

1 **Eye structure shapes neuron function in *Drosophila* motion vision**

2

3 Arthur Zhao¹, Eyal Gruntman¹, Aljoscha Nern¹, Nirmala A. Iyer¹, Edward M. Rogers¹, Sanna
4 Koskela¹, Igor Siwanowicz¹, Marisa Dreher¹, Miriam A. Flynn¹, Connor W. Laughland¹,
5 Henrique D.F. Ludwig¹, Alex G. Thomson¹, Cullen P. Moran^{1,2}, Bruck Gezahegn¹, Davi D.
6 Bock^{1,3}, and Michael B. Reiser¹

7

8 ¹HHMI Janelia Research Campus, USA

9 ²Vanderbilt Eye Institute, USA

10 ³Department of Neurological Sciences, University of Vermont, USA

11

12 **Summary**

13

14 Many animals rely on vision to navigate through their environment. The pattern of changes in the
15 visual scene induced by self-motion is the *optic flow*¹, which is first estimated in local patches by
16 directionally selective (DS) neurons²⁻⁴. But how should the arrays of DS neurons, each
17 responsive to motion in a preferred direction at a specific retinal position, be organized to
18 support robust decoding of optic flow by downstream circuits? Understanding this global
19 organization is challenging because it requires mapping fine, local features of neurons across the
20 animal's field of view³. In *Drosophila*, the asymmetric dendrites of the T4 and T5 DS neurons
21 establish their preferred direction, making it possible to predict DS responses from anatomy^{4,5}.
22 Here we report that the preferred directions of fly DS neurons vary at different retinal positions
23 and show that this spatial variation is established by the anatomy of the compound eye. To
24 estimate the preferred directions across the visual field, we reconstructed hundreds of T4 neurons
25 in a full brain EM volume⁶ and discovered unexpectedly stereotypical dendritic arborizations that
26 are independent of location. We then used whole-head μ CT scans to map the viewing directions
27 of all compound eye facets and found a non-uniform sampling of visual space that explains the
28 spatial variation in preferred directions. Our findings show that the organization of preferred
29 directions in the fly is largely determined by the compound eye, exposing an intimate and
30 unexpected connection between the peripheral structure of the eye, functional properties of
31 neurons deep in the brain, and the control of body movements.

32 **Main**

33

34 By moving through an environment, seeing animals can determine the physical layout and
35 estimate their own path using visual motion detection (Fig. 1A)¹, analogous to solving the
36 *structure from motion* problem in Computer Vision⁷. However, biological vision does not
37 provide perfect geometric measurements. Instead, the global structure is synthesized using arrays
38 of DS neurons that report relative motion in small regions of the scene. Insects are famously
39 skilled at rapid flight maneuvers that depend on optic flow—the global structure of visual
40 motion^{8,9}. Recent progress in *Drosophila* has elucidated key aspects of the circuits computing
41 motion detection as well as the visual control of navigation. Nevertheless, the intervening logic
42 by which local motion detectors are spatially organized for reliable, behaviorally relevant optic
43 flow estimation, remains unclear.

44

45 Each fruit fly eye is composed ~750 columnar units called ommatidia, arranged on a hemisphere
46 to maximize the field of view¹⁰. Each ommatidium houses photoreceptors and collects light from
47 a small area of visual space^{10,11}. Along the motion pathway, columnar neurons such as L1 and
48 Mi1, receive, modify, and transmit photoreceptor signals, preserving retinotopy^{4,12,13} (Fig. 1B).
49 T4 neurons are the local ON-DS cells^{14,15}, sensitive to bright edge movement (analogous T5
50 neurons are the OFF-DS cells^{5,16–18}). T4s integrate columnar inputs along their dendrites, whose
51 principal anatomical orientation corresponds to the neurons' preferred direction (PD) of
52 motion^{4,5} (Fig. 1C). There are four T4 subtypes, each with a distinct dendritic orientation, and an
53 axon terminal projecting to one of four layers in the lobula plate^{2,19}. These neurons are best
54 understood near the center of the eye, where the PDs of each subtype align to one of four
55 orthogonal, cardinal directions (forward, backward, up, and down)^{2,4}. It is unclear how well this
56 relationship holds for T4s away from the center. Indeed, due to the spherical geometry of the
57 compound eye, the PDs cannot be globally aligned with the cardinal directions while also
58 maintaining orthogonality between subtypes (Extended Data Fig. 1A). Since wide-field neurons
59 in the lobula plate integrate from large ensembles of T4 neurons^{19,20}, the directional tuning of
60 T4s across the eye directly shapes global optic flow processing.

61

62

63 **Non-cardinal direction preference by DS neurons**

64

65 To survey the directional preference of T4s across visual space, we measured the local PD of H2,
66 a large, wide-field neuron that integrates from T4bs throughout the 2nd layer of the lobula
67 plate^{19,21} (Fig. 1D, Extended Data Fig. 1B). We used whole-cell electrophysiology to record H2
68 responses to gratings moving in 16 directions, at several locations on the eye (Fig. 1E,F). We
69 find that near the eye's equator, H2's PD is aligned with cardinal, back-to-front motion, as
70 previously reported^{21–23}. However, at more dorso-frontal locations, the PD shows a prominent
71 downward component (Fig. 1E,F; consistently across animals, Extended Data Fig. 1C,D).
72 Surprisingly, these responses resemble a translational optic flow field (Fig. 1F), rather than a
73 purely rotational one, as expected for H2 (blowflies²³). This shift in the local PD of H2 implies
74 that T4 neurons are not globally tuned to cardinal motion directions, a prediction that agrees well
75 with a recent imaging study of T4/T5 axons²⁴. But what causes T4 cells to change their
76 directional preference across the eye?

77

78 Two parsimonious mechanisms could account for how T4 dendrites are differentially oriented
79 with respect to each other at different retinotopic locations. Either T4 dendritic orientations vary
80 with respect to their retinotopic inputs (Fig. 1G (i)) throughout the eye, or T4s dendrites employ
81 a conserved integration strategy, but the representation of space by the array of input neurons is
82 non-uniform (Fig. 1G (ii)). To distinguish between these two hypotheses, we reconstructed the
83 morphology of hundreds of T4 neurons to determine the spatial integration pattern in the
84 medulla. We then established a new, high-resolution map, detailing the spatial sampling by each
85 ommatidium in the eye. By combining these datasets, we map T4s' preferred directions into
86 visual space, thereby revealing the mechanism underlying the non-cardinal motion sensitivity.
87 Finally, our global analysis of the fly eye reveals principal axes of body movements that are most
88 efficiently measured via optic flow.

89

90 **EM reconstruction of T4 dendrites across the eye reveals stereotypical arborization pattern**

91

92 To compare T4 neurons' arborization pattern across the entire medulla, we manually
93 reconstructed all 779 Mi1 neurons on the right side of the Full Adult Fly Brain (FAFB) volume⁶

94 to establish a neuroanatomical coordinate system. Mi1s are columnar cells that are a major input
95 to T4 neurons^{4,15} (Fig. 2A,B, Extended Data Fig. 2A). Their reconstruction was essential for
96 propagating retinotopic coordinates from the more regular, distal layers to M10, where Mi1s
97 synapse onto T4 dendrites (Fig. 2C). All Mi1s in M10 were then mapped into a 2D regular grid
98 with the orthogonal +h and +v axes (Fig. 2D). Because the rows of Mi1s are not generally
99 straight (Fig. 2C), capturing the global grid structure (Fig. 2D) enables the direct comparison of
100 T4 neurons' arborization pattern across the eye. We note two special rows of points that serve as
101 global landmarks: the "equator" (Fig. 2D, in orange) is derived from the equatorial region in Fig.
102 2C, which is located via the corresponding lamina cartridges with additional photoreceptors (see
103 Methods and Extended Data Fig. 2 B-D), and the "central meridian" (Fig. 2D, in black) that
104 divides the points into roughly equal halves and coincides well with the first optic chiasm
105 (Extended Data Fig. 2E). This regular grid mapping required access to the complete medulla and
106 lamina neuropils in the EM volume, and further tracing of columnar neurons can extend this
107 coordinate system into deeper neuropils, like the lobula (Extended Data Fig. 2F).

108

109 Since the orientation of T4 dendrites corresponds to their PD (Fig. 1C), we reconstructed the
110 complete dendritic morphology of 176 horizontal-motion-sensitive T4b cells (Fig. 2E), and 114
111 vertical-motion-sensitive T4d cells (Extended Data Fig. 2G). We applied branching analysis
112 developed for river networks²⁵ to each T4's dendritic tree to capture the primary orientation (Fig.
113 2F, Extended Data Fig. 3A) as an anatomical PD estimate. This estimate yields a PD vector that
114 is represented as an arrow going through the dendrite's center-of-mass, with a length
115 corresponding to the spatial extent of the dendrite along the PD (Fig. 2G).

116

117 While the dendritic tree of each T4 neuron is idiosyncratic in its fine features, many conserved
118 characteristics, such as the size and dominant branch orientation, suggest these neurons may be
119 more stereotyped than expected from visual inspection of their morphology. To examine
120 potential stereotypy, we transformed all T4 PD vectors (and their orthogonal directions, ODs)
121 into the regular grid of Mi1s (Fig. 2D,H), using kernel regression that maintains the spatial
122 relationships between each PD and its neighboring Mi1s (excluding edge T4s, see methods).
123 Once transformed, the PD vectors for both T4 subtypes show a high degree of similarity. First,
124 the centers of mass for all T4 dendrites fall within a "home" column. Second, the heads and tails

125 of the PD vectors are each localized to a small area (the standard deviation of the head and tail
126 positions is less than $\frac{1}{2}$ the inter-column distance). Third, the dendrites of both subtypes roughly
127 span a single unit hexagon (1 home + 6 nearest columns). T4b's and T4d's PD vectors are mostly
128 aligned with the +h and -v axes, respectively (Fig. 2J). The bias ($>90^\circ$) in the T4b distribution is
129 mostly accounted for by neurons below the equator (Extended Data Fig. 3B,C). The PD vector
130 lengths between the subtypes are notably different (Fig. 2K and Extended Data Fig. 3D).
131 However, the unit hexagon is anisotropic since its height is greater than the width. Assuming that
132 columns are space-filling, we defined new unit distances, “hexagon unit,” as the edge-to-edge
133 span: 3 horizontal columns for T4b (D_h) and 5 vertical columns (D_v) for T4d (Fig. 2M inset).
134 When we normalize the PD length by these new unit distances for each subtype separately, we
135 find that T4b's and T4d's are now highly overlapping (Fig. 2M, Extended Data Fig. 3E). Since
136 we identified the T4 subtypes based on lobula plate layer innervation, the striking within-subtype
137 similarity of the PDs, does not support further divisions based on morphology^{19,24,26}. Our
138 analysis has thus revealed that T4 neurons share a universal sampling strategy—throughout the
139 eye they innervate a unit hexagon of columns, while establishing a preferred direction by
140 aligning their dendrites mostly in one direction, parallel to either the horizontal or vertical axes
141 of the hexagonal grid.

142

143 **Non-uniform sampling of visual space established by μ CT of the *Drosophila* eye**

144

145 Having established that T4's PD is governed by a simple local rule that is conserved throughout
146 the medulla (strong evidence against the hypothesis in Fig. 1G(i)), understanding the global PD
147 organization now reduces to understanding how visual space, sampled by the compound eye,
148 maps onto the array of medulla columns (required to evaluate the hypothesis in Fig. 1G(ii)).
149 Since the EM volume did not contain the eye, we instead imaged whole fly heads with
150 approximately the same number of ommatidia. We first explored confocal imaging (Extended
151 Data Fig. 4A), but ultimately used micro computed tomography (μ CT; Fig. 3A,B). The isotropic
152 $\sim 1 \mu\text{m}$ resolution of the μ CT data allowed us to define the viewing direction of each
153 ommatidium (as the vector connecting the ‘tip’ of the photoreceptors to the center of each
154 corneal lens, Fig. 3B,C, Extended Data Fig. 4B), and to locate the eye's equator (using the
155 chirality of the photoreceptor arrangement²⁷, Fig. 3D).

