

1 Comparative connectomics of the descending and 2 ascending neurons of the *Drosophila* nervous 3 system: stereotypy and sexual dimorphism

4
5
6 Tomke Stürner^{*1,2}, Paul Brooks^{*2}, Laia Serratosa Capdevila², Billy J. Morris², Alexandre
7 Javier², Siqi Fang², Marina Gkantia², Sebastian Cachero¹, Isabella R. Beckett¹, Andrew S.
8 Champion², Ilina Moitra², Alana Richards², Finja Klemm³, Leonie Kugel³, Shigehiro Namiki⁴,
9 Han S.J. Cheong^{5,6}, Julie Kovalyak⁵, Emily Tenshaw⁵, Ruchi Parekh⁵, Philipp Schlegel^{2,1},
10 Jasper S. Phelps^{7,8}, Brandon Mark⁹, Sven Dorkenwald^{10,11}, Alexander S. Bates^{1,2,7,12}, Arie
11 Matsliah¹⁰, Szi-chieh Yu¹⁰, Claire E. McKellar¹⁰, Amy Sterling¹⁰, Sebastian Seung^{10,11}, Mala
12 Murthy¹¹, John Tuthill⁹, Wei-Chung A. Lee^{7,13}, Gwyneth M. Card^{5,6}, Marta Costa², Gregory
13 S.X.E. Jefferis^{†1,2}, Katharina Eichler^{†2,3}

14
15 ¹Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK

16 ²*Drosophila* Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK

17 ³Genetics Department, Leipzig University, Leipzig, Germany

18 ⁴Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan

19 ⁵Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA

20 ⁶Zuckerman Institute, Columbia University, New York, United States

21 ⁷Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA

22 ⁸Brain Mind Institute & Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland

23 ⁹Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA

24 ¹⁰Princeton Neuroscience Institute, Princeton University, Princeton, USA

25 ¹¹Computer Science Department, Princeton University, USA

26 ¹²Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield
27 Road, Oxford OX1 3SR, UK

28 ¹³FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA

29

30 *contributed equally

31 [†]correspondence to: katharina.eichler@uni-leipzig.de and jefferis@mrc-lmb.cam.ac.uk

32

33 Abstract

34
35 In most complex nervous systems there is a clear anatomical separation between the nerve
36 cord, which contains most of the final motor outputs necessary for behaviour, and the brain.
37 In insects, the neck connective is both a physical and information bottleneck connecting the
38 brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse
39 populations of descending (DN), ascending (AN) and sensory ascending neurons, which are
40 crucial for sensorimotor signalling and control.

41

42 Integrating three separate EM datasets, we now provide a complete connectomic description
43 of the ascending and descending neurons of the female nervous system of *Drosophila* and
44 compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have
45 been matched across hemispheres, datasets and sexes. Crucially, we have also matched
46 51% of DN cell types to light level data defining specific driver lines as well as classifying all
47 ascending populations.

48
49 We use these results to reveal the general architecture, tracts, neuropil innervation and
50 connectivity of neck connective neurons. We observe connected chains of descending and
51 ascending neurons spanning the neck, which may subserve motor sequences. We provide a
52 complete description of sexually dimorphic DN and AN populations, with detailed analysis of
53 circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13),
54 male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work
55 represents the first EM-level circuit analyses spanning the entire central nervous system of an
56 adult animal.

57 Introduction

58 For the body to respond to the higher processing commands of the brain, motor and sensory
59 information must be transferred between the brain and nerve cord. In insects, there are 4
60 principal classes of neurons that traverse the neck. The three most numerous are: ascending
61 neurons (ANs), which have their soma and dendrites in the VNC and feedback information to
62 the central brain; descending neurons (DNs), which have the soma and dendrites in the brain
63 and send commands via axons to the ventral nerve cord (VNC); and sensory ascending
64 neurons (SAs), which have their soma outside of the VNC and send some sensory information
65 directly from the periphery to the brain. Finally, a small number of motor neurons (MNs) exit
66 the neck connective before reaching the nerve cord, directly targeting neck muscles in the
67 periphery (Strausfeld et al., 1987).

68
69 Previous light microscopy (LM) and genetic studies in *Drosophila* have demonstrated that
70 specific behaviours can sometimes be mapped to individual neurons and circuits. For the DN
71 population, a range of behaviours are linked to individual or small groups of DNs: aDN, DNg11
72 and DNg12 for anterior grooming sequences (Guo et al., 2022; Hampel et al., 2015), DNA02
73 for turning (Rayshubskiy et al., 2020), DNp50/MDN for backwards walking (Bidaye et al.,
74 2014), DNp01/GF for escape (Lima & Miesenböck, 2005), DNp07 and DNp10 for landing
75 (Ache et al., 2019), DNp15/DNHS1, DNp20/DNOVS1, and DNp22/DNOVS2 for flight and neck
76 control (Suver et al., 2016), and others. However, our understanding remains incomplete –
77 only a few studies have examined larger groups of DNs by morphology (Namiki et al., 2018)
78 or behaviour (Aymanns et al., 2022; Cande et al., 2018), and even less is known about ANs
79 (Chen et al., 2023).

80
81 Until the advent of the male adult nerve cord (MANC) dataset, we could only estimate how
82 many neurons connect the brain and the VNC by the available LM lines. 150 years after the
83 first Golgi stainings (Golgi, 1873), the neurons of the neck connective as a complete population
84 were described and typed for the first time, revealing 1328 DNs, 1865 ANs and 535 SAs in
85 adult *Drosophila* (H. S. J. * Cheong et al., 2024; Marin et al., 2023; Takemura et al., 2023).
86 For comparison, Winding et al. (2023) have identified 182 DNs in the *Drosophila* larva.

87 However, connectomic datasets are still scarce and to reveal the degree of variation in
88 *Drosophila* neuronal circuits, we need to compare EM datasets across individuals, sexes and
89 developmental stages, as done previously in *Caenorhabditis elegans* (Cook et al., 2019;
90 Witvliet et al., 2021). The first whole brain comparative connectomics study in adult *Drosophila*
91 (Schlegel et al., 2023) used two female datasets, FAFB-Flywire (Dorkenwald et al., 2023;
92 Schlegel et al., 2023; Zheng et al., 2018) and the truncated hemibrain dataset (Scheffer et al.,
93 2020), to obtain initial insights into which connections between neurons are conserved across
94 datasets and specimens, estimating the extent of biological variation in connectomes. Here,
95 we conduct a comparative analysis of EM datasets across sexes.
96

97 Male and female *Drosophila* exhibit sexual dimorphism in their behaviour, mediated by
98 dimorphic neuronal circuits in both the brain and the VNC. Differences exist both in the
99 connections made by neurons that are shared between the sexes and in the presence of
100 neurons that appear to be specific to one sex. The sex of each *Drosophila* neuron is
101 determined genetically, primarily through the expression of the transcription factor genes
102 double sex (*dsx*) and fruitless (*fru*). Studies on *fru* and *dsx* expressing neurons and dimorphic
103 behaviours have revealed several sexually dimorphic neurons and small circuits in the brain
104 and VNC (Auer & Benton, 2016; Pavlou & Goodwin, 2013). Females, for example, require
105 oviDNs for egg laying (Ache et al., 2019; F. Wang et al., 2020a) and vpoDN to open their
106 vaginal plate when accepting a male (K. Wang et al., 2021). In contrast male specific P1
107 central brain neurons control both intermale aggression and courtship steps such as wing
108 extension (Hoopfer et al., 2015; von Philipsborn et al., 2011) while a set of DNs (pIP10 and
109 pMP2) and VNC neurons (TN1a, dMS2, vPR9, dPR1, dMS9, and vMS12) act to coordinate
110 time and shape of sine and/or pulse song (Lillvis et al., 2024; Shiozaki et al., 2023; von
111 Philipsborn et al., 2011). However, there has not been any systematic EM level comparison
112 of dimorphic neurons between males and females.
113

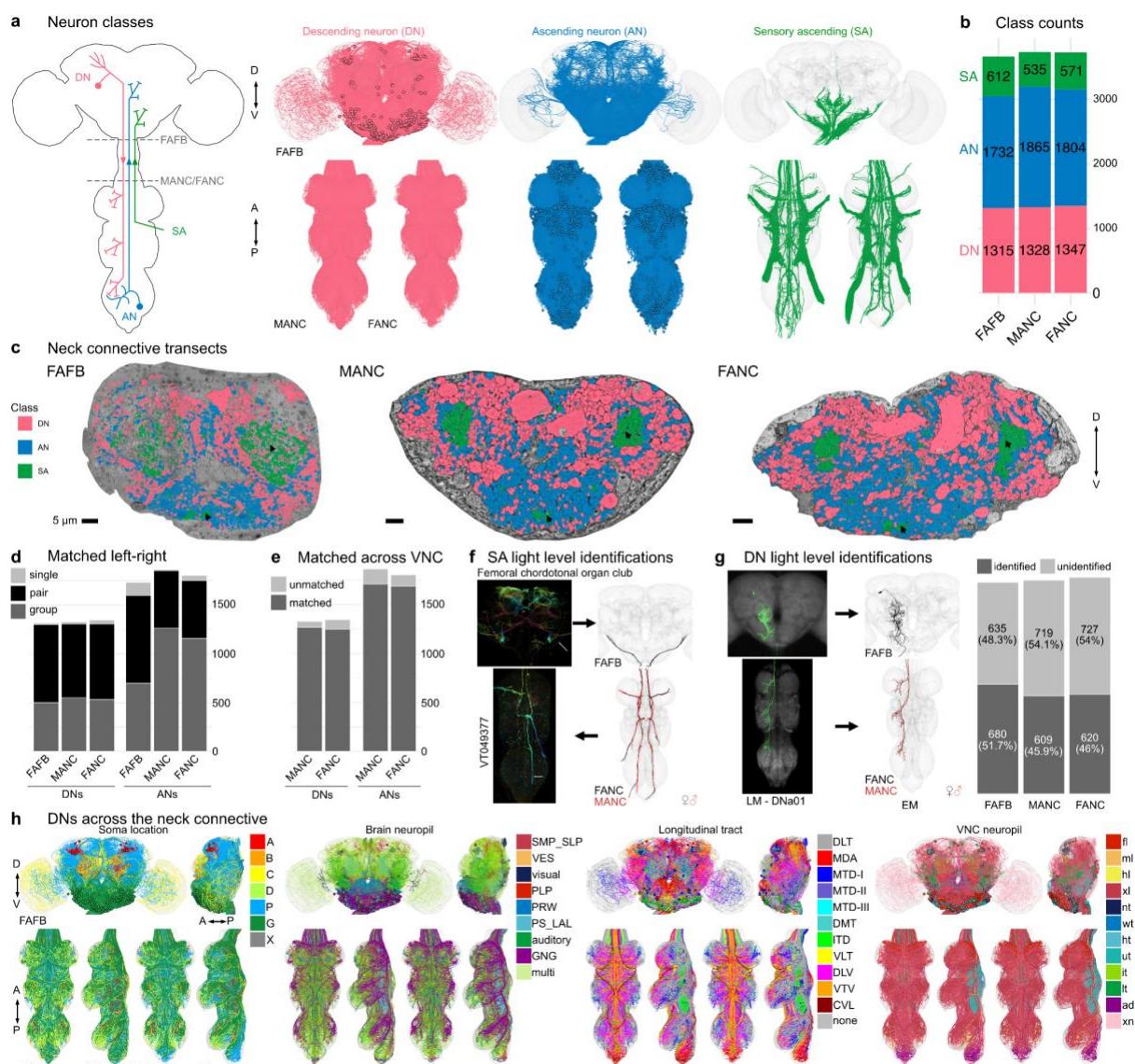
114 We now describe all the neck connective neurons of the adult female fly brain (FAFB-Flywire)
115 (Chen et al., 2023; Dorkenwald et al., 2023; Schlegel et al., 2023) and the female adult nerve
116 cord (FANC) (Azevedo et al., 2022; Phelps et al., 2021), and compare them to the MANC
117 dataset (H. S. J. *. Cheong et al., 2024; Marin et al., 2023; Takemura et al., 2023). We present
118 the strategies developed to bridge physically disconnected datasets (brain and VNC) and
119 compare datasets of different sexes. Our work represents the first atlas of DNs, ANs and SAs
120 based on EM connectome data from the brain and the VNC. We then illustrate the utility of
121 this complete and comprehensively annotated resource by addressing three scientific
122 questions: first, we investigate the types of sensory information processed by DNs in the brain
123 and the connections between ANs and DNs in the brain and nerve cord. Second, we explore
124 stereotypy across the three datasets at the level of morphology and connectivity. Last, we
125 examine the implications of unmatched neurons across datasets, particularly in the context of
126 sexual dimorphism.

127 Results

128 Matching neurons across three datasets

129 We reconstructed all of the neurons that traverse the neck connective in the female adult fly
130 brain (FAFB-Flywire) and the female adult nerve cord (FANC) datasets; we then compared
131 them to the previously published male adult nerve cord (MANC) dataset (H. S. J. * Cheong et
132 al., 2024; Marin et al., 2023; Takemura et al., 2023) (Fig. 1, Supplemental file 1 for FAFB and
133 FANC seed planes). We find that in the three datasets there are between 1315 and 1347 DNs
134 that transmit motor commands and other information from the brain to the VNC; between 1733
135 and 1865 ANs that report processed sensory and motor state information from the VNC back
136 to the brain; and between 535 and 611 SAs that convey sensory information directly from the
137 periphery to the brain (Fig. 1b). The position of these neurons in the neck connective is
138 morphologically segregated, with DNs more dorsal, ANs more ventral, and the SAs localised
139 in two main and two smaller bundles on each side (Fig. 1c, see black arrows and Extended
140 Data Fig. 1). DNs and ANs were matched across the two sides into pairs or groups in all
141 datasets, and matched between the male and female VNC by their morphology and
142 connectivity (Fig. 1d,e).

143


144 We have contributed our proofreading and annotation of these neck connective neurons to
145 the separate online platforms hosting each of these EM datasets as well as enabling a range
146 of programmatic use (see Methods and Supplementary file 2); for example, both DN and AN
147 type annotations are available for the brain in the online FlyWire connectome browser at
148 codex.flywire.ai. However, we have found that comparisons across datasets are more
149 powerful when each dataset can be visualised simultaneously in the same virtual space with
150 a common interface for querying and viewing annotations. We have therefore provided access
151 to co-registered and uniformly annotated neck connective neurons using the Neuroglancer
152 viewer (Maitin-Shepard et al., 2021). This combined 3D web atlas can be viewed by following
153 <https://tinyurl.com/NeckConnective> (see Methods – Neuroglancer Link for details).

154

155 Currently available EM datasets comprise either the brain or the VNC and are therefore
156 truncated at the neck during specimen preparation. This creates a considerable challenge for
157 matching the brain and VNC parts of the neurons sending projections through the neck.
158 Matching existing light-level descriptions of these neurons to their EM-reconstructed
159 counterparts is necessary for identifying these neurons across EM datasets, bridging brain
160 and VNC, as well as linking the morphology to behavioural data. The ANs and SAs have
161 recently been typed in the male VNC (Marin et al., 2023), but published LM information for
162 these neurons is currently limited. ANs will require detailed matching with future light level
163 resources but we were able to make some specific matches (see Fig. 4). However for SAs, a
164 smaller and much less complex population, we were able to use comparisons with available
165 LM images together with the position of tracts within the neck connective to assign gross
166 sensory modalities in the brain as well as VNC (Fig. 1f, Extended Data Fig. 2; supporting
167 evidence documented in Supplementary file 2 FAFB_SA_identification).

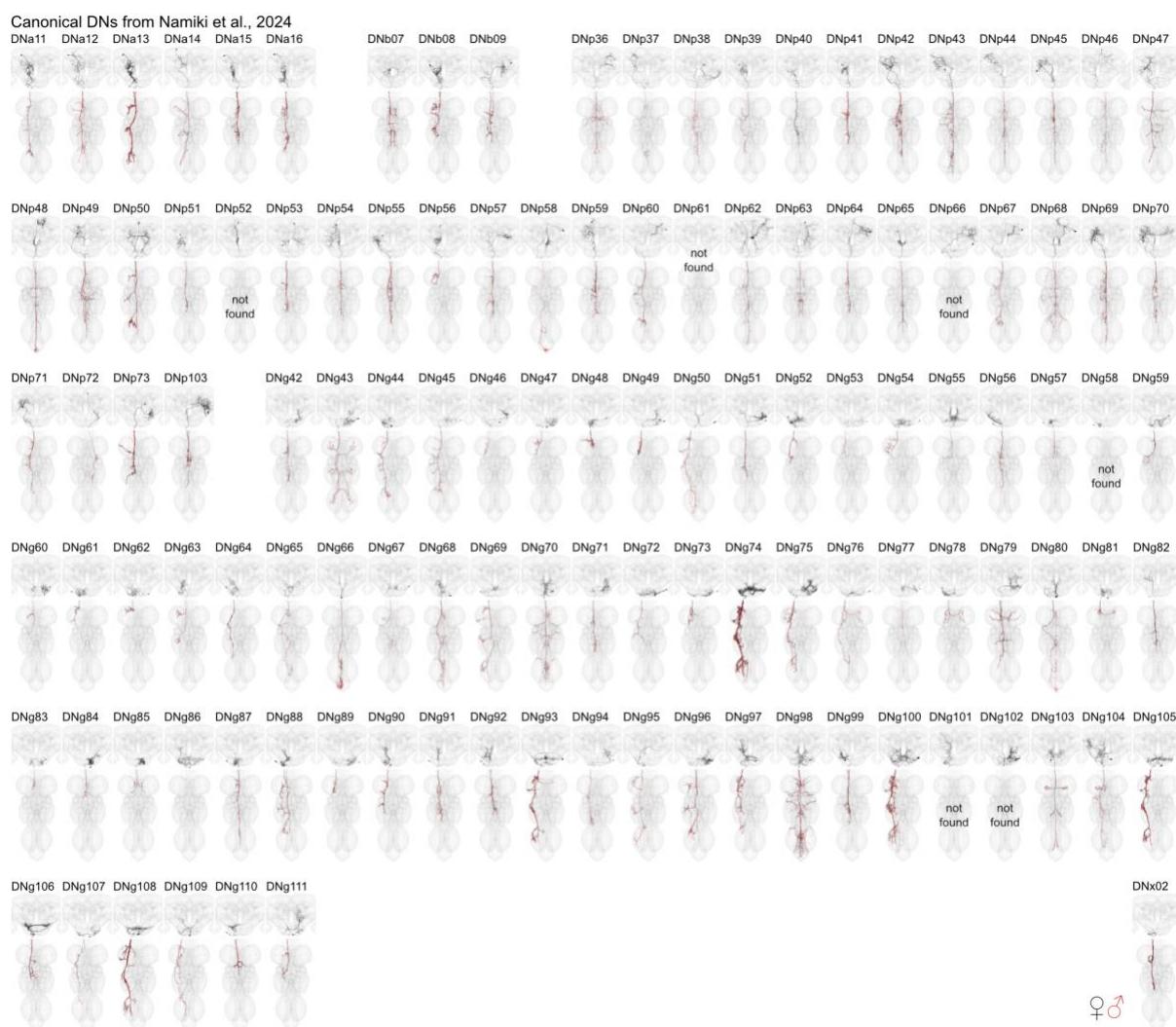
Comparative connectomics of *Drosophila* ascending and descending neurons

4

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Fig. 1: Reconstruction and identification of three neuronal classes across three datasets. **a**, Schematic of the central nervous system with the three neuronal classes that pass through the neck connective: descending neurons (DNs), ascending neurons (ANs) and sensory ascending neurons (SAs). FANC neurons are shown in MANC space here and in all following figures. **b**, Number of neurons in each class and dataset. **c**, Transects through the neck of the three datasets: Female Adult Fly Brain (FAFB), Male Adult Nerve Cord (MANC) and Female Adult Nerve Cord (FANC). These neck connective transects were used as seedplanes to find and reconstruct the three classes of neurons shown in different colours. **d**, Number of DNs and ANs that have been left-right matched into pairs or groups in the three datasets. **e**, Number of DNs and ANs that have a match across the two VNC datasets. **f**, SAs were assigned modalities by matching to light microscopy (LM) images. Left, an example of a LM image of Femoral chordotonal organ club. Right, the EM reconstructions that were matched to the image. **g**, DNs were identified in all three EM datasets by matching the EM reconstructions to LM level descriptions (mainly (Namiki et al. 2018), see supplemental file 2 - DN_identification). Left, an example of a LM image of DNA01 in the brain and VNC and next to it the FAFB, FANC and MANC EM reconstructions that were matched to those images. Right, the quantification of DNs identified in all three datasets. **h**, Identified DNs that can be matched across all three datasets coloured by soma location, brain neuropil, longitudinal tract and VNC neuropil. Please see attached files for a high resolution version of this figure.

188 There is a significant amount of LM data for DNs (in contrast to ANs or SAs). In parallel work,
189 we have recently described all DN axons in the male VNC EM connectome (H. S. J. *. Cheong
190 et al., 2024) and matched some to earlier light level data of Namiki et al. (2018). By overlaying
191 EM morphologies on these LM images, primarily sourced from Namiki et al. (2018) and a new
192 LM collection, Namiki et al. (2024, manuscript in preparation), we were now able to identify
193 51.7% of FAFB and 46% of FANC DNs as well as increasing the proportion of LM identified
194 DNs in MANC from 29% to 45.9% (supplemental file 2 - DN_identification). By separately
195 matching the brain and VNC portions of a given DN to the same driver line, we were able to
196 bridge connectome datasets. We could therefore analyse input and output, as well as compare
197 between the male and female VNC (Fig. 1g). DNs have previously been grouped by different
198 characteristics, and we demonstrate how soma location, longitudinal tract and neuropil
199 innervation compare across the three datasets (Fig. 1h, Extended Data Fig. 3-6) (H. S. J. *.
200 Cheong et al., 2024). As previously reported (H. S. J. *. Cheong et al., 2024; Namiki et al.,
201 2018), soma location does not correlate strongly with other features such as axon tract and
202 VNC neuropil innervation; we do note that neurons of the DNa and DNb soma groups
203 innervate a combination of leg or upper tectulum neuropils, which matches reported functions
204 for many of these DNs in steering during walking or flight (Extended Data Fig. 3a,b). Examining
205 brain and VNC neuropil innervation patterns together highlights some interesting correlations.
206 For example, DNs that innervate the SMP and SLP regions in the brain (higher order
207 processing centres for olfactory stimuli) mainly target the abdominal ganglion of the VNC
208 where they are likely to regulate reproductive or digestive functions (Extended Data Fig. 4a,
209 5i). DN axon tracts also highlight interesting groups: e.g. MTD-II tract DNs target the upper
210 tectulum in the VNC (associated with wing pre-motor circuits) and receive input primarily from
211 brain neuropils associated with multimodal integration and steering, the posterior slope (PS)
212 and lateral accessory lobe (LAL). Nevertheless neuropil innervation and tract assignment are
213 still quite coarse organisational features and are only a guide to the function or sensory input
214 for any given DN. We therefore carried out a more detailed analysis of their sensory input.


