except for some early
periods in the 2021‐07‐05 and 2021‐08‐23 floods (shaded regions in
Figure 8).

Figure 5. Ratio of power spectral density (PSD) between the multi‐mode and
saltation‐mode models for different water depths. Model parameters are
constrained using data from our field station. The seismic PSD of the multi‐
mode model is equal to the saltation‐mode model at the dashed line.

Figure 6. Empirical estimations of averaged streamwise bedload velocity
(Ub). Field measurement of flow velocity was obtained with an
electromagnetic current meter 15 cm above the bed at a water depth of 40 cm
and represents an upper limit on bedload velocity. We used a grain size of
7 mm for this plot.
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5. Discussion
5.1. Assumptions and Uncertainty of the Multi‐Mode Model
There are ⇠22 independent parameters, only some of which are constrained by observations (Table 2) in the final
expression of total PSD (PT, Equation 12) as well as total PSD from the saltation‐mode model (Tsai et al., 2012).
Each of the parameters in the expression for PT varies with respect to its physical range of constraints. Hence,
constraining bedload flux from seismic noise is expected to have considerable uncertainty due to the high‐
dimensional parameter space. Moreover, the total PSD is subjected to large variation with respect to several
model parameters. For example, PSD varies as v5

c , causing model bias if vc is not properly constrained.

Figure 7. Results from the application of the multi‐mode model to the 2021‐07‐05 flood. (a) Hop time distribution in log‐log
scale. (b) Time series of inverted and observed bedload flux.

Figure 8. Inversion results and comparison with field observations for the saltation‐mode model (Tsai et al., 2012) and multi‐mode model (this study). (a) 2018‐07‐27
flood with peak water depth of ⇠160 cm; (b) 2021‐07‐05 flood with peak water depth of ⇠125 cm; (c) 2021‐08‐23 flood with peak water depth of ⇠18 cm; (d) 2022‐07‐
09 flood with peak water depth of ⇠20 cm. Shaded areas in b and c are the beginning of the flood events where environmental and human signal contaminations are
likely.
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Additionally, the total PSD scales roughly with D3.5 in the multi‐mode model, and with D3 in the saltation‐mode
model. To obtain a good prediction of bedload flux, one needs to have good constraints on these parameters. Here
we qualitatively categorized model parameters based on our experience with the model and field data into three
groups, thereby highlighting the uncertainty of each parameter: poorly constrained, modestly constrained, and
well constrained (Table 2). The attenuation of seismic waves (χ(β)) incorporates influence from several other
parameters, including source‐receiver distance, Rayleigh wave speed (vc0) at reference frequency ( f0 ⇠ 1 Hz),
quality factor Q0 at reference frequency, and variation coefficient ε for vc0 (Tsai et al., 2012). Rayleigh‐wave
group and phase velocities vary with f, vc0, and ε; and χ(β) scales roughly with f 5 (Tsai et al., 2012).

We implemented a key modification in the calculation of the frequency of bedload impact. In the saltation‐mode
model, Tsai et al. (2012) used the terminal settling velocity of bedload to estimate the force of impacts, and used it
along with downstream bedload velocity to estimate impact frequency. We found that under low‐stage flow
conditions (H < 20 cm), when saltation is least likely, the saltation‐based seismic model underestimated transport
rates by ⇠ 1–2 orders of magnitude (Figure 8). Presumably, the assumption of saltation was invalid (Table 2). At
increasing flow depths, the shear threshold for gravel transport is exceeded, and even though gravel also rolls at
this stage, the improving empirical estimation of bedload velocity or bedload layer height brings the bedload
estimate from the saltation‐mode model more in line with observations. The multi‐mode model assumes empirical
impact time spacing (Gimbert et al., 2019) at all stages; additionally, we use a more accurate estimate of bedload
velocity for small particles based on Julien and Bounvilay's (2013) equation for low stages. In other words, in the
multi‐mode model, the impact rate decreases linearly with increasing bedload velocity for a constant flow depth,
and the impact force increases to the second power of bedload velocity. In contrast, in the saltation‐mode model
(Tsai et al., 2012), impact velocity is the fall velocity slightly modulated by bedload layer height. As a result, an
increase in flow depth increases bedload velocity and decreases impact frequency, while leaving the impact force
relatively unchanged. This results in a decreased seismic energy with increasing stage for the saltation‐mode
model, as shown in Figure 3b, whereas in the multi‐mode model, seismic energy increases with stage, consis-
tent with field observations.