156

157 We represent the ommatidia directions in eye coordinates on a unit sphere (Fig. 3E) or with a
158 geographic projection (Mollweide projection, Fig. 3F; Mercator projection, Extended Data Fig.
159 5F-J). The field of view of this eye spans from directly above to directly below (-90° to 90°) in
160 elevation, and in azimuth, from ~20° into the opposite hemisphere in front to 160° behind, with a
161 binocular overlap of ~40° (Extended Data Fig. 4C,D). The maps of ommatidia directions
162 produced from 3 different females are quite consistent (Extended Data Fig. 4E), and show
163 greater binocular overlap than prior data based on a coarser, optical method²⁸. The ommatidia
164 directions are well described by a hexagonal grid that we then aligned to the medulla column
165 grid using the equator (+h) and central meridian (+v) as global landmarks (Extended Data Fig.
166 5A, Fig. 4A).

167

168 The hexagonal arrangement is a dense spatial packing that maximizes the resolving power of the
169 eye¹⁰. However, many unit hexagons are irregular, as illustrated by the inter-ommatidial angles
170 ($\Delta\Phi$, Fig. 3G-H) and the shear angles (α , Fig. 3J). $\Delta\Phi$ is smallest near the equator and the central
171 meridian, and increases in size away from this region (Fig. 3F). When calculated separately for
172 vertical ($\Delta\Phi_v$) and horizontal ($\Delta\Phi_h$) neighbors (Fig. 3H), we find that the vertical visual acuity is
173 highest (lowest $\Delta\Phi_v$) along the equator (a typical feature of flying insect eyes^{29,30}, not previously
174 reported for *Drosophila melanogaster*²⁸), and the horizontal acuity is highest in the central part
175 of the eye, though the effect of photoreceptor pooling (neural superposition¹¹) on these acuity
176 differences is unclear. These acuity differences are consistent with the aspect ratio changes of the
177 unit hexagons across the eye (Extended Data Fig. 5C). Furthermore, the shear angle of the
178 hexagons systematically changes, with the most regular hexagons ($\alpha \approx 90^\circ$) found near the
179 equator and the central meridian, and sheared hexagons with $\alpha < 90^\circ$ in the fronto-dorsal and
180 posterior-ventral quadrants, and $\alpha > 90^\circ$ in the other quadrants (Fig. 3J). This μ CT scan of the
181 full fly head, provides the most detailed description of how the compound eye samples visual
182 space. Our analysis reveals an irregular arrangement of ommatidia directions with spatially
183 varying aspect ratios, inter-ommatidial angles, and shear angles, that shape the inputs to visual
184 pathways. Could this non-uniform sampling explain the global structure of T4 PDs?

185

186 **Mapping neuroanatomical space into visual space explains the global organization of DS
187 neuron preferred directions**

188

189 We now have all the data required to map T4 PDs from their neuronal coordinates into the visual
190 coordinates of the eye. We used the regular grids established for medulla columns (Fig. 2D) and
191 ommatidia directions (Extended Data Fig. 5A) to construct a 1-to-1 mapping between them,
192 matching from the center outward (Fig. 4A, Supplementary Video 1 and 2). We used kernel
193 regression to transform the T4b PDs into eye coordinates (Fig. 4B). Finally, the T4b PDs were
194 estimated for all ommatidia directions (Fig. 4C, Extended Data Fig. 6A,B; T4d in Extended Data
195 Fig. 7A-D). Since T4a/b and T4c/d are mostly anti-parallel (Extended Data Fig. 6C,D), these
196 estimates can be directly extended to all T4 subtypes. The stereotypical alignment of T4b PDs in
197 the medulla (Fig. 2H) suggests that the PD field in eye coordinates should follow the ommatidia
198 shearing (Fig. 3J), which is indeed the case (Fig. 4D). Remarkably, the T4b PDs are well-aligned
199 to the spatially registered H2 responses (red arrowheads in Fig. 4C). It is noteworthy that both
200 show a downward component in dorso-frontal PDs, which in our anatomical analysis, could only
201 have originated from the non-uniform sampling of visual space. This global pattern has features
202 of a translational optic flow field (Fig. 1A,F), that can be readily seen in the Mercator projection
203 comparing the PD field with the eye coordinate parallel lines of constant elevation (Extended
204 Data Fig. 6A). Since T4b provides substantial input to H2¹⁹, this agreement provides strong
205 evidence for the mechanism hypothesized in Fig. 1G(ii) and validates our anatomy based PD
206 prediction and mapping into visual coordinates. Taken together, these results demonstrate that
207 the non-uniform sampling of the eye powerfully shapes the organization of PDs available for
208 optic flow processing.

209

210 Is the T4b PD field (Fig. 4C) optimized for the optic flow induced by cardinal motion along body
211 axes (Fig. 4E), as was found for mice DS neurons³? The distribution of angular differences
212 between the T4b PD field, the eye's +h-axis, and several optic flow fields, shows that the PDs
213 are best aligned with the eye axis and yaw rotation (Fig. 4F). In contrast, there is a large spread
214 in the differences between the PD field and reverse-thrust or side-slip optic flow, suggesting
215 substantial regional variations. The spatial distribution shows that central eye PDs agree well
216 with all three flow fields, while frontal PDs are more sensitive to side-slip, posterior PDs to

217 reverse-thrust motion, and yaw rotation is well matched throughout (Fig. 4G, similar analysis for
218 T4d in Extended Data Fig. 7E,F). Consequently, all neurons that integrate from most of a lobula
219 plate layer, like H2 (Extended Data Fig. 1B), will inherit this eye-derived sensitivity. However,
220 by selectively integrating from regional patches, lobula plate neurons can encode diverse features
221 of optic flow, providing an expansive set of motion patterns for behavioral control.

222

223 Which body-movement-generated flow fields are most efficiently encoded by the T4b
224 population? We searched and found the optimal rotation axis (by minimizing angular
225 differences, see methods) quite close to the yaw axis, and a translation axis approximately half-
226 way between reverse-thrust and side-slip, near the posterior boundary of the eye's field of view
227 (rightmost distributions in Fig. 4F, locations denoted with symbols in Fig. 4G, and complete
228 error map in Extended Data Fig. 6E). Comparing to the optimal axes for T4d PDs (Extended
229 Data Fig. 7F) we find a remarkable agreement between these principal axes—with the body yaw
230 axis matching T4ds' optimal translation axis, and T4bs' non-canonical optimal translation axis
231 matching T4ds' optimal rotation axis (Fig. 4H). Since optic flow is a direct consequence of
232 movement, it is likely that these principal axes of maximal motion sensitivity are fundamental
233 for controlling body movements. Intriguingly, the optimal translation axes for the left and right
234 T4a populations are near the eye's equator and approximately $\pm 40^\circ$ from the midline (Fig. 4J),
235 precisely where we predict T4s exhibit their highest acuity (Extended Data Fig. 6B). We note a
236 striking resemblance between the optimal translation axes for T4a/b (Fig. 4J) and the tuning of
237 optic flow sensitive inputs to the central complex³¹, from which the transformations between
238 body-centered and world-centered coordinates are built³². This unexpected correspondence of
239 maximal motion sensitivities exposes a deep link between the structure of the eye and the
240 coordinate systems organizing goal-directed navigation in the central brain.

241

242 **Discussion**

243

244 Our analysis of the eye-derived pattern of spatial integration by the T4 directionally selective
245 neurons, unifies two rich perspectives on fly motion vision—the recent discoveries about the
246 local circuit mechanism for computing directional selectivity in *Drosophila*^{14,15,17,33} together with
247 groundbreaking work in larger flies on the sensing of global optic flow patterns by wide-field

248 lobula plate neurons^{9,20,22,23}. Consequently, our study reconciles multiple previous findings.
249 Behavioral studies using precise, localized visual stimulation described maximal responses to
250 motion directions aligned with rows on the eye^{34,35}, and work in larger flies noted that the local
251 PDs of several Lobula Plate Tangential Cells³⁶ reflected the orientation of the hexagonal grid in
252 frontal eye regions³⁷. A recent study of the looming-sensitive LPLC2 cells in *Drosophila* found
253 this neuron was most sensitive to non-cardinal, diagonal movement directions in the dorso-
254 frontal eye regions, and found that LPi interneurons had shifting PDs across the field of view³⁸.
255 Finally, a recent study found T4/T5 axonal responses that resembled a translation-like pattern
256 with smoothly varying PDs across lobula plate layers²⁴. Our study provides a mechanistic
257 explanation for these observations—the missing link between the arrangement of eye facets and
258 local PDs measured in the lobula plate, is the universal sampling rule we discovered for T4
259 neurons (Fig. 2) that adheres closely to the coordinate system of the eye. Based on our
260 anatomical analysis of the dendritic orientation of T4 neurons, identified by their targeted lobula
261 plate layer, we find no evidence for additional subtypes of T4 neurons. However, recent
262 transcriptomic studies²⁶ provide evidence for additional subtype diversity, and functional
263 studies²⁴ suggest that local PDs may be regionally modified through as-yet-undescribed
264 connectivity differences, an important question for future EM studies. Finally, our analysis of
265 global optic flow patterns (Fig. 4, Extended Data Figs. 6,7) provides a simple explanation for the
266 observation that HS and VS cell responses simultaneously represent information about both self-
267 rotations and self-translations^{39,40}, since the eye-derived PDs are most sensitive to different
268 cardinal self-motions in different eye regions.

269
270 The computation of directional selectivity depends on asymmetric wiring in the dendrites of T4
271 and T5 neurons. Each subtype connects to different cell types at different locations along the
272 dendrite⁵, but the developmental mechanisms establishing this wiring asymmetry are not
273 known⁴¹. Our discovery of a universal sampling of medulla columns by T4 dendrites suggests
274 that the core developmental mechanisms may be identical across the medulla (and lobula for
275 T5s) and all subtypes, acting together with a process that established the subtype-specific
276 dendritic orientation. Supporting this proposal is evidence from recent RNA-Seq studies showing
277 that all 8 T4 and T5 subtypes are transcriptionally very similar, including during development⁴¹⁻

278 ⁴³. The realization that in the appropriate reference frame, all T4 neurons are quite similar greatly
279 simplifies the scope for a required explanatory mechanism.

280
281 Arthropods with compound eyes, which comprise the majority of described animal species, show
282 a remarkable diversity of anatomical specializations, reflecting their diverse visual ecology³⁰.
283 Since many features of optic lobe anatomy, including key cell types involved in motion vision,
284 are conserved across flies⁴⁴ and comparable neurons and brain regions are found across
285 arthropods⁴⁵, the insights uncovered in *Drosophila* may apply broadly. Extrapolating from our
286 work, we wonder whether detailed eye maps would make strong predictions about the motion
287 directions sensed by the animal, and thus its behavior and natural history. This correspondence
288 between the structure of the sensory system and an animal's behavioral repertoire⁴⁶ is an
289 important demonstration that neural computations cannot be considered in isolation, as evolution
290 jointly sculpts the function of the nervous system and the structure of the body.