215

216 Sensory input onto descending neurons

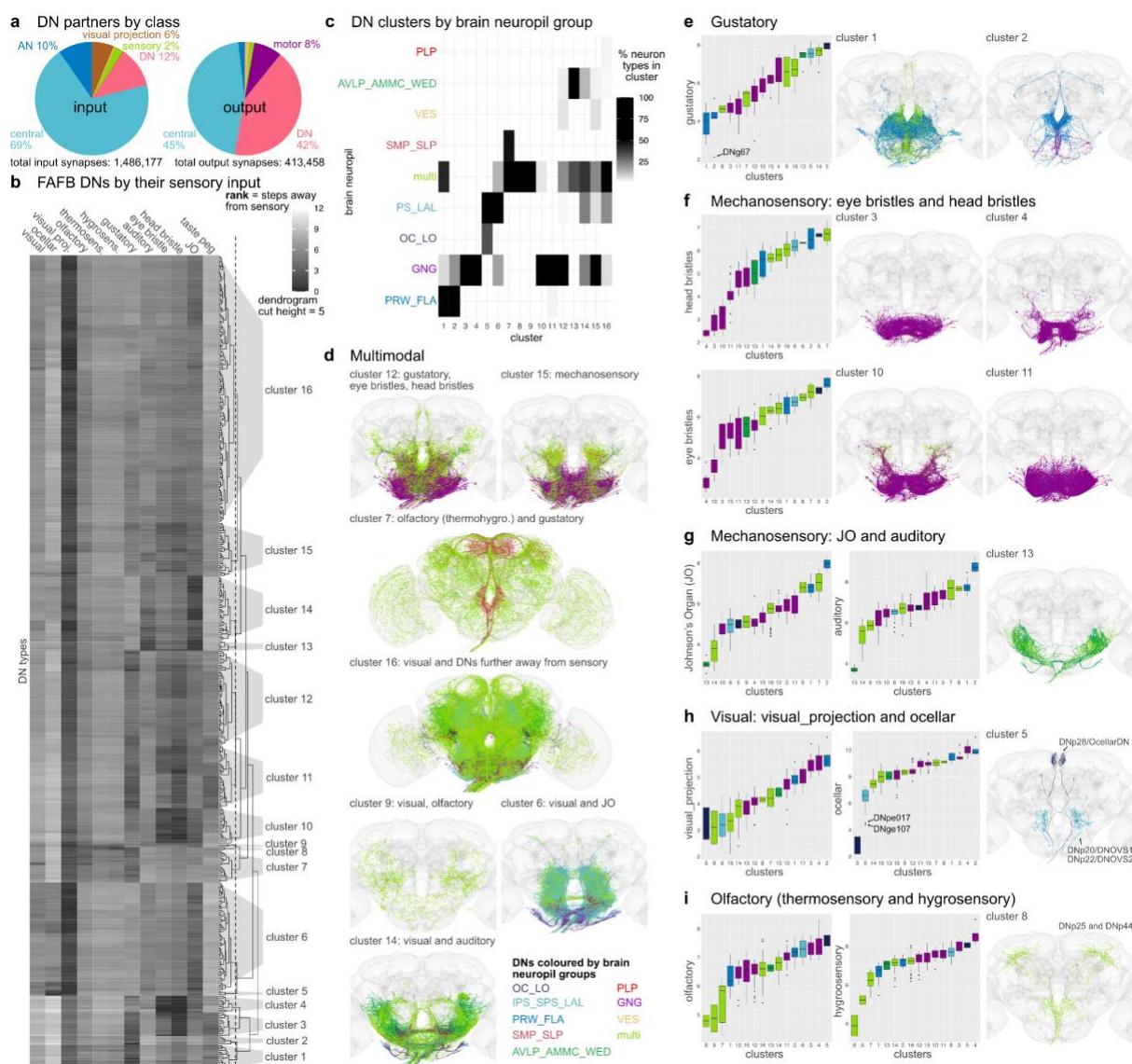
217 By matching our EM reconstructions to LM data and linking them to previously published
218 genetic or electrophysiological studies, we can make new predictions about DN functions and
219 their circuits. DNs have diverse morphologies in the brain and VNC that can be uniquely
220 identified in different EM datasets and LM lines (Fig. 2, see Methods – Light microscopy
221 identification). Of the 223 DN types identified by LM data, just 2 could not be found in any of
222 our EM datasets while a third turned out to be a duplicate; for 6 LM types we could identify a
223 matching type in the brain but were unsure in the VNC (Fig. 2, Extended Data Fig. 7,
224 supplementary file 2 DN_identification).

Comparative connectomics of *Drosophila* ascending and descending neurons

6

225
226
227
228
229
230
231
232
233

Fig. 2: DN matching to Namiki et al. 2024 in prep. Morphology of identified DNs across all three datasets with nomenclature as described in Namiki et al. 2024 in prep. One DN type could not be found as it was duplicated (DNp61) and five could only be found in the brain (DNp52, DNp66, DNg58, DNg101, DNg102). See Extended Data Fig. 7 for matching to DNs previously characterised at light level by Namiki et al. (2018). See supplementary file 2 DN_identification for details. DN morphologies from the female datasets (FAFB, FANC) are in black, male dataset (MANC) is in red. This figure is also provided in high resolution and DNs can be viewed in 3D at <https://tinyurl.com/NeckConnective>. Please see attached files for a high resolution version of this figure.


234
235
236
237
238
239
240
241
242
243
244
245
246
247

Many DNs identified at light level have been associated with specific behaviours, sensory stimuli and evoked motor programs (Simpson, 2024). We have previously described the wide range of motor circuits targeted by the DN population in the male VNC. By bridging the neck connective, we can now analyse at scale the sensory information received by DNs in the brain and how that relates to the circuits targeted by their axons in the VNC. We began by analysing connectivity within the brain (Fig. 3). Summarising the input and output partners by neuronal class already revealed interesting patterns (Fig. 3a). Input is dominated by brain interneurons (class=central and visual projection). However, there are also strong inputs (~10%) from at least two other sources: ANs and from DNs themselves. AN inputs are likely to convey a mix of processed sensory and motor state information from the VNC and there are long-standing hypotheses that these connections may be important for motor coordination (e.g. Chen et al., 2023). DN-DN connections were more unexpected. Although it has previously been reported that most DNs make axon collaterals (Namiki et al., 2018), commonly in the GNG area as they

248 leave the brain, the large number of output connections in the brain (413,458 output synapses,
249 Fig. 3a) was surprising since their principal axonal arbours are considered to be in the VNC.
250 DN connections onto other DNs account for 42% of their total output in the brain but only 2%
251 of their total output in the VNC (H. S. J. *. Cheong et al., 2024). This extensive DN-DN
252 interconnectivity in the brain suggests the possibility of coordinated action across DNs, an idea
253 that has recently been investigated by combining our connectome data with elegant functional
254 studies (Braun et al., 2024). Intriguingly, many of these DN-DN connections are axo-axonic;
255 whether this can result in direct excitation or inhibition of the downstream neuron or rather
256 gates the axonal output of this neuron is unclear although Braun et al. (2024) were able to
257 show that optogenetic activation of some DNs can propagate to others. The remaining DN
258 output in the brain primarily targets central brain interneurons (45%), with functions likely
259 including coordinating DN activity across the two sides of the brain. Finally DNs also make 8%
260 of their brain output directly onto motor neurons, mostly controlling the proboscis; this is very
261 similar to the fraction of direct output onto MNs in the VNC (H. S. J. *. Cheong et al., 2024).
262
263 DNs only receive a small fraction of their direct input from sensory neurons (2%). Therefore
264 understanding the sensory modalities driving DNs requires more complex pathway analysis.
265 Sensory neurons in the FAFB dataset have been annotated extensively and grouped into
266 distinct sensory modalities: visual (photoreceptors and ocellar), olfactory, thermosensory,
267 hygrosensory, auditory, mechanosensory eye bristles, mechanosensory head bristles,
268 mechanosensory Johnson's Organ (JO), and mechanosensory taste peg neurons (Schlegel
269 et al., 2023). We looked at how far DNs are from these sensory modalities in the brain by using
270 the information flow ranking established in Dorkenwald et al. (2023). This analysis excluded 4
271 DN types that are themselves sensory neurons (DNx01, DNx02, LN-DN1, LN-DN2). DNs were
272 assigned to 16 clusters by their similarity in sensory input (Fig. 3b). DNs in each cluster
273 typically have dendrites in the same brain neuropils (Fig. 3c, Extended Data Fig. 8 for FAFB
274 neuropil assignments, supplemental file 2 - FAFB_DNs). For example, the two first clusters
275 mostly arborize in the prowl and flange (Ito et al., 2014), brain regions that receive taste
276 information from the proboscis; these DNs are the closest (lowest average rank) to gustatory
277 sensory neurons based on their modality (Fig. 3b, c, e). Seven DN clusters receive a
278 combination of sensory modalities (Fig. 3d) and nine smaller clusters are specific to gustatory,
279 bristle, auditory, ocellar or olfactory sensory information (Fig. 3e-i).
280
281 By looking at the DNs previously linked to specific behaviours and from what we know about
282 different neuropils in the *Drosophila* brain, we can assess whether these clusters and the
283 sensory modalities assigned to them are appropriate. DNs in cluster 7, for example, integrate
284 olfactory and gustatory information (Fig. 3d); this cluster includes the oviposition-promoting
285 oviDN neurons, which would require this type of sensory information to select a nutrient-rich
286 food source (F. Wang et al., 2020a). Interestingly, most DNs in cluster 6, which receive a
287 combination of visual and auditory information, innervate the posterior slope (IPS,SPS) and
288 lateral accessory lobes (LAL), brain regions shown to be involved in higher order sensory
289 processing and steering (Currier & Nagel, 2020; Namiki & Kanzaki, 2016; Steinbeck et al.,
290 2020). These two sensory cues are essential for the navigation behaviour linked to DNs in this
291 cluster, such as DNb06, allowing the fly to turn away from or towards a sound or a visual
292 stimulus (Yang et al., 2023).

Comparative connectomics of *Drosophila* ascending and descending neurons

8

Fig. 3: Sensory ranking of descending neurons. **a**, Pie charts show the neuron class composition of input and output partners of all DNs in the brain (corresponds to FlyWire super_class). Total synapse numbers shown below. **b**, Clustering of FAFB DNs by their sensory input rank (all apart from sensory DNs: DNx01, DNx02, LN-DNs). The ranks, ranging from 1 to 12, taken from (Dorkenwald et al. 2023), are defined as the traversal distances from a given sensory modality to each DN and then averaged by type. Low rank indicates a more direct connection from sensory modality to DN type. A cut height of 5 (dotted line in dendrogram in **b**) produces 16 clusters. **c**, Clusters shown in **b** by the brain neuropil assigned to DN types as a percentage of all types in that cluster. **d**, DN morphologies of clusters that are close in rank to several sensory modalities in the brain. **e-i**, DN morphologies of clusters that are close in rank to one particular sensory modality. Plots on the left show the average rank of the clusters defined in **b** for the different sensory modalities. Arrows point to specific DN types that stand out. DN morphologies are plotted in their brain neuropil colours. Please see attached files for a high resolution version of this figure.

293
294
295
296
297
298
299
300
301
302
303
304
305
306

307
308
309 DNs close to mechanosensory inputs fall into three main groups. Four clusters (3,4,10,11) are
310 close to eye and head bristles (Fig. 3f), two (13 and 14) are close to a combination of JO and
311 auditory sensory neurons (Fig. 3g), and cluster 15 receives input from a combination of
312 mechanosensory modalities. This is in agreement with the neuropil innervation that is more
313 GNG-based for the DNs close to bristle sensory inputs and more WED, AMMC and AVLP for
314 the DNs linked to auditory and JO information. Based on the neuropils innervated, this large

315 group of DNs is likely to be responsible for the highly targeted grooming of the corresponding
316 bristle locations (Eichler et al., 2024). Most DNs are close in ranking to visual projection
317 neurons, but only one small cluster (cluster 5, Fig. 3h), containing 3 DN types
318 (DNp28/OcellarDN, DNp20/DNOVS1 and DNp22/DNOVS2), is specific for visual sensory
319 information from the Ocelli (*Drosophila* have three Ocelli that sense light in addition to the
320 compound eye). Both DNOVS1 and DNOVS2 additionally receive input from optic lobe output
321 neurons that encode pitch-associated or roll-associated optic flow and are involved in fast
322 flight and neck motor control (Suver et al., 2016). Olfactory, thermosensory and hygrosensory
323 information converge onto the same clusters, especially onto cluster 8 (Fig. 3i). There are only
324 2 DN types in this cluster, DNp25 and DNp44; both were previously suggested to be close to
325 olfactory sensory inputs in the hemibrain dataset (Schlegel et al., 2021) and DNp44 to
326 hygrosensory inputs in FAFB (Marin et al., 2020). The lack of big DN clusters associated
327 specifically with vision or olfaction suggests that this sensory information is more likely to be
328 integrated with other sensory modalities, i.e. olfactory with gustatory, visual with auditory, or
329 preprocessed in higher brain regions further away from DNs, cluster 16 (Fig. 3d). Thus, we
330 are able to separate DN groups by their most likely sensory modalities, retrieve groups of DNs
331 by their brain innervation, neuropil and sensory integration, and, by matching them to light
332 level lines, follow them into the VNC, offering insights into the type of sensory information
333 conveyed to the VNC and its potential functions.

334 DN and AN interactions

335 To guide sequences of behaviour to given stimuli, we expect there to be feedback from the
336 VNC ANs back onto DN circuits in the brain. Strong direct connections between DNs and ANs
337 are uncommon in the VNC and the brain (arrows point to connections with the highest weight
338 in Fig. 4a,b, weight = number of synapses). However, there is one exception that stands out
339 in the VNC: DNx02 output onto AN06B025, which is strong in the number of synapses as well
340 as percent of the total synaptic output (Fig. 4b,c). DNx02 are sensory descending neurons,
341 two on each side, that enter the brain via the occipital nerve, a nerve that was only recently
342 identified (Eichler et al., 2024). Analogously to DNx01, which responds to mechanosensory
343 stimuli on the antenna and is serial to the bilateral campaniform sensillum (bCS) neurons, we
344 predict that DNx02 would respond to mechanosensory stimuli from the eye, potentially with
345 grooming behaviours (Aymanns et al., 2022; Namiki et al., 2018). DNx02 neurons in the brain
346 stay within the GNG, while in the VNC they project into the neck and haltere neuropils (Fig.
347 4d). The effective connectivity of DNx02 shows the strong connection onto neck and haltere
348 MNs, both ipsi- and contralateral, 2-3 layers into the VNC (Fig. 4c). We were able to find a line
349 for AN06B025 and identify it in the brain (Fig. 4d, supplemental file 2 - AN_identification). We
350 studied the DNx02 and AN06B025 circuit across the neck connective (Fig. 4e). This revealed
351 that the top target of DNx02 is AN06B025 not only in the VNC but also in the brain.
352 Neurotransmitter types have been predicted using a convolutional neural network for FAFB-
353 Flywire and MANC trained on a set of neurons with identified neurotransmitter types (Eckstein
354 et al., 2024; Takemura et al., 2023). AN06B025 is predicted to be GABAergic in both datasets,
355 suggesting that it in turn shuts off DNx02, a self loop motif that was not observed in the
356 *Drosophila* larval dataset (Winding et al., 2023) (Fig. 4e).

357

Comparative connectomics of *Drosophila* ascending and descending neurons

10

Fig. 4: Direct descending and ascending neuron connections. Connectivity of AN/SAs to DNs and vice versa. **a**, Direct connectivity of AN/SAs onto DNs in the brain. DN and AN/SAs connections are averaged by type and plotted by mean weight in percent to mean weight. Arrows point to the two strongest connections in weight from AN/SAs onto DNs. **b**, Direct connectivity of DNs in the VNC onto ANs and SAs. Connections are averaged by type, like in **a**. Arrows point to the one connection that stands out in both MANC and FANC. The weight in **a** and **b** are the number of pre synapses. **c**, The effective connectivity to motor neuron targets ipsilateral and contralateral to the root side of DNX02. **d**, Morphology of DNX02 and AN06B025 in the brain and VNC. In black the EM morphology from female datasets (FAFB, FANC); in red from the male dataset (MANC). **e**, DNX02 circuit in the brain (FAFB-Flywire) and in the VNC (MANC). Connections in both datasets are averaged by type and shown in the percent input to the receiving neuron. Please see attached files for a high resolution version of this figure.

403

404
 405 Additionally, DNX02 targets neck MNs directly and quite strongly via several hops. Two of the
 406 neck MNs, FNM2 and ADNM2, have been previously matched to data available from the
 407 blowfly, *Calliphora erythrocephala* (H. S. J. * Cheong et al., 2024; Strausfeld et al., 1987).
 408 The FNM2 in the blowfly is connected to the adductor muscle that moves the head both
 409 upwards and inwards while ADNM2 together with the cervical nerve motor neuron (CB0705)
 410 innervates the TH2 that controls yaw-movement of the head (Kauer et al., 2015; Strausfeld et
 411 al., 1987). We propose that DNX02 moves the head upwards and inwards in response to

412 sensory stimuli. It is then inhibited by AN06B025 which inhibits the ADNM2 and disinhibits
413 CB0705, both of which project to the TH2 muscle, potentially preparing for an additional
414 sideways deflection of the head. Both movements could be part of a head grooming sequence.
415 In the brain DNx02 has only one strong upstream partner, which also collects neck information
416 from the VNC (AN_SPS_GNG_1/AN06B057, see supplemental file 2 - AN identification).
417 Through one hop in the VNC DNx02 inhibits sensory neurons coming from bristles (leg and
418 notum) and neck hair plate neurons via an ascending and intrinsic neuron, potentially
419 dampening sensory information from these regions until the grooming movement is complete
420 (Fig. 4e).

421
422 This is just one example of the kind of sensorimotor analysis made possible by our matching
423 of brain and VNC neurons through the neck, across the entire central nervous system of
424 *Drosophila*. Future EM datasets that contain a brain with attached VNC will make it possible
425 to look at larger scale feedback loops and sequences of DN and AN activations required for
426 serial behaviours such as grooming (Seeds et al., 2014).

427 Stereotypy in the VNC

428 One important step for comparing EM datasets is to assess how stereotyped the morphology
429 and connectivity of neuron types are across the two sides of an animal as well as between
430 animals (Schlegel et al., 2023). From the 223 LM described DN types available to us, we
431 matched all but 3 types in the brain and all but 6 types in both VNC datasets, supporting the
432 commonly held observation that *Drosophila* neurons are highly stereotyped across individual
433 animals (Fig. 2, supplemental file 2 - DN_identification). Matching across sides in the 3
434 datasets and across the two VNC datasets for DNs and ANs (Fig. 1d,e), even when not able
435 to match to LM data, suggests a high degree of stereotypy in these two neuronal classes
436 (matching in supplemental file 2). In addition, we have quantified their consistency in tract and
437 VNC neuropil innervation (Fig. 5a,b, Extended Data Fig. 9,10). Nonetheless, there are a few
438 cases in which the neuropil assignment does not agree across the two VNC datasets. We
439 assume this is a combination of biological variation and the differences in the created neuropil
440 meshes for the two different VNC datasets. For example, the DN type targeting specifically
441 the middle leg neuropil in MANC (DNm1) has a considerable amount (>5%) of its synapses in
442 the front leg neuropil in FANC, and is therefore in the neuropil category xl (for multiple leg
443 neuropil innervating) (Fig. 5b, highlighted green triangle). Examples of variability that we
444 believe are due to differences in neuropil meshes between the datasets include some of the
445 upper tectulum (ut) DNs in FANC that fall below our 80% synaptic output threshold and thus
446 are assigned to multiple neuropil innervating (xn) (Fig. 5b, highlighted green triangle). Their
447 morphology is, however, unique enough to match with high confidence across the two
448 datasets (supplemental file 2 - FANC_DNs, MANC_DNs).

