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ABSTRACT

Quantitative predictions of scalar transport in natural porous media is a nontrivial task given the presence
of multi-scale spatial heterogeneity in the permeability field. Due to data scarcity, the structural map of the
permeability field is subject to uncertainty and therefore, model predictions are uncertain. For such reasons,
probabilistic models of flow and transport in natural porous media are required in risk assessment and to
provide reliable decision making under uncertainty. Further complexities arise when the viscosity of the
injected solute differs from that of the ambient fluid. Under the presence of viscosity contrast, hydrodynamic
instabilities give rise to viscous fingering, which induces additional disorder in both velocity and solute
concentration fields. This work examines the combined role of viscous fingering and permeability heterogeneity
in the probabilistic description of transport predictions. In particular, we focus on metrics that are important for
risk analysis, such as the solute plume’s early arrival times and the maximum concentration observed at a given
location. We propose to use the Projection Pursuit Adaptation (PPA) method in the Polynomial Chaos Expansion
(PCE) framework to quantify uncertainty in transport model predictions. The PPA method is a data-driven
approach that optimally represents a given quantity of interest in a low-dimensional manifold. Unlike other
dimension reduction techniques in uncertainty quantification, the PPA method utilizes non-linear information
of the quantity of interest to identify the low-dimensional manifold, thereby increasing the likelihood of finding
a more accurate lower-dimensional space. Moreover, the PPA model converges to the physical solution in a
mean squared sense with respect to the polynomial order, enabling the construction of a converged model even
with limited available data. Then, the PPA results are compared to Monte Carlo simulations using the same
amount of data. This comparison illustrates that while Monte Carlo simulations are able to capture low-order
statistics, they struggle to represent more detailed probability density functions. Our results show how the
combined effect of permeability heterogeneity and viscosity contrast can enhance the mobility of the solute
plume.

1. Introduction

concentrations, are characterized in terms of their probability density
function (PDF).

Obtaining deterministic predictions of the spatiotemporal dynamics
of a solute body in the subsurface environment is an elusive goal given
limited site characterization data. Due to the high costs associated with
data acquisition, in-field measurements are scarce, and thus a detailed
characterization of the spatial heterogeneity of hydrogeological prop-
erties (such as the permeability) is impractical. Because of this lack
of information on all relevant scales, flow and transport models are
subjected to uncertainty and the stochastic paradigm is invoked. Under
the stochastic approach, the permeability field is conceptualized as
a random space function (RSF) (Rubin, 2003; Christakos, 2005) and
environmental performance metrics relevant for evaluating risks from
contaminants migrating in groundwater, such as solute travel times and

* Corresponding author.
E-mail address: fbarros@usc.edu (F.P.J. de Barros).

https://doi.org/10.1016/j.advwatres.2024.104706

Strategies for propagating the uncertainty in the permeability field
to solute travel time and concentration predictions have been discussed
in the literature (for an extensive review, see Fiori et al. 2015, Linde
et al. 2017 and references therein). Perturbation theory has been
applied to compute the statistical moments of solute travel time (Rubin
and Dagan, 1992; Cvetkovic et al., 1992; Sanchez-Vila and Guadagnini,
2005) and resident concentration (Kapoor and Kitanidis, 1998; An-
dricevié, 1998; Fiori and Dagan, 2000; Tonina and Bellin, 2008; de
Barros et al., 2022). The (semi)-analytical solutions derived in these
studies are typically limited to low levels of heterogeneity in the log-
permeability field, e.g., log-permeability variance o-f, < 1. To estimate
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uncertainty in solute transport in aquifers displaying high heterogeneity
)2, > 1, the governing equations needs to be solved numerically and
the Monte Carlo framework is often employed (Moslehi and de Barros,
2017; Libera et al., 2019). Recently, an open-source Python package
for simulating uncertainty (through Monte Carlo) in hydrogeological
systems has been proposed (Morvillo et al., 2022). Semi-analytical
methods, such as the Multi-Indicator Model-Self Consistent Approach,
enable to obtain an estimate of solute arrival times distributions in
highly heterogeneous formations (Cvetkovic et al., 2016; de Barros
et al., 2016; Fiori et al., 2017). Other studies, based on perturbation
expansions or numerical Monte Carlo approaches, focused on the esti-
mation of the one-point concentration PDF as a function of the RSF
parameters of the log-permeability field (Dentz, 2012; Cirpka et al.,
2011; de Barros and Fiori, 2014; Boso and Tartakovsky, 2016). In the
absence of diffusion and local-scale dispersion, Dagan (1982) showed
that the concentration PDF is binary, that is, either zero or equal
to the initial concentration at the solute source location. Subsequent
studies showed that the concentration PDF becomes unimodal if the
sampling volume is increased and the effects of local-scale dispersion
are taken into consideration (Bellin et al., 1994; Caroni and Fiorotto,
2005; Schwede et al., 2008; de Barros and Fiori, 2014). For low levels of
heterogeneity of the permeability field (i.e., of, < 1), the concentration
PDF can be approximated by the beta distribution model as originally
suggested in Fiori (2001) and verified by others (Fiorotto and Caroni,
2002; Bellin and Tonina, 2007; Bonazzi et al., 2023). A joint velocity-
concentration PDF method for computing the concentration statistics
for higher levels of heterogeneity is also available in Meyer et al.
(2010). Within the broader context of multi-physics, a multi-modular
uncertainty quantification open-source Python package capable of han-
dling multi-scale problems is also available in the literature (Olivier
et al., 2020).

The above-mentioned studies (amongst many others) have provided
insight into the propagation of uncertainty, with respect to scales of
fluctuation of the random permeability, on solute travel times and
concentration. One key assumption in all these studies is that both
the dissolved solute and the ambient fluid (e.g. groundwater) have
the same viscosity. Some exceptions exist, such as the works by Welty
and Gelhar (1991) and Talon et al. (2004), where the authors employ
stochastic methods to estimate the asymptotic longitudinal macrodis-
persivity. Bonazzi (2023) used Monte Carlo simulations to show how
contrast in viscosity controlled the spatial maps of the concentration
(ensemble) variance at different times. In many applications, ground-
water contaminants (i.e., nonhalogenated semivolatile compounds and
jet fuel) are more viscous than water. Flowers and Hunt (2007) provide
a series of examples in environmental engineering and hydrology where
viscosity contrast between the ambient groundwater and a contam-
inant can be found. However, incorporating the effects of viscosity
contrast in numerical simulation models can be challenging due to high
computational costs associated with the non-linearity of the govern-
ing equations. Viscosity contrast between the ambient fluid and the
solute can lead to the hydrodynamic instability known as the Saffman-
Taylor instability (Saffman, 1986), with formation of viscous fingers
at the unstable interface. Due to the viscosity dependence on solute
concentration, physical properties of the fluids vary in space and time,
thus affecting the flow field (Jha et al.,, 2011a). In the presence of
permeability heterogeneity, viscous fingering can enhance the mobility
of a solute plume and its mixing rates (Bonazzi et al., 2021). Despite
the extensive literature on the effects of viscous fingering on mixing
in porous media (Tran and Jha, 2020; Van der Meer, 1993; Christie,
1989; Tchelepi and Orr Jr., 1994; Tan and Homsy, 1988; De Wit et al.,
2005; Nicolaides et al., 2015; Bonazzi et al., 2021), additional efforts
are needed to investigate how viscosity contrast impacts the uncertainty
estimates of transport models when the flow field is spatially random.
Due to the non-linearity of the flow and transport processes when mod-
eling mixing of fluids with distinct viscosities, traditional methods for
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uncertainty estimation, such as Monte Carlo, become unfeasible due to
the high computational costs needed to achieve statistical convergence.