For a given characteristic impact length scale (s), the impact rate (nD /tD) is inversely proportional to the average
stream‐wise bedload velocity (Ub) in the multi‐mode model. Nevertheless, the impact force is proportional to the

Table 2
Relative Constraints on Model Parameters

Model parameters Description of parameters Constraints Influence on total PSD
pt(tD) Hop time distribution Poorly constrained High influence
p(D) Grain size distribution Poorly constrained High influence
s Hop length Poorly constrained High influence
Ub Averaged streamwise bedload velocity Poorly constrained High influence
χ(β) Attenuation of seismic waves Modestly constrained High influence
f Frequency window Modestly constrained High influence
vc Rayleigh‐wave group velocity Modestly constrained High influence
vu Rayleigh‐wave phase velocity Modestly constrained High influence
N11 Dimensionless number (Tsai & Atiganyanun, 2014) Modestly constrained Medium influence
ε Variation coefficient for vc0 Modestly constrained Medium influence
γ Restitution coefficient Modestly constrained Small influence
fz Fraction of vertical seismic energy Modestly constrained Small influence
Q Quality factor Well constrained Medium influence
m Particle mass Well constrained Small influence
r0 Source‐receiver distance Well constrained Small influence
ρs Particle density Well constrained Small influence
W River width Well constrained Small influence
Vp Particle volume Well constrained Small influence
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velocity squared. Hence, in Equation 12, PSD scales linearly with averaged stream‐wise bedload velocity
(Figure 3d). This can be interpreted as any bedload flux occurring over a unit area of a riverbed generating seismic
signals, such that the power spectra follow a straight‐line with respect to Ub. To obtain a good prediction of
bedload flux from inversion, it is critical to constrain bedload velocity or, at the least, the average water velocity,
which is higher than the upper limit of bedload velocity. Currently, field constraints of bedload velocity are rare.
We have used several empirical equations (Equations 13–15) to estimate Ub (Figure 7). Future analyses could also
consider additional similar equations (for example, Ashida & Michiue, 1972; Fernandez Luque & Van
Beek, 1976; Niño et al., 1994). To obtain appropriate constraints of bedload velocity at other sites, one may need
to select appropriate empirical equations suitable to the hydraulics or apply relevant data from flume experiments.

In Gimbert et al.’s (2019) flume experiments, the hop time distributions for gravel and cobble grain sizes were in
the range 0.03–0.50 s. At a bedload velocity of 2 m/s, these hop times translate to 0.06–1 m between impacts. We
expected bedload particles at our field site to travel within these hop lengths up to medium water depth (⇠50 cm),
since the riverbed is mainly comprised of sand‐and‐gravel particles with a 5–6 mm median grain size, though
abundant cobbles and some boulders were mobilized in the four studied flow events. We also extrapolated the hop
time distribution down to 0.01 s at our field site to include larger grain sizes, as large particles would have smaller
hop times.

In general, there are four difficult‐to‐constrain parameters to obtain an accurate estimate of bedload flux: average
stream‐wise bedload velocity (Ub), hop time distribution (pt(tD)), GSD (p(D)), and seismic phase velocity (vc).
We consider the hop time distribution and bedload velocity to be the most uncertain. Although we obtained good
bedload predictions, further testing and investigations are required to validate these parameterizations and apply
the multi‐mode model to a wider range of fluvial settings.

5.2. Interpretation of Results From the Multi‐Mode Model
The multi‐mode model (this study) generally produced higher seismic power than the saltation‐mode model (Tsai
et al., 2012) for grain size classes at our site (Figure 5) for medium to high flow depth (Figures 8a and 8b), depths
for which we do not have direct bedload flux measurements. In the scenario of bedload overestimation (e.g.,
Lagarde et al., 2021, and probably high flow depths at our field site), the multi‐mode model would bring the
inverted bedload closer to reality because at a given observed seismic PSD, the modeled PSD (Equation 16) is
inversely proportional to bedload flux. At low flow depths at our site, the multi‐mode model produced smaller
seismic power than the saltation‐mode model (Figure 5), resulting in a more accurate match between inverted
bedload flux and observations than the saltation‐mode model (Figures 8c and 8d). The results from the multi‐
mode model differ by a factor of ⇠2–3 from observations, whereas they deviate by 1–2 orders of magnitude
from the saltation‐mode model. We interpret this improvement to be due to the incorporation of rolling by using a
hop time distribution that represents the likelihood of a particle engaging in different modes of transport. Further,
the impacting forces of bedload on the riverbed may be more accurately represented by the average stream‐wise
bedload velocity Ub. Due to limited availability of hop time distribution data (Gimbert et al., 2019), in this study,
we assumed that the hop time distribution is uniform across all particle sizes. If hop time distributions were
available for several grain sizes, it would enable the incorporation of the distinct hop time distributions for each
grain size in the model. Because larger grains dominate the generation of seismic signals, it is most important to
accurately quantify them. The hop time distribution used here is derived from cobble‐sized “smart rocks”
(synthetic rocks with embedded accelerometers; e.g., Pretzlav et al., 2021), and thus would represent the largest
particles in motion at most of our measured flows.