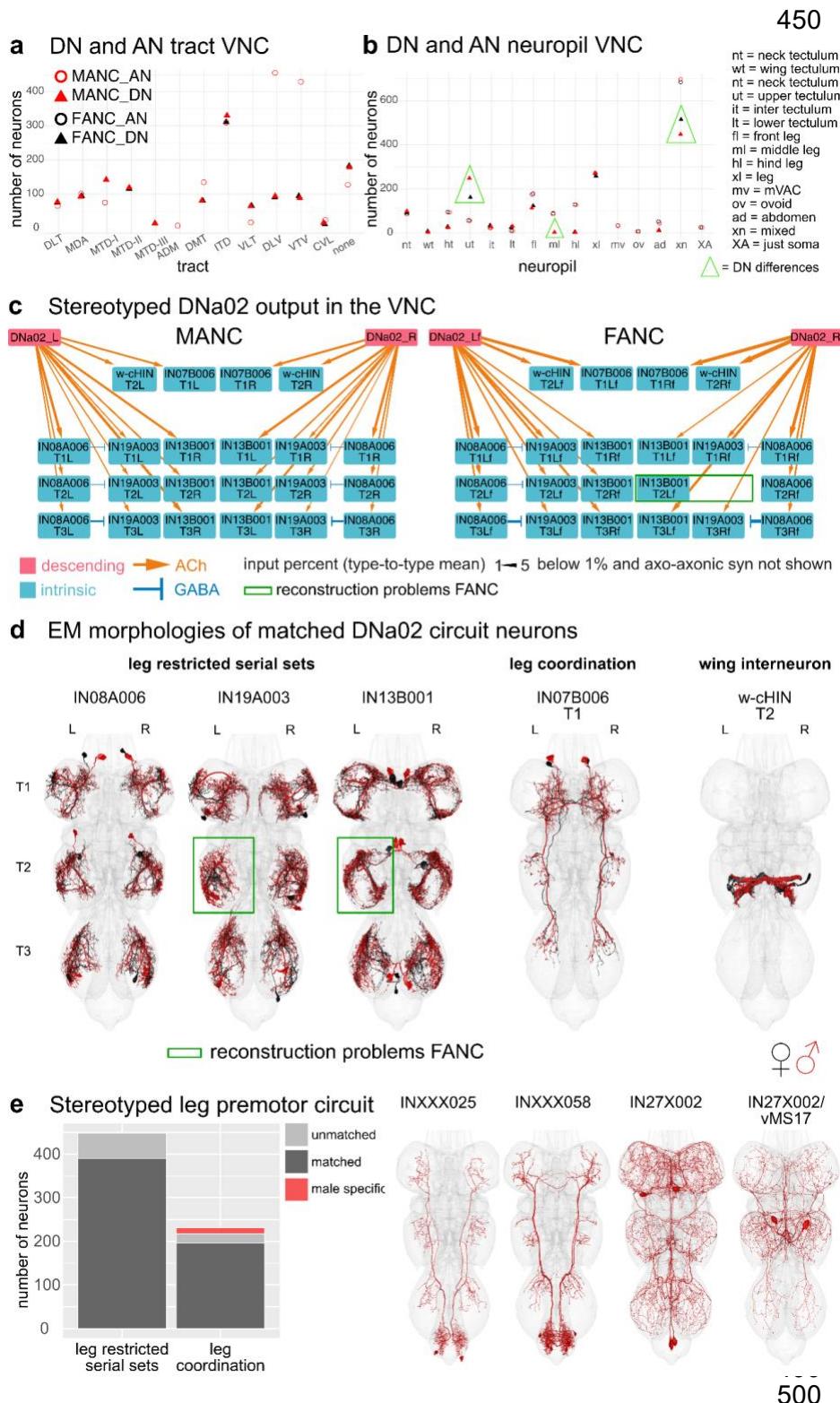


Fig. 5: Across VNC dataset comparisons.

a, Number of DNs/ANs assigned to a tract in MANC and FANC. **b**, Number of DNs/ANs assigned a VNC output/input neuropil in MANC and FANC. **c**, Example of a stereotyped circuit in the VNC. DNa02 in MANC and FANC in percent connect onto 3 sets of serial leg restricted neurons (IN08A006, IN19A003, IN13B001), the w-cHIN and a bilaterally projecting neuron (IN07B006). The types were matched across the two datasets and given the MANC type names accordingly. Downstream targets were selected by receiving more than 2% of DNa02 output. Arrow thickness corresponds to the percent input to the receiving neuron and only values above 1% are shown. **d**, EM morphologies of the neurons shown in the connectivity graphs in **c**. In black reconstructions from FANC, in red from MANC. **e**, MANC leg premotor circuit neurons published in (H. S. J. * Cheong et al., 2024) matched to FANC. All leg restricted serial sets were found, although some are missing on one or the other side in FANC. All apart from 4 types of leg coordination neurons were matched to FANC. EM morphologies of those 4 unmatched types are shown on the right as potentially male specific neurons. Please see attached files for a high resolution version of this figure.

501 When normalising the number of synaptic connections using the percent input to the receiving
502 neuron, we can recapitulate a previously analysed circuit of DN02 (H. S. J. *. Cheong et al.,
503 2024) in the FANC dataset (Fig. 5c, supplemental file 2 - other_MANC_FANC_matches),
504 demonstrating that at a threshold of above 1% we identify the same downstream targets. The
505 downstream partners consist of 3 serially repeated local neuron sets located in the leg
506 neuropils, a bilaterally projecting neuron, and the w-cHIN neurons, which control wing MNs.
507 The neurons were matched across the two datasets based on their morphology (Fig. 5d). The
508 connection strengths across the two sides of the animal are comparable to the differences
509 seen across the two datasets, with the exception of two neurons in FANC that are not well
510 reconstructed (Fig. 5c,d, green box). Leg restricted serial sets are preferable when looking for
511 stereotypy as we are able to match sets of 6 or 12 neurons per type (1 or 2 per leg neuropil),
512 rather than individual neurons that might not be found because of reconstruction status or
513 borderline significant differences in morphology. We concentrated on the previously published
514 MANC leg premotor circuit (H. S. J. *. Cheong et al., 2024), as it includes 67 leg restricted
515 serial types (448 neurons) and 75 leg interconnecting types (231 neurons) that are strongly
516 connected to the serially repeated leg MNs. We matched these neurons by morphology and
517 connectivity in the FANC dataset (Fig. 5e, supplemental file 2 -
518 other_MANC_FANC_matches), and while there are many cases in which we have not yet
519 found a match on one or the other side of FANC, we identified matches to all 67 serial sets
520 (Fig. 5e). From the set of 75 interconnecting neurons we did not find any FANC neurons of
521 the following 4 types: INXXX025, INXXX058, IN27X002 and IN27X002/vMS17 (Fig. 5e,
522 morphologies on the right), suggesting that they might be male specific or sexually dimorphic
523 in morphology to the extent that we cannot confidently match them. The first two types
524 (INXXX025 = predicted cholinergic, INXXX058 = predicted GABAergic) project from the
525 abdominal ganglion to the leg neuropils and would be good candidates for male specific leg
526 movements in response to, for example, abdominal curling. The other two types are very
527 similar to one another and have therefore been assigned to the same serial set and systematic
528 type (IN27X002 and IN27X002/vMS17). The neuron with the T2 soma has been identified in
529 LM as vMS17 and is reported to be involved in male courtship song (Lillvis et al., n.d.). Thus,
530 we suggest that the other two neurons of this systematic type regulate similar male specific
531 behaviours.

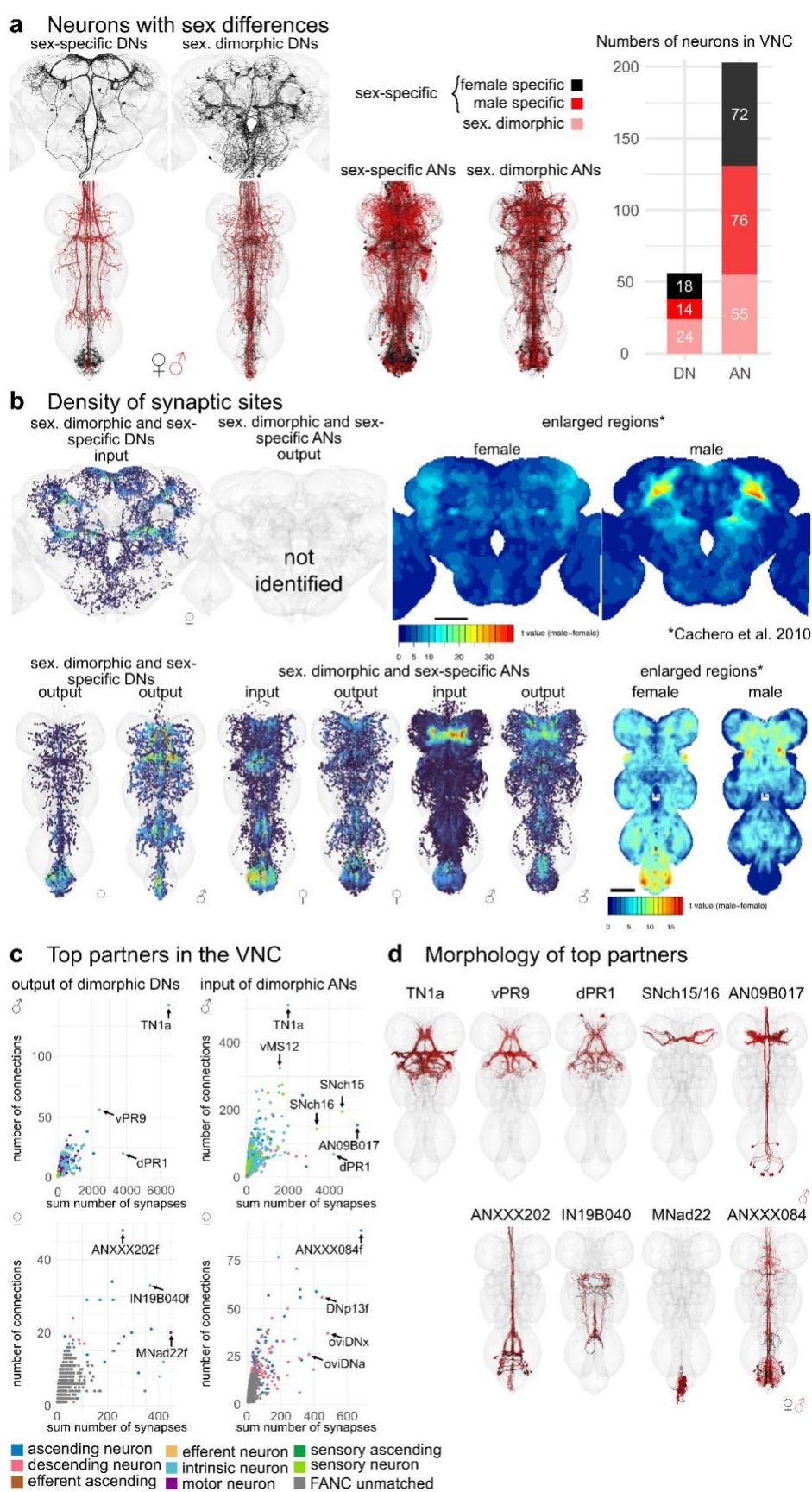
532

533 While complete matching of all VNC neurons across the female and male datasets is still in
534 progress, the neurons we have matched so far (including DNs, ANs, SAs, and the leg premotor
535 circuit, supplemental file 2) exhibit highly stereotyped morphology and connectivity across
536 sides, neuromeres, and datasets. Until now the FANC (Azevedo et al., 2022; Lesser et al.,
537 2024) and MANC (H. S. J. *. Cheong et al., 2024) datasets had only been analysed
538 independently.

539 Dimorphism

540 Some neurons could not be matched across male and female VNC datasets (Fig. 1e, MANC
541 DNs = 59, FANC DNs = 97, MANC ANs = 155, FANC ANs = 115). This could be due to
542 differences in connectome reconstruction, inter-individual biological variation or sexual
543 dimorphism. Previous literature has already identified several sexually dimorphic (abbreviated
544 to as sex. dimorphic in Fig. 6) and female or male specific neurons (sex-specific) (McKellar et
545 al., 2019; F. Wang et al., 2020a, 2020b; K. Wang et al., 2021). In the following section, we will
546 present known sexually dimorphic, and sex-specific DNs, such as the oviDNs, DNp13 and

547 DN12/aSP22. We defined potentially sex-specific DNs and ANs as neurons that are well
548 reconstructed and can be confidently paired across the two sides of one VNC, but cannot be
549 matched across the VNC datasets. We consider neurons to be potentially sexually dimorphic
550 if they differ in morphology between the two VNC datasets, but have a morphologically
551 consistent match across both sides of each nervous system. Details of individual neurons can
552 be found in supplemental table 2 -dimorphic_DNs, dimorphic_ANs.


553

554 Based on these definitions, we assigned 1% of DNs (18 female/14 male neurons) and 4% of
555 ANs (72 female/76 male neurons) to be sex-specific, while 2% of DNs (24 neurons) and 3%
556 of ANs (55 neurons) were sexually dimorphic in morphology (Fig. 6a). Using this information,
557 we can identify the brain and VNC regions where sex-specific and sexually dimorphic neurons
558 receive and send information (Fig. 6b). In FAFB-Flywire, we observed that input synapses to
559 sex-specific DNs are present, especially in the protocerebral bridge, partially but confidently
560 overlapping with previously published images of enlarged regions in the female fly brain (right
561 panel Fig. 6b) (Cachero et al., 2010). The dimorphic DN output in the VNC also aligns with the
562 enlarged abdominal ganglion in females and the distinct, dimorphic triangular region in males.
563 In females, the input to dimorphic ANs is most pronounced within the abdominal region.
564 Conversely, in males, the input to dimorphic ANs is concentrated in the T1 leg sensory area,
565 as observed in Cachero et al. 2010 (Fig. 6b, right hand side).

566

567 Next, we wanted to see if dimorphic ANs/DNs tended to have the same upstream or
568 downstream partners. We summed the number of connections to each partner type, as well
569 as how many times a connection (above a weight of 5) occurred (Fig. 6c,d). The top output
570 partners of dimorphic DNs are all part of the male song circuit: TN1a (silencing decreases sine
571 song), vPR9 (silencing alters the amount of pulse and sine song) and dPR1 (silencing
572 increases sine song) (Lillvis et al., 2024). Top input partners of dimorphic ANs include some
573 of the song circuit neurons already mentioned, as well as two sets of sensory neurons coming
574 from foreleg (T1) taste bristles (SNch15 and SNch16, both midline-crossing) (Marin et al.,
575 2023; Possidente & Murphey, 1989); dimorphic ANs such as AN09B017 and AN05B035 also
576 extensively interconnected in this T1 leg sensory area. AN09B017 are likely equivalent to the
577 Fru positive vAB3 neurons that transmit pheromone signals from the front legs to P1 neurons
578 in the brain (Clowney et al., 2015). This type of analysis is difficult without systematically
579 defining cell types to define functional units of the nervous system. Our preliminary analysis
580 of the FANC dataset found that the top output partners of dimorphic DNs may also be
581 dimorphic. ANXXX202 has a dimorphic innervation pattern in the abdominal ganglion,
582 IN19B040 has differences in morphology and the abdominal motor neuron MNad22 is
583 dimorphic in connectivity. Input partners to dimorphic ANs include 3 interesting dimorphic DNs:
584 oviDN_a, oviDN_x and DNp13, as well as the dimorphic ANXXX084 (see Fig. 6d for
585 morphologies). Our analysis suggests that within the VNC male dimorphic DNs and ANs are
586 heavily involved in the song circuit and the response to sensory information coming from the
587 front legs, while female dimorphic DNs and ANs have important abdominal targets, and that
588 the output activity of oviDNs in the VNC may be rapidly fed back to the brain via dimorphic
589 ANs.

590

Fig. 6: Sex-specific or sexually dimorphic (sex-dimorphic) neurons. **a**, Morphology of DNs in three datasets and ANs in the two VNC datasets that are sexually dimorphic or sexually specific (sex-specific) as described in the literature or predicted by the matching. In black the EM morphology from female datasets (FAFB, FANC), in red from the male dataset (MANC). **b**, Density of pre- or postsynapses of the DNs and ANs shown in **a** compared to previously published images of enlarged regions in the female and male central nervous system. **c**, Downstream or upstream partners of sexually dimorphic or sex-specific DNs or ANs respectively in FANC and MANC. Arrows point to the strongest partners by number of synaptic connections and number of neurons connecting onto them. **d**, Reconstructions of partner neurons in MANC (**c** top row) or in FANC that were matched to MANC neurons of that type. Please see attached files for a high resolution version of this figure.

631 Sexually dimorphic DNs involved in courtship and egg laying

632 The oviposition-promoting oviDNs are probably the best known female specific DNs. They
633 have previously been divided into two subtypes based on LM data (F. Wang et al., 2020a). By
634 direct comparison with EM reconstructions, we have defined six female oviDN types and one
635 male type (Fig. 7a,b). Existing LM data were insufficient to match two of the oviDNs across
636 the brain and VNC; EM data clearly distinguish these as two separate types (see Fig. 7a
637 unmatched types). In addition to the oviDNs, we identified one female specific DN,
638 vpoDN/DNp37, which has previously been described as important in female receptivity by
639 controlling opening of the vaginal plate (K. Wang et al., 2021). We also identified 6 types of
640 male specific DNs in the VNC. Two of these, pMP2 and pIP10 (Kohatsu et al., 2011; Shirangi
641 et al., 2016; von Philipsborn et al., 2011), have previously reported functions and light
642 microscopy lines that will allow identification in a future male brain dataset (Nern et al., 2024).
643 We also identified 11 DN types which can be found in both male and female datasets but
644 appear sexually dimorphic; for 7 of these (DNa08, aSP22, DNp13, pIP9, DNp48, LH-DN1 and
645 -DN2), light level matches provide additional evidence for sexual dimorphism and have been
646 matched in the two VNC datasets and in the female brain (Fig. 7f).

647

648 After comprehensive identification of sexually dimorphic DNs, we then carried out analysis of
649 their downstream connectivity. We focused on dimorphic DNs making connections outside of
650 the abdominal ganglion of the VNC due to reconstruction issues in this region of the FANC
651 dataset. We selected DNa12/aSP22 and DNp13 for detailed study; both are fully proofread,
652 present in both sexes, dimorphic in morphology, and have reported roles in both male and
653 female mating behaviours (McKellar et al., 2019; Mezzera et al., 2023; F. Wang et al., 2020b).
654 Robust comparative analysis of the downstream connections from DNs onto VNC neurons
655 requires that these neurons have been both adequately proofread and matched across
656 datasets. Starting from the automated segmentation (Azevedo et al., 2022), at the time of
657 writing the FANC community has proofread just over 5000 neurons (including the 1804 ANs
658 reported in this study) out of approximately 16,000 neurons documented in the VNC (Marin et
659 al., 2023). Prior to this work, there has been relatively little matching of precise cell types
660 between the FANC and MANC datasets, with the notable exception of foreleg MNs and wing
661 MNs (Azevedo et al., 2022; H. S. J. *. Cheong et al., 2024). Through our detailed analysis of
662 the MANC and FANC neck connective neurons, combined with new computational
663 approaches for intrinsic neurons, we have now matched over 4000 neurons across the
664 datasets including top targets of these DNs (supplemental file 2 -
665 other_MANC_FANC_matches, see Methods).

666

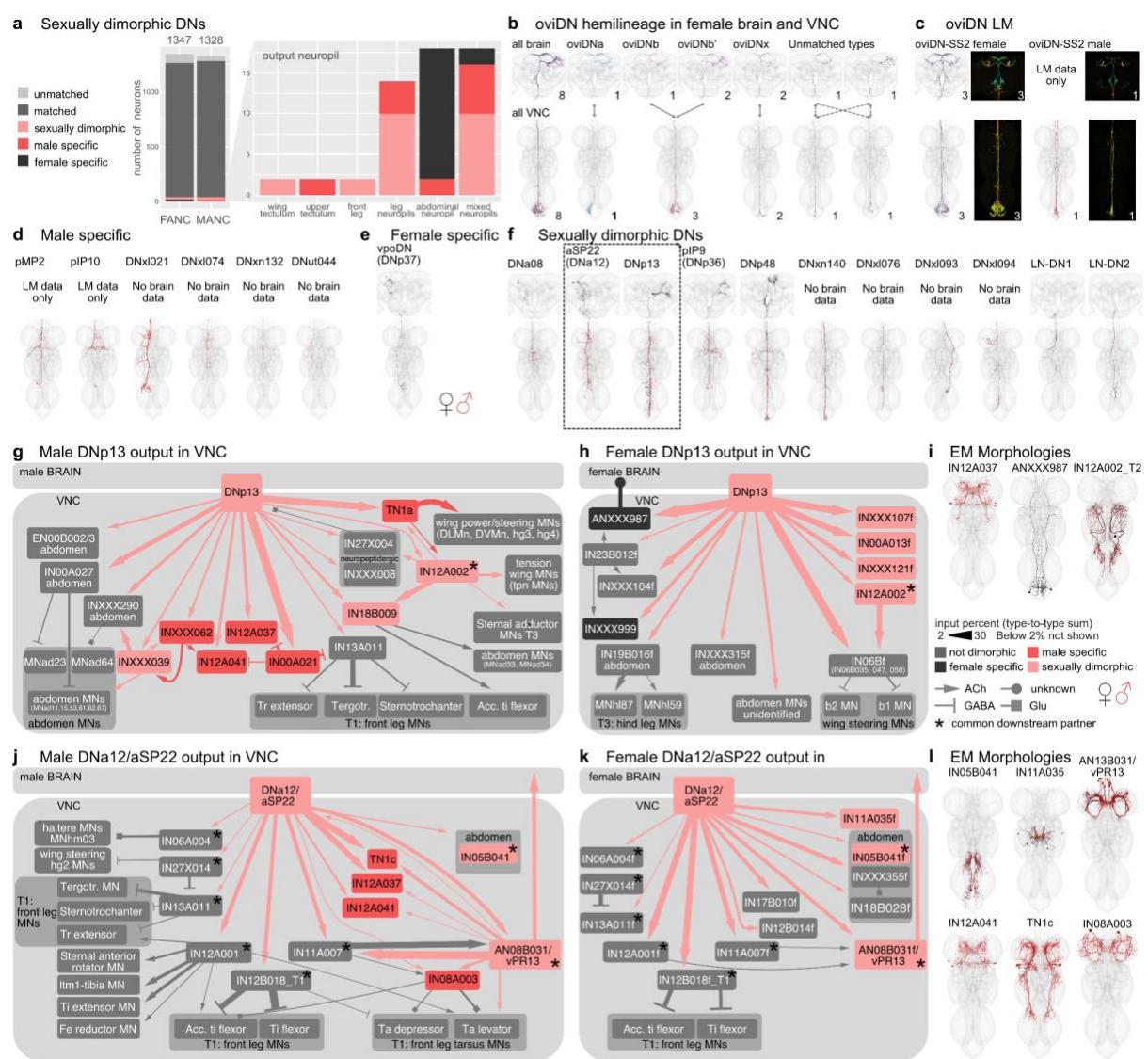
667 Although identifiable as the same cell type across males and females, DNp13 has highly
668 distinctive morphology and connectivity (Fig. 7f). In both sexes their downstream circuits
669 ultimately target MNs in the wing neuropil and abdominal ganglion. However, these MNs are
670 of distinct types and are targeted via different VNC interneurons in each sex. The top partner
671 of DNp13 in MANC is the male specific doublesex-positive neuron TN1a, which is particularly
672 important for sine song (Shirangi et al., 2016), however, we also find that there are several
673 strongly connected wing MNs directly downstream (Fig. 7g). DNp13 in females has been
674 shown to respond to courtship song, and activation of DNp13 leads to ovipositor extrusion (F.
675 Wang et al., 2020b). Unsurprisingly, abdominal MNs are top targets of DNp13 in FANC (Fig.
676 7h); however, we were surprised to see that the top partners of DNp13 in FANC are three very
677 similar looking IN06B neurons (types: IN06B035, IN06B047, IN06B050) that output strongly

678 to b1 and b2 wing MNs (Fig. 7h,i), suggesting that there might be a female wing phenotype
679 that has not yet been described experimentally. This is reminiscent of recent observations that
680 vpoDN may control a wing-spreading behaviour in the evolutionarily related Drosophilid *D.*
681 *santomea* (Li et al., 2023). The only common downstream target of DNp13 in males and
682 females, with a 2% threshold, is IN12A002 (Fig. 7g,h black star, morphology shown in 7i).
683 IN12A002 has similar morphology in both sexes, but different connectivity between the two
684 circuits suggests that it is also dimorphic. The remaining intrinsic neurons targets (shown in
685 grey Fig. 7g,h), receiving input from DNp13 in one sex, are present in both datasets but not
686 directly downstream of DNp13 in the other sex.