For high-dimensional uncertainty quantification, the Monte Carlo-
based method, despite its advantageous feature of dimension-
independent convergence, exhibits slow convergence overall, with the
rate of convergence dependent on the complexity of the solution being
sought (Ballio and Guadagnini, 2004; Leube et al., 2013; Moslehi
et al.,, 2015). Consequently, numerous evaluations of the physical
model are required, imposing a significant computational burden. In
response, various techniques have emerged in engineering and science
to alleviate this burden. These include Polynomial Chaos Expansion
(PCE) (Ghanem and Spanos, 2012; Ghanem, 1999), Generalized Poly-
nomial Chaos Expansion (gPCE) (Xiu and Karniadakis, 2002, 2003),
Gaussian processes (MacKay et al., 1998; Seeger, 2004; Bilionis and
Zabaras, 2012), Bayesian networks (Darwiche, 2009; Ghahramani,
2006; Zeng et al., 2023b), Probability Density Evolution Methods
(PDEM) (Li and Chen, 2009; Zeng et al., 2017; Chen et al., 2017), Man-
ifold Methods (Soize and Ghanem, 2021; Zhang et al., 2021; Giovanis
and Shields, 2020), Wiener Path Integral Technique (Kougioumtzoglou
and Spanos, 2012; Psaros et al., 2019), and others. In the context
of computationally expensive porous media flow models (i.e. non-
linear formulations), PCE-based methods were employed to estimate
uncertainty in flow through the unsaturated zone (Li et al., 2009) and
CO, storage (Oladyshkin et al., 2011, 2013). Methods such as Gaussian
process modeling have been employed to estimate uncertainty in a
diverse range of porous media flows application (Crevillen-Garcia et al.,
2017; Tian et al., 2017), however handling high dimension problems
can be challenging. PCE represents the Quantity of Interest (Qol) using
a set of multivariate Hermite polynomial bases, where the approxima-
tion converges to the physical solution in a mean-square sense with
respect to the polynomial orders. Despite its rigorous mathematical
foundation, good convergence rate (Ghanem and Spanos, 2012), and
high accuracy, PCE faces the challenge of the curse of dimensionality,
for example, in applications involving a heterogeneous flow field within
high-dimensional input spaces. Addressing the high dimensionality
challenge, Least Angle Regression (Blatman and Sudret, 2010, 2011)
and Compressive Sensing (Doostan and Owhadi, 2011; Sargsyan et al.,
2014; Tsilifis et al., 2019) methods reduce computation by approxi-
mating the Qol on a selection of dominant polynomial bases. Active
Subspace (Constantine et al., 2014a; Constantine, 2015) represents
the Qol along active directions selected based on the gradient of the
physical systems. Basis adaptation, within the PCE framework, exploits
the insight that while the physical system may be complex, the sought
solution typically corresponds to a simpler physical property. This
method involves rotating the input parameters, allowing the Qol to be
represented in a low-dimensional subspace formulated by the rotated
variables. Applications and extended research (Thimmisetty et al.,
2017; Tsilifis and Ghanem, 2017; Zeng et al., 2021; Ghauch et al., 2019;
Zeng et al., 2023a) establish basis adaptation as a promising candidate
for dimension reduction in uncertainty quantification. The efficiency of
the basis adaptation method is enhanced when sparse quadrature rules
are employed in constructing the PCE model. In contrast to Principal
Component Analysis (PCA), which identifies components based on their
importance ranking, basis adaptation incorporates Qol information into
the dimension reduction process. Consequently, it is more tailored to
the sought solution, enabling the discovery of even low-dimensional
subspaces.

In a more recent work (Zeng and Ghanem, 2023), the authors
proposed the Projection Pursuit Adaptation (PPA) method, which has
the basis adaptation ideas embedded for dimension reductions. PPA
is a data-driven method that learns optimal projections of the input
parameters, as well as an optimal PCE that establishes the mapping
from the projected parameters to the quantities of interest. This method
is promising due to its advantages over other uncertainty quantifica-
tion techniques. It reduces dimensions and utilizes a priori-specified
data for optimal PCE representation. The achievement of optimality
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is attained through the determination of least-squares solutions for
the quantities of interest. This implies that the PPA model is con-
structed to minimize the squared residual between the data and the
model. The PPA approach is also able to capture nonlinearities, thus
identifying a lower-dimensional space compared to techniques like
Gaussian adaptation (Tipireddy and Ghanem, 2014; Zeng et al., 2021)
and active subspace (Constantine et al., 2014b), as has been shown
in Zeng and Ghanem (2023). Finally, in contrast to classical PCE
methods where sparse quadrature rules are typically applied to reduce
the number of samples, the proposed PPA method utilizes independent
samples as training data, offering increased flexibility. Furthermore, it
possesses the capability to address multiple-output surrogate modeling.
This means that the same training dataset can be repurposed to learn
optimal PCEs for different quantities of interest.

The purpose of this work is twofold. The first one is to examine how
fluid properties, such as viscosity, can affect the uncertainty associated
with transport predictions that are relevant to probabilistic risk anal-
ysis in contaminated groundwater systems. Given the importance of
viscosity contrast on solute concentrations (Jha et al., 2011b,a; Bonazzi
et al., 2021) and arrival times (Nicolaides et al., 2015; Bonazzi et al.,
2021), we quantify the uncertainty of these quantities that originate
from the random fluctuations of the permeability field. The second goal
is to propose an approach to compute the uncertainty associated with
transport predictions in heterogeneous subsurface systems. Due to high
computational costs in Monte Carlo simulations, we demonstrate how
the PPA in the PCE framework estimates PDFs for these quantities.

The structure of the paper is as follows: in Section 2 we describe the
mathematical formulation of the flow and transport model adopted in
this study; in Section 3 we introduce the stochastic model underlying
the structure of the permeability field (Sections 3.1 and 3.2), and the
PPA method (Section 3.3); Section 4 describes the numerical implemen-
tation of the flow and transport model and the parameters adopted;
Section 5 presents the computational results obtained and Section 6
provides a summary of this study.