291 **Methods**

292

293 **Anatomical data**

294

295 **EM reconstruction**

296 All reconstructions in this manuscript are from a serial section transmission EM volume of a
297 *Drosophila melanogaster* full adult fly brain (FAFB)⁶. We manually reconstructed neuron
298 skeletons in the CATMAID environment⁴⁷ (in which 27 labs were collaboratively building
299 connectomes for specific circuits, mostly outside of the optic lobe) following established
300 practices⁴⁸. We also used two recent auto-segmentations of the same data set, FAFB-FFN1⁴⁹ and
301 FlyWire⁵⁰ to quickly examine many auto-segmented fragments for neurons of interest. Once a
302 fragment of interest was found, it was imported to CATMAID, followed by manual tracing and
303 identity confirmation.

304

305 For the data reported here, we identified and reconstructed a total of 780 Mi1, 38 T4a, 176 T4b,
306 22 T4c, 114 T4d, 63 TmY5a and 1 H2 cells. All the columnar neurons could be reliably matched
307 to well-established morphology from golgi-stained neurons¹³. This reconstruction is based on
308 approximately 1.35 million manually placed nodes. (1) Mi1: we traced the main branches of the
309 M5 and M9/10 arbors such that the centers-of-mass of the arbors formed a visually identifiable
310 grid. We used the auto-segmentation to accelerate the search for Mi1 cells wherever there
311 appeared to be a missing point in the grid. After an extensive process, we believe that we have
312 found all Mi1 cells in the right optic lobe (Fig. 2C,D). One Mi1 near the neuropil boundary was
313 omitted in later analysis because its center-of-mass was clearly “off the grid” established by
314 neighboring Mi1 cells despite a complete arbor morphology. (2) T4: we traced their axon
315 terminals in the lobula plate for subtype identification (each subtypes innervating a specific
316 depth in the lobula plate¹⁹) and manually reconstructed their complete dendritic morphology to
317 determine their anatomical preferred direction. To sample T4 morphology across the whole eye
318 with a reasonable amount of time and effort, we focused on the T4b (Fig. 2E) and T4d (Extended
319 Data Fig. 2G) subtypes with sufficient density to allow us to interpolate the PDs at each column
320 position. In addition, we chose 4 locations on the eye: medial (M), anterior dorsal (AD), anterior
321 ventral (AV) and lateral ventral (LV), where we reconstructed 3 ~ 4 sets of T4 cells and
322 confirmed that the PDs were mostly anti-parallel between T4a and T4b, as well as between T4c
323 and T4d (Extended Data Fig. 6C,D). (3) TmY5a: we searched for cells along the equator and
324 central meridian of the medulla and traced out their main branches to be able to extend (with
325 further interpolation) the columnar structure of the medulla to the lobula (Extended Data Fig.
326 2F). (4) H2: The neuron was found during a survey (unpublished) of the LPTCs in the right side
327 of the FAFB brain and was completely reconstructed, including all fine branches in the lobula
328 plate (Fig. 1D, Extended Data Fig. 1B).

329

330 In addition, we identified several lamina monopolar cells and photoreceptor cells. (5) Lamina
331 cells, mainly L1, L2, L3 and outer photoreceptor cells (R1-6) were reconstructed, often making
332 some use of auto-segmented data, to allow for their identification. This helped us locate the
333 equatorial columns in medulla that have different numbers of photoreceptor inputs in the
334 corresponding lamina cartridge (Fig. 2C, Extended Data Fig. 2B-D). (6) Inner photoreceptor
335 cells R7/8: we searched for R7/8 cells throughout the eye, initially as part of a focused study on
336 the targets of these photoreceptors⁵¹. We extended these reconstructions to complete the medulla

337 map in Fig. 2. We searched for R7/8 corresponding to each Mi1 cells near the boundary of the
338 medulla. Mi1 cells in columns lacking inner photoreceptors were identified and excluded from
339 further analysis (Fig. 2C). Furthermore, we reconstructed several cells near the central meridian
340 and used their axons' shape to identify the location of the chiasm (Extended Data Fig. 2E).
341

342 **Generation and imaging of split-GAL4 driver lines**

343 We used split-GAL4 driver lines SS00809¹⁵ and SS01010 to drive reporter expression in Mi1
344 and H2 neurons, respectively. Driver lines and representative images of their expression patterns
345 are available at <https://splitgal4.janelia.org/>. SS01010 (newly reported here; 32A11-p65ADZp in
346 attP40; 81E05-ZpGdbd in attP2) was identified and constructed using previously described
347 methods and hemidriver lines^{52,53}. We used MCFO⁵⁴ for multicolor stochastic labeling. Sample
348 preparation and imaging, performed by the Janelia FlyLight Project Team, were as in previous
349 studies^{53,54}. Detailed protocols are available online ([https://www.janelia.org/project-
350 team/flylight/protocols](https://www.janelia.org/project-team/flylight/protocols) under “IHC - MCFO”). Images were acquired on Zeiss LSM 710 or 780
351 confocal microscopes with 63x 1.4 NA objectives at 0.19x0.19x0.38 μm^3 voxel size. The
352 reoriented views shown in Extended Data Fig. 1B and Extended Data Fig. 2A,B were displayed
353 using VVDviewer (<https://github.com/JaneliaSciComp/VVDViewer>). This involved manual
354 editing to exclude labeling outside of approximately medulla layers M9/10 (Extended Data Fig.
355 2A,B) or to only show a single H2 neuron (Extended Data Fig. 1B).
356

357 **Confocal imaging of a whole fly eye**

358 **Sample preparation:** Flies were anesthetized with CO₂ and briefly washed with 70% ethanol.
359 Heads were isolated, proboscis removed under 2% paraformaldehyde/PBS/0.1% triton X-100
360 (PBS-T) and fixed in this solution overnight at 4°C. After washing with PBS-T, the heads were
361 bisected along the midline with fine scissors and incubated in PBS with 1% triton X-100, 3%
362 normal goat serum, 0.5% DMSO and Escin (0.05 mg/ml, Sigma-Aldrich, #E1378) containing
363 chicken anti-GFP (1:500; Abcam #ab 13970), mouse anti-nc82 (1:50; Developmental Studies
364 Hybridoma Bank) and rabbit anti-RFP (1:1000; TaKaRa Bio USA, #632496) at room
365 temperature with agitation for 2 days. After a series of three ~1h-long washes in PBS-T the
366 sections were incubated for another 24h in the above buffer containing secondary antibodies:
367 Alexa Fluor 488 goat anti-chicken (1:1000; Thermo Fisher #A11039), Alexa Fluor 633 goat anti-
368 mouse (1:1000; Thermo Fisher #A21050) and Alexa Fluor 568 goat anti-rabbit (1:1000; Thermo
369 Fisher #A11011). The samples were then washed in PBS/1% triton (4 × 1 h) and post-fixed for 4
370 h in PBS-T/2% paraformaldehyde. To avoid artefacts caused by osmotic shrinkage of soft tissue,
371 samples were gradually dehydrated in glycerol (2-80%) and then ethanol (20 to 100%)⁵⁵ and
372 mounted in methyl salicylate (Sigma-Aldrich #M6752) for imaging.
373

374 **Imaging and rendering:** Serial optical sections were obtained at 1 μm intervals on a Zeiss 710
375 confocal microscopes with a LD-LCI 25x/0.8 NA objective using 488, 560 and 630 lasers,
376 respectively. The image in Extended Data Fig. 4A is a reoriented substack projections, processed
377 in Imaris v9.5 (Oxford Instruments).
378

379 **μ CT imaging of whole fly heads**

380 μ CT is an x-ray imaging technique that is similar to medical CT scanners, but with much higher
381 resolution more suitable for smaller samples⁵⁶. A 3D data volume set is reconstructed from a
382 series of 2D x-ray images of the physical sample at different angles. The advantage of this
383 method for determining the ommatidia directions (Fig. 3) is that internal details of the eye, such

384 as individual rhabdoms, distinguishable ‘tips’ of the photoreceptors at the boundary between the
385 pseudocone and the neural retina⁵⁷, and the chirality of the outer photoreceptors, can be resolved
386 across the entire intact fly head with isotropic resolution, which is an important requirement for
387 preserving the geometry of the eye.
388

389 **Sample preparation:** Based on previously published fixation and staining protocols for a variety
390 of biological models⁵⁸, we undertook extensive testing of fixatives and stains in addition to
391 mounting/ immobilizing steps for µCT scanning. Fixatives tested were Bouins fluid, alcoholic
392 Bouins, 70% ethanol. We tested staining with Phospho-tungstic acid in water and in ethanol,
393 Phosphomolybdic acid in water and in ethanol, Lugol’s Iodine solution, 1% Iodine metal
394 dissolved in 100% ethanol. Various combinations of fixatives and stains were tried along with
395 variations in times for each. Fixing and staining samples in aqueous solutions and then scanning
396 these samples in an aqueous environment, despite efforts to immobilize the head, yielded blurry
397 images and poor resolution. Drying the samples using hexamethyldisilazane (HMDS) did not
398 yield images with the resolution achievable with critical point dried samples⁵⁸. The protocol that
399 worked best involved fixing and staining in ethanol-based solutions followed by critical point
400 drying giving good contrast, high resolution images with excellent reproducibility.
401

402 6-7 day old female *D. melanogaster* flies were anesthetized with CO₂ and immersed in 70%
403 ethanol. The heads were dissected out from the body at the thorax region just below the neck to
404 allow for a larger surface area of fixative absorption. Samples were fixed in 70% ethanol at room
405 temperature for 3 days in a 1.5 ml Eppendorf tube with rotation. The ethanol was then replaced
406 with staining solution of 0.5% Phospho-tungstic acid in 70% ethanol. Samples remained in the
407 staining solution for 5-6 days at room temperature with rotation. The heads were rinsed 3x10 min
408 with 70% ethanol at room temperature to remove the staining solution followed by dehydration
409 in 90% and 100% ethanol for 30 min each. The samples were then critical point dried (Tousimis
410 supercritical autosamdry 931.GL). The stasis mode protocol was used with 3 stasis cycles lasting
411 90 minutes each. Next, the fly head was mounted on the tip of a toothpick using a tiny drop of
412 superglue on the remaining thorax region. We confirmed that no glue got on to the head region.
413

414 **Imaging and reconstruction:** The samples were scanned with Zeiss Xradia Versa XRM 500
415 microCT scanner. The scanning was carried out at a voltage of 40kV, current of 72µA (power
416 2.9W) at 20x magnification with 10 sec exposures and a total of 1601 projections. Images had a
417 pixel size of 1.0343 µm with camera binning at 2 and reconstruction binning at 1. The Zeiss
418 XRM reconstruction software was used to generate TIFF stacks of the tomographs. Image
419 segmentation and annotation (lenses and photoreceptor tips) were done in Imaris v9.5 (Oxford
420 Instruments).
421

422 **Whole cell recordings of labeled H2 neurons**

423 **Electrophysiology:** All the flies used in electrophysiological recordings were from a single
424 genotype: pJFRC28-10XUAS-IVS-GFP-p10⁵⁹ in attP2 crossed to the H2 driver line SS01010
425 (see section ‘Generation and imaging of split-GAL4 driver lines’). Flies were reared at a 16 light:8
426 dark light cycle at 24°C. To perform the recordings, 2-3 days old female *Drosophila*
427 *melanogaster* were anesthetized on ice and glued to a custom-built PEEK platform, with their
428 heads tilted down, using a UV cured glues (Loctite 3972) and a high-power UV curing LED
429 system (Thorlabs CS2010). To reduce brain motion, the two front legs were removed, the folded

430 proboscis was glued in its socket, and muscle 16⁶⁰ was removed from between the antennae. The
431 cuticle was removed from the posterior part of the head capsule using a hypodermic needle (BD
432 Precisionglide 26G X 1/2'') and fine forceps. Manual peeling of the perineural sheath using the
433 forceps seemed to damage the stability of the recordings and, therefore, the sheath was removed
434 using collagenase (following prior method⁶¹). To prevent contamination, the pipette holder was
435 replaced after collagenase application.