To invert bedload flux from seismic signals, we used a fixed GSD for both the saltation‐model and multi‐mode
models. The GSD (Figure 2a) represents the bedload texture from the beginning of flood sediment sampling up to
a water depth of ⇠40 cm. Bedload texture is unknown at higher water depths or during peak stages of medium to
large flow events due to the limitations of the sampler capacity. We assumed that the GSD obtained from samplers
during flood events represents the bedload particles in motion at our field location. The model can, in principle,
deal with varying grain sizes over the course of a flood event. We expected that during high flows, coarser grains
are mobilized than we assumed in our example calculations. This leads to higher seismic powers due to bedload in
forward modeling, and, conversely, lower bedload fluxes when inverting a given signal.

At the beginning of flow events (H < 10 cm), there is considerable variation (Figure 8) in the seismic noise
recorded near the river, likely due to near‐river processes such as rain, thunder, or movements of the research
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team. We often observed rainfall occurring before the flood bores arrived at the monitoring station; indeed,
rainfall generates energy in a very wide 1 ⇠ 400 Hz frequency band (McLaughlin et al., 2023; Roth et al., 2016).
Hence, bedload inversions from both models might sometimes be too high because of non‐bedload additions to
seismic energy that contaminate the input signal. We also anticipate that the arrival of bore‐fronts, as in the 2022‐
07‐09 event, generates more seismic noise than subsequent portions of the flood because turbulence and shear
stresses are higher (e.g., Chanson & Docherty, 2012; Thappeta et al., 2023). The bore‐fronts often have higher
velocities, and the initial interactions between fluid and solid phases with the riverbed create turbulence at the
front of the flood, leading to additional seismic noise. Together, these factors suggest that the variability of the
inverted bedload estimate at the beginning of floods (the gray areas of Figure 8) may result due to signals that are
poorly correlated with bedload flux, and thus should be excluded.

5.3. Discussion of the Saltation‐Mode Model and Implications for the Multi‐Mode Model
The saltation‐mode model (Tsai et al., 2012) underestimates bedload flux by ⇠ 1–2 orders of magnitude at low
flow depths at our site, yields results in good agreement with our field data at moderate flow depths, and yields
high bedload fluxes at high stages for which we do not have field data (Figure 8). The saltation‐mode model
produced higher PSD than the multi‐mode model for grain sizes greater than ⇠50 mm (Figure 5). We expect a
change in grain size to occur when the bars become mobilized or when shear stresses reach a sufficient magnitude
to initiate motion of large particles (Wilcock et al., 1996), as saltation meanwhile becomes progressively more
prevalent. This suggests that as water depth increases, the saltation‐mode model becomes more suitable, but the
GSD data becomes less reliable. As a result, we anticipate that the saltation‐mode model is less applicable when
the largest particles are rolling and more applicable when they saltate, that is, at very high‐water stages. At the
ADLP field site, this corresponds to stages of ⇠1 m and above.