2. Mathematical formulation of flow and transport model

This section introduces the flow and scalar transport model adopted
in this study. In the following, we provide all governing equations
in the dimensionless form. The dimensionless groups are reported in
Appendix. We start by considering a two-dimensional (2D) porous
medium described by the Cartesian coordinate system x = (x;, x,). The
flow domain D is rectangular with dimensions L; X L, = {(x;,x,)|x; €
[0,L;]andx, € [0,L,]}. The porous medium is characterized by a
locally isotropic and spatially heterogeneous permeability field, k(x).
Because the variations in porosity are relatively small when compared
to the variability in k, we adopt the common assumption of uniform
porosity ¢.

Assuming incompressible flow in the absence of sink/source terms,
the governing dimensionless equation for the flow field is:

V.-qx,1) =0, (€8]

where q(x, 7) is the specific discharge which can be computed through
Darcy’s law:
k(x)

qx, 1) = —mvp(xs 1), ()]
in which p(x, 1) is the pressure field and u(c(x,7)) is the viscosity as a
function of the solute concentration, c¢(x,t), in the ambient fluid. The
following model is adopted to relate the viscosity of the mixture to the
solute concentration:

ple(x, 1) = e~ RO, 3)

where R = In(uy/u,) is the log-viscosity ratio between the ambient
fluid viscosity (u,) and the viscosity of the solute (y,). We employ
permeameter-like boundary conditions for the flow Eq. (1),

op(x) op(x)

p(0,x3) = py; p(Ly,x3) = py; =0; =0 @
axZ Xxp=0 axZ xp=L,
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Under these boundary conditions, the spatially heterogeneous flow field
is driven by a uniform-in-the-mean pressure gradient. The spatially
heterogeneous velocity field is given by v(x,t) = q(x,1)/¢.

Transport of a non-reactive, dissolved tracer is assumed to be con-
trolled by two mechanisms: (i) the advective movement due to random
fluctuations of the (Darcy) velocity v and (ii) local-scale dispersion.
Therefore, the local concentration ¢ satisfies the Eulerian transport
equation:

de(x, 1)

+v(x,1) - Ve(x, 1) = Piev%(x, 1), (5)

where Pe represents the Péclet number, defined as Pe = U 4/ D, in which
A represents the correlation length scale of the log-permeability field,
U is the longitudinal mean velocity and D is the local-scale dispersion
coefficient assumed to be constant (Scheidegger, 1961; Bear, 1988).
The boundary conditions for the transport problem are as follows

|,
ox; ly=o
VO e, N =, = Tour( Ly X1 1%
0| _,,
9%y |g,=0
L] ©)
0x, xp=L,

Here, J,, is the solute mass flux exiting the domain D, i.e. a natural
outflow boundary condition where the solute mixture is allowed to exit
the domain through advection only (in the direction of the average flow
velocity). The solute is instantaneously injected over an area A, and the
initial dimensionless concentration is set to be equal to unit value. The
initial condition is expressed as

.0 {1, ifxe A, -

0, otherwise,

where A, = ¢, X ¢, with #; and ¢, denoting the longitudinal and
transverse dimensions of the source zone respectively (see Fig. 1). In
order to allow for the development of the hydrodynamic instability
caused by the viscosity contrast between the solute and the ambient
fluid, we apply a small perturbation on the edges of the source zone.

Due to the random nature of k, both the velocity v and solute
concentrations, ¢ are also random functions. As a consequence, model
predictions associated to the flow field and solute concentration dis-
tribution (in both space and time) are quantified in terms of their
ensemble statistics. The statistics of v have been related to the statis-
tics of k, both analytically using first-order approximations (Rubin,
1990; Butera and Tanda, 1999), and numerically using Monte Carlo
simulations (Bellin et al., 1992). Similarly, the relationship between
the statistics of ¢ and the statistics of k are also analytically reported
through first-order approximations (Fiori and Dagan, 2000; Tonina and
Bellin, 2008; de Barros and Fiori, 2014).

In this work, we will focus on characterizing the uncertainty of two
quantities of interest. The first one is the early arrival times of a solute
plume originating from a source zone, A, to a control plane located
at x; = L, (see Fig. 1). The early arrival time, denoted here by 7,, is
defined as the time when the dimensionless solute concentration (av-
eraged over the control plane) is equal to 0.01. The spatially averaged
(over the control plane) concentration is

1 [k
c(t) = L_/ e(Lep, x2)d x5, (8)
2 Jo

where L, is the transverse dimension of the flow domain D (i.e., the
control plane has dimensions of L,). The second quantity of interest is
the maximum concentration observed (in time) at the control plane:

= &), 9
Cmax rtréaTXC(t) 9

where 7 is the total residence time of the solute plume crossing the
control plane at x; = L.,. The maximum concentration is a quantity of
particular interest for risk analysis (de Barros and Fiori, 2021).
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Fig. 1. Schematic representation of the conceptual model and the computational domain. A solute is instantaneously injected within an areal source zone. The porous medium is

two-dimensional and its permeability field is spatially heterogeneous.

3. Stochastic model
3.1. Multi-Gaussian log-permeability field

The structure of the log-permeability field, denoted here by Y (x, ®)
= In[k(x, W)], is modeled through a RSF (Kitanidis, 1997; Rubin, 2003)
with x € D and o € 2 (the probability space). For the purpose of the
current study, Y (x, w) is represented as a multi-Gaussian spatial random
field and assumed to be statistically stationary such that it can be fully
characterized by its mean (Y(x)) and the correlation function of its
fluctuations Y'(x, w) = Y (x, w) — (Y (x, w)), which is provided by Cy (x,x’)
= (Y'(x,w)Y'(x',w)). Here, the angled brackets (-) denote ensemble
expectation. The variance of the Y-field is defined as Cy(0) = 012,. In
this work, we adopt an isotropic exponential covariance model for Y:

o llx; = 1
Cy(x,x") = oy exp — |- (10)
where 4 represents the correlation length. Therefore, the RSF model for
the permeability field is based on two-point spatial statistics. Further-
more, we assume that 62 and A are deterministic and we neglect model

Y
uncertainty in the covariance shape, namely Cy.

3.2. Representation through the Karhunen—Loeve expansion

Here, we describe the procedure to represent, discretize, and gen-
erate samples from the random field Y. The Karhunen-Loeve (KL)
expansion for the random variable Y consists of a spectral expansion of
its covariance function Cy (x, x") (Ghanem and Spanos, 2012; Christakos,
2005). Due to the fact that the covariance function is non-negative
definite, symmetric, and with finite trace, it can be decomposed as
follows,

CyxxX) = D 4, fu(0f,(x), an

n=1
where the eigenvalues {42, and eigenfunctions { falel, can be com-
puted as the solution to the Fredholm integral equation (Ghanem and

Spanos, 2012)

/ Cy(x,x") f(x)dx = Af(x)). (12)
D

The log-permeability field can then be constructed through the KL
expansion:

Y 0) = (YX) + Y E(@)\/A, £, (%), a3)
n=1

where {&,(w)}*, are orthogonal Gaussian random variables, obtained

by sampling the standard Gaussian distribution N'(0, 1).