436

437 The brain was continuously perfused with an extracellular saline containing (in mM): 103 NaCl,
438 3 KCl, 1.5 CaCl₂ 2H₂O, 4 MgCl₂ 6H₂O, 1 NaH₂PO₄ H₂O, 26 NaHCO₃, 5 N-Tris
439 (hydroxymethyl) methyl-2- aminoethane-sulfonic acid, 10 Glucose, and 10 Trehalose with
440 Osmolarity adjusted to 275mOsm and bubbled with carbogen throughout the experiment. Patch
441 clamp electrodes were pulled (Sutter P97), pressure polished (ALA CPM2) and filled with an
442 intracellular saline containing (in mM): 140 Kasp, 10 HEPES, 1 EGTA, 1 KCl, 0.1 CaCl₂, 4
443 MgATP, 0.5 NaGTP, and 5 Glutathione⁶². 250μM Alexa 594 Hydrazide was added to the
444 intracellular saline prior to each experiment, to reach a final osmolarity of 265mOsm, with a pH
445 of 7.3.

446

447 Recordings were obtained using a Sutter SOM microscope with a 60X water-immersion
448 objective (60X Nikon CFI APO NIR Objective, 1.0 NA, 2.8 mm WD). Contrast was generated
449 using oblique illumination from an 850nm LED connected to a light guide positioned behind the
450 fly's head. Images were acquired using Micro-Manager⁶³, to allow for automatic contrast
451 adjustment. All recordings were obtained from the left side of the brain. To block visual input
452 from the contralateral side, the right eye was painted with miniature paint (MSP Bones grey
453 primer followed by dragon black). Current clamp recordings were sampled at 20KHz and low-
454 pass filtered at 10KHz using Axon multiClamp 700B amplifier (National Instrument PCIe-
455 7842R LX50 Multifunction RIO board) using custom LabView (2013 v.13.0.1f2; National
456 Instruments) and MATLAB (Mathworks, Inc.) software.

457

458 **Visual stimuli:** The display was a G4 LED arena⁶⁴ with a manual instead of a motorized rotation
459 axis. The arena covered slightly more than one half of a cylinder (216° in azimuth and ~72° in
460 elevation) of the fly's visual field, with the diameter of each pixel subtending at most 2.25° on
461 the fly eye. Visual stimuli were generated using custom written MATLAB code. Presented
462 stimuli were:

- 463 1) Moving grating: square wave grating with a constant spatial frequency (7 pixels ON / 7
464 pixels OFF) were presented in a ~22° circular window over an intermediate intensity
465 background. Gratings moved at 1.78Hz (40ms steps) and were presented at 16 different
466 orientations. Grating were presented for 3 full cycles (1.68 sec) with 3 repetitions for
467 each stimulus condition. The H2 responses to these trials are the basis for Fig. 1E,F and
468 Extended Data Fig. 1C,D.
- 469 2) Moving bars: This stimulus was used to detect the extent of the field of view of the inputs
470 to the H2 cell. Moving bars were presented in both contrasts (ON and OFF) and both
471 preferred and non-preferred directions for H2 cells (back to front and front to back
472 respectively). Bars were 7 pixels wide and 21 pixels high and moved with 40ms steps
473 (~56°/sec). Bars moved within a 21 pixels window that was centered around different
474 positions in the arena. The H2 responses to these trials are not shown.

475

476 The local preferred direction for the H2 cells were determined using the responses to the 16
477 directions of the moving gratings. Spikes were extracted from the recorded data and summed per
478 trial, then averaged across repeated presentations of each stimulus. The polar plots (Fig. 1E)
479 represent these averages (relative to baseline firing rate), while the vector sum over all 16
480 directions is represented by the black marker in Fig. 1E and the red arrows in Fig. 1F. The
481 subthreshold responses of H2 were also be used to determine the local preferred direction of the
482 neuron, showing excellent agreement to the directions based on the neuron's spiking responses
483 (Extended Data Fig. 1C,D).

484

485 **Determining head orientation:** First, the camera (Point grey Flea 3 with an 8X CompactTL™
486 telecentric lens with in-line illumination, Edmund Optics) was aligned to a platform holder using
487 a custom-made target. This allowed us to adjust the camera and platform holder such that when
488 the holder is centered in the camera's view, both yaw and roll angles are zero. Next, after the fly
489 was glued to the platform, but before the dissection, images were taken from the front to check
490 for yaw and roll angle of head orientation. If the deviation of the head away from a 'straight
491 ahead' orientation was greater than 2°, then that fly was discarded. Finally, to measure pitch
492 angle, the holder was rotated $\pm 90^\circ$, and images of the fly's eye were taken on both sides. Head
493 orientation was then measured as previously described⁶⁵.

494

495 Data analysis

496

497 **Mapping medulla columns:** We based our map of medulla columns on the principal, columnar
498 cell type Mi1 that is found as one per column. Mi1 neurons nearly resemble columns with
499 processes that do not spread far from the main 'trunk' of the neuron. They have a stereotypical
500 arborization pattern in medulla layer M1, M5, and M9/10. For each Mi1 cell, we calculated the
501 centers-of-mass of its arbors in both M5 and M10 and used them as column markers (Fig. 2B,C).
502 The medulla columns do not form a perfectly regular grid—the column arrangement is squeezed
503 along the anterior-posterior direction and the dorsal and ventral portions shift towards anterior.
504 Nevertheless, we were able to map all column positions onto a regular grid via visual inspection
505 (Fig. 2D). This was much clearer based on the positions of the M5 column markers, which are
506 more regular, and were used as the basis for our grid assignment. For occasional ambiguous
507 cases, we compared the whole cells (across layers) in a neighborhood to confirm our assignment.
508 We then propagated the grid assignment to M10 column markers and use them throughout the
509 paper since T4 cells received inputs in layer M10.

510

511 Establishing a global reference that could be used to compare the medulla map (Fig. 2C) to the
512 eye map (Fig. 3F) was essential, and so we endeavored to find the "equator" of the eye in both
513 the EM and uCT data sets. Lamina cartridges in the equatorial region receive more outer
514 photoreceptor inputs (7-8 compared to the normal 6)^{11,66}. We traced hundreds of lamina
515 monopolar cells (L1s or L3s), with at least one input to each of ~ 100 Mi1 cells near the equator
516 region and counted the number of photoreceptor cells in each corresponding lamina cartridge
517 (Extended Data Fig. 2B-D). This allowed us to locate the equatorial region of the medulla (Fig.
518 2C). The equator in uCT is identified by the chirality of the outer photoreceptors (Fig. 3D). We
519 further identified the "central meridian, +v" row, which is roughly the vertical midline. Note that
520 there is some ambiguity in defining +h as the equator in Fig. 2D since there are 4 rows of
521 ommatidia with 8 photoreceptors (points in tan). We opted for one of the middle two rows that

522 intersects with +v. We also identified the chiasm region based on the twisting of R7/8
523 photoreceptor cells (Extended Data Fig. 2E), which very nearly aligned with the central
524 meridian.

525
526 **T4 preferred direction (PD):** Strahler number (SN) was first developed in hydrology to define
527 the hierarchy of tributaries of a river²⁵, and has since been adapted to analyze the branching
528 pattern of a tree graph (Fig. 2F). A dendrite of a neuron can be considered as a tree graph. The
529 smallest branches (leaves of a tree) are assigned with SN = 1. When two branches of SN = a and
530 SN = b merge into a larger branch, the latter is assigned with SN = max(a, b) if a ≠ b, or with SN
531 = a + 1 if a = b.

532
533 We used SN = {2, 3} branches to define the PD because they are the most consistently
534 directional (Extended Data Fig. 3A). SN = 1 branches have a relatively flat angular distribution.
535 Most T4 cells we reconstructed have few SN = 4 branches (which are also directional, but too
536 few to be relied upon), and rarely SN = 5 branches. Each branch is represented by a 3D vector.
537 Vector sums are calculated for all SN = {2, 3} branches which define the directions of the PD
538 vectors (Fig. 2F). We also assigned an amplitude to the PD, in addition to its direction. To
539 generate a mass distribution for each T4 dendrite, we re-sampled the neuron's skeleton such that
540 the nodes are positioned roughly equidistantly (not so after manual tracing). Then all dendrite
541 nodes were projected onto the PD axis. We define the length of the PD vector using a robust
542 estimator, the distance between the 1st and 99th percentiles of this distribution. The orthogonal
543 direction (OD) is a segment orthogonal to the PD vector, with its length similarly defined as PD
544 and without a direction (Fig. 2G).

545
546 **Mapping T4 PDs into the regular grid in medulla (Fig. 2H) and the eye coordinates (Fig.**
547 **4B, C) using kernel regression:** Given a point set P in space A and a second point set Q in
548 space B, and a 1-to-1 mapping between P and Q, one can map a new point x in A to a location y
549 in B based on the relationships of x with respect to P. In our case, because the mapping from A
550 to B is not a rigid coordinate transformation, we applied kernel regression to map the new points.
551 Intuitively, this method takes into account the spatial relationships between x and all the points in
552 P, but gives more weights to the points that are closer to x. The weight is assigned using a
553 Gaussian kernel, hence the name kernel regression.

554
555 We used this method to map PDs from local medulla space to a regular grid in Fig. 2H, and to
556 map PDs from medulla space to visual space in Fig. 4B. For mapping to a regular grid, we
557 defined a 2D reference grid with 19 points, which represented the home column (+1) and the 2nd
558 (+6) and 3rd (+12) closest neighboring columns in a hexagonal grid. For a given T4 neuron, we
559 searched for the same set of its neighboring medulla columns. We flattened these columns and
560 the T4's PD locally by projecting them onto a 2D plane that is given by principal component
561 analysis, that is, the plane is perpendicular to the 3rd principal axis. Finally, we used kernel
562 regression to map the PD from the locally flattened 2D medulla space to the 2D reference grid.
563 The difference in mapping to the visual space (Fig. 4B, Extended Data Fig. 7A) is that the
564 regression is from the locally flattened 2D medulla space to a unit sphere in 3D (the space of
565 ommatidia directions).

566

567 Kernel regression can also be used as an interpolation method, which is equivalent to mapping
568 from a space to its scalar or vector field, that is, to assign a value to a new location based on
569 existing values in a neighborhood. This is how we calculated the PD fields in Fig. 4C and
570 Extended Data Fig. 7B.

571
572 In practice, we used the np package in R⁶⁷, in particular, the “npregbw” function which
573 determines the width of the Gaussian kernel. Most parameters of the npregbw function are set to
574 default except: (1) We used the local-linear estimator, “regtype = ‘ll’”, which performs better
575 near boundaries. (2) We used fixed bandwidth, “bwtype= ‘fixed’”, for interpolation and adaptive
576 nearest neighbor method, “bwtype= ‘adaptive_nn’”, for mapping between 2 different spaces (eg.
577 from medulla to ommatidia). Further details can be found in our Github repository and the np
578 package manual for more details.

579
580 **Ommatidia directions:** We analyzed the μ CT volumes in Imaris v9.5 (Oxford Instruments). We
581 manually segmented the lenses and photoreceptor tips, so they could be analyzed separately. We
582 then used the “spot detection” (based on contrast) algorithm in Imaris to locate the centers of
583 individual lenses and photoreceptor tips, and quality-controlled by visual inspection and manual
584 editing. The lens positions are extremely regular and can be readily mapped onto a regular
585 hexagonal grid (Extended Data Fig. 5A, directly comparable to the medulla grid, Fig. 2D). With
586 our optimized μ CT data, it is also straightforward to match all individual lenses to all individual
587 photoreceptor “tips” in a one-to-one manner, and consequently to compute the ommatidia
588 viewing directions. These directional vectors can be represented as points on a unit sphere (Fig.
589 3E). We then performed a local weighted smoothing for points with at least 5 neighbors: the
590 position of the point itself weights 50% while its neighbors’ average position accounts for the
591 remaining 50%. This gentle smoothing only impacts the positions in the bulk of the eye while
592 leaving the boundary points alone.