687

688 DN_a12, also known as aSP22, shows greater similarity in connectivity and morphology
689 between the two datasets when compared to DNp13 (Fig. 7j,k). Activation of DN_a12 elicits
690 proboscis extension, front leg extension, spontaneous posture adjustments, and abdomen
691 movements in both sexes (McKellar et al., 2019). Interestingly, the type of abdominal
692 movement elicited by DN_a12 differs between males (abdominal bending) and females
693 (abdominal extension). In accordance with this work, we see that with a threshold of >2% input
694 DN_a12 neurons share 8/12 MANC and 8/13 FANC downstream partners. The partners that
695 are not shared are also not present when considering all downstream partners with a synapse
696 weight threshold >10. To confirm this, we additionally matched all downstream partners of the
697 MANC DN_a12 to those in the FANC dataset. All partners can be matched between the
698 datasets except for the sex-specific TN1c, IN12A037, IN12A041, and IN08A003, which are
699 not targeted by the FANC DN_a12.

700


701 The connections to the front leg Tibia extensors can be found in both MANC and FANC, in
702 line with the foreleg lifting seen in both sexes (McKellar et al., 2019). DN_a12 connects to the
703 sexually dimorphic AN08B031 in both sexes. In turn, AN08B031 has distinct connectivity in
704 males and females. This connection provides an example of a sexually dimorphic AN-DN pair
705 which forms sexually diverging circuits while preserving their connection with one another (Fig.
706 7j,k,l). As this AN cannot be linked to LM, we cannot say if it conveys the proboscis extension
707 that has been described in both sexes in response to DN_a12/aSP22 activation. The most
708 surprising connection from the MANC DN_a12 is to TN1c, a neuron shown to modulate pulse
709 song (Shirangi et al., 2016) as a phenotype in song has not been reported at time of
710 publication. DN_a12 in MANC both directly as well as indirectly connects to TN1c via the sex-
711 specific AN08B043 and AN13B031 (Fig. 7j,k). Two especially interesting neurons that are only
712 downstream of DN_a12 in FANC are IN05B041 and INXXX335. They target the abdominal
713 ganglion and we suggest they are responsible for the dimorphic abdomen extension in females
714 (Fig. 7k).

715

716 These two examples show that together with the available literature we can now use this LM
717 matching to understand and compare EM circuits across the two VNC datasets. This helps us
718 explain the phenotypes observed in behavioural and genetic activation experiments and link
719 them to yet unstudied neurons in the VNC. Moreover, it gives us the chance to make new
720 hypotheses about the function of these neurons, principally suggesting potential roles in song
721 or wing movement that should be looked at experimentally for both DNp13 and DN_a12.

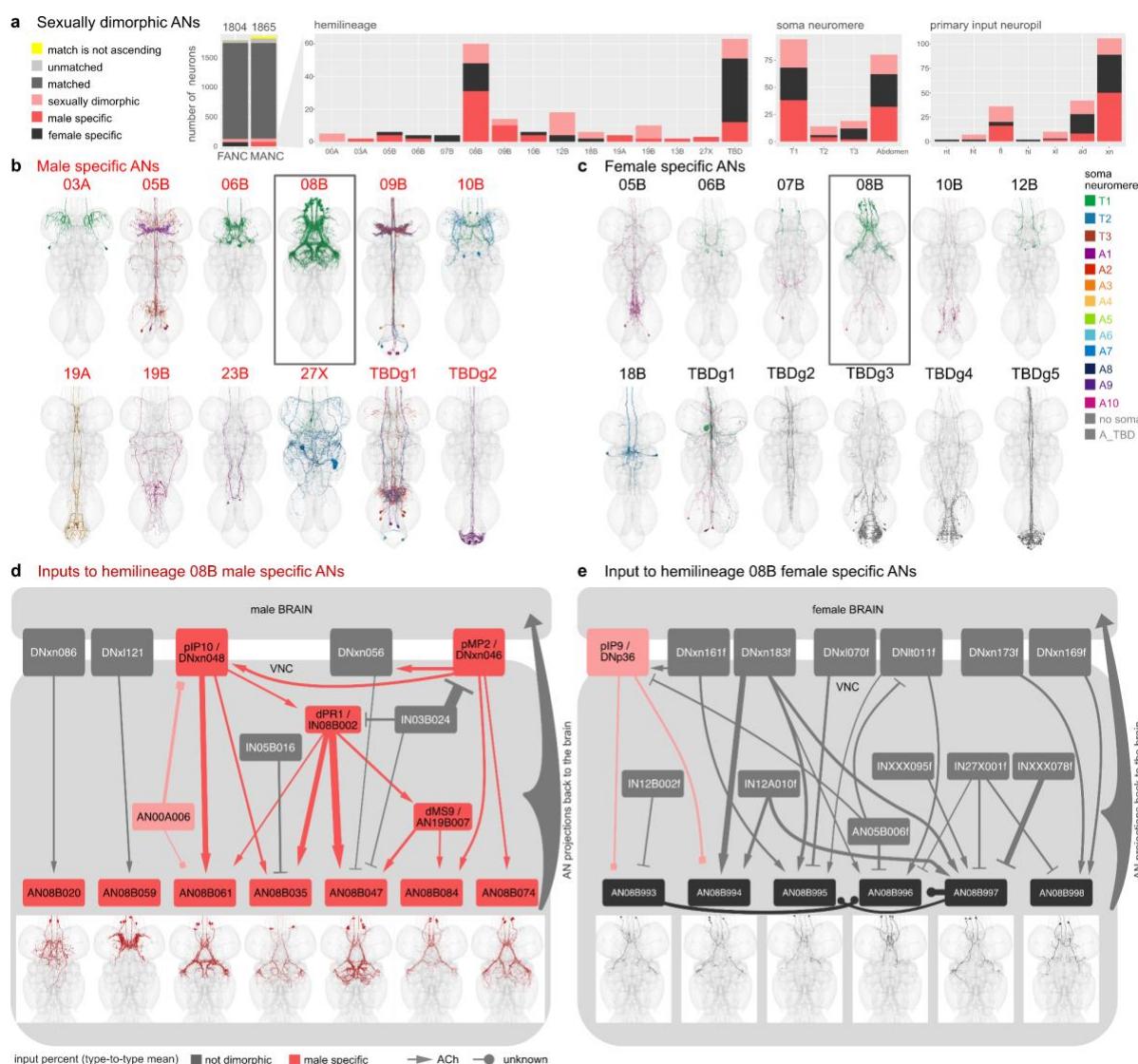
Comparative connectomics of *Drosophila* ascending and descending neurons

18

Fig. 7: Sexually dimorphic and sex-specific descending neurons. **a**, Proportion of DNs that are sex-specific or sexually dimorphic by dataset and primary input neuropil. **b**, Morphology of DNs in the three datasets belonging to the oviDN hemilineage. **c**, EM morphologies identified within the LM images from female and male of the oviDN-SS2 line. **d**, EM morphologies of previously LM characterised male specific DNs and new potentially male specific DNs. **e**, EM morphology of the female specific DN, vpoDN (DNp37). **f**, EM morphologies of LM characterised sexually dimorphic DNs and new potentially sexually dimorphic DNs. **g,h**, Connectivity downstream of the sexually dimorphic DNp13 in MANC (**g**) and FANC (**h**). There is just one downstream partner in common between the two sexes, IN12A002 marked with a *. All other partners are either sex-specific (coloured black or red), are dimorphic in their connections (pink) or are not downstream of DNp13 in the other dataset (coloured grey). **i**, EM morphology of some of the top VNC targets. **j,k**, Connectivity downstream of the sexually dimorphic DNA12/aSP22 in MANC (**j**) and FANC (**k**). There are 8 downstream neurons in common. Only T1 leg motor neurons (MN) have been systematically identified between the two datasets, thus other FANC Leg MNs are not shown. **l**, EM morphology of some of the top VNC targets. In black the EM morphology from female datasets (FAFB, FANC), in red from the male dataset (MANC). * indicates shared partners downstream of dimorphic DN pairs. Please see attached files for a high resolution version of this figure.

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

740 Sex-specific ANs of the 08B hemilineage


741 While the literature and experimental research have explored some sexually dimorphic and
742 sex-specific DNs, there remains a notable gap in our understanding of ANs in general,
743 particularly with respect to dimorphism. Work on ANs as a population has started to appear,
744 for example ANs encoding behavioural states (Chen et al., 2023; McKellar et al., 2019) but
745 only very few genetically identifiable AN cell types with LM lines are available: LAL-PS-ANs
746 (Fujiwara et al., 2022) and Lco2N1/Les2N1D ANs (Tsubouchi et al., 2017), moonwalker ANs
747 (Bidaye et al., 2014; Tsubouchi et al., 2017) and PERin ANs (Mann et al., 2013). We are not
748 currently aware of any literature reporting sex-specific or sexually dimorphic ANs, therefore all
749 ANs we have annotated are being reported here for the first time (morphologies shown in
750 Extended Data Fig. 11). We caution that this label is putative: a definitive classification of these
751 ANs as sexually dimorphic or sex-specific will require systematic identification and
752 confirmation with LM data.

753

754 We identified the hemilineage and soma neuromere for all dimorphic ANs in FANC whenever
755 possible, and compared the number of dimorphic ANs across the two datasets (Fig. 8a). We
756 found that the hemilineages with the highest number of dimorphic ANs are the hemilineage
757 08B and the ANs in the abdominal ganglion, to which we were unable to assign a hemilineage
758 in either MANC or FANC. To avoid reconstruction issues in the abdominal ganglion, we
759 focused our analyses on sex-specific 08B neurons in both datasets. The sex-specific ANs,
760 both in MANC and FANC, are the only sex-specific ANs that clearly innervate the
761 mesothoracic triangle associated with dimorphic neurons involved in male song production,
762 which include pMP2 or vPR1 (Yu et al., 2010) (Fig. 8b,c). The male specific 08B ANs consist
763 of 7 types (Marin et al., 2023); here, we categorised the female specific 08B ANs into 6 types
764 based on morphology and connectivity (Fig. 8d,e). For the male specific ANs, we observe that
765 5 of them form an interconnected circuit, including the dimorphic DNs pMP2 and piP10,
766 intrinsic neuron dPR1 and sexually dimorphic AN19B007/dMS9. We infer that these are
767 involved in the male song circuit as expected by their innervation pattern. AN08B020 and
768 AN08B059, on the other hand, only have connections from two DNs, neither of which have
769 been associated with song production at present, but which could be involved in a different
770 male specific behaviour based on their innervation (Fig. 8d). The upstream circuit to female
771 sex-specific 08B ANs does not include any of the neurons upstream of the MANC sex-specific
772 08B ANs. This supports the idea that these neurons differ both in terms of their morphology
773 and connectivity. Another supporting factor is that the known sexually dimorphic fru+
774 piP9/DNp36 (Yu et al., 2010) inputs onto two of the AN types. The other neurons upstream in
775 FANC all exist in MANC but do not connect to any ANs of the 08B hemilineage.

Comparative connectomics of *Drosophila* ascending and descending neurons

20

776
777
778
779
780
781
782
783
784
785

Fig. 8: Sexual dimorphism and sex-specific ascending neurons. **a**, Proportion of ANs that are potentially sex-specific or potentially sexually dimorphic by hemilineage, soma neuromere and primary input neuropil. **b,c**, Morphology of ANs that are potentially sex-specific in males (**b**) and females (**c**) by hemilineage. FANC neurons were assigned hemilineages and soma neuromere if possible and given new type names. **d,e**, Input circuit in the VNC to potentially sex-specific AN types of hemilineage 08B with soma location in T1 (black box in **b** and **c**). Morphology of AN types underneath. All input neurons with more than 2% input onto the receiving AN are shown. FANC neurons in **e** were matched to MANC neuron types by morphology and connectivity and given the MANC names with an addition of f for female. Please see attached files for a high resolution version of this figure.

786 We conclude that 5 out of the 7 newly identified types of male specific 08B ANs are important
787 for providing feedback during male song production. This may represent another example of
788 ANs acting as a corollary discharge to suppress the auditory response to self-generated song
789 (Poulet and Hedwig 2006; H. S. J. Cheong et al. 2024). Conversely, the female specific 08B
790 ANs transmit feedback about sexually dimorphic information (such as sexual receptivity and
791 post-mating state) back to the brain, a pathway which either takes a different course or does
792 not exist in the male nervous system. Thus, we present two strategies of dimorphic circuits in
793 the nervous system: 1) Sex-specific neurons interact with one another to produce a sex-
794 specific behaviour, and 2) circuit elements present in both sexes interact with sex-specific
795 neurons to establish representations which are necessary in one sex but not the other.

796 Conclusion

797 Through detailed reconstruction of DNs, ANs, and SA neurons across three EM connectome
798 datasets, we present the first complete set of these neuronal classes spanning the neck
799 connective. We have categorised the neurons by sensory modality (for DNs and SAs in FAFB)
800 and neuropil innervation across the brain and nerve cord, as well as tract and soma location.
801 We have established a platform for systematic neuron typing based on light-level and cross-
802 dataset identification, which we encourage the community to utilise for studying their specific
803 circuits of interest. Early access to the proofread and annotated connectome data that we
804 describe has already enabled and assisted a range of exciting work including studies of the
805 circuit basis of locomotor behaviour and the organisational and functional logic of descending
806 neurons (Braun et al., 2024; H. S. J. Cheong et al., 2024; Dallmann et al., 2024; Lee et al.,
807 2024; Lesser et al., 2024; Sapkal et al., 2023; von Reyn et al., 2024 unpublished; Yang et al.,
808 2023).

809

810 The sensorimotor reconstructions presented enable us to infer the circuit basis of behaviours,
811 including sexually dimorphic patterns, allowing us to formulate new hypotheses regarding
812 numerous circuit components. Future studies of any part of the CNS can now use this resource
813 to link genetically-defined neurons, physiological responses or optogenetic manipulations to
814 the connectome. While earlier studies often focused on a single neuropil of the brain, e.g.
815 Antennal Lobe for odour processing or Mushroom Body for learning and memory,
816 connectomics has already underlined that the sensorimotor circuits underlying behaviours are
817 complex and brain-spanning. Future research can now adopt similar approaches across the
818 whole CNS by integrating multiple datasets as we have now demonstrated. A recent
819 connectome-constrained neural network of the motion pathways in the optic lobe of *Drosophila*
820 reliably predicted measurements of neural activity from the connectivity of 64 cell types
821 (Lappalainen et al., 2023); this approach relied on optimising the neural output of the modelled
822 system to solve a behavioural task. Our neck connective work should enable modelling of the
823 key output neurons of the brain and also models spanning the entire central nervous system.

824

825 Despite the common challenge of small sample sizes in connectomics, our study stands out
826 for its use of datasets across individuals and sexes; prior work compared specific (isomorphic)
827 circuits in the *Drosophila* larva (Gerhard et al., 2017; Valdes-Aleman et al., 2021) while recent
828 adult work has compared two female brain connectomes (Schlegel et al., 2023). By
829 systematically comparing DNs, ANs and SAs from both male (MANC) and female (FANC)
830 VNC datasets, we categorised similarities and differences between the two sexes. This
831 represents the first comprehensive comparison of *Drosophila* neuronal morphology and
832 connectivity between sexes at EM resolution. We have identified all previously published
833 dimorphic DNs and describe the circuits of DNa12 and DNp13 in both datasets. Moreover, we
834 have excluded and annotated all differences that we believe are due to biological variation
835 between individuals (variation in numbers, single, missing or additional neurons of a type) or
836 reconstruction state in one of the two datasets. Our findings suggest potential sex-specific or
837 sexually dimorphic DNs and ANs, with a specific focus on circuits of sex-specific ANs from the
838 08B hemilineage associated with male song during courtship. This now lays the groundwork
839 for understanding circuits for sex-related behaviours all the way from the sensory periphery,
840 through higher brain processing to motor output.

841 Methods

842 Neck connective proofreading and annotation

843 We defined a perpendicular plane through the neck connective posterior to the cervical nerve
844 for the two VNC datasets (MANC and FANC), and anterior to the cervical nerve for the FAFB
845 dataset. Supplemental file 1 includes two tables, FANC_seed_plane and FAFB_seed_plane,
846 that list all profiles with their xyz coordinates in this plane, ids and the neuronal class. Every
847 neuronal profile passing through these planes in FANC or FAFB was individually reviewed,
848 reconstructed and annotated by manual proofreading of the corresponding automated
849 segmentations. We reviewed 3874 profiles (which received a total of 100,747 edits) in FANC,
850 and 3693 profiles (which received 131,207 edits) in FAFB. Both datasets provide open
851 community-based proofreading platforms (see <https://flywire.ai/> and
852 https://github.com/htem/FANC_auto_recon/wiki), and some of these edits were due to general
853 proofreading in each volume, but the majority were from our comprehensive proofreading of
854 neck connective neuron. The first pass review of the MANC neck connective was carried out
855 in mid 2021; for FAFB the initial review periods were late 2020/early 2021 and again in mid
856 2022. After initial review of ANs and SAs in the VNC datasets, neurons were assigned a
857 putative soma side programmatically, directly or indirectly via a MANC mirroring registration
858 (H. S. J. *. Cheong et al., 2024). Neurons were mirrored based on their soma side or their
859 neck plane side and NBLAST clustered (Costa et al., 2016). This analysis allowed for an initial
860 grouping of left-right homologous sets and to identify neurons with different morphologies on
861 each side of the nervous system, triggering further proofreading (since these differences
862 usually resulted from residual segmentation errors). The combination of comprehensive
863 proofreading of the whole dataset followed by within dataset matching and focussed
864 proofreading was essential to ensure high quality connectome data and annotation. Most DNs
865 and ANs have a unique morphology and were grouped into pairs, otherwise neurons were
866 combined into larger groups containing more than one neuron per side. This was especially
867 the case for SA neurons in FAFB. A similar approach has recently been described for MANC
868 (H. S. J. *. Cheong et al., 2024). Note that proofreading across the FlyWire-FAFB dataset was
869 reported in aggregate in (Dorkenwald et al., 2023) and that a first version of the neck
870 connective annotations was released as part of the brainwide FlyWire annotations paper
871 (Schlegel et al., 2023).

872 Light microscopy identification

873 DNs from LM images were identified by overlaying the EM reconstructed DNs with images of
874 Gal4 lines, mainly from the Namiki collection ((Namiki et al., 2018) and in preparation Namiki
875 et al. 2024), Janelia's Gal4 and Split-Gal4 collections (Jenett et al., 2012; Meissner et al.,
876 2024; Tirian & Dickson, 2017), or via the neuronbridge tool (Clements et al., 2022; Meissner
877 et al., 2023) for MANC DNs. To compare the reconstructions and LM images in the same
878 space, the latter were segmented and transformed into MANC space as described in (H. S. J.
879 *. Cheong et al., 2024) or into FAFB space. The full list of DN types with the identifier for the
880 LM image (slide_code) and for the type (VFB_ID) can be found in supplemental file 2 -
881 DN_identification. A small list of ANs were also matched to LM in FAFB and MANC as they
882 were of special interest for the circuit described in Fig. 3 (see supplemental file 2 -
883 AN_identification). We did not match ANs to LM images systematically, due to a lack of a
884 catalogue describing these neurons (as is available for DNs; (Namiki et al., 2018)). SA neurons

were divided into subclasses by comparing them to LM images of Janelia's Gal4 and Split-Gal4 datasets using the neuronbridge tool (Clements et al., 2022; Meissner et al., 2023) for MANC and then manually matching their axonal continuations into the brain to FAFB neuron reconstructions. Extended Data Fig. 2 shows the LM line that SA neurons were matched to, as well as the assigned long_tract and entry_nerve that were used to give SA neurons a subclass name, aiding their identification (see also supplemental file 2 - FAFB_SA_identification). The process of matching to LM data is not exhaustive (in part because LM data is not yet available for all neurons) and we kindly ask the *Drosophila* community to contact the authors with missing identifications which can be reviewed and integrated in this resource.