It can be shown that the trace of the sum of the eigenvalues 4; is
equal to the variance of the process Y. Thus, a common and reasonable
truncation argument of the KL expansion is to retain enough terms such
that the cumulative sum of the eigenvalues surpasses 99% of the total
sum. When the truncation is performed, the KL expansion becomes
KL decomposition. While the KL expansion significantly reduces the
random dimension of the permeability field, the number of terms
of the KL expansion that are not truncated can still be substantial,
leading to slow convergence rates in PCE methods. To address this
issue and alleviate the associated computational burden, we will utilize
the Projection Pursuit Adaptation method to reduce even further the
dimension of the permeability field (Zeng and Ghanem, 2023).

3.3. Projection pursuit adaptation in polynomial chaos expansions

The Projection Pursuit Adaptation (PPA) method, introduced by
Zeng and Ghanem (2023), offers a data-driven approach for reducing
the stochastic dimension and addressing uncertainty quantification and
surrogate modeling in high-dimensional problems.

The PPA method involves projecting the original randomized pa-
rameters onto a low-dimensional space, where the projected variables
are adapted to the quantity of interest Q and encompass sufficient in-
formation to accurately represent it. Subsequently, a Polynomial Chaos
Expansion (PCE) (Ghanem and Spanos, 2012) is established for O on
this space, serving as a surrogate model for uncertainty quantification
and predictive analysis. Notably, the method incorporates a new con-
cept (Zeng and Ghanem, 2023), enabling it to simultaneously determine
the optimal projections and the optimal PCE on the projected variables,
leveraging available data. In this section, we present an overview of
the fundamental principles behind the PPA method. As mentioned in
Section 2, the quantity of interest (generically denoted by Q) would

represent f, OF €.
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3.3.1. Polynomial chaos expansion

Consider a probability space (£, F,P), where Q is the sample space,
F is the o-algebra of events, and PP is a probability measure. Let & =
(&1,..-,&,) € RY be a collection of independent Gaussian variables
defined on Q2. We assume that H denotes the Hilbert space generated by
the linear span of £. Then, we can represent any random variable Q €
L?(2,F(H),P) by a PCE that can be further truncated at a maximum
polynomial order of b as

0= Y, Ou¥a®~ D, Quval®). as)

agdy agdy

For example, the Q here can be ¢, or c,,,. In the above equation,
J; = (Ny)? represents the set of d-dimensional multi-indices. Then,
a = (ay,...,a,;) € J; denotes a d-dimensional multi-index with a length
given by |a| = ZLI ;. Moreover, J,, is a subset of d-dimensional
multi-indices, contained within J,, that have a maximum length of
b (where b is the maximum polynomial order of the truncated PCE)
such that |a| < b. The set {y,}qey, consists of orthogonal Hermite
polynomials and forms a complete basis in the space L2(2, F(H),P).
The PCE coefficient associated with the basis y,, is denoted as Q. As
b — oo, the PCE expressed in Eq. (14) converges to Q in a mean-squared
sense. The convergence analysis with respect to polynomial orders is
typically carried out by incrementally increasing the order until the
discrepancy between two consecutive expansions falls within tolerance.
The number of PCE terms in (14) is

P:<d+b>:(d+b)!’ (1s)
b dlb!

which grows factorially with d and b. Additionally, the computation of
the PCE coefficients involves a d-dimensional integral. Thus, in high-
dimensional scenarios with a large value of d, the number of samples
required to calculate the PCE coefficients accurately increases at a
super-linear rate. This phenomenon, known as the curse of dimension-
ality, leads to computationally expensive numerical estimations. To
overcome this challenge, the PPA method is proposed.

3.3.2. Projection pursuit adaptation

Basis adaptation (Tipireddy and Ghanem, 2014; Zeng et al., 2021)
is a dimension reduction technique developed specifically to attenuate
the computational burden for high-dimensional polynomial chaos rep-
resentations. Building on the basis adaptation concept, a data-driven
PPA method was proposed in Zeng and Ghanem (2023), which will be
employed in this work to propagate randomness from the permeability
field to Q, constrained by the governing system of non-linear partial
differential equations, see Egs. (1) and (5).

The main idea is to initially identify a low-dimensional space con-
structed by projections on a Gaussian subspace. Subsequently, the PCE
of O can be constructed within this low-dimensional space, rather than
the original high-dimensional space. These two steps are performed
optimally using the provided data to ensure utilization of the lowest
achievable low-dimensional manifold. Here, we will only illustrate the
basic ideas, with a more detailed description available elsewhere (Zeng
and Ghanem, 2023).

The PPA method employs multivariate PCE to approximate Q.
Suppose we have a given dataset {(¢',4")}¥ , where & € R? and ¢' €
R. This dataset is obtained from running the complex computational
model, serving as our training data set. We aim to utilize this data
to develop a regression model that predicts the QoI based on input
parameters. Let A, = [a, ar]T, where {a;} denotes the mutu-
ally orthonormal projections of size d. Let Z represent the projected
variables, defined as Z = A,£. The PPA model represents Q, as

0 =¢g,(2). (16)

Here, g.(-) is an r-dimensional PCE with definition given in Eq. (14).
The matrix A, acts as a rotation matrix applied to the input parame-
ters. In the present case, A, is employed to transform the orthogonal
Gaussian random variables produced from the KL expansion, while the
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function g, corresponds to the PCE functions we aim to develop for the
variables 7, and ¢,,,,. The optimal projections A, and the PCE function
g, need to be computed. This is achieved by minimizing the squared
residual between the data, {(&, ¢") },-]i 1 where ¢ represent the data of Q,
and the PCE representation above. That is, the following optimization
problem is to be solved

N N 2
(g A,) =argmin Y [¢' - &.(z)]” = argmin y" [q" - §,(A,§’)] .an
&4 i=1 €A i=1
A forward stage-wise strategy is utilized to determine (g,,a,) at each
stage. During each stage, a projection is integrated, and the process con-
cludes when incorporating further information no longer significantly
enhances model fitting. That is, in each stage, a new projection corre-
sponds to a new dimension of the transformed parameters used to fit
the PCE. Notably, this convergence pertains to the PCE model, which,
given an appropriate selection of the polynomial order, converges to
the physical model. Consequently, the convergence observed in the PCE
model implies the convergence of the PDF of the quantity of interest (7,
or c,,,.), establishing a more robust property than mere convergence in
the lower moments.

The optimization problem is solved in an alternating manner. Given
a,, A, is constructed, and the objective becomes finding the optimal
g, that minimizes the squared residual. This can be achieved through
least-square regression.