593
594 Assuming left-right symmetry, we used the lens positions from both eyes to define the frontal
595 midline (sagittal plane) of the visual field. Together with the equator, identified by the inversion
596 in the chirality of the outer photoreceptors (Fig. 3C,D), we could then define an eye coordinate
597 system for the fly’s visual space – represented for one eye in Fig. 3E and F. Note that the $z = 0$
598 plane (“ z ” is “up” in Fig. 3E) in the coordinate system is defined by lens positions, hence the
599 “equator” ommatidia directions do not necessarily lie in this plane (more easily seen in Fig. 3F).
600 In addition, we defined the “central meridian” line of points (“+v” in Fig. 2E,F and Extended
601 Data Fig. 5A) that divides the whole grid into roughly equal halves. Because this definition is
602 based on the grid structure, this “central meridian” does not lie on a geographic meridian line in
603 the eye coordinates.

604
605 **Eyemap: 1-to-1 mapping between medulla columns and ommatidia directions**
606 With both medulla columns and ommatidia directions mapped to regular grid (Fig. 2D and
607 Extended Data Fig. 5A), and equators and central meridians defined, it’s straightforward to
608 match these two points sets, starting from the center outwards. Because the medulla columns are
609 from a fly imaged with EM and ommatidia directions from a different fly imaged with μ CT, we
610 don’t expect these two point sets to match exactly, but we endeavored to use flies with a very
611 similar total number of ommatidia (and of the same genotype). By matching the points from
612 center outwards and relying on anatomical features such as the equator, we expect to minimize

613 the column receptive field discrepancies, especially in the interior of eye. The matching at the
614 boundary is somewhat complicated by the existence of medulla columns with no inner
615 photoreceptor (R7/8) inputs (Fig. 2C)⁶⁸. In the eyemap in Fig. 4A, we denoted unmatched points
616 with empty circles, all of which solely lie on the boundaries (which is why the ommatidia
617 directions in Fig. 3F contain additional points). Any consideration of these medulla columns and
618 ommatidia directions should be done with caution. In addition, we also noted those boundary
619 points that do not have enough neighbors for computing the inter-ommatidial angles, the shear
620 angles, or the aspect ratios in Fig. 3H, J, and Extended Data Fig. 5C,D. Importantly, our primary
621 discoveries about the universal sampling of medulla columns (Fig. 2), and the strong relationship
622 between T4 PDs and shear angle of ommatidia hexagons (comparing Fig. 3J to Fig. 4D) are well
623 supported by the anatomy of the bulk of the eye and do not depend on perfect matching across
624 data sets or the particular fly used to construct the eye map (see Extended Data Fig. 4E,F).

625

626 **Grid convention: regular vs irregular, hexagonal vs square:** Facet lenses of the fly's eye are
627 arranged in an almost regular hexagonal grid. However, the medulla columns are squeezed along
628 the anterior-posterior direction and more closely resemble a square grid tilted at 45° (Extended
629 Data Fig. 5E). This difference can also be seen by comparing the aspect ratios (Extended Data
630 Fig. 5C,D). To preserve these anatomical features, we mapped the medulla columns and T4 PDs
631 onto a regular square grid (tilted by 45°, e.g. Fig. 2D, H), and the ommatidia directions onto a
632 regular hexagonal grid (Extended Data Fig. 5A).

633

634 **Mercator and Mollweide projections:** For presenting spherical data, the Mercator projection is
635 more common, but we prefer the Mollweide projection since it produces only small distortion
636 near the poles, and because of these smaller distortions it provides a more intuitive representation
637 of spatial coverage. On the other hand, the Mercator projection preserves all the angular
638 relationships and is more convenient for reading out angular distributions, which is why we use it
639 for presenting the H2 data (Fig. 1F, Extended Data Fig. 1D). Otherwise, we used the Mollweide
640 projections in the main figures and provide the Mercator version for some plots (Extended Data
641 Figs. 5F-J, 6A, 7C).

642

643 **Ideal optic flow fields:** Following the classic framework for the geometry of optic flow⁶⁹, we
644 calculate the optic flow field for a spherical sampling of visual space under the assumption that
645 all objects are at an equal distance from the animal (only relevant for translational movements).
646 With ommatidia directions represented by unit vectors in 3D, the optic flow field induced by
647 translation is computed as the component of the inverse of the translation vector (since motion
648 and optic flow are “opposite”) perpendicular to the ommatidia directions (also known as a
649 “vector rejection”). The flow field induced by rotation is computed as the cross product between
650 the ommatidia directions and the rotation vector. Since the motion perceived by the animal
651 would be the opposite of the induced motion, the flow field is the reverse of the ones described
652 above (Fig. 4E). The angles between T4 PDs and ideal optic flows at each ommatidia direction
653 are computed for subsequent comparisons between various optic flow fields (Fig. 4F,G,
654 Extended Data Fig. 7E,F).

655

656 To determine the optimal axis of movement (minimal average errors) for a given PD field, we
657 performed a grid search. We defined 10356 axes on the unit sphere (roughly 1° sampling) and
658 generated optic flow fields induced by translations and rotations along these axes. We compared

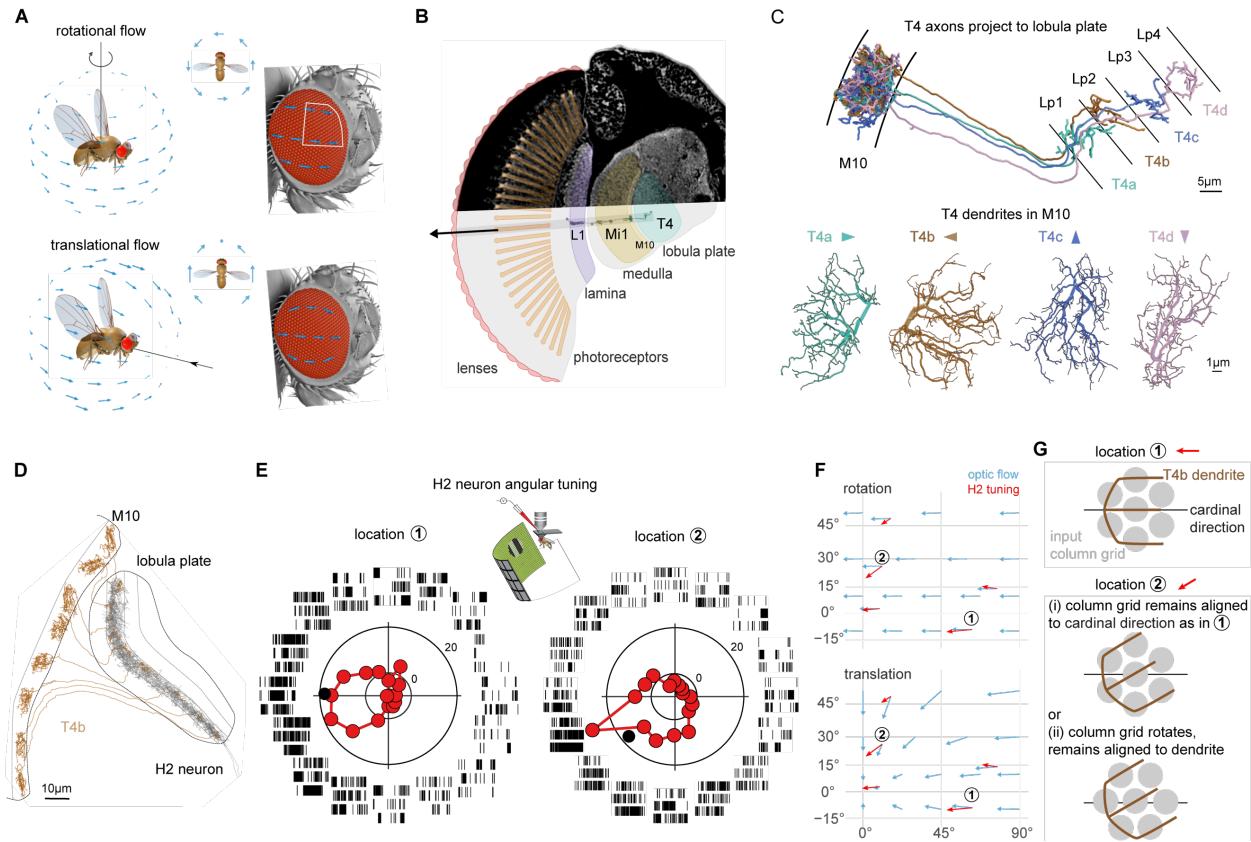
659 all these optic flows fields and the PD fields for T4b and T4d to determine the axes with minimal
660 average angular differences (Extended Data Fig. 6E). These are the optimal axes in Fig. 4F-J,
661 Extended Data Fig. 6E, Extended Data Fig. 7F.

662

663 **Data analysis and plotting conventions**

664 All histograms are smoothed as a kernel density estimation. To set the scale of each histogram
665 plot, we show a scale bar on the left-hand side that spans from zero at the bottom to the height of
666 a uniform distribution. All 2D projections (Mollweide or Mercator) are such that the right half
667 (azimuth > 0) represent the right-side visual field of the fly (looking from inside out). Top half
668 (elevation > 0) represents the dorsal visual field.