Matching of neurons across VNC datasets

FANC DNs and ANs were transformed into MANC space using the transform_fanc2manc function from the fancr R package (<https://github.com/flyconnectome/fancr>). This is a one step thin plate spline transform based on 2110 landmark pairs fitted to a complex transformation sequence mapping FANC to the JRCVNC2018F template (Phelps et al., 2021) and JRCVNC2018F to MANC (Takemura et al., 2023). A combination of NBLAST (Costa et al., 2016), and connectivity analysis was used to identify candidate morphological matches. These were assessed manually and assigned MANC names if the match was of high confidence (confidences ranged from 1 to 5, high is >3, Supplemental file 2). Additionally all ANs that were not matched with high confidence were assigned hemilineage and soma location in FANC and were compared by two independent annotators within each hemilineage after thorough review of the non-matching ANs to exclude reconstruction problems as a cause. ANs were first matched between FANC and MANC as individual neurons. We then reviewed these MANC-FANC matches to ensure that they respected the groups of neurons previously defined in MANC, thus providing an additional layer of validation. Cosine similarity as well as the identity of strong upstream and downstream synapses partners was used to help resolve ambiguous cases.

Tract identification

VNC longitudinal tracts for MANC ANs, MANC SAs and FANC DNs were identified as previously described in (H. S. J. *. Cheong et al., 2024). In brief, neurons were simplified to their longest neurite starting from the VNC entry point at the neck and subsequently NBLAST clustered (Costa et al., 2016). The clusters were manually assigned a tract by overlaying with tract meshes made for MANC (H. S. J. *. Cheong et al., 2024). Analysis of AN tracts revealed for the first time that one cluster did not match any of the previously published DN tracts. This new tract was given the name **AN-specific dorsal medial tract (ADM)** in accordance with the tract naming of (Court et al., 2020).

Neuropil identification

Primary brain neuropils were assigned in the FAFB dataset using the per neuron neuropil counts of presynapses for ANs and the postsynapses for DNs in the 783 FAFB version (available for download at <https://codex.flywire.ai/api/download>). A single brain neuropil was assigned if 80% of all synapses were within that neuropil, two neuropils were assigned as a name (primaryneuropil_secondaryneuropil) if combined they reached the 80% threshold and

927 each contained at least 5%. An assignment as *multi* was given to 367 DNs and 282 ANs as
928 they collected input or gave significant output (>20%) to more than two neuropils.

929 Primary VNC neuropils were assigned to all DNs and ANs in the MANC/FANC datasets as
930 previously performed for MANC DNs (H. S. J. * Cheong et al., 2024). For MANC AN synapses,
931 we used the neuropil synapse ROI information of the manc:v1.2. For FANC AN and DN
932 synapses we retrieved the synapses allocated to AN and DN IDs from the synapse parquet
933 file, retrievable via FANC CAVE and available from the FANC community upon request
934 (provided by Stephan Gerhard).

935 A single neuropil abbreviation was given to a DN/AN if they innervated a VNC neuropil with
936 >80% of their pre/post synapses. The two letter abbreviations nt, wt, hl, it, lt, fl, ml, hl, mv, ov,
937 ad correspond to NTct, WTct, HTct, IntTct, LTct, LegNpT1, LegNpT2, LegNpT3, mVAC, Ov
938 and ANm, respectively. Additionally DNs/ANs which innervated a combination of upper
939 tectulum (ut) or leg neuropils (xl) with more than 80% of their pre/post synapses were given
940 those abbreviations accordingly. Any neuron that did not fall into one of those two categories
941 was grouped as xn, standing for multiple neuropils. ANs that only contained a soma and soma
942 tract in the VNC were excluded from this neuropil analysis and referred to as XA as previously
943 described (Marin et al., 2023).

944 If the neuropil names were inconsistent within a group or pair of neurons, we calculated the
945 mean of the pre- or post synapses to determine the assignment.

946 Information flow ranking

947 The information flow ranking previously reported by Dorkenwald et al. (2023) for FlyWire, was
948 subsetted for descending neurons and averaged by DN type. The information flow analysis is
949 based on an algorithm implemented in Schlegel et al. (2021) (<https://github.com/navis-org/navis>). A low rank indicates a more direct connection from sensory inputs to that DN type.

951 Sexually dimorphic and sex-specific neurons

952 DNs previously described to be sex-specific such as the female specific oviDNs or male
953 specific pIP1 were matched to the available light level data and referred to as **sex-specific**
954 throughout the paper. Other DNs and ANs that we could not match between the VNC datasets
955 (between female and male), couldn't be matched to light level data, but were well
956 reconstructed and had a left-right partner were considered to be potentially female/male
957 specific, also referred to in text and figures as **sex-specific**.

958 DNs such as DNA08 that exist in both sexes but are known to be dimorphic in morphology
959 were matched to light level data and referred to as **sexually dimorphic (sex. dimorphic in**
960 **figure)**. Other DNs and ANs that we could confidently match across the two VNC datasets but
961 that were dimorphic in morphology are also referred to as **sexually dimorphic (sex.**
962 **dimorphic in figure)**. The following neurons were not considered even though they show
963 morphological differences:

- 964 • Specifically, neurons presumed to be neuropeptidergic were not included, as big
965 morphological differences in neuronal arbour are common even between left and right
966 of the same animal (Marin et al., 2023).
- 967 • The ascending histaminergic neurons (AHNs), which have been shown to have a
968 difference in morphology not related to the sex of the animal (H. S. J. Cheong et al.,
969 2024).

970 ● Those neurons that innervate the abdominal ganglion, where there are problems in the
971 FANC dataset that make it impossible to distinguish between a difference in
972 reconstruction state and potential dimorphism, noted as reconstruction issues in the
973 supplementary tables.
974 ● Differences in number of ANs or DNs of a type were not considered as dimorphism in
975 this paper as they occurred in neurons that we consider populations and whose
976 numbers differed across the two sides of one animal. A difference in number was noted
977 in the supplementary tables as biological variation, a match that is not ascending, or a
978 general matching problem, if one side was not found (Supplemental file 2).

979 **Synapse density plots**

980 To calculate the synapse density of sexually dimorphic and sex-specific neurons in the VNC
981 we collected all synapses of the identified neurons in each dataset (FAFB: cleft-score > 50
982 applied). We then tiled the space their synapses occupy into roughly isotropic voxels of 5 μm
983 size and counted synapses in each voxel. Synapses were then colour coded by density and
984 plotted in three-dimensional space.

985 **FANC neuron types**

986 All FANC neurons that can be matched to MANC neurons are referred to by their MANC name,
987 with an additional "f" denoting female, when presented in comparative graphs or connectivity
988 plots. All FANC neurons identified are listed in the supplementary material (Supplemental file
989 2 - FANC_DNs, FANC_ANs, other_MANC_FANC_matches).
990 FANC ANs and DNs that were not previously identified in LM and that could not be matched
991 between datasets were assigned new type names. For ANs and DNs, the type names were
992 given in accordance with the previously established systematic type names (DN-target
993 neuropil abbreviation-number or AN-hemilineage abbreviation-number). To distinguish from
994 the previous type names in MANC, the numbering starts at 999 and goes down.

995 **Connectivity**

996 For connectivity graphs we used a threshold of weight >10 and percent output >0.5% for the
997 initial retrieval of partners of the neurons of interest. In the following step we added all MNs,
998 SNs or SAs that connected to those with a weight >5 to adjust for known reconstruction
999 problems in these neurons and for the fact that sensory neurons tend to make fewer synapses
1000 with their partners individually and connect as a population of the same sensory origin
1001 (reflected by their type). Once all neurons of interest had been defined we took an all-by-all
1002 connectivity adjacency matrix, in which all values were converted to input percent to the
1003 receiving neuron, averaged by type (unless otherwise indicated). The graphs shown in the
1004 figures note the additional percent thresholds that were chosen for the nodes plotted in each
1005 graph.

1006 **Neuroglancer Resource**

1007 To help compare the neurons described in our work we created a neuroglancer environment
1008 (Maitin-Shepard et al., 2021) displaying meshes for all three datasets in a common space.
1009 This environment can be opened in any modern web browser (we use Google Chrome) by
1010 following the short URL <https://tinyurl.com/NeckConnective>.

1011 We opted to use the Janelia FlyEM male CNS dataset as a single anatomically consistent
1012 target space for display based on resources provided by (Nern et al., 2024). FlyWire neurons
1013 were transformed into the space of the male CNS brain using rigid and non rigid consecutive
1014 registrations (Bates et al., 2020; Nern et al., 2024). Meshes for MANC neurons are those
1015 released by (Takemura et al., 2023); we then use neuroglancer to apply an affine registration
1016 “on-the-fly” to place them within the space of the VNC of the male CNS volume. We applied
1017 non-rigid transformations (fancr::transform_fanc2manc function described above) to put
1018 FANC neurons into MANC space and then used the same MANC to male CNS affine
1019 registration within neuroglancer to complete the transformation into male CNS space.
1020 Metadata annotations are provided for the three datasets using the format Type_Side_Class
1021 format. At present only the optic lobe portion of the male CNS EM volume has been released
1022 but having all the data transformed into male CNS space means that this neuroglancer scene
1023 can be modified with minimal effort to display the full male dataset when it becomes available.
1024

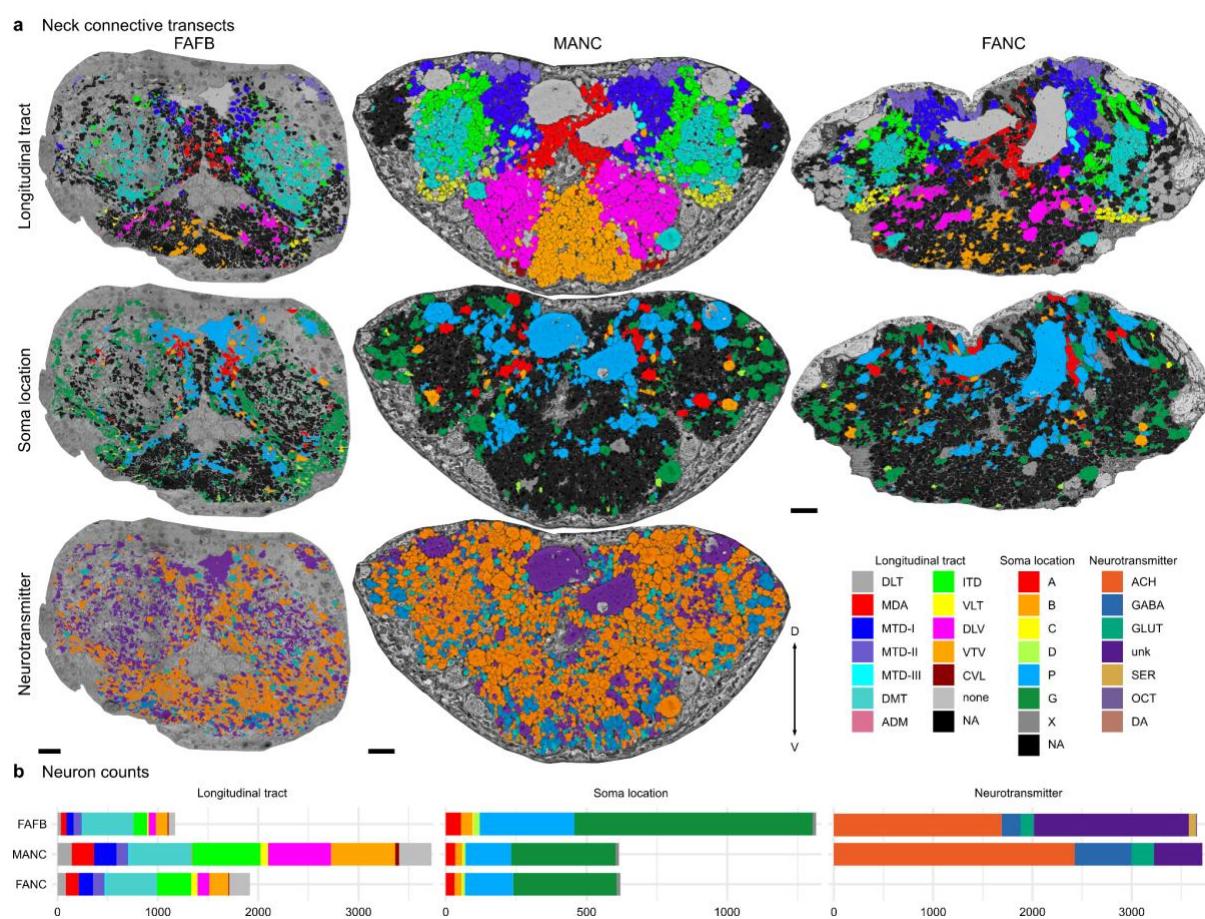
1025 Acknowledgments

1026 We thank the following people for their contributions to this work: our colleagues in the FANC
1027 and FlyWire communities for additional contributions to the proofreading of neurons that we
1028 report as detailed in Supplementary file 3. This sheet also notes proofreaders employed by
1029 Ariadne.ai and operating on our behalf. Elizabeth C. Marin for helping us identify hemilineage
1030 and soma neuromere for sex-specific FANC ANs. Stefanie Hampel and Andrew M. Seeds for
1031 identification of aDN1 and aDN2. Gerry Rubin for sharing unpublished lines for the
1032 identification of DNp68 and DN_g107. Jens Goldammer for sharing unpublished lines for the
1033 identification of DNp60, DNp66, DNp72, DN_g95 and DN_g100. Alice Schildkamp for final
1034 proofreading of problematic and dimorphic ANs. The FlyLight Project Team at Janelia
1035 Research Campus for the use of the Gal4 and Split-Gal4 collections. Helen Langley, Markus
1036 Pleijzier and Elizabeth C. Marin for comments on the manuscript.

1037 H. S. Seung declares a financial interest in Zetta Al. L. Serratosa Capdevila declares a
1038 financial interest in Aelysia Ltd.

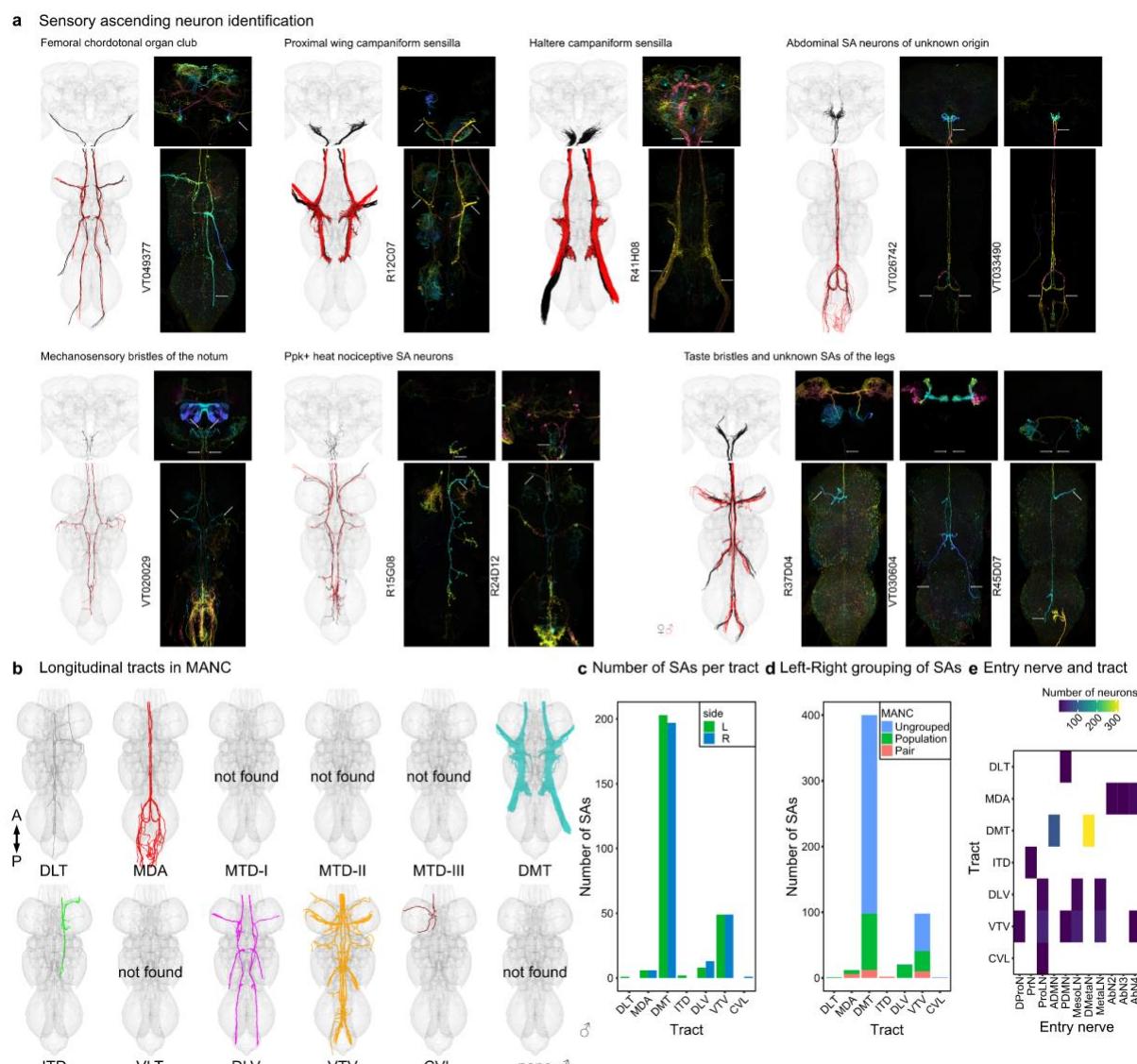
1039 This work was supported by Wellcome Trust collaborative awards 220343/Z/20/Z and
1040 221300/Z/20/Z to GSXEJ and GMC, GM Rubin, S Waddell and M Landgraf; core support from
1041 the MRC (MC-U105188491) to GSXEJ; a Neuronex2 award to GSXEJ (NSF 2014862, MRC
1042 MC_EX_MR/T046279/1); NIH Brain Initiative 1RF1MH120679-01 to D Bock with GSXEJ; a
1043 Boehringer Ingelheim Fonds and the Cambridge Commonwealth, European and International
1044 Trust to I.R.B.; a Walter-Benjamin-Fellowship from Deutsche Forschungsgemeinschaft to TS
1045 (STU 793/2-1).

1046 Author contributions


1047 TS, PB, LSC, BJM, AJ, SF, IM, AR, FK, LK, HSJC, JK, ET, RP, ASB, GMC, MC, GSXEJ and
1048 KE were involved in the proofreading. PS, JSP, MB, SD, AM, SY, CEM, ARS, SS, MM, JT,
1049 WAL, MC, GSXEJ and KE made core contributions to the datasets. TS, PB, LSC, MG, SC,
1050 IRB, IM, AR, PS, MC and KE performed matching across sides and across VNC datasets. TS,
1051 PB, SN, HSJC, JK, ET, RP, GMC, MC, GSXEJ and KE performed LM-EM matching. KE
1052 determined tract assignments and TS determined neuropil assignments. PB, BM, AR and KE
1053 identified entry nerve assignments in FANC. SC produced the neuroglancer environment.
1054 GSXEJ developed the fancr R package. TS, PB, ASC and KE performed analyses. TS, PB
1055 and KE produced the figures with input from coauthors. TS, PB, GSXEJ and KE wrote the
1056 manuscript with input from MC, SC, IRB, LSC. KE and MC coordinated proofreading, matching
1057 and LM identification. MC supervised LSC, BJM, AJ, SF, MG, IM, AR. KE supervised FK and
1058 LK. GSXEJ managed the overall effort and acquired funding.