On the contrary, when g, is given, our goal is to minimize the
squared residual with respect to a,. To avoid excessive computation, we
update only a, at each stage. As proposed in Zeng and Ghanem (2023),
we use a Gauss-Newton search algorithm to solve the optimization
problem with the given g,. By keeping the projections of a,...,a,_,
unchanged and fixing g,, we need to solve the following optimization
problem:

N N
a,=argmin Y [¢' —g,(z)]" =argmin Y [¢' - g, (lay, .. ,a,,,a,1"¢)]".

a, i=1 i=1

(18)

With the Gauss—Newton method, the optimization problem becomes
(Zeng and Ghanem, 2023)

2 2
i i_ i

N o (zold> o q =& <Zold>

; a,04é +

9 ~ —|-a¢
Zrold 95, (1) /97,

a, = argmin n
a

r i=1

(19)
. . i T
Here, a, 14 i the current estimate ofa;z, = [a [ e A, a,,old]
&5z g = arTOl 4&'- The optimization problem (19) can be solved by
q’—gr(zﬁ,ld)
i : B
o8- (zold)/az;.old

. . . 2
regressors &', weight i = (dg, (z;ld) /oz: Old> , and no bias term. Let

i

the weighted least-square regression with target 7 =

—~

W € RM*N be a diagonal matrix with weight @ as its entries. Also let
% € RN be a vector with entries of #, and = the data matrix of {&'}.
Then, a, can be computed by the following

—~ -1 —
a, = argmin [l - 54,2, = (ETWE> =W (20
a,

After computing a,, the Gram-Schmidt procedure is utilized on A, to
ensure orthogonality is maintained. Additionally, with the updated a,,
g, is refitted to minimize the residual. Subsequently, a, is updated again
using the new g, function. This alternating procedure is repeated until
convergence is achieved for (g,,a,).

We note that the PPA model inherits the mean-square convergence
property with respect to the polynomial orders of the PCE. This implies
that one can systematically elevate the order to assess whether higher-
order information contributes to the Qol and to verify the convergence
of the PCE model. Achieving a PCE model that converges with its
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Table 1
Input parameters used in the simulations. See Fig. 1 for details regarding the model
configuration. Dimensional values are provided in Appendix.

Parameter Symbol Value
Geometric mean of the Y-field exp(Y) 1
Variance of the Y-field considered af, 0.5, 1.5
Domain length in x, L, 12
Domain length in x, L, 10
Mesh size in x; x, A 1/12
Source’s distance from top boundary Sep 3
Source’s distance from bottom boundary Spp 3
Source’s distance from left boundary s 2
Length of source in x, ‘) 1
Length of source in x, ¢, 4
Control plane’s distance from left boundary L, 11

physical counterpart involves progressively increasing the polynomial
orders. Subsequently, PPA models are constructed based on the selected
order. The process continues until the difference between two suc-
cessive PPA models with consecutive orders falls within the specified
tolerance.

In summary, for any given polynomial order, the PPA method
employs two layers of operations to identify the optimal projections
and an optimal PCE on the projected (or adapted) variables; see below.

Operation layer 1. A forward stage-wise strategy is used to determine
the number of projections. Specifically, we add one projection at each
stage and stop the procedure if adding a new projection cannot improve
model fitting.

Operation layer 2. At each stage, the optimal (a,, g,) is discovered in an
alternating manner. We first fix a, and compute the associated optimal
g, We then fix g, and compute the associated optimal a, which updates
its current value. These two steps are repeated until convergence.

4. Numerical implementation and input parameters

In this section we describe the methods employed to solve the
governing equations and provide the input parameters used in the
simulations. The flow Eq. (1) is solved numerically following the details
provided in Bonazzi et al. (2021) which are briefly summarized in
this section. Eq. (1) is solved for cell-centered pressures using a finite-
volume method with second-order accuracy. The Darcy flux in Eq. (2)
is linearized using the two-point flux approximation. As for the solute
transport, we employ an explicit scheme to compute the concentration
field in Eq. (5). In particular, we use a second-order finite difference
method, and compute the concentration at the next time step in terms
of the advective and diffusive mass fluxes.

In this study, we consider two different values of variance of the
Y-field discussed in Section 3.1 in order to compare the effect of high
and low heterogeneity: 02 = 0.5 and o2 = 15. We also consider
two different levels of viscosity contrast, defined in terms of the log-
viscosity ratio presented in Eq. (3): R = 0 (i.e. absence of viscosity
contrast), and R = 1.5. We thus consider a total of four cases, given
by all the possible combinations in heterogeneity level and viscosity
contrast considered.

We discretized the domain with a two-dimensional Cartesian mesh
with grid blocks of equal (dimensionless) size in both x; and x, di-
rections, i.e. Ax; = Ax, = A. Details regarding the dimensionless
parameters used in our computational analysis are reported in Table 1.
All lengths are normalized by the correlation length in the x; and x,-
direction, A = 5 m. Please refer to Fig. 1 for additional details regarding
the computational domain and other relevant information.

5. Computational results

Given the randomness of Y(x,w) = In[k(x,w)], with x € D and
® € 2, model outputs such as the maximum concentration observed at
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the control plane and early arrival times will be quantified statistically
through their moments and probability density functions (PDF) or
cumulative density functions (CDF). These model outputs are consid-
ered environmental performance metrics given their importance in a
series of applications in probabilistic risk analysis in hydrology and
environmental engineering (de Barros et al., 2012; Libera et al., 2019).

As mentioned in Section 3.3, we will use the PPA method to quantify
the uncertainty in c,,, and z,. We will compare the results of the PPA
method with the results obtained through traditional Monte Carlo simu-
lations applied to the computationally expensive physics-based model.
For the Monte Carlo simulations relative to the physics-based model,
we randomly generate a large number (N,) of permeability fields using
the KL approach described in Section 3. For all considered cases, we
truncated the KL expansion after the first 130 terms, whose cumulative
sum was enough to reach 99% of the total eigenvalue summation, as
explained in Section 3.2. For each realization of the permeability field,
we numerically solve the flow and transport equations, see Egs. (1)-(5),
in order to compute 7, and c,,,,. We then compute the statistics of 7, and
Cmax OVer the ensemble of size N,. In our work, we set N, = 7000.

Figs. 2 and 3 show the first four statistical moments of 7, and ¢,
as a function of N, for different R and 012/, obtained from the Monte
Carlo simulations applied to the physics-based model. The results high-
light how the physics of the problem control the convergence of the
statistical moments of the quantities of interest. The first four statistical
moments of a quantity of interest Q, i.e. mean yg), variance ;48),
)

skewness ;4(3) and kurtosis u_’, of a sample of size N,, are calculated

0>
as follows:
1 G
m
Hy =-— ). 0; (©19)]
e N’ i=1
1 &
@ (hHy2
= [0 — 1yl (22)
1wl
@) (73
- Lo _ 23
Ho [,4313/2; L (23)
Nr
W= 13 Lo -y @24)
1
¢ [148)]2 = N e

As depicted in Figs. 2 and 3, N, was sufficient to achieve statistical
convergence of the mean of ¢, and c¢,,,. On one hand, we observe
that the mean ¢, at the control plane (Fig. 2, top left) stabilizes for
N, 5 2000 for all R and 512( values considered. On the other hand,
when we consider the variance of the early arrival times, yff) (Fig. 2,
top right), there is a distinction in the number of realization required
to reach convergence, and that distinction is based on the level of
heterogeneity of the log-permeability field. For the lowest level of
permeability heterogeneity considered (0'%, = 0.5), for both values of
R considered, convergence is reached for N, < 3000. However, an
increase of heterogeneity level (af, = 1.5) required a higher number of
realizations to reach statistical convergence: N, = 5000 for R = 1.5, and
N, 2 6000 for R = 0. In particular, we note that the high heterogeneity
case with no viscosity contrast (af, = 1.5, R = 0) requires additional
simulations to reach full convergence of ;4,(3). This can be explained
considering that the presence of a viscosity contrast (R > 0) generates
fingering at the front of the plume and enhances the mobility of the
plume, thus leading to earlier early arrival times at the control plane
and reducing the sample-to-sample fluctuations of 7,. Fig. 2 reveals
that the higher statistical moments of ¢, have not reached convergence
at N, = 7000 for the highest level of permeability heterogeneity
considered (5}2, =1.5).