We expect that there are several potential reasons for the discrepancy between the prediction by the saltation‐
mode model (Tsai et al., 2012) and observed data (Figures 2 and 8). First, the riverbed is comprised of thick
alluvial sediments, in contrast to the bedrock channel conceptualized in the original model development. Hence,
seismic energy is lost due to the inelastic impact of sediment on the fine‐grained substratum (Tullos &
Reid, 1969). However, this is only expected to alter the modeled seismic energy by, at most, a factor of one‐half,
since elastic rebound doubles the calculated energy compared to a perfect inelastic collision. In the multi‐mode
model, the restitution term γ (e.g., Farin et al., 2019) is used to quantify the degree of inelastic impacts. Second,
the saltation‐mode model ignores rolling and sliding particles, which, based on observations by researchers
standing in the channel during moderate flows, is likely to be a common type of bedload transport at our station.
Moreover, the original bedload impact frequency model may not accurately represent the impact rate of particles
on the riverbed. Under the same hydraulic conditions, rolling particles impact the bed more frequently than
saltating particles, although each impact transfers less energy (Tsakiris et al., 2014). Previous analyses (Turowski
et al., 2015; Turowski & Rickenmann, 2009) as well as the analysis presented here indicate that in the case of
rolling gravel, the impact frequency is more important in this tradeoff and leads to higher seismic energy per unit
distance traveled for rolling particles. Further, the impact of saltating particles onto the riverbed is hindered by the
limitation of terminal fall velocity due to fluid drag, while rolling particles can accelerate with an increase in flow
velocity. The comparison of seismic energy generated by rolling versus saltating particles is complicated because
different grain sizes and shapes can experience different dominant transport mechanisms at a given flow condition
(Tsakiris et al., 2014; Turowski & Rickenmann, 2009). For example, at water depths ⇠40 cm, coarse gravels
(>16 mm) are likely to roll, while sand and granules (2–8 mm) are likely to be in the saltation mode. An equation
that depicts the relative fraction of rolling and saltating modes as a function of transport stage (e.g., Auel
et al., 2017) could be used to differentiate seismic energy produced by rolling and saltating particles. Furthermore,
a particle can also undergo different transport mechanisms depending on the hydraulics and riverbed charac-
teristics. For example, a given gravel size class may saltate in a relatively deep flow but roll in shallower water,
and rough riverbeds may increase turbulence and promote saltation when a particle is mobilized above the
roughness elements. Finally, the focus on the vertical component of impacts onto the riverbed is reasonable as a
starting point to derive the first‐order relationship. But this assumes a planar bed, and in alluvial rivers the impacts
of particles are more complicated as the bed is comprised of grains that receive impacts in a variety of generally
oblique geometries (Farin et al., 2019; Lajeunesse et al., 2010). Hence, in the multi‐mode model we use oblique
impacts as suggested previously (Farin et al., 2019; Gimbert et al., 2019). In general, we suggest that the saltation‐
mode model may be applicable to rivers during floods where the predominance of saltation is a reliable
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assumption. The multi‐mode model is applicable to alluvial channels with active sand‐gravel beds or perennial
rivers where bedload particles are likely to roll, slide, and saltate. This also includes bedrock rivers at water
discharges when turbulence and bedload fluxes are not very high.

6. Conclusions
The objective of this study was to evaluate the saltation‐mode model (Tsai et al., 2012) in a different environment
than the original high‐energy setting. We aimed to examine model performance in estimating bedload flux from
seismic data and to propose modifications to enhance the capacity of the model to match field data. These
modifications involve altering assumptions about impact elasticity, impact angles, impact velocity, and impact
frequency, leading to an adjusted derivation of the model. Based on our results (Figure 8), the focus on the vertical
component of entrained grain motion to determine impact force by saltation may not be valid; instead, we assume
oblique impact onto riverbeds consisting of other rounded grains, as implied by other studies that continued
development of the Tsai et al. (2012) model (Farin et al., 2019; Gimbert et al., 2019). At our field site, the original
model underestimated bedload at low to medium stages compared to field data, and potentially overestimated flux
at peak stages. Overall performance of the multi‐mode model (Figures 7 and 8) is in reasonable agreement with
observations and improves over the predictions of the saltation‐mode model.

The multi‐mode model is not only applicable for the ephemeral channels on which this study is focused but also
has the potential for application to a wide range of river conditions and different environmental settings. For
example, to constrain bedload flux in bedrock rivers where the GSD mainly contains gravel and coarser particles,
one can use an appropriate hop time distribution that represents the time interval at which these grains impact on
the riverbed.

Data Availability Statement
Hydrologic data, including time‐series stages, stream flow, bedload flux, and shear stress, are available at the
Reclamation Information Sharing Environment (RISE). The data collected from the Arroyo de los Pinos can be
accessed at the following URL: https://data.usbr.gov/catalog/4407. The four floods analyzed here are additionally
archived in Luong, Stark, et al., 2024 (data set). Seismic data are from Bilek, 2024 (data set). All the codes for the
saltation‐mode model (Tsai et al., 2012) and the multi‐mode model, as well as for reproducing results in this
study, can be downloaded from Luong, Cadol, et al., 2024 (software). Seismic data were processed with the
ObsPy library in Python; all figures were made in MATLAB R2022a.
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