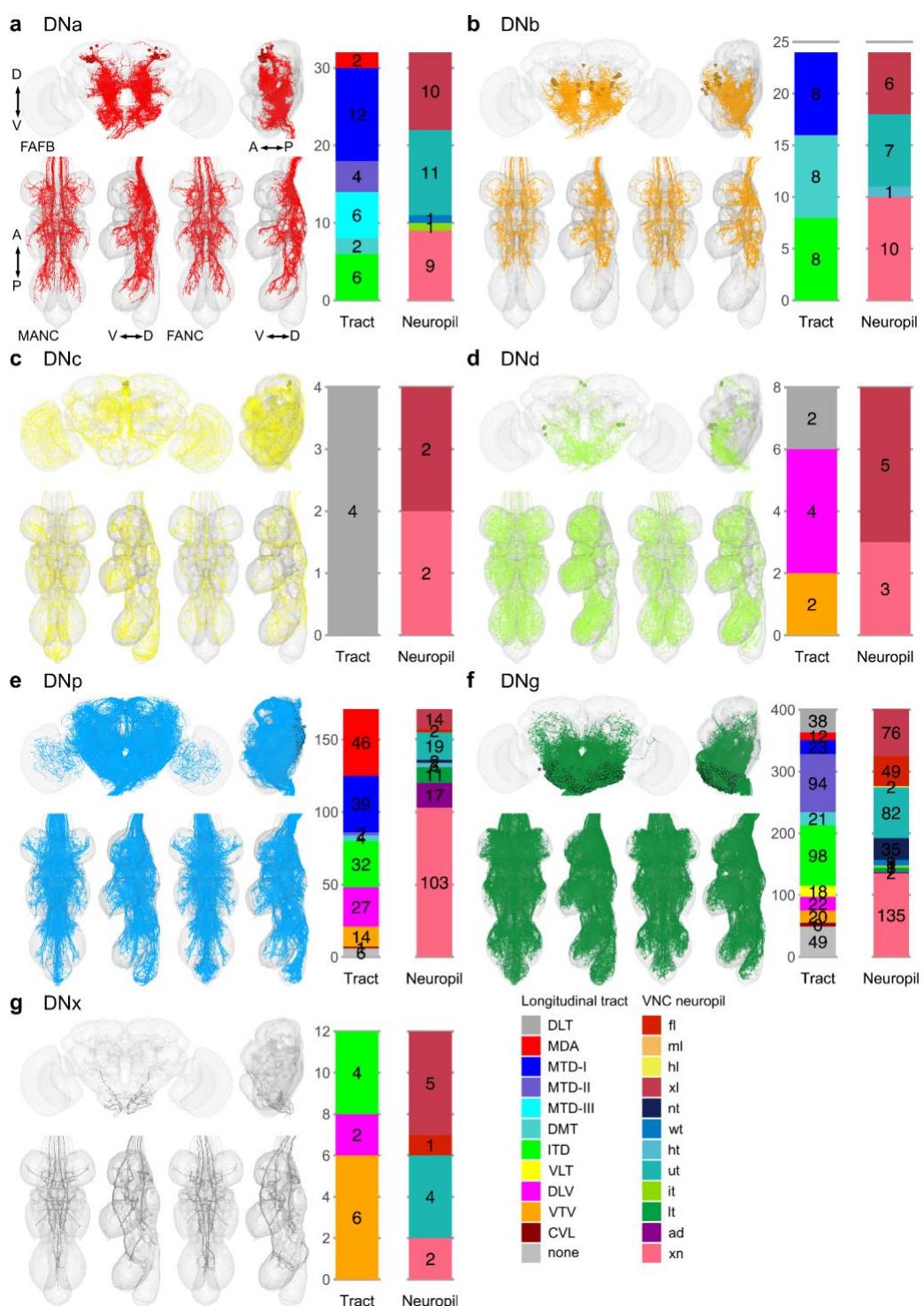
1059

1060


1061

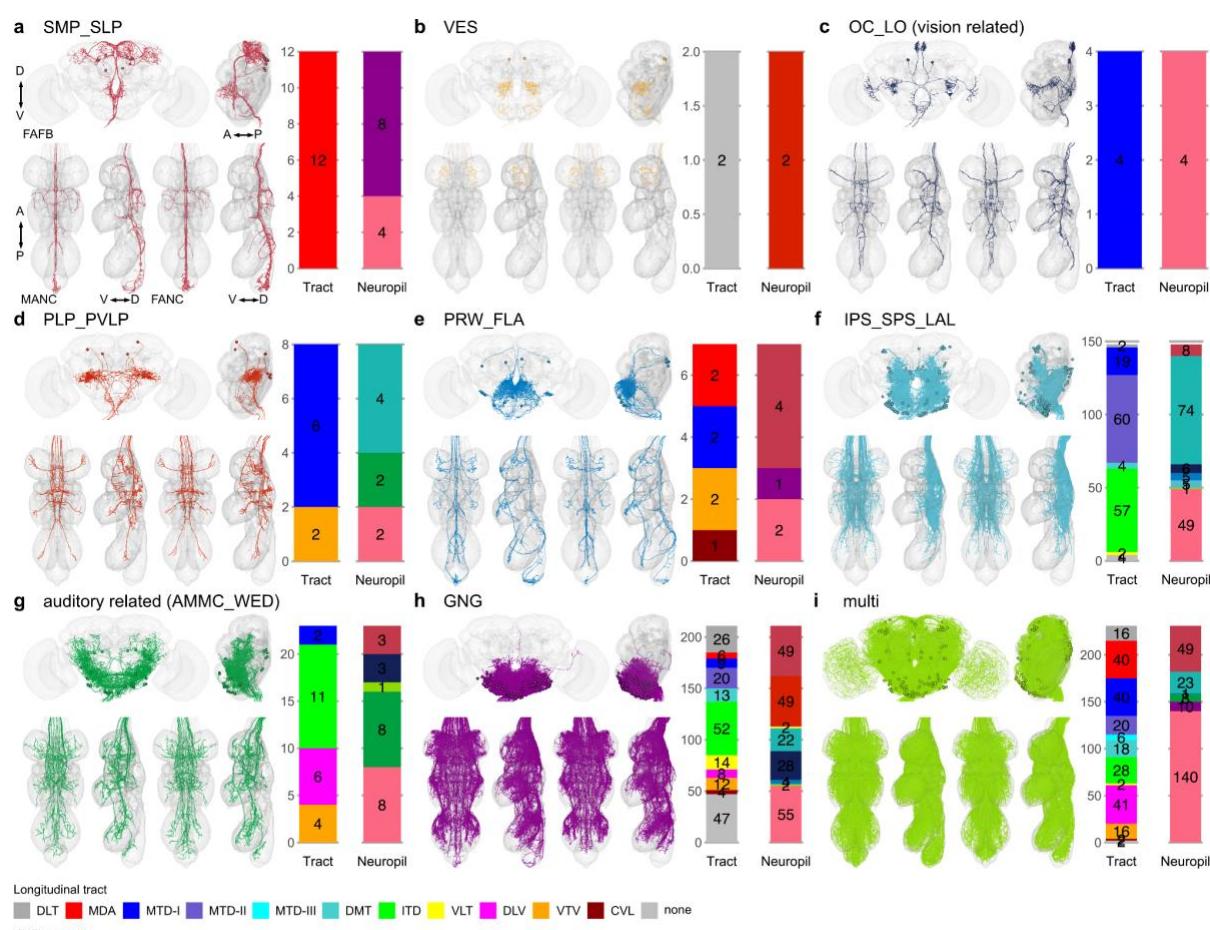
1062 **Extended data figures**

1063


1064 **Extended Data Fig. 1 Cross section (frontal) of the neck connective in the three datasets. a**, All
1065 neurons in the neck connective colour coded by their longitudinal tract, soma location or predicted
1066 neurotransmitter (Eckstein et al., 2020). **b**, Number of neurons by longitudinal tract, soma location or
1067 neurotransmitter in the three datasets. Neurotransmitter predictions are not yet available in FANC.

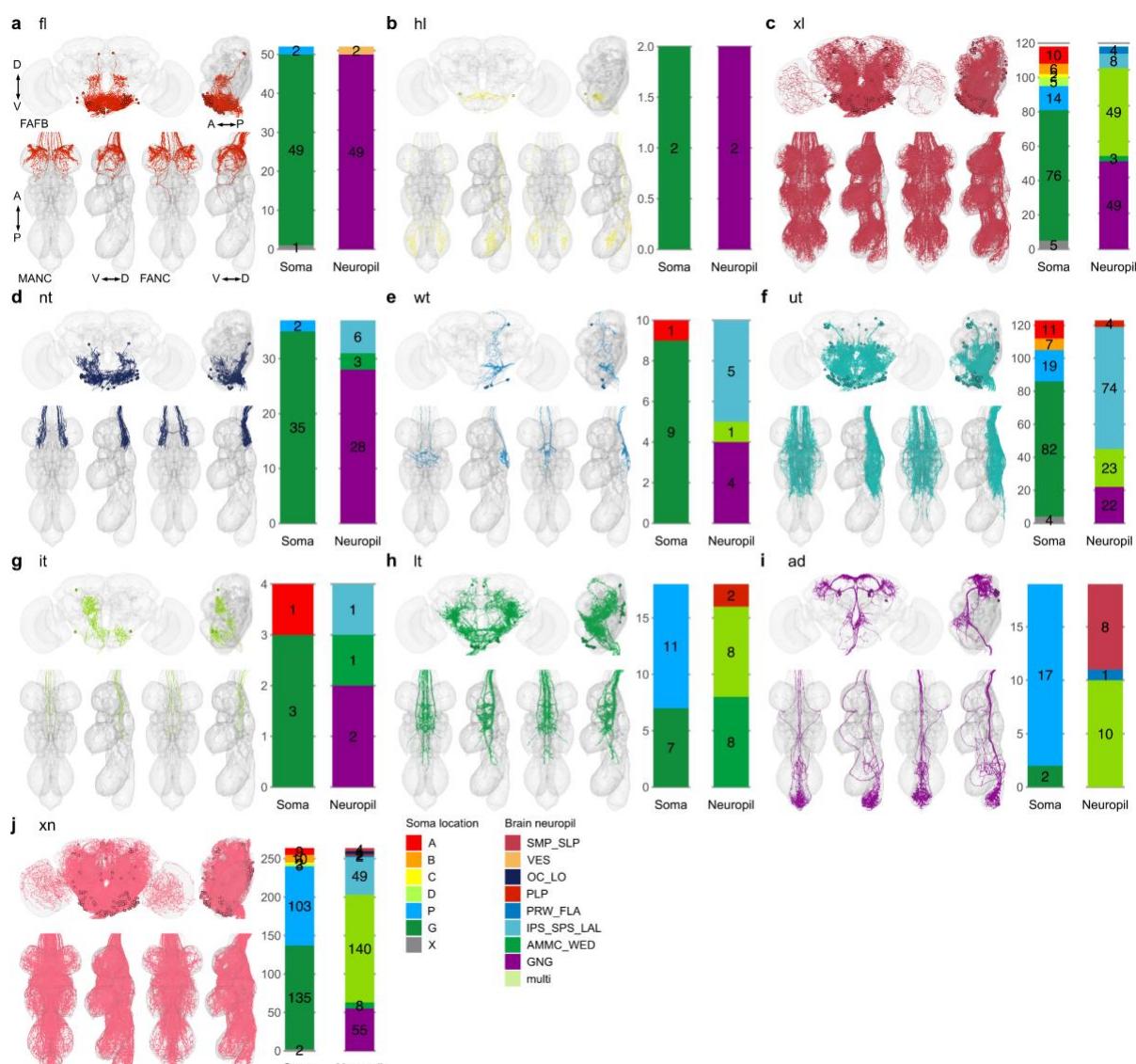
1068
1069
1070
1071
1072
1073
1074
1075

Extended Data Fig. 2 Sensory ascending neurons. **a**, Morphology of sensory ascending neurons identified in the three EM volumes. In black the EM morphology of DNs from female datasets (FAFB, FANC), in red from the male dataset (MANC). Next to them the LM images that allowed a grouping into sensory subclasses. **b**, Tract-based analysis of sensory ascending neurons in MANC. None of the SAs project along the MTD, or VLT tract. **c**, Number of SAs in each tract. **d**, Number of SA grouped into pairs or populations. **e**, Correlation of entry nerve to tract membership for MANC SAs (Marin et al. 2023).

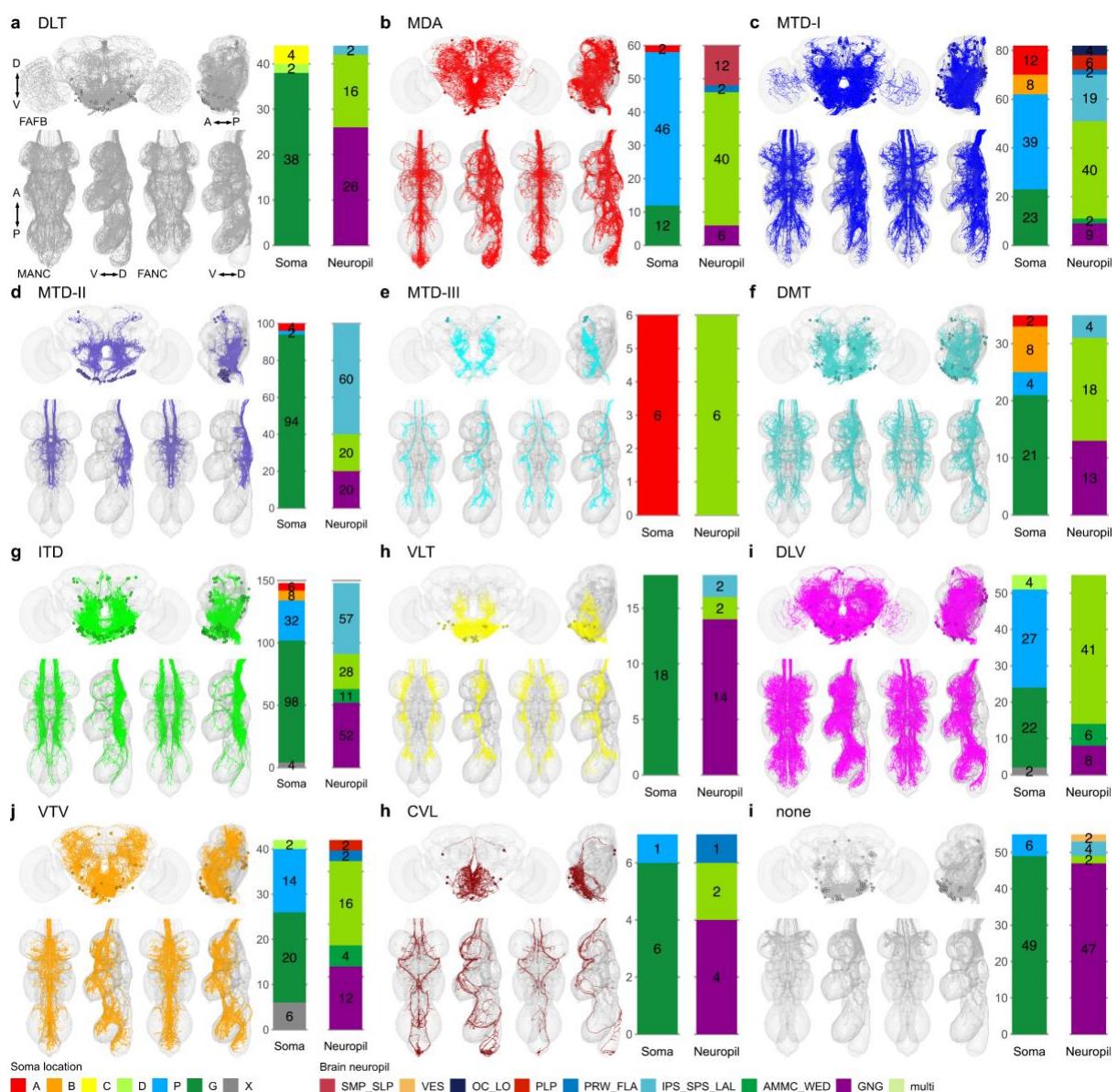

1076

1077

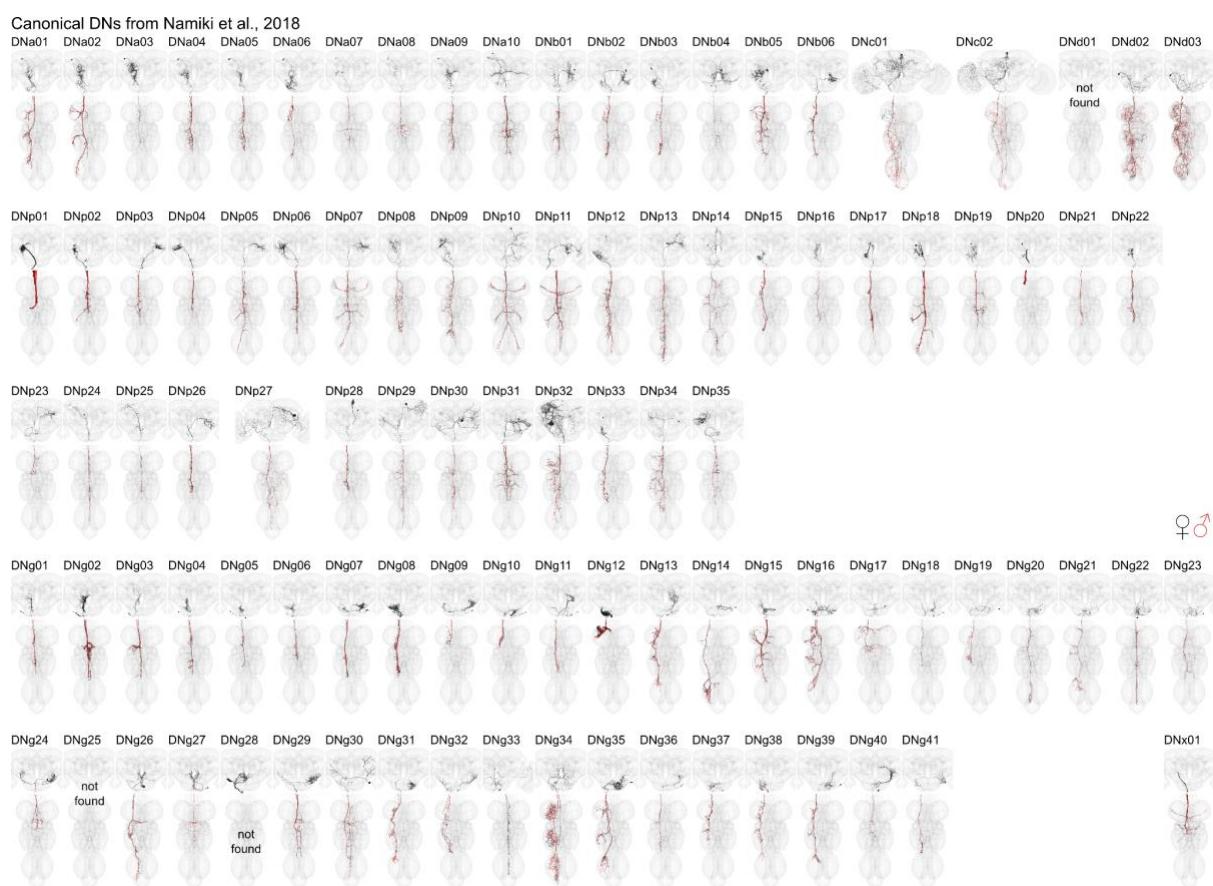
1078 **Extended Data Fig. 3 Morphology matched across the neck - soma.** Morphology of LM matched
 1079 DNs across the three datasets colour coded by cell body location according to (Namiki et al. 2018). **a**,
 1080 DNA neurons have an anterior dorsal soma; **b**, DNb an anterior ventral soma; **c**, DNg a soma in the
 1081 pars intercerebralis; **d**, DNd a soma in an anterior outside cell cluster; **e**, DNp are on the posterior
 1082 surface; **f**, DNg are located in the GNG and **g**, DNx are outside the brain. In each panel the top
 1083 images show reconstruction in FAFB in anterior and lateral view; the two bottom left images show
 1084 MANC and two bottom right FANC in ventral and lateral view, respectively. The bar charts represent
 1085 the distribution of the VNC characteristics longitudinal tract and neuropil innervation for the neurons in
 1086 each category - see colour legend.


1087

1088


1089 **Extended Data Fig. 4 Morphology matched across the neck - brain neuropil.** Morphology of LM
 1090 matched DNs across the three datasets colour coded by their brain neuropil innervation. DNs with input
 1091 neuropil. **a**, superior medial protocerebrum and superior lateral protocerebrum (SMP_SLP); **b**, vest
 1092 (VES); **c**, ocellar ganglion and lobular (OC_LO, vision related); **d**, posterior lateral protocerebrum (PLP);
 1093 **e**, prow and flange (PRW_FLA); **f**, posterior slope and lateral accessory lobe (IPS_SPS_LAL); **g**,
 1094 antennal mechanosensory and motor centre and wedge (AMMC_WED, auditory related); **h**, gnathal
 1095 ganglia (GNG) and **i**, multiple innervations of neuropils across the brain (multi). In each panel the top
 1096 images show reconstruction in FAFB in anterior and lateral view; the two bottom left images show
 1097 MANC and two bottom right FANC in ventral and lateral view, respectively. The bar charts represent
 1098 the distribution of the VNC characteristics longitudinal tract and neuropil innervation for the neurons in
 1099 each category - see colour legend.