As for the maximum concentration at the control plane, c,,,, we
can see from Fig. 3 that the mean value, ygfn)‘m, reaches convergence
for N, < 3000. Convergence in the mean c,,,, is reached faster in the
presence of viscosity contrast. This is due to the fact that the presence
of a viscosity contrast (i.e., R > 0) augments mixing rates of the
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Fig. 2. Convergence analysis of the Monte Carlo simulations for the first four statistical moments of the plume’s early arrival time at the control plane for the four cases considered
in this study. The results depict the mean yf” (top left), variance yf‘z) (top right), skewness ”:3) (bottom left), and kurtosis ;44) (bottom right). The dashed gray lines represent the
value of each statistical moment obtained from the Monte Carlo simulations for an ensemble of size N, = 7000.

solute plume thus reducing the sample-to-sample fluctuations of the
ensemble (Bonazzi et al., 2021). Notice that, while the second order
moment an)” . seems to be reaching convergence for N, =~ 7000, the

higher moments of c,,,, have not reached convergence yet at N, = 7000.

Based on the previous results, it is evident that the Monte Carlo
method applied to the physics-based model is proficient at obtaining
converged low-order statistics. However, when it comes to more intri-
cate probabilistic information, particularly detailed PDFs of the Qol, its
accuracy may be lacking. In the forthcoming sections, we will present
results derived from the PCE-based PPA method and draw comparisons
with the Monte Carlo method. The primary objective of this comparison
is to highlight the limitations of the Monte Carlo method applied to the
physics-based model in capturing detailed probabilistic information.
As discussed in Section 3.3, the PPA method inherits the mean-square
convergence property of the PCE concerning the polynomial order. To
ensure the convergence of the PPA model, we systematically increase
the polynomial orders in the PPA models. We stop this procedure
when the PPA models with two successive maximum polynomial orders
(e.g., order 3 and order 4 in Fig. 4) exhibit a difference within a
predefined tolerance. In this study, our emphasis is on uncertainty
quantification rather than point-wise prediction. Therefore, we use the
comparison of PDFs as a criterion to assess convergence with respect
to the polynomial orders.

It is important to note that the ideal approach to confirm the conver-
gence of the PPA model would involve generating a significantly larger
number of Monte Carlo samples and utilizing the Monte Carlo model
as a reference. However, practical constraints, particularly computa-
tional limitations, make this nearly impossible in many applications,
especially when dealing with complex underlying physics, as is the case
in the application presented in this paper. In a recent work (Zeng and

Ghanem, 2023), this approach was demonstrated in two applications,
where the computational burden of conducting an extensive number of
physical model evaluations remained manageable. The results revealed
that the converged PPA model, in terms of polynomial orders, exhibited
very good accuracy when compared to a reference model.

In the following, we report the PDF and CDFs of ¢, and ¢,,,, obtained
by the PPA method for different values of R and 012(. We compare the
PPA-based uncertainty estimates with the ones obtained through the
Monte Carlo simulations. For the PPA method, we randomly choose
6000 of the 7000 Monte Carlo samples as the training data set, while
the remaining 1000 data are employed as test data set. We computed
the relative L2 norm error to compare the PPA model prediction of
the test set with the outputs from the flow and transport simulations,
for all Qols and all four scenarios considered in this study; the order
of magnitude of the relative L2 norm error was 10~!. The input of
the PPA model are the KL terms of the permeability field, which has
a dimension D = 130 (i.e. the number of terms considered from
the KL expansion). Fig. 4 illustrates the convergence of the early-
time PDF with respect to the PCE order. As depicted in Fig. 4, the
findings suggest that the PDFs of the third-order PCEs closely align
with those of the fourth-order PCEs. This implies that higher-order
information has minimal impact on the Qol starting from order four.
Consequently, a fourth-order PCE proves to be sufficient for achieving
convergence in the PPA-based PDFs. Furthermore, it is noteworthy that
the PPA dimensions for all these cases are discovered to be 5. This
signifies that, despite the input dimension being D, the PPA method is
capable of identifying a 5-dimensional space that accurately represents
the Qol using fourth-order PCEs. The dimension reduction achieved
here is crucial as it alleviates the need for an extensive number of
samples. In this particular application, the convergence of the PPA
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Fig. 3. Convergence analysis of the Monte Carlo simulations for the first four statistical moments of the maximum concentration at the control plane for the four cases considered

represent the value of each statistical moment obtained from the Monte Carlo simulations for an ensemble of size N, = 7000.

models demonstrates that 6000 samples prove to be adequate for the
5-dimensional representations.

Fig. 5 reports the PDFs of ¢, for R = 0 (in blue) and R = 1.5
(in yellow), for two levels of log-permeability heterogeneity, namely
02 = 05 (Fig. 5, left) and o2 = 1.5 (Fig. 5, right). The results in
Fig. 5 depict how viscous fingering enhances, in a statistical sense, the
mobility of the leading edge of the solute plume. Close inspection of
Fig. 5 shows that there is higher probability of observing earlier arrival
times when R = 1.5 when compared to the case of R = 0. When
viscous fingering is present, the solute reaches the control plane earlier.
This is expected since viscous fingering enhances the mobility of the
solute plume, hence leading to earlier first arrival times (Nicolaides
et al., 2015; Bonazzi et al., 2021). The presence of viscous fingering
also causes a slight reduction in the uncertainty associated with z,,
especially for the case of higher level of permeability heterogeneity
(compare 0}2, = 0.5 to 1.5 cases), as visible in Fig. 5 (right), where the
tails of the PDF for R = 0 span a larger ¢, interval when compared to
the PDF for R = 1.5. Fig. 5 also shows the differences between the PPA-
based PDF and the PDF obtained through Monte Carlo simulations. The
observed differences are mainly due to the lack of convergence of the
higher order moments of ¢, (see Fig. 2). Table 2 reports the differences
between the statistics of the PDFs reported in Fig. 5 obtained via the
PPA-method and the Monte Carlo simulations.