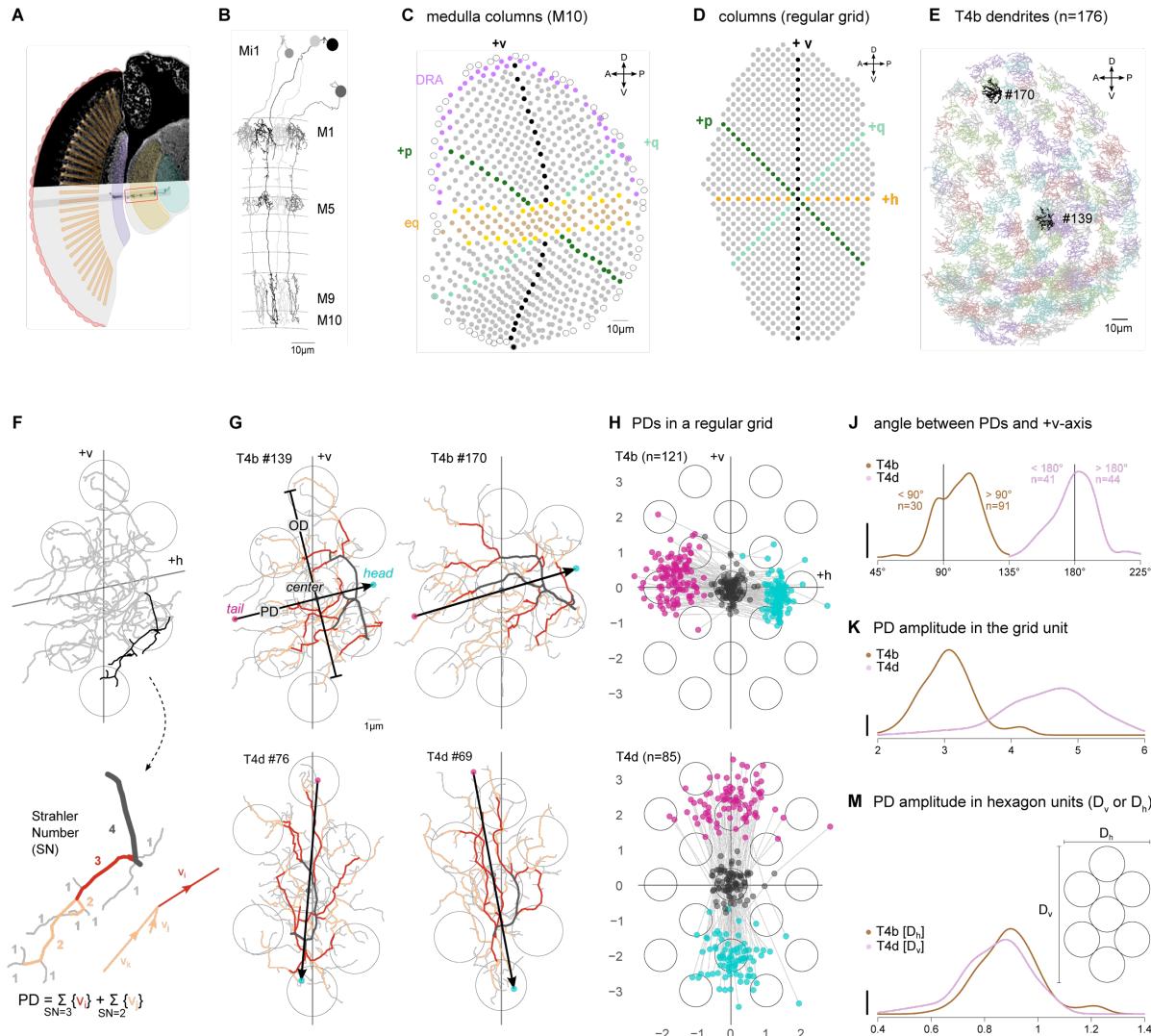
669


670 **Data and Code Availability**

671 Data analyses were carried out with custom code in R using open-source packages, mainly
672 "natverse", "tidyverse", and "np". Animations were created using Blender and the Python
673 package "navis". We will make the data and code used to produce the major results of this study
674 available at the time of publication. We will provide the most updated materials to correspond to
675 the final version of the manuscript. EM reconstructed neurons will be uploaded to a public
676 CATMAID server: <https://catmaid.virtualflybrain.org>. Flylight images will be available on the
677 FlyLight website: <https://splitgal4.janelia.org/cgi-bin/splitgal4.cgi>. The μ CT and some of the
678 confocal stacks will be uploaded to FigShare. Analysis and plotting code will be available on
679 github: <https://github.com/reiserlab>.

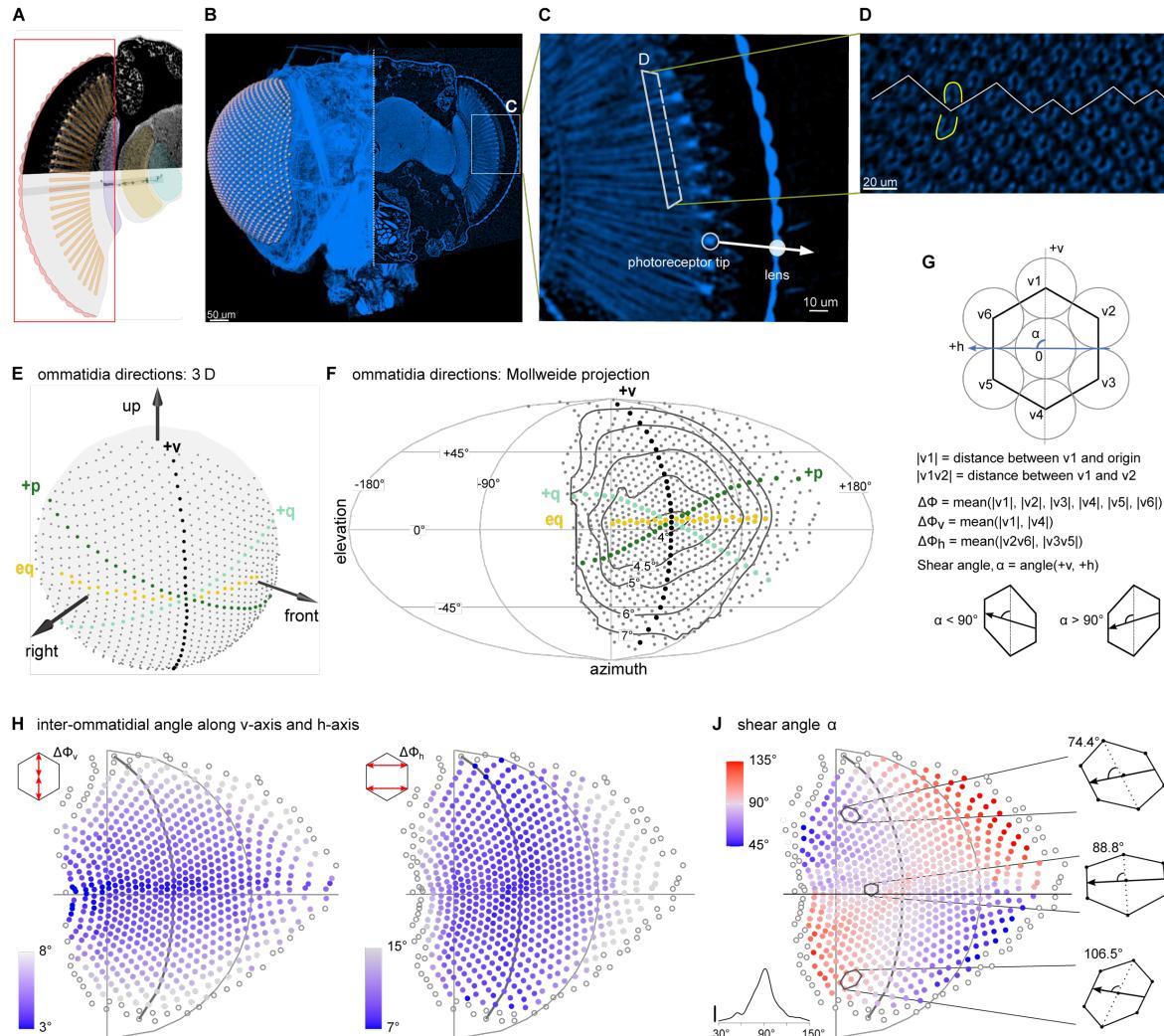
680

681 **Acknowledgements**


682 The authors thank Ruchi Parekh for managing the Connectome Annotation Team, Gerry Rubin
683 for support of Aljosha Nern and for sharing the H2 split-GAL4 line, Tess Oram and Gwyneth
684 Card for sharing collagenase, the Janelia Fly Core for fly care, Janelia FlyLight Project Team for
685 help with preparation and imaging of light microscopy samples, and members of the Reiser lab
686 for helpful feedback. We thank the FAFB tracing community for supportive and open sharing of
687 methods and data, especially Greg Jefferis, Marta Costa, Philipp Schlegel, and the “FAFB optic
688 lobe working group”, especially the groups of Mathias Wernet, Eugenia Chiappe, Marion Silies,
689 and Rudy Behnia for collaborations and feedback. Development and administration of the FAFB
690 tracing environment and analysis tools were funded in part by National Institutes of Health
691 BRAIN Initiative grant 1RF1MH120679-01 to Davi Bock and Greg Jefferis, with software
692 development effort and administrative support provided by Tom Kazimiers (Kazmos GmbH) and
693 Eric Perlman (Yikes LLC). We thank Peter Li for sharing his automatic segmentation
694 (<https://doi.org/10.1101/605634>). We thank the Princeton FlyWire team and members of the
695 Mala Murthy and Sebastian Seung labs for development and maintenance of FlyWire (supported
696 by BRAIN Initiative grant MH117815 to Mala Murthy and Sebastian Seung). This work made
697 use of VVDviewer, based on software funded by the NIH: Fluorender: An Imaging Tool for
698 Visualization and Analysis of Confocal Data as Applied to Zebrafish Research, R01-GM098151-
699 01. This work is funded by the Howard Hughes Medical Institute through its support of the
700 Janelia Research Campus. This article is subject to HHMI’s Open Access to Publications policy.
701 HHMI lab heads have previously granted a nonexclusive CC BY 4.0 license to the public and a
702 sublicensable license to HHMI in their research articles. Pursuant to those licenses, the author-
703 accepted manuscript of this article can be made freely available under a CC BY 4.0 license
704 immediately upon publication.