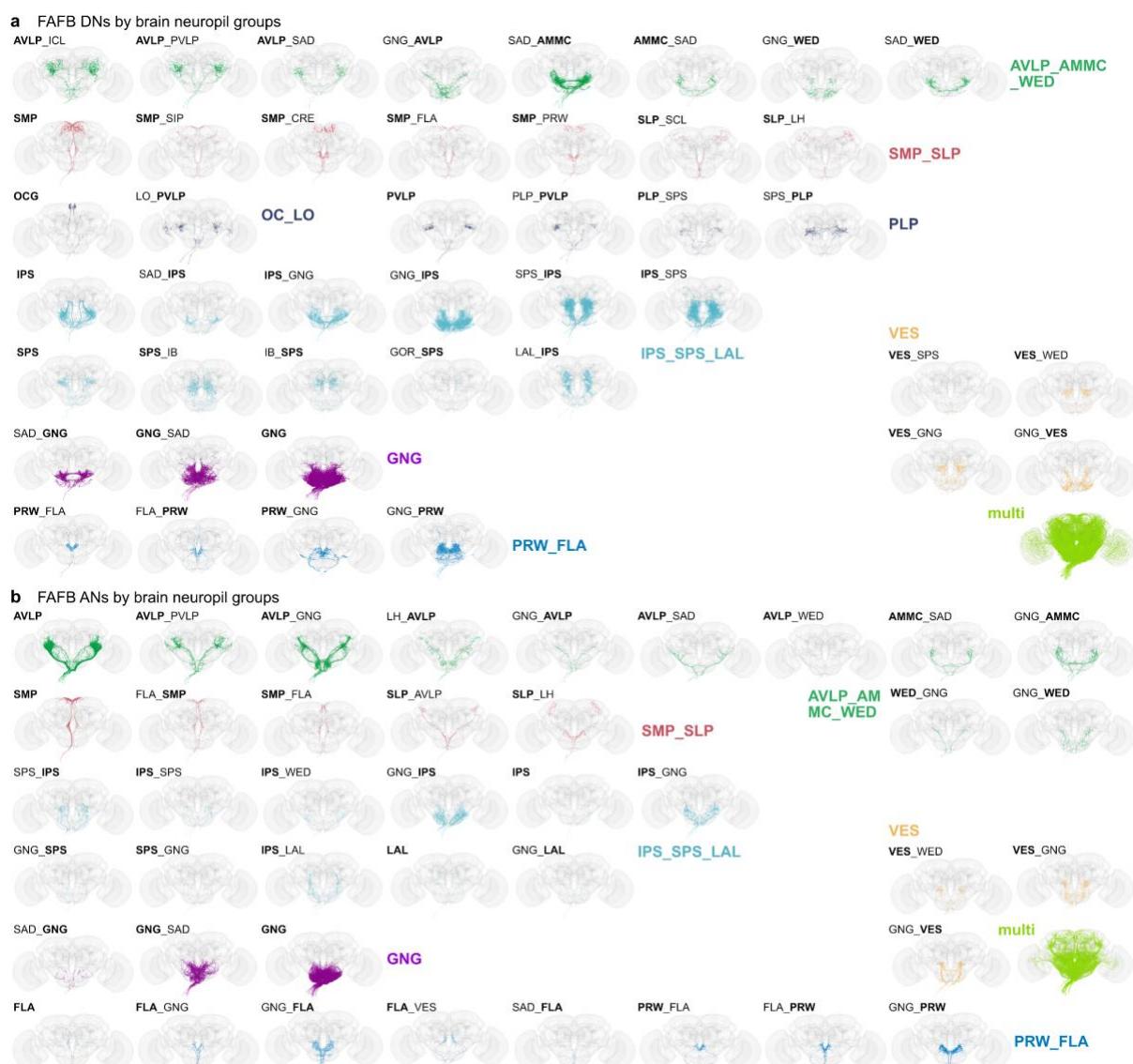
1100



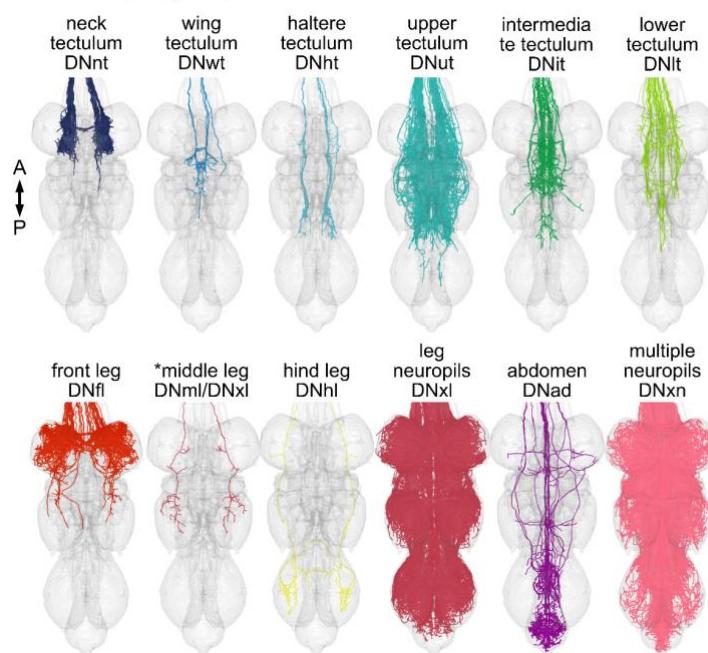
Comparative connectomics of *Drosophila* ascending and descending neurons

33

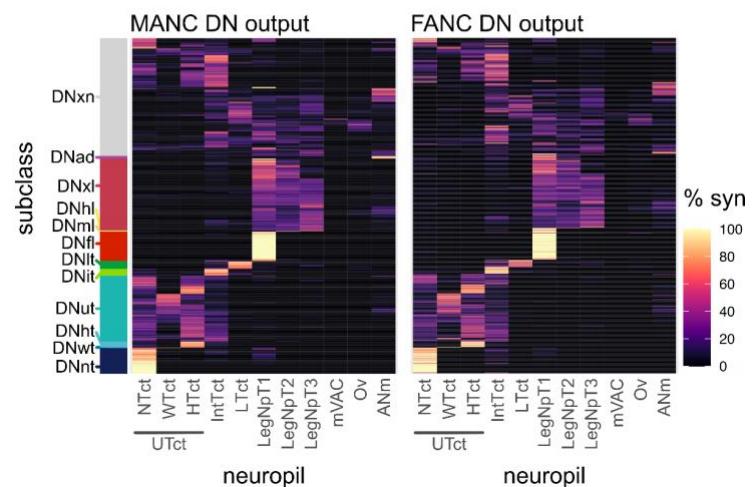
Extended Data Fig. 6 Morphology matched across the neck - tract. Morphology of LM matched DNs across the three datasets colour coded by longitudinal tract membership in the VNC. DNs in the tract. **a**, dorsal lateral tract (DLT); **b**, median dorsal abdominal tract (MDA); **c**, ventral route of the mediate tract of dorsal cervical fasciculus (MTD-I); **d**, dorsal route of the mediate tract of dorsal cervical fasciculus (MTD-II); **e**, lateral route of the mediate tract of dorsal cervical fasciculus (MTD-III); **f**, dorsal median tract (DMT); **g**, intermediate tract of dorsal cervical fasciculus (ITD); **h**, ventral lateral tract (VLT); **i**, dorsal lateral tract of ventral cervical fasciculus (DLV); **j**, ventral median tract of ventral cervical fasciculus (VTV); **h**, curved ventral lateral tract (CVL) and **i**, no tract membership (none). In each panel the top images show reconstruction in FAFB in anterior and lateral view; the two bottom left images show MANC and two bottom right FANC in ventral and lateral view, respectively. The bar charts represent the distribution of the brain characteristics soma location and neuropil innervation for the neurons in each category - see colour legend.



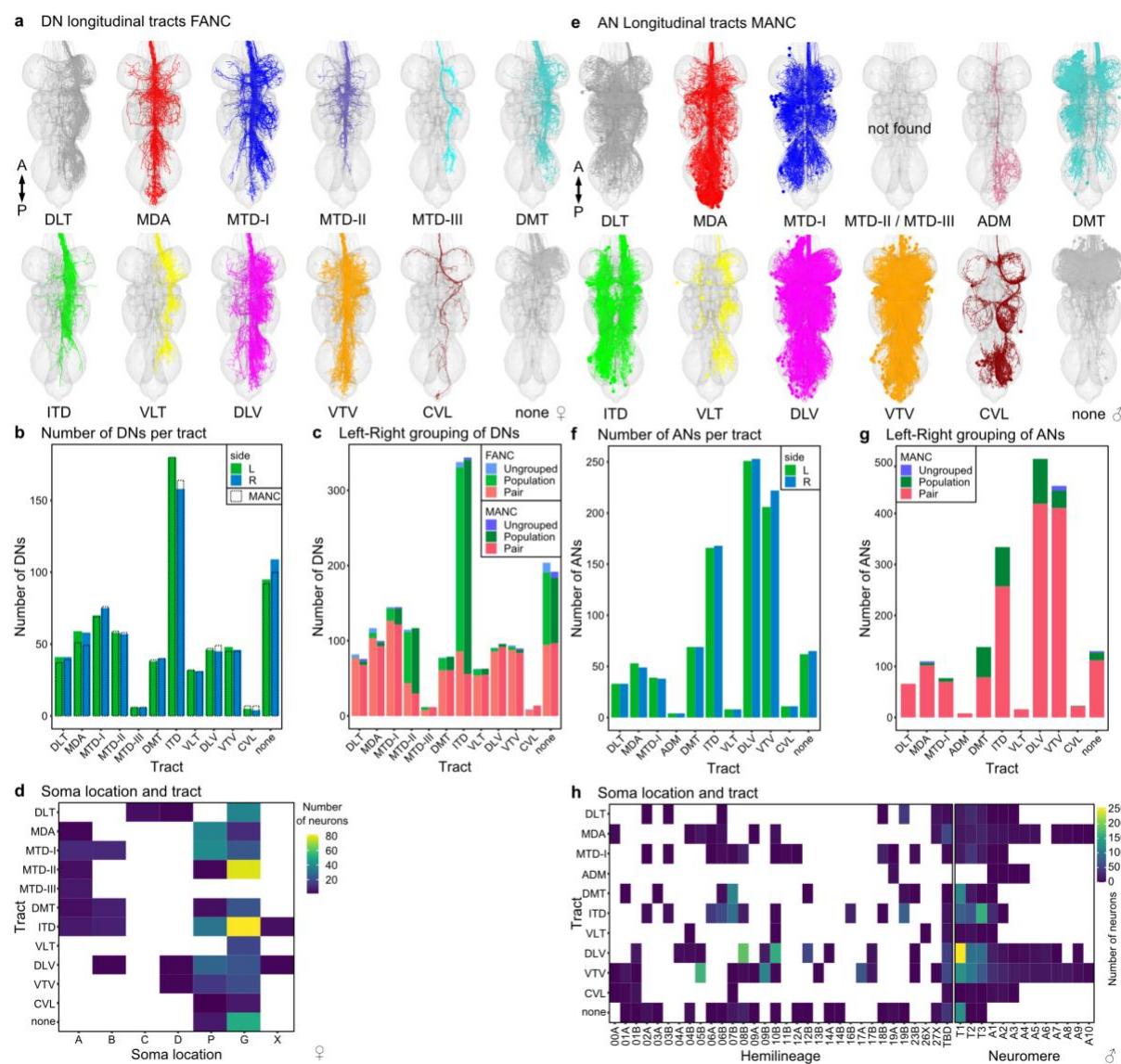
1127
1128
1129
1130
1131
1132
1133
1134


Extended Data Fig. 7 DN matching to Namiki et al. 2018. Morphology of identified DNs across all three datasets with nomenclature as described in (Namiki et al. 2018). Two DN types could not be identified (DND01, DNG25) in any of the three EM datasets and one DN type (DNG28) is only identifiable in the brain. See supplementary table DN_identification for slide codes and for DN synonyms from the literature. In black the morphology of DNs from the female datasets (FAFB, FANC) in red from the male dataset (MANC). This figure is also provided in high resolution and DNs can be viewed in 3D at <https://tinyurl.com/NeckConnective>.

Comparative connectomics of *Drosophila* ascending and descending neurons


35

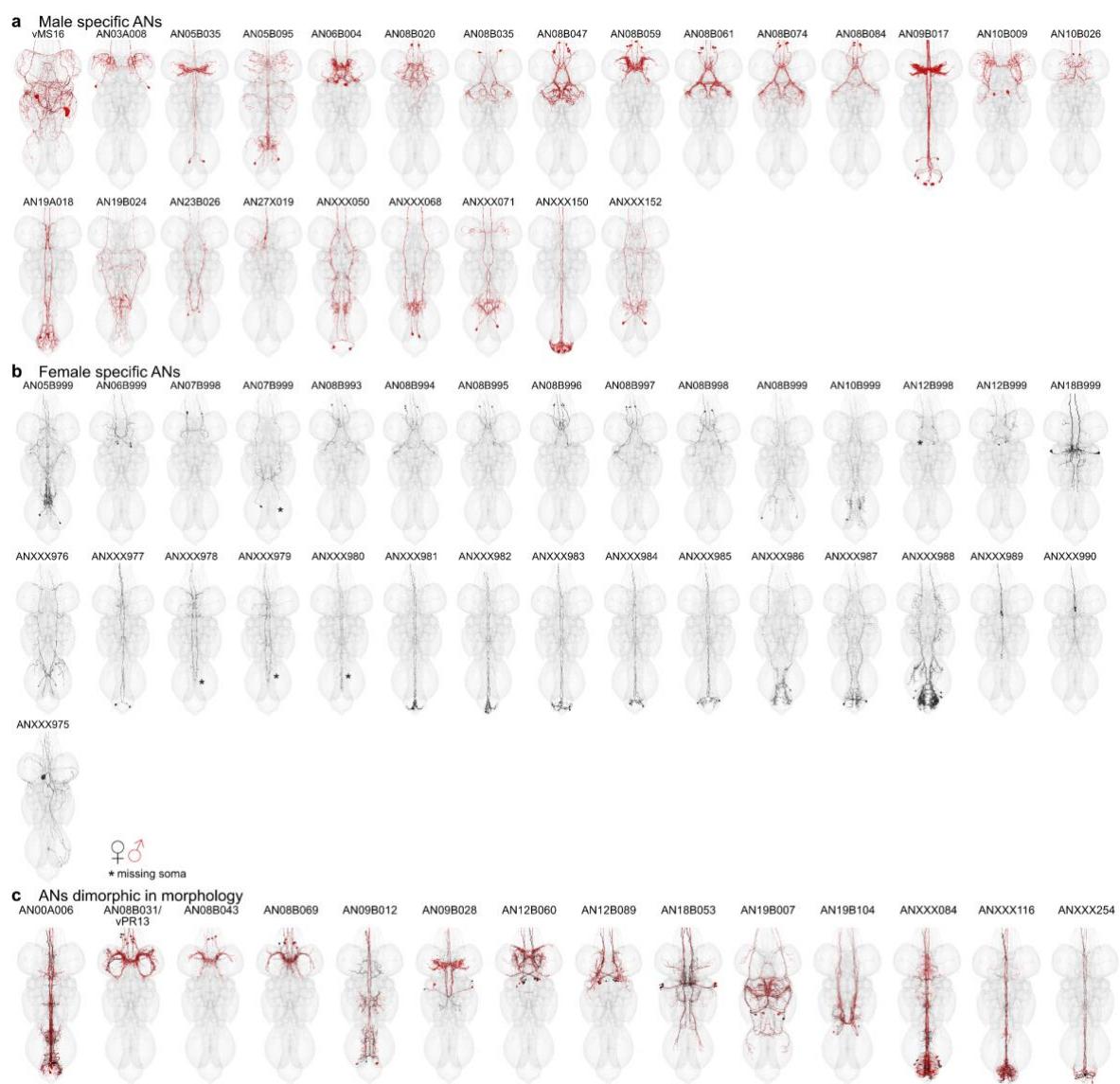
a Neuropil groups of DNs in FANC



b VNC neuropil innervation of matched DNs and ANs

1147

1148 **Extended Data Fig. 9 Neuropil-based analysis of descending neurons in FANC.** **a**, Primary
1149 neuropil assignment of DNs in the FANC dataset to compare to previously published one in the MANC
1150 dataset (H. S. J. *. Cheong et al., 2024). **b**, Synaptic output in % by VNC neuropil of matched DNs in
1151 MANC and FANC. Each row represents one DN type, order is conserved between the two datasets.
1152 Left bar indicates the previously assigned neuropil based subclasses from the MANC dataset (H. S. J.
1153 *. Cheong et al., 2024).
1154



1156 **Extended Data Fig. 10 Tract-based analysis of descending neurons in FANC and ascending**
1157 **neurons in MANC.** **a**, Tract assignment of all left side DNs in the FANC dataset to compare to
1158 previously published tract assignment in the MANC dataset (H. S. J. * Cheong et al., 2024). **b**, Number
1159 of DNs for each tract in comparison to MANC DNs (dotted line). **c**, DNs grouped into pairs or populations
1160 comparing FANC to MANC. **d**, Correlation of soma location and tract membership for identified FANC
1161 DN types based on LM data (Namiki et al. 2018). **e**, Tract assignment of all left side ANs in the MANC
1162 dataset. None of the ANs project along the MTD-II or MTD-III tract. A small additional tract was observed
1163 for ANs, referred to as AN-specific dorsal medial tract (ADM). **f**, Number of ANs in each tract. **g**, ANs
1164 grouped into pairs or populations comparing MANC to FANC. **h**, Correlation of hemilineage and
1165 neuromere to tract membership for MANC ANs (Marin et al., 2023).

1166
1167

Comparative connectomics of *Drosophila* ascending and descending neurons

38

1176 **Supplemental information**

1177 **Supplementary file 1 Seed planes**

1178 Two tables listing the xyz coordinates, svid, root_id, side and class of profiles passing through
1179 the FAFB or FANC seed plane.

1180 **Supplementary file 2 Typing and matching**

1181 13 tables listing the neuronal ids and annotations used in the manuscript for: FAFB_DNs,
1182 FANC_DNs, MANC_DNs, dimorphic_DNs, DN_identification, FAFB_ANs_SAs, FANC_ANs,
1183 FANC_SAs, MANC_ANs, dimorphic_ANs, AN_identification, FAFB_SA_identification,
1184 other_MANC_FANC_matching.

1185 **Supplementary file 3 User edits**

1186 Two tables listing the number of edits to the neck connective neurons in FANC and FAFB
1187 summarised by lab.

1188 **References**

1189 Ache, J. M., Namiki, S., Lee, A., Branson, K., & Card, G. M. (2019). State-dependent
1190 decoupling of sensory and motor circuits underlies behavioral flexibility in *Drosophila*.
1191 *Nature Neuroscience*, 22(7), 1132–1139.

1192 Auer, T. O., & Benton, R. (2016). Sexual circuitry in *Drosophila*. *Current Opinion in*
1193 *Neurobiology*, 38, 18–26.

1194 Aymanns, F., Chen, C.-L., & Ramdy, P. (2022). Descending neuron population dynamics
1195 during odor-evoked and spontaneous limb-dependent behaviors. *eLife*, 11.
1196 <https://doi.org/10.7554/eLife.81527>

1197 Azevedo, A., Lesser, E., Mark, B., Phelps, J., Elabbady, L., Kuroda, S., Sustar, A., Moussa,
1198 A., Kandelwal, A., Dallmann, C. J., Agrawal, S., Lee, S.-Y. J., Pratt, B., Cook, A., Skutt-
1199 Kakaria, K., Gerhard, S., Lu, R., Kemnitz, N., Lee, K., ... Tuthill, J. C. (2022). Tools for
1200 comprehensive reconstruction and analysis of *Drosophila* motor circuits. In *bioRxiv*.
1201 <https://doi.org/10.1101/2022.12.15.520299>

1202 Bates, A. S., Manton, J. D., Jagannathan, S. R., Costa, M., Schlegel, P., Rohlfing, T., &
1203 Jefferis, G. S. (2020). The natverse, a versatile toolbox for combining and analysing
1204 neuroanatomical data. *eLife*, 9. <https://doi.org/10.7554/eLife.53350>

1205 Bidaye, S. S., Machacek, C., Wu, Y., & Dickson, B. J. (2014). Neuronal control of *Drosophila*
1206 walking direction. *Science*, 344(6179), 97–101.

1207 Braun, J., Hurtak, F., Wang-Chen, S., & Ramdy, P. (2024). Descending networks transform
1208 command signals into population motor control. *Nature*. <https://doi.org/10.1038/s41586-024-07523-9>

1209 Cachero, S., Ostrovsky, A. D., Yu, J. Y., Dickson, B. J., & Jefferis, G. S. X. E. (2010). Sexual
1210 dimorphism in the fly brain. *Current Biology: CB*, 20(18), 1589–1601.

1211 Cande, J., Namiki, S., Qiu, J., Korff, W., Card, G. M., Shaevitz, J. W., Stern, D. L., &
1212 Berman, G. J. (2018). Optogenetic dissection of descending behavioral control in
1213 *Drosophila*. *eLife*, 7. <https://doi.org/10.7554/eLife.34275>

1214 Chen, C.-L., Aymanns, F., Minegishi, R., Matsuda, V. D. V., Talabot, N., Günel, S., Dickson,
1215 B. J., & Ramdy, P. (2023). Ascending neurons convey behavioral state to integrative
1216 sensory and action selection brain regions. *Nature Neuroscience*, 26(4), 682–695.

1217 Cheong, H. S. J., Boone, K. N., Bennett, M. M., Salman, F., Ralston, J. D., Hatch, K., Allen,
1218 R. F., Phelps, A. M., Cook, A. P., Phelps, J. S., Erginkaya, M., Lee, W.-C. A., Card, G.
1219 M., Daly, K. C., & Dacks, A. M. (2024). Organization of an ascending circuit that
1220 conveys flight motor state in *Drosophila*. *Current Biology: CB*, 34(5), 1059–1075.e5.

1221 Cheong, H. S. J. *, Eichler, K. *, Stuerner, T. *, Asinof, S., Champion, A. S., Marin, E. C.,
1222 Oram, T. B., Namiki, S., Siwanowicz, I., Costa, M., Berg, S., Janelia FlyEM Project
1223 Team, Jefferis, G. S. X. E., & Card, G. M. (2024). Transforming descending input into
1224 behavior: The organization of premotor circuits in the *Drosophila* Male Adult Nerve Cord
1225 connectome. *eLife*. <https://doi.org/10.7554/eLife.96084.1>

1226 Clements, J., Goina, C., Hubbard, P. M., Kawase, T., Olbris, D. J., Otsuna, H., Svirskas, R.,
1227 & Rokicki, K. (2022). NeuronBridge: an intuitive web application for neuronal
1228 morphology search across large data sets. In *bioRxiv* (p. 2022.07.20.500311).
1229 <https://doi.org/10.1101/2022.07.20.500311>

1230 Clowney, J. E., Iguchi, S., Bussell, J. J., Scheer, E., & Ruta, V. (2015). Multimodal
1231 Chemosensory Circuits Controlling Male Courtship in *Drosophila*. *Neuron*, 87(5), 1036–
1232 1049.

1233

1234 Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A., Nguyen,
1235 K. C. Q., Tang, L. T.-H., Bayer, E. A., Duerr, J. S., Bülow, H. E., Hobert, O., Hall, D. H.,
1236 & Emmons, S. W. (2019). Whole-animal connectomes of both *Caenorhabditis elegans*
1237 sexes. *Nature*, 571(7763), 63–71.

1238 Costa, M., Manton, J. D., Ostrovsky, A. D., Prohaska, S., & Jefferis, G. S. X. E. (2016).
1239 NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of
1240 Neuron Family Databases. *Neuron*, 91(2), 293–311.

1241 Court, R., Namiki, S., Armstrong, J. D., Börner, J., Card, G., Costa, M., Dickinson, M., Duch,
1242 C., Korff, W., Mann, R., Merritt, D., Murphey, R. K., Seeds, A. M., Shirangi, T., Simpson,
1243 J. H., Truman, J. W., Tuthill, J. C., Williams, D. W., & Shepherd, D. (2020). A Systematic
1244 Nomenclature for the *Drosophila* Ventral Nerve Cord. *Neuron*, 107(6), 1071–1079.e2.

1245 Currier, T. A., & Nagel, K. I. (2020). Multisensory control of navigation in the fruit fly. *Current
1246 Opinion in Neurobiology*, 64, 10–16.