The differences between the Monte Carlo and the PPA results can be
better quantified by analyzing the CDF of 7, (Fig. 6). With the exception
of the case for 0"2, = 0.5 and R = 0, differences are observed between
the Monte Carlo (colored lines) and the PPA (black lines) CDFs. From
the figure, it is possible to see that the Monte Carlo method lacks in
accuracy when it comes to capturing the tails of the distribution. Simi-
lar to the PDF analysis (Fig. 5), the results depicted in Fig. 6 highlight

the significant role of viscous fingering in enhancing plume mobility
when compared to the results obtained with R = 0. As discussed in
Fig. 5, the probability of observing earlier breakthroughs at the control
plane is higher when both high permeability heterogeneity and viscous
fingering are present (red continuous line), as both sources of disorder
lead to an increase of fluid channeling effects, thus allowing the front
of the plume to travel faster. Lowering the permeability heterogeneity
(dashed orange line) results in a lower probability P[t < 7], where ¢
can represent a critical travel time established by a regulatory agency
(e.g. for safety assessment of waste repositories). For example, if we
look at P[z, < 15] (i.e., the probability that the plume will reach the
control plane earlier than ¢ = 15) for the case with 012, =15and R=1.5
(red line), we have P[z, < 15] = 0.5. On the other hand, for the case with
lower permeability heterogeneity (af, = 0.5 and R = 1.5, orange line)
we have P[t, < 15] = 0.1. This means that the probability that the plume
will reach a target location earlier than ¢t = 15 is five times higher in
the case of higher heterogeneity when compared to the case with lower
heterogeneity, for the same level of viscosity contrast (R = 1.5).

Interestingly, by comparing the case where viscosity contrast is
absent and higher permeability heterogeneity is considered (af, =15
and R = 0, solid green line) with the case with lower permeability het-
erogeneity and viscosity contrast (af, =0.5 and R = 1.5, dashed orange
line) we can see that the probability of non-exceedance, i.e. P[t, < 7], is
always higher for the case where a viscosity contrast is present, even if
the level of permeability heterogeneity is lower (dashed orange line),
for any considered value of z. This suggests that the role of viscous
fingering in enhancing connectivity might be predominant over the
role of permeability heterogeneity, at least for the values of 0'}2, and R
here considered in this work. As discussed in Bonazzi et al. (2021), the
significance of viscous fingering in enhancing plume mobility, when
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compared to permeability heterogeneity, will depend on the distance
between the source and the control plane.

Next, we analyze the PDFs of the maximum concentration observed
at the control plane (Fig. 7). As depicted in Fig. 7, an increase in R
from O to 1.5 leads to steeper and narrower PDFs for c,,,. Viscous
fingering enhances mixing between the two fluids which contributes
to a reduction of the sample-to-sample variability of the plume’s con-
centration field within the ensemble. The mixing between both fluids
is further augmented when the heterogeneity level is increased from

0-)2, = 0.5 to 1.5. This is because higher permeability heterogeneity leads
to increased plume spreading, thus larger inter-facial area between the
plume and the surrounding fluid therefore enhancing diffusive mass
transfer (de Barros et al., 2015). On average, we observe a smaller
Cnax fOr the case of 012, 1.5 when compared to the PDFs obtained
for 62 = 0.5.

Fig. 8 reports the results in terms of CDFs. The probability of non-
exceedance for the maximum concentration registered at the control
plane, defined as P[c, < ¢*], is always higher for the cases with

max
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Comparison between the statistics of the early arrival times obtained through the PPA method and Monte
Carlo simulations. The first four statistical moments of early arrival times are reported, as well as the ratios
of the statistical moments between Monte Carlo and PPA. The subscript “MC” denotes the moments obtained
from the Monte Carlo simulations whereas the subscript “PPA” correspond to the moments computed through

the Projection Pursuit Adaptation method.

Simulation Mean Variance
(1) (1) (1) (1) 2) 2) 2) 2)
Humc PPA Hyre! Hppa Humc PPA Hyrc! Hppa
62 =05 R=0 26.66 26.68 1.00 15.75 11.98 1.31
07 =05 R=15 18.83 18.83 1.00 10.50 6.64 1.58
o'f, =15 R=0 22.06 22.08 1.00 32.53 19.69 1.65
62 =15 R=15 15.33 15.31 1.00 14.67 7.29 2.01
Simulation Skewness Kurtosis
3) 3) 3) 3) “) ) “) (©)
Huc Hppa Hyre/Hppy Huc Hppa Hyre/Hppy
o'i =05 R=0 0.19 —0.002 —89.97 3.32 3.45 0.96
62 =05 R=15 0.17 -0.37 —-0.45 2.89 4.26 0.68
02 =15 R=0 1.16 0.89 1.31 7.40 8.44 0.88
O'? =15 R=15 0.75 0.02 36.00 5.18 3.89 1.33

CDF

0.4

0.2

Fig. 6. CDFs of early arrival times 1, for the four combinations of R and ¢} considered.
The black lines represent the CDFs calculated with the PPA method (fourth-order PCE)
whereas the colored lines correspond to Monte Carlo-based CDFs. The PPA curves were
generated using 10° samples.

012/ = 1.5 compared to the cases with af, = 0.5 (assuming the same
level of viscosity contrast), thanks to the increased dilution caused by
higher levels of heterogeneity. For example, in absence of viscosity
contrast between the fluids (Fig. 8, left) the Monte Carlo approach
provides P[c,,, < 0.1] ~ 0.9 for the higher heterogeneity case (¢3 = 1.5,
solid line), while P[c,,,, < 0.1] =~ 0.6 for the lower heterogeneity case
(012/ = 0.5, dashed line). Considering the CDF provided by the PPA
method, the difference in probability of non-exceedance between the
two levels of heterogeneity is even more marked, with P[c,,,, < 0.1] ~ 1
and P[c,,,, <0.1] = 0.6 for the higher and lower levels of heterogeneity,
respectively. When we consider the presence of a viscosity contrast
between the fluids (Fig. 8, right) the Monte Carlo approach gives
Ple,ux < 0.1]1 = 0.9 for the higher heterogeneity case (o‘%, = 1.5, solid
line), while P[c,,, < 0.1]1 ~ 0.75 for the lower heterogeneity case
(0?, = 0.5, dashed line). On the other hand, the PPA method provides
Plcax < 0.11 % 1 and Plc,,,, < 0.1] = 0.9 for the higher and lower levels

of heterogeneity, respectively.

Finally, both Figs. 7 and 8 highlight the inability of a computa-
tionally expensive Monte Carlo simulation (with 7000 realizations) to
capture the uncertainty of the maximum concentration at the control
plane. This is particularly evident for the case of R = 1.5, when non-
linear effects are present in the governing flow and transport equations.
The differences between the PPA-based method and the Monte Carlo

10

simulation are also reported in Table 3. Table 3 reports a quantitative
comparison between the statistical moments of the maximum concen-
tration at the control plane obtained from the PDFs reported in Fig. 7,
for both the Monte Carlo simulations and the proposed PPA method.