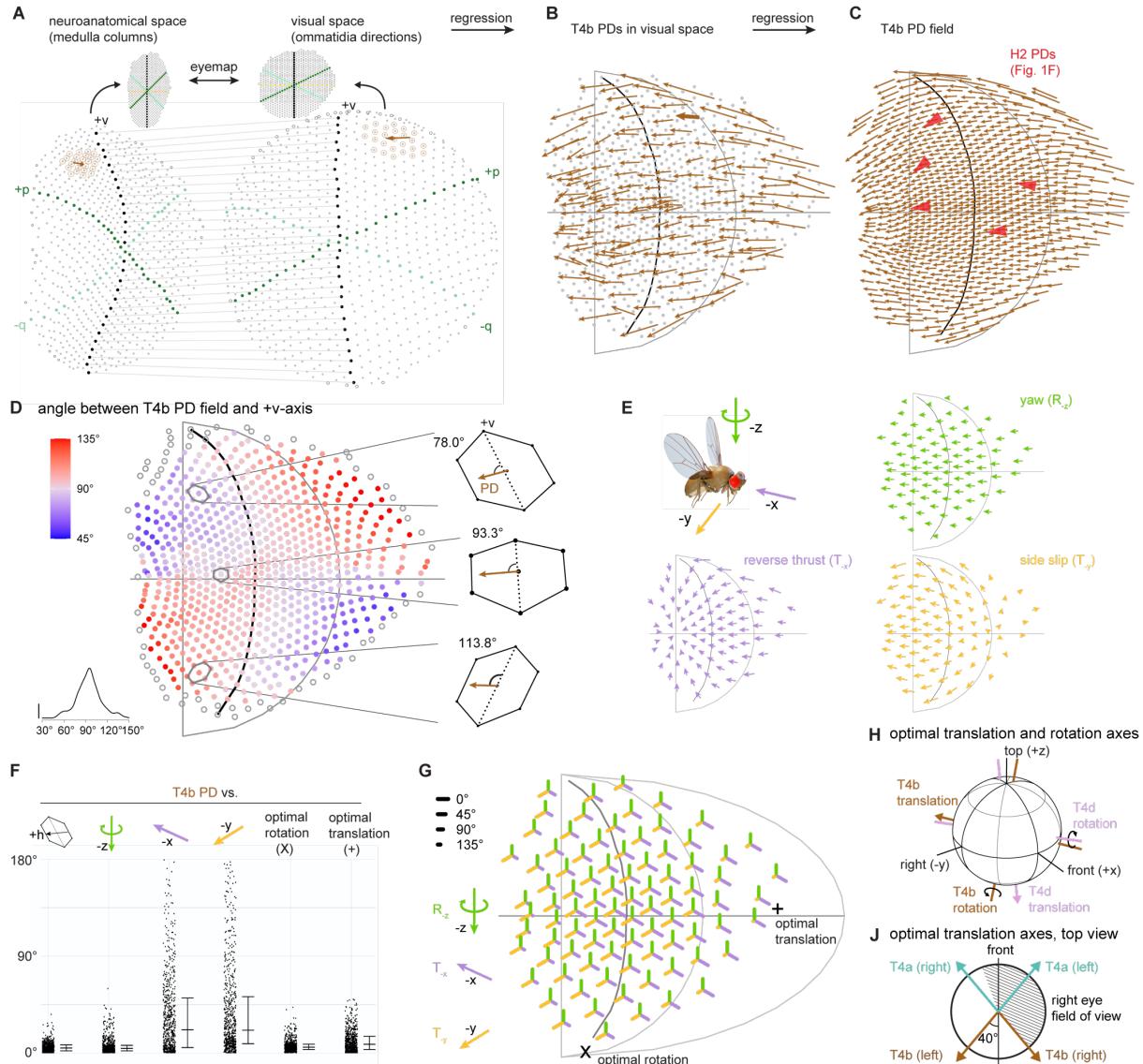
705
706

707 **Figure 1: Non-cardinal direction preference by DS neurons**

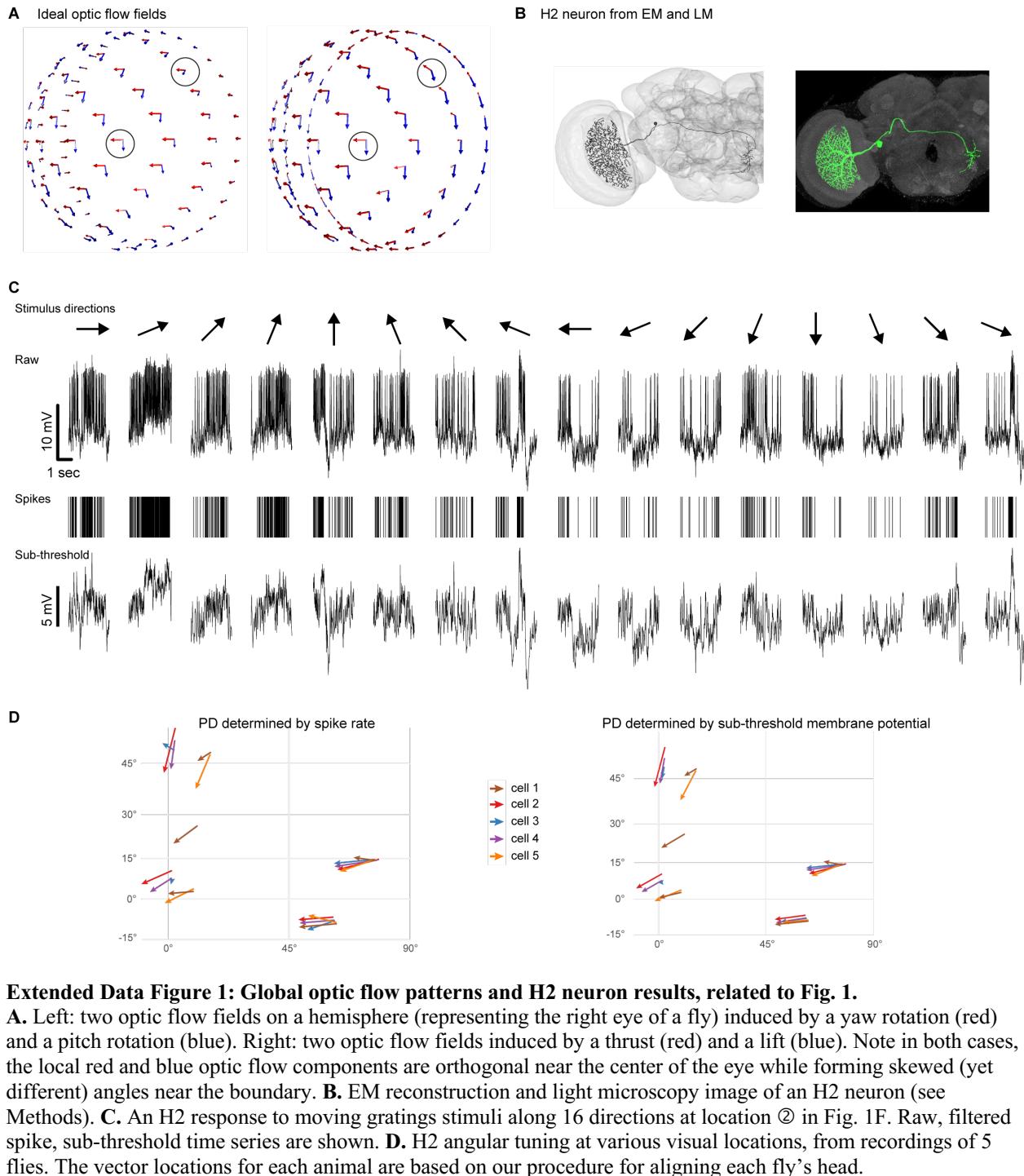

708 A. Ideal optic flow fields induced by yaw rotation or backwards translation, projected onto a model fly's right eye.
709 The local structure of the optic flow is similar near the eye's equator, but different away from it. B. Columnar
710 architecture of the fly's compound eye. Top half: cross section of a μ CT image stack, with neuropils of the visual
711 system indicated. Bottom half: schematic drawing overlaid with EM reconstructed neuron skeletons in one column.
712 The arrow illustrates that ommatidium's viewing direction, and the long gray rectangle schematizes the
713 corresponding, single column. C. Four subtypes of the direction selective (DS) T4 cells, receive inputs in the
714 proximal medulla layer (M10), and project to one of the 4 lobula plate layers (Lp1-4). A T4 cell's preferred direction
715 (PD, arrowheads) of motion is roughly opposite to the primary orientation of its dendrites⁴. D. EM reconstruction of
716 a wide-field H2 neuron's dendrite that receives inputs from T4b cells across nearly the entire layer 2 (Lp2) of the
717 lobula plate. The complete morphology of the H2 neuron is shown in Extended Data Fig. 1B. E. Electrophysiology
718 recordings of H2 angular tuning. Raster plots show the spiking activity in response to local stimulation with square
719 gratings moving in 16 directions at 2 different retina locations. Polar plots show average spiking response rate (in
720 Hz). The black dot marks the PD, and the inset shows the experimental setup. F. Ideal optic flow fields overlaid with
721 H2 local direction tuning in a Mercator projection. The plotted area corresponds to the region outlined in white on
722 the eye in (A). G. Two potential mechanisms for how the dendrites of T4 neurons could establish different PDs at
723 location ②: (i) location-dependent changes in how the T4 dendrite samples the input column grid or (ii) consistent
724 dendritic orientation (with respect to local input columnar grid) but visual space is non-uniformly represented.

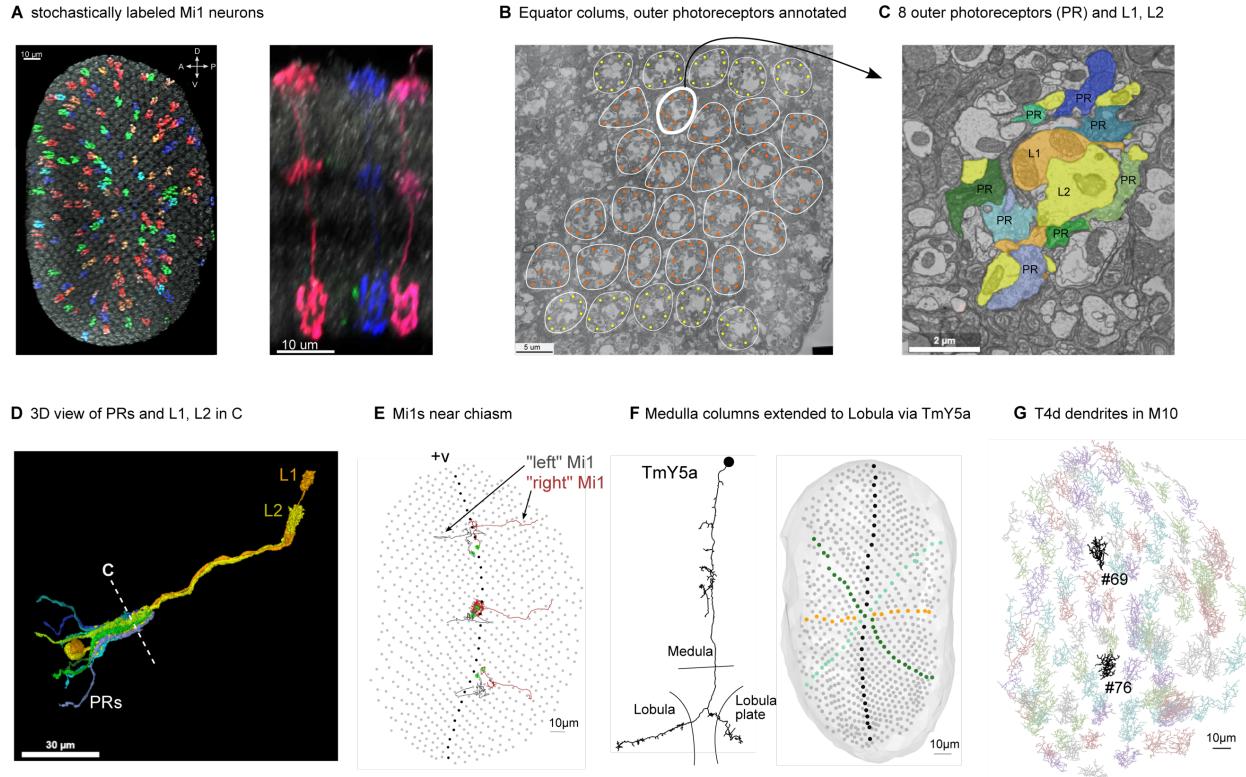
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

Figure 2: EM reconstruction of T4 dendrites across the eye reveals stereotypical arborization pattern


A. *Drosophila* visual system schematic highlighting an Mi1 and a T4 cell in medulla. B. EM reconstruction of 4 Mi1 cells arborizing primarily in medulla layer M1, M5 and M9/10. C. Medulla columns identified by the center-of-mass of the M10 arbors of Mi1 cells. Magenta dots at the top denote dorsal rim area columns⁵¹. The belt in the middle denotes the equatorial region, where there are 7 (yellow) or 8 (tan) photoreceptors in the corresponding lamina cartridges (Extended Data Fig. 2B). Black dots denote the “central meridian,” separating the points into approximately equal halves. Empty circles denote medulla columns with no R7/8 inputs, which presumably have no corresponding ommatidia⁶⁸. D. Medulla columns mapped onto a 2D regular grid, with orthogonal +h and +v axes defined by the equatorial region and central meridian. Also noted +p and +q axes for consistency with prior work^{28,70}. E. The dendritic arbors of 176 T4b cells in M10. Two highlighted example neurons are shown in (G). F. An example T4b (#139) dendrite. Bold branch (upper) is color coded by Strahler number (SN; lower). Arrows represent the direction vectors of SN = {2, 3} branches. The preferred direction (PD) of the dendrite is defined as the vector sum of all SN = {2, 3} branches. G. Example T4b and T4d cells’ dendrites, with preferred directions (PD) and orthogonal directions (OD). Branches are colored by their SN (> 3 in black). Seven circles in each plot represent the home column and its 6 nearest neighbors. H. Mapping PDs to a regular grid using 19 neighboring columns (see Methods, the tail, center, and head of each PD vector is indicated as in (G)). J. Distribution of the angles between T4 PDs and +v-axis. The scale bar in histogram plots spans from zero to the height of a uniform distribution. K. Distribution of PD amplitudes in units of the regular grid for T4b and T4d cells (significantly different, Wilcoxon rank test, p-value < 2.2e-16). M. Distribution of PD amplitudes normalized by respective hexagon length units defined in inset (overlapping, though significantly different, Wilcoxon rank test, p-value=0.015).

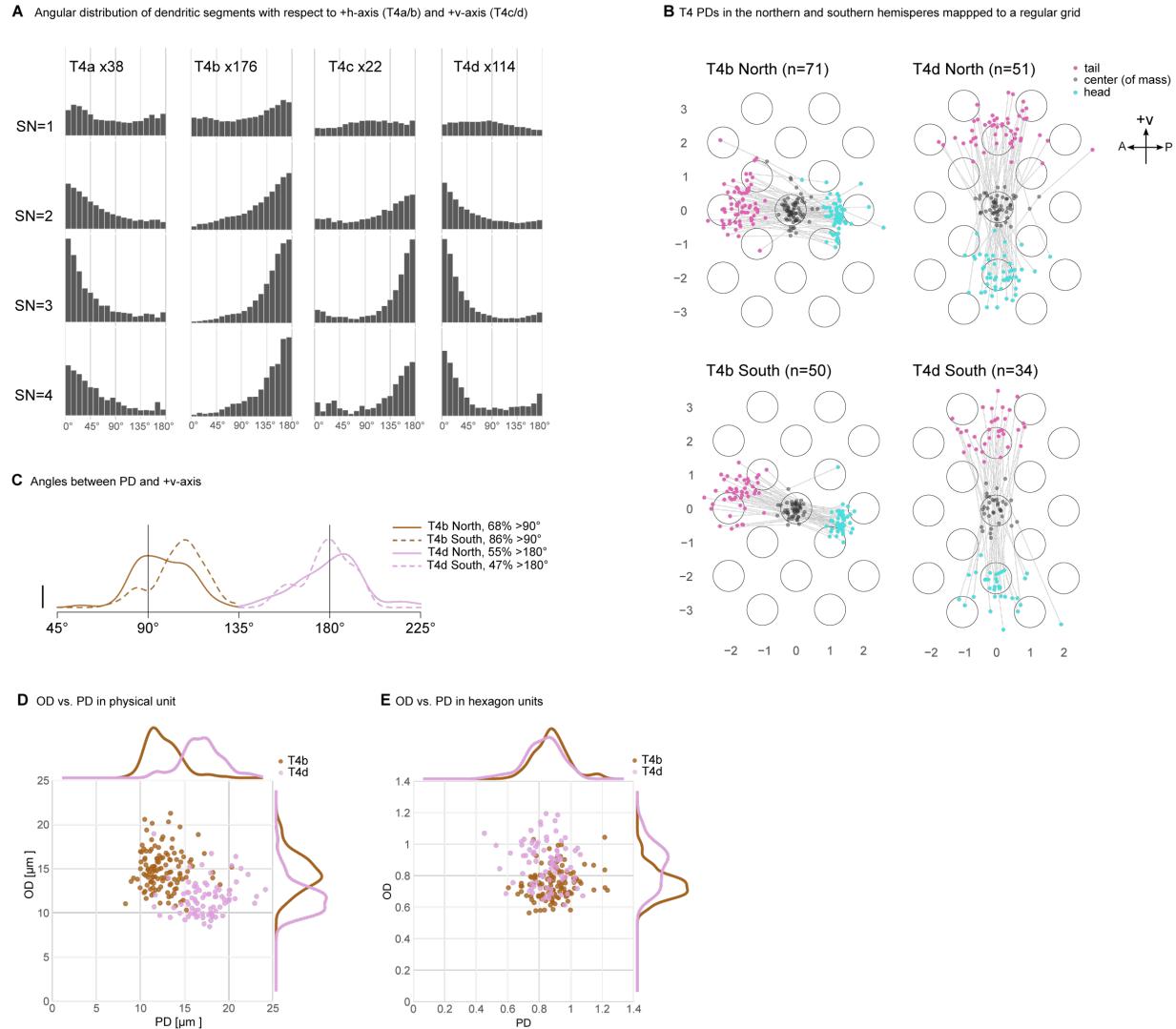
746
747


748 **Figure 3: Non-uniform sampling of visual space established by μCT of the *Drosophila* eye**


749 **A.** *Drosophila* visual system schematic highlighting the retina. **B.** Maximal intensity projection of a whole fly head
750 scanned with μCT. Lenses on the right eye (left half) are labeled by white spheres. **C.** A zoomed-in cross section
751 showing lenses and photoreceptors, with an example tip-lens pair that defines the viewing direction of that
752 ommatidium. **D.** Photoreceptors in each ommatidium are arranged in an “n” or “u” shape above or below the
753 equator, respectively²⁷. **E.** Right eye ommatidia directions represented by points on a unit sphere. The “eq” row of
754 points is based on (**D**) and “+v” separates the points into approximately equal halves. **F.** Mollweide projection of 3D
755 ommatidia directions, and the inter-ommatidial angles (IOA, $\Delta\Phi$, averaged over 6 neighbors). Contour lines label
756 iso-IOA levels. **G.** A schematic unit hexagon containing 7 columns (home column at the origin plus v1-6). The +h-
757 axis is the line from the center of 2 right neighbors to that of 2 left neighbors, and the +v-axis as the line from the
758 bottom neighbor to the top one. We define the 6-neighbor IOA $\Delta\Phi$, vertical IOA $\Delta\Phi_v$, horizontal IOA $\Delta\Phi_h$, and
759 shear angle α . Because of the small angle approximation, we determine the IOAs using the Euclidean distance ($|\cdot|$)
760 of points on the unit sphere in (**E**). **H.** Spatial distribution of $\Delta\Phi_v$ and $\Delta\Phi_h$. Points represent ommatidia directions
761 as in (**F**). **J.** Distribution of shear angles across the eye, with 3 example unit hexagons from the same vertical grid
762 line. The inset plot is the histogram of all shear angles. In (**H**) and (**J**), points lacking the complete set of neighbors
763 for each calculation are displayed as empty circles. Also note that, compared with (**F**), points not matched to
764 medulla columns (see Fig. 4A) are excluded. The 3 examples are aligned with the meridian lines through the home
765 column.

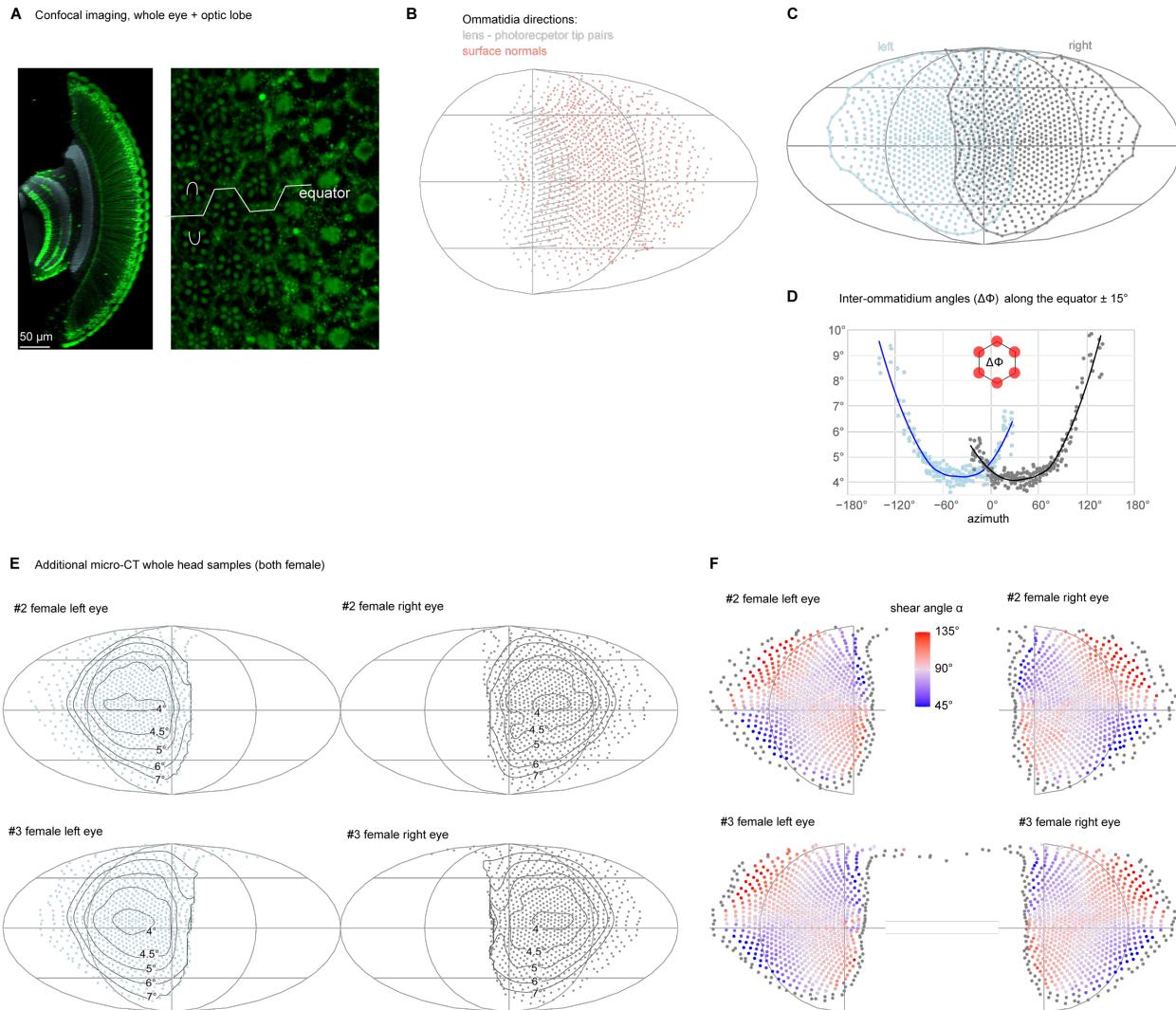
766
767
768 **Figure 4: Mapping neuroanatomical space into visual space explains global organization of DS neuron**
769 **preferred directions**

770 A. 1-to-1 mapping between medulla columns, from the EM data set, and ommatidia directions, from the μ CT data
771 set, via mapping to regular grids. Unmatched columns on the periphery are denoted by empty circles. A T4b PD
772 vector is transformed from the medulla to visual space. The neighboring columns used for kernel regression are
773 highlighted with brown circles. B. 176 reconstructed T4b PDs mapped to visual space. The example vector in A is
774 bolded. C. T4b PD field interpolated (see Methods) from (B), assigning one T4b PD vector to each ommatidia
775 direction (length re-scaled from (B) by 50%). For comparison, the PDs recorded from an H2 neuron are replotted
776 from Fig. 1F as red arrowheads. D. Angular difference between T4b PD field in (C) and the +v-axis. This structure
777 of the PD field matches features of ommatidial shearing (Fig. 3J). E. Ideal optic flow fields induced by yaw rotation,
778 reverse thrust, and side slip. The number of ommatidia directions is down-sampled by a factor of 9 (keeping every
779 third row or column). F. Angular differences between T4b PD field, +h-axis, three cardinal self-motion optic flow
780 fields, and optimized self-motion flow fields (see Extended Data Fig. 6E). The horizontal bars represent 25%, 50%
781 and 75% quantiles. G. Spatial distribution of the angular differences for the comparison with the 3 cardinal self-
782 motions optic flow fields. The angular difference at each ommatidia direction (also down-sampled by a factor of 9)
783 is represented with 3 line segments, with color matched to the cardinal self-motions and length given by the angular
784 difference. The symbols “X” and “+” indicate the optimal rotation and translation axes, respectively. H. Optimal
785 rotation and translation axes for T4b and T4d PD fields in the fly’s eye coordinates. J. Top view of the optimal
786 translation axes for both T4a and T4b in both eyes represented along with the field of view at the equator.