1247 Dallmann, C. J., Luo, Y., Agrawal, S., Chou, G. M., Cook, A., Brunton, B. W., & Tuthill, J. C.
1248 (2024). Presynaptic inhibition selectively suppresses leg proprioception in behaving.
1249 *bioRxiv : The Preprint Server for Biology*. <https://doi.org/10.1101/2023.10.20.563322>

1250 Dorkenwald, S., Matsliah, A., Sterling, A. R., Schlegel, P., Yu, S.-C., McKellar, C. E., Lin, A.,
1251 Costa, M., Eichler, K., Yin, Y., Silversmith, W., Schneider-Mizell, C., Jordan, C. S.,
1252 Brittain, D., Halageri, A., Kuehner, K., Ogedengbe, O., Morey, R., Gager, J., ... FlyWire
1253 Consortium. (2023). Neuronal wiring diagram of an adult brain. *bioRxiv : The Preprint
1254 Server for Biology*. <https://doi.org/10.1101/2023.06.27.546656>

1255 Eckstein, N., Bates, A. S., Du, M., Hartenstein, V., Jefferis, G. S. X., & Funke, J. (2020).
1256 Neurotransmitter Classification from Electron Microscopy Images at Synaptic Sites in
1257 *Drosophila*. In *bioRxiv* (p. 2020.06.12.148775).
1258 <https://doi.org/10.1101/2020.06.12.148775>

1259 Eckstein, N., Bates, A. S., Du, M., Hartenstein, V., Jefferis, G. S. X., & Funke, J. (2024).
1260 Neurotransmitter classification from electron microscopy images at synaptic sites in
1261 *Drosophila melanogaster*. *Cell*, 187(10), 2574–2594.e23.

1262 Eichler, K., Hampel, S., Alejandro-García, A., Calle-Schuler, S. A., Santana-Cruz, A.,
1263 Kmecova, L., Blagburn, J. M., Hoopfer, E. D., & Seeds, A. M. (2024). Somatotopic
1264 organization among parallel sensory pathways that promote a grooming sequence in.
1265 *eLife*, 12. <https://doi.org/10.7554/eLife.87602>

1266 Fujiwara, T., Brotas, M., & Chiappe, M. E. (2022). Walking strides direct rapid and flexible
1267 recruitment of visual circuits for course control in *Drosophila*. *Neuron*, 110(13), 2124–
1268 2138.e8.

1269 Gerhard, S., Andrade, I., Fetter, R. D., Cardona, A., & Schneider-Mizell, C. M. (2017).
1270 Conserved neural circuit structure across larval development revealed by comparative
1271 connectomics. *eLife*, 6. <https://doi.org/10.7554/eLife.29089>

1272 Golgi, C. (1873). Sulla struttura della griglia del cervello. *Gaz. Med. Intalianna Lomb*, 6, 244–
1273 246.

1274 Guo, L., Zhang, N., & Simpson, J. H. (2022). Descending neurons coordinate anterior
1275 grooming behavior in *Drosophila*. *Current Biology: CB*, 32(4), 823–833.e4.

1276 Hampel, S., Franconville, R., Simpson, J. H., & Seeds, A. M. (2015). A neural command
1277 circuit for grooming movement control. *eLife*, 4, e08758.

1278 Hoopfer, E. D., Jung, Y., Inagaki, H. K., Rubin, G. M., & Anderson, D. J. (2015). P1
1279 interneurons promote a persistent internal state that enhances inter-male aggression in
1280 *Drosophila*. *eLife*, 4. <https://doi.org/10.7554/eLife.11346>

1281 Ito, K., Shinomiya, K., Ito, M., Armstrong, J. D., Boyan, G., Hartenstein, V., Harzsch, S.,

1282 Heisenberg, M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L. L., Rössler, W.,
1283 Simpson, J. H., Strausfeld, N. J., Strauss, R., Vosshall, L. B., & Insect Brain Name
1284 Working Group. (2014). A systematic nomenclature for the insect brain. *Neuron*, 81(4),
1285 755–765.

1286 Jenett, A., Rubin, G. M., Ngo, T.-T. B., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B. D.,
1287 Cavallaro, A., Hall, D., Jeter, J., Iyer, N., Fetter, D., Hausenfluck, J. H., Peng, H.,
1288 Trautman, E. T., Svirskas, R. R., Myers, E. W., Iwinski, Z. R., Aso, Y., ... Zugates, C. T.
1289 (2012). A GAL4-driver line resource for *Drosophila* neurobiology. *Cell Reports*, 2(4),
1290 991–1001.

1291 Kauer, I., Borst, A., & Haag, J. (2015). Complementary motion tuning in frontal nerve motor
1292 neurons of the blowfly. *Journal of Comparative Physiology. A, Neuroethology, Sensory,*
1293 *Neural, and Behavioral Physiology*, 201(4), 411–426.

1294 Kohatsu, S., Koganezawa, M., & Yamamoto, D. (2011). Female contact activates male-
1295 specific interneurons that trigger stereotypic courtship behavior in *Drosophila*. *Neuron*,
1296 69(3), 498–508.

1297 Lappalainen, J. K., Tschopp, F. D., Prakya, S., McGill, M., Nern, A., Shinomiya, K.,
1298 Takemura, S.-Y., Gruntman, E., Macke, J. H., & Turaga, S. C. (2023). Connectome-
1299 constrained deep mechanistic networks predict neural responses across the fly visual
1300 system at single-neuron resolution. In *bioRxiv* (p. 2023.03.11.532232).
1301 <https://doi.org/10.1101/2023.03.11.532232>

1302 Lee, S.-Y. J., Dallmann, C. J., Cook, A. P., Tuthill, J. C., & Agrawal, S. (2024). Divergent
1303 neural circuits for proprioceptive and exteroceptive sensing of the leg. *bioRxiv : The*
1304 *Preprint Server for Biology*. <https://doi.org/10.1101/2024.04.23.590808>

1305 Lesser, E., Azevedo, A. W., Phelps, J. S., Elabbady, L., Cook, A., Sakeena Syed, D., Mark,
1306 B., Kuroda, S., Sustar, A., Moussa, A., Dallmann, C. J., Agrawal, S., Lee, S.-Y. J., Pratt,
1307 B., Skutt-Kakaria, K., Gerhard, S., Lu, R., Kemnitz, N., Lee, K., ... Tuthill, J. C. (2024).
1308 Synaptic architecture of leg and wing premotor control networks in. *bioRxiv : The*
1309 *Preprint Server for Biology*. <https://doi.org/10.1101/2023.05.30.542725>

1310 Lillvis, J. L., Wang, K., Shiozaki, H. M., Xu, M., Stern, D. L., & Dickson, B. J. (n.d.). The
1311 neural basis of *Drosophila* courtship song. *Manuscript in Preparation*.

1312 Lillvis, J. L., Wang, K., Shiozaki, H. M., Xu, M., Stern, D. L., & Dickson, B. J. (2024). Nested
1313 neural circuits generate distinct acoustic signals during *Drosophila* courtship. *Current*
1314 *Biology: CB*, 34(4), 808–824.e6.

1315 Lima, S. Q., & Miesenböck, G. (2005). Remote control of behavior through genetically
1316 targeted photostimulation of neurons. *Cell*, 121(1), 141–152.

1317 Li, M., Chen, D. S., Junker, I. P., Szorenyi, F., Chen, G. H., Berger, A. J., Comeault, A. A.,
1318 Matute, D. R., & Ding, Y. (2023). Ancestral neural circuits potentiate the origin of a
1319 female sexual behavior. *bioRxiv : The Preprint Server for Biology*.
1320 <https://doi.org/10.1101/2023.12.05.570174>

1321 Maitin-Shepard, J., Baden, A., Silversmith, W., Perlman, E., F., C., Blakely, T., Funke, J.,
1322 Jordan, C., Falk, B., Kemnitz, N., C., T. R., Castro, M., Jagannathan, S., J., M. C.,
1323 Hoag, A., Katz, B., Parsons, D., Wu, J., Kamentsky, L., ... Roeder L Li P. (2021).
1324 google/neuroglancer: *Github*. [Com/google/neuroglancer](https://github.com/google/neuroglancer), Retrieved, 04–30.

1325 Mann, K., Gordon, M. D., & Scott, K. (2013). A pair of interneurons influences the choice
1326 between feeding and locomotion in *Drosophila*. *Neuron*, 79(4), 754–765.

1327 Marin, E. C., Büld, L., Theiss, M., Sarkissian, T., Roberts, R. J. V., Turnbull, R., Tamimi, I. F.
1328 M., Pleijzier, M. W., Laursen, W. J., Drummond, N., Schlegel, P., Bates, A. S., Li, F.,
1329 Landgraf, M., Costa, M., Bock, D. D., Garrity, P. A., & Jefferis, G. S. X. E. (2020).

1330 Connectomics Analysis Reveals First-, Second-, and Third-Order Thermosensory and
1331 Hygrosensory Neurons in the Adult *Drosophila* Brain. *Current Biology: CB*, 30(16),
1332 3167–3182.e4.

1333 Marin, E. C., Morris, B. J., Stuerner, T., Champion, A. S., Krzeminski, D., Badalamente, G.,
1334 Gkantia, M., Dunne, C. R., Eichler, K., Shin-Takemura, Y., Tamimi, I. F. M., Fang, S.,
1335 Moon, S. S., Cheong, H. S. J., Li, F., Schlegel, P., Berg, S., FlyEM Project Team, Card,
1336 G. M., ... Jefferis, G. S. X. E. (2023). Systematic annotation of a complete adult male
1337 *Drosophila* nerve cord connectome reveals principles of functional organisation. *bioRxiv*.

1338 McKellar, C. E., Lillvis, J. L., Bath, D. E., Fitzgerald, J. E., Cannon, J. G., Simpson, J. H., &
1339 Dickson, B. J. (2019). Threshold-Based Ordering of Sequential Actions during
1340 *Drosophila* Courtship. *Current Biology: CB*, 29(3), 426–434.e6.

1341 Meissner, G. W., Nern, A., Dorman, Z., DePasquale, G. M., Forster, K., Gibney, T.,
1342 Hausenfluck, J. H., He, Y., Iyer, N. A., Jeter, J., Johnson, L., Johnston, R. M., Lee, K.,
1343 Melton, B., Yarbrough, B., Zugates, C. T., Clements, J., Goina, C., Otsuna, H., ...
1344 FlyLight Project Team. (2023). A searchable image resource of GAL4 driver expression
1345 patterns with single neuron resolution. *eLife*, 12. <https://doi.org/10.7554/eLife.80660>

1346 Meissner, G. W., Vannan, A., Jeter, J., Close, K., DePasquale, G. M., Dorman, Z., Forster,
1347 K., Beringer, J. A., Gibney, T. V., Hausenfluck, J. H., He, Y., Henderson, K., Johnson,
1348 L., Johnston, R. M., Ihrke, G., Iyer, N., Lazarus, R., Lee, K., Li, H.-H., ... Rubin, G. M.
1349 (2024). A split-GAL4 driver line resource for *Drosophila* CNS cell types. In *bioRxiv* (p.
1350 2024.01.09.574419). <https://doi.org/10.1101/2024.01.09.574419>

1351 Mezzera, C., Brotas, M., Gaspar, M., Pavlou, H. J., Goodwin, S. F., & Vasconcelos, M. L.
1352 (2023). Ovipositor Extrusion Promotes the Transition from Courtship to Copulation and
1353 Signals Female Acceptance in *Drosophila melanogaster*. *Current Biology: CB*, 33(22),
1354 5034.

1355 Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W., & Card, G. M. (2018). The functional
1356 organization of descending sensory-motor pathways in. *eLife*, 7.
1357 <https://doi.org/10.7554/eLife.34272>

1358 Namiki, S., & Kanzaki, R. (2016). Comparative Neuroanatomy of the Lateral Accessory Lobe
1359 in the Insect Brain. *Frontiers in Physiology*, 7, 244.

1360 Nern, A., Lösche, F., Takemura, S.-Y., Burnett, L. E., Dreher, M., Gruntman, E., Hoeller, J.,
1361 Huang, G. B., Januszewski, M., Klapoetke, N. C., Koskela, S., Longden, K. D., Lu, Z.,
1362 Preibisch, S., Qiu, W., Rogers, E. M., Seenivasan, P., Zhao, A., Bogovic, J., ... Reiser,
1363 M. B. (2024). Connectome-driven neural inventory of a complete visual system. *bioRxiv*
1364 : The Preprint Server for Biology. <https://doi.org/10.1101/2024.04.16.589741>

1365 Pavlou, H. J., & Goodwin, S. F. (2013). Courtship behavior in *Drosophila melanogaster*:
1366 towards a “courtship connectome.” *Current Opinion in Neurobiology*, 23(1), 76–83.

1367 Phelps, J. S., Hildebrand, D. G. C., Graham, B. J., Kuan, A. T., Thomas, L. A., Nguyen, T.
1368 M., Buhmann, J., Azevedo, A. W., Sustar, A., Agrawal, S., Liu, M., Shanny, B. L.,
1369 Funke, J., Tuthill, J. C., & Lee, W.-C. A. (2021). Reconstruction of motor control circuits
1370 in adult *Drosophila* using automated transmission electron microscopy. *Cell*, 184(3),
1371 759–774.e18.

1372 Possidente, D. R., & Murphey, R. K. (1989). Genetic control of sexually dimorphic axon
1373 morphology in *Drosophila* sensory neurons. *Developmental Biology*, 132(2), 448–457.

1374 Rayshubskiy, A., Holtz, S. L., D’Alessandro, I., Li, A. A., Vanderbeck, Q. X., Haber, I. S.,
1375 Gibb, P. W., & Wilson, R. I. (2020). Neural circuit mechanisms for steering control in
1376 walking *Drosophila*. In *bioRxiv* (p. 2020.04.04.024703).
1377 <https://doi.org/10.1101/2020.04.04.024703>

1378 Sapkal, N., Mancini, N., Kumar, D. S., Spiller, N., Murakami, K., Vitelli, G., Bargeron, B.,
1379 Maier, K., Eichler, K., Jefferis, G. S. X., Shiu, P. K., Sterne, G. R., & Bidaye, S. S.
1380 (2023). Neural circuit mechanisms underlying context-specific halting in *Drosophila*. In
1381 *bioRxiv* (p. 2023.09.25.559438). <https://doi.org/10.1101/2023.09.25.559438>

1382 Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S.-Y., Hayworth, K. J., Huang,
1383 G. B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., Clements, J., Hubbard, P. M., Katz,
1384 W. T., Umayam, L., Zhao, T., Ackerman, D., Blakely, T., Bogovic, J., Dolafi, T., ...
1385 Plaza, S. M. (2020). A connectome and analysis of the adult *Drosophila* central brain.
1386 *eLife*, 9. <https://doi.org/10.7554/eLife.57443>

1387 Schlegel, P., Bates, A. S., Stürner, T., Jagannathan, S. R., Drummond, N., Hsu, J.,
1388 Serratosa Capdevila, L., Javier, A., Marin, E. C., Barth-Maron, A., Tamimi, I. F., Li, F.,
1389 Rubin, G. M., Plaza, S. M., Costa, M., & Jefferis, G. S. X. E. (2021). Information flow,
1390 cell types and stereotypy in a full olfactory connectome. *eLife*, 10.
1391 <https://doi.org/10.7554/eLife.66018>

1392 Schlegel, P., Yin, Y., Bates, A. S., Dorkenwald, S., Eichler, K., Brooks, P., Han, D. S.,
1393 Gkantia, M., Dos Santos, M., Munnely, E. J., Badalamente, G., Capdevila, L. S., Sane,
1394 V. A., Pleijzier, M. W., Tamimi, I. F. M., Dunne, C. R., Salgarella, I., Javier, A., Fang, S.,
1395 ... Jefferis, G. S. X. E. (2023). Whole-brain annotation and multi-connectome cell typing
1396 quantifies circuit stereotypy in. *bioRxiv : The Preprint Server for Biology*.
1397 <https://doi.org/10.1101/2023.06.27.546055>

1398 Seeds, A. M., Ravbar, P., Chung, P., Hampel, S., Midgley, F. M., Jr, Mensh, B. D., &
1399 Simpson, J. H. (2014). A suppression hierarchy among competing motor programs
1400 drives sequential grooming in *Drosophila*. *eLife*, 3, e02951.

1401 Shiozaki, H. M., Wang, K., Lillvis, J. L., Xu, M., Dickson, B., & Stern, D. (2023).
1402 Combinatorial circuit dynamics orchestrate flexible motor patterns in *Drosophila*.
1403 *bioRxiv*. <https://doi.org/10.1101/2022.12.14.520499>

1404 Shirangi, T. R., Wong, A. M., Truman, J. W., & Stern, D. L. (2016). Doublesex Regulates the
1405 Connectivity of a Neural Circuit Controlling *Drosophila* Male Courtship Song.
1406 *Developmental Cell*, 37(6), 533–544.

1407 Simpson, J. H. (2024). Descending control of motor sequences in *Drosophila*. *Current
1408 Opinion in Neurobiology*, 84, 102822.

1409 Steinbeck, F., Adden, A., & Graham, P. (2020). Connecting brain to behaviour: a role for
1410 general purpose steering circuits in insect orientation? *The Journal of Experimental
1411 Biology*, 223(Pt 5). <https://doi.org/10.1242/jeb.212332>

1412 Strausfeld, N. J., Seyan, H. S., & Milde, J. J. (1987). The neck motor system of the
1413 fly *Calliphora erythrocephala*. *Journal of Comparative Physiology A*, 160(2), 205–224.

1414 Suver, M. P., Huda, A., Iwasaki, N., Safarik, S., & Dickinson, M. H. (2016). An Array of
1415 Descending Visual Interneurons Encoding Self-Motion in *Drosophila*. *The Journal of
1416 Neuroscience: The Official Journal of the Society for Neuroscience*, 36(46), 11768–
1417 11780.

1418 Takemura, S.-Y., Huang, G. B., Januszewski, M., Lu, Z., Marin, E. C., Preibisch, S., Xu, C.
1419 S., Champion, A., Cheong, H. S. J., Costa, M., Eichler, K., Knecht, C. J., Li, F., Morris,
1420 B. J., Schlegel, P., Stuerner, T., Badalamente, G., Bogovic, J., Brooks, P., ... Berg, S.
1421 (2023). A Connectome of the Male *Drosophila* Ventral Nerve Cord. *bioRxiv*.

1422 Tirian, L., & Dickson, B. J. (2017). The VT GAL4, LexA, and split-GAL4 driver line collections
1423 for targeted expression in the *Drosophila* nervous system. In *bioRxiv* (p. 198648).
1424 <https://doi.org/10.1101/198648>

1425 Tsubouchi, A., Yano, T., Yokoyama, T. K., Murtin, C., Otsuna, H., & Ito, K. (2017).

1426 Topological and modality-specific representation of somatosensory information in the fly
1427 brain. *Science*, 358(6363), 615–623.

1428 Valdes-Aleman, J., Fetter, R. D., Sales, E. C., Heckman, E. L., Venkatasubramanian, L.,
1429 Doe, C. Q., Landgraf, M., Cardona, A., & Zlatic, M. (2021). Comparative Connectomics
1430 Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in
1431 *Drosophila*. *Neuron*, 109(1), 105–122.e7.

1432 von Philipsborn, A. C., Liu, T., Yu, J. Y., Masser, C., Bidaye, S. S., & Dickson, B. J. (2011).
1433 Neuronal control of *Drosophila* courtship song. *Neuron*, 69(3), 509–522.

1434 von Reyn, H. C., Jang, H., Eichler, K., Stuerner, T., Costa, M., Ausborn, J., & Catherine, R.
1435 (2024 unpublished). *A circuit underlying evasive flight maneuvers centered around the*
1436 *descending neuron DNp03*.

1437 Wang, F., Wang, K., Forknall, N., Parekh, R., & Dickson, B. J. (2020b). Circuit and
1438 Behavioral Mechanisms of Sexual Rejection by *Drosophila* Females. *Current Biology*:
1439 *CB*, 30(19), 3749–3760.e3.

1440 Wang, F., Wang, K., Forknall, N., Patrick, C., Yang, T., Parekh, R., Bock, D., & Dickson, B.
1441 J. (2020a). Neural circuitry linking mating and egg laying in *Drosophila* females. *Nature*,
1442 579(7797), 101–105.

1443 Wang, K., Wang, F., Forknall, N., Yang, T., Patrick, C., Parekh, R., & Dickson, B. J. (2021).
1444 Neural circuit mechanisms of sexual receptivity in *Drosophila* females. *Nature*,
1445 589(7843), 577–581.

1446 Winding, M., Pedigo, B. D., Barnes, C. L., Patsolic, H. G., Park, Y., Kazimiers, T., Fushiki,
1447 A., Andrade, I. V., Khandelwal, A., Valdes-Aleman, J., Li, F., Randel, N., Barsotti, E.,
1448 Correia, A., Fetter, R. D., Hartenstein, V., Priebe, C. E., Vogelstein, J. T., Cardona, A., &
1449 Zlatic, M. (2023). The connectome of an insect brain. *Science*, 379(6636), eadd9330.

1450 Witvliet, D., Mulcahy, B., Mitchell, J. K., Meirovitch, Y., Berger, D. R., Wu, Y., Liu, Y., Koh,
1451 W. X., Parvathala, R., Holmyard, D., Schalek, R. L., Shavit, N., Chisholm, A. D.,
1452 Lichtman, J. W., Samuel, A. D. T., & Zhen, M. (2021). Connectomes across
1453 development reveal principles of brain maturation. *Nature*, 596(7871), 257–261.

1454 Yang, H. H., Brezovec, L. E., Capdevila, L. S., Vanderbeck, Q. X., Adachi, A., Mann, R. S., &
1455 Wilson, R. I. (2023). Fine-grained descending control of steering in walking *Drosophila*.
1456 *bioRxiv : The Preprint Server for Biology*. <https://doi.org/10.1101/2023.10.15.562426>

1457 Yu, J. Y., Kanai, M. I., Demir, E., Jefferis, G. S. X., & Dickson, B. J. (2010). Cellular
1458 Organization of the Neural Circuit that Drives *Drosophila* Courtship Behavior. In *Current*
1459 *Biology* (Vol. 20, Issue 18, pp. 1602–1614). <https://doi.org/10.1016/j.cub.2010.08.025>

1460 Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M., Milkie, D., Torrens, O.,
1461 Price, J., Fisher, C. B., Sharifi, N., Calle-Schuler, S. A., Kmecova, L., Ali, I. J., Karsh, B.,
1462 Trautman, E. T., Bogovic, J. A., Hanslovsky, P., Jefferis, G. S. X. E., Kazhdan, M., ...
1463 Bock, D. D. (2018). A Complete Electron Microscopy Volume of the Brain of Adult
1464 *Drosophila melanogaster*. *Cell*, 174(3), 730–743.e22.