6. Summary

We investigated how uncertainty related to the spatial structure of
the permeability field affects the maximum concentration and early
arrival times at a target location when viscous fingering is present.
We consider two different levels of permeability heterogeneity (random
field characterized by a%, = 0.5 and af, = 1.5), and viscosity contrast
(R =0, i.e. no viscosity contrast, and R = 1.5), for a total of four pos-
sible combinations of level of permeability heterogeneity and viscosity
contrast. Estimating uncertainty in highly non-linear problems, such as
the one addressed in our work, through traditional approaches (such as
Monte Carlo simulations) can be computationally expensive. Especially
when the application at hand requires the estimation of the probability
density function of a given quantity of interest. This is particularly
important in probabilistic risk analysis where decision makers are
interested in the probability of extreme events. In order to quantify the
uncertainty associated with these two quantities of interest, we propose
employing the PPA method, which offers several appealing advantages
over other methods. It is a data-driven approach that optimally repre-
sents a given quantity of interest in a low-dimensional manifold. Unlike
other dimension reduction techniques in uncertainty quantification,
such as basis adaptation and active subspace, PPA utilizes non-linear
information of the quantity of interest to identify the low-dimensional
manifold, thereby increasing the likelihood of finding a more accurate
lower-dimensional space. Additionally, PPA uses independent samples
for all computations, which imposes fewer restrictions on the training
dataset. Lastly, the PPA method possesses multi-quantity of interest
capability, thus allowing the construction of surrogates for various
quantities of interest using the same dataset. To the best of our knowl-
edge, our work represents one of the first applications of the PPA
method to highly non-linear physical formulation describing fluid flow
and scalar transport in heterogeneous porous media.

Our results highlight the role of viscous fingering in enhancing the
mobility of the solute plume being transported in a heterogeneous
permeability field. Results show how viscous fingering increases the
probability of observing earlier breakthroughs at a target location. We
found that the presence of a viscosity contrast reduces the uncertainty
associated with early arrival times 7, and maximum concentration c,,,,.

Notably, the number of Monte Carlo realizations considered in this
study, N, = 7000, is not sufficient to reach convergence of the PDFs
when compared to the results obtained through the PPA method. The
discrepancies between the PPA method and the Monte Carlo results

are more evident when ¢, is the quantity of interest. These results



A. Bonazzi et al.

40

30

20

PDF

10

0 0.1

Advances in Water Resources 188 (2024) 104706

R=15

PDF

0.2

Cmaa:

Fig. 7. PDFs of maximum concentration registered at the control plane for R =0 (left) and R = 1.5 (right) for two distinct levels of heterogeneity (o,z, =0.5 and 1.5). The black
lines represent the PDFs calculated with the PPA method (fourth-order PCE), whereas the colored PDFs correspond to Monte Carlo simulations. The PPA curves were generated

using 10° samples.

0.8

0.6

CDF

0.4

0.2

R=1.5

0.8

0.6

CDF

0.4

3 _
oy = 1.

0.2

ot
=

Jf | mmmnot =0,
S/ |=——PPA

0.1

Cmazx

0.15 0.2 0 0.1

Cmazx

Fig. 8. CDFs of maximum concentration registered at the control plane for R = 0 (left) and R = 1.5 (right) for two distinct levels of permeability heterogeneity. The black lines
represent the results calculated with the PPA method (fourth-order PCE) whereas the colored lines correspond to the results obtained via Monte Carlo simulations. The PPA curves
were generated using 10° samples.

Table 3

Comparison between the statistics of the maximum concentration obtained through the PPA method and
Monte Carlo simulations. The first four statistical moments of maximum concentration are reported, as
well as the ratios of the statistical moments between Monte Carlo and PPA. The subscript “MC” denotes
the moments obtained from the Monte Carlo simulations whereas the subscript “PPA” correspond to the
moments computed through the Projection Pursuit Adaptation method.

Simulation Mean Variance
(1) (1) OO @) @) @ 7,
Hyc Hppa Hyge/Hppa Hyc Hppa Hysc!/ Hppa
o’% =05, R=0 0.095 0.094 1.00 8.2:107* 3.9-107* 2.08
03 =05, R=1. 0.084 0.084 1.00 5.9-10~* 1.7-10~* 3.47
0')2, =15 R=0 0.062 0.061 1.00 6.2:1074 2.5-107* 2.54
0'12, =15 R=1. 0.065 0.065 1.00 6.0-107* 1.6-10™* 3.86
Simulation Skewness Kurtosis
3) G) G /0 ) ) @ @
Hyre Hppa Hyre/ Hppy Hmc Hppa Hyre! Hppa
0"2, =05, R=0 0.56 0.06 9.17 3.35 3.12 1.07
612, =05, R=1. 0.51 -0.01 -51.72 3.42 8.10 0.42
03, =15 R=0 0.70 0.05 13.88 3.85 3.05 1.26
o'i =15 R=1. 0.67 -0.12 —5.66 3.78 5.21 0.73

11
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highlight the importance of having alternative methods, such as the
PPA method, for risk assessment of contaminated subsurface sites and
reliable decision making under uncertainty.

Aside from the uncertainty stemming from the permeability field,
other sources of uncertainty can play a role. Further research is needed
to assess the impact of model uncertainty associated with the relation-
ship between the dissolved solute concentration and fluid viscosity.
Although the heterogeneous log-permeability fields investigated in this
work are multi-Gaussian, the proposed uncertainty estimation method
can also be used to address non-Gaussian fields by making use of
copula-based geostatistical tools or specific transformations (i.e., Nataf
transformation). The results in this study are limited to a 2D config-
uration. As shown in the literature (Bonazzi et al., 2023), the solute
mixing dynamics in a 3D heterogeneous flow can be quite different
when compared to a 2D case. Therefore, additional research efforts
should be allocated to explore how the uncertainty of first arrival times
and maximum concentration are affected by viscous fingering in 3D
flows. Finally, the results in this work are limited to R > 0. Similar
analysis should be carried out for R < 0.
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Appendix. Dimensionless groups

In the following, we present the dimensionless group adopted in
this study. All dimensional quantities are denoted with a * symbol.
Egs. (1)-(5),see Section 2, are based on the following dimensionless
groups:

=

37 E’t=i ﬁ,p=£,k=
4 U 7 Ho Pe h,

where 7, is the advective time scale, U is the mean longitudinal veloc-
ity, ¢, is the initial concentration of the conservative tracer, y, is the
viscosity of the ambient fluid, k. is a characteristic (mean) permeability
and p, is the characteristic pressure. Here, we have k, = exp[(Y)] =
1 m (i.e., geometric mean), p. = (4,U)/(4k.) and 7, = 1/U. Another
dimensionless group present in Eq. (5) is the Péclet number, Pe =
U A/D. All lengths are normalized by the correlation length A. For this
work, we set A=5m, L, =60 m, I, =50 m, 4 =042 m, §, = 15 m,
$pp=15m, §, =10m, /; =5m, /, =20 m and L,, = 55 m. Table 1
contains these parameters in dimensionless values.

X=-, u= (A1)

é
,e=—, u=
CD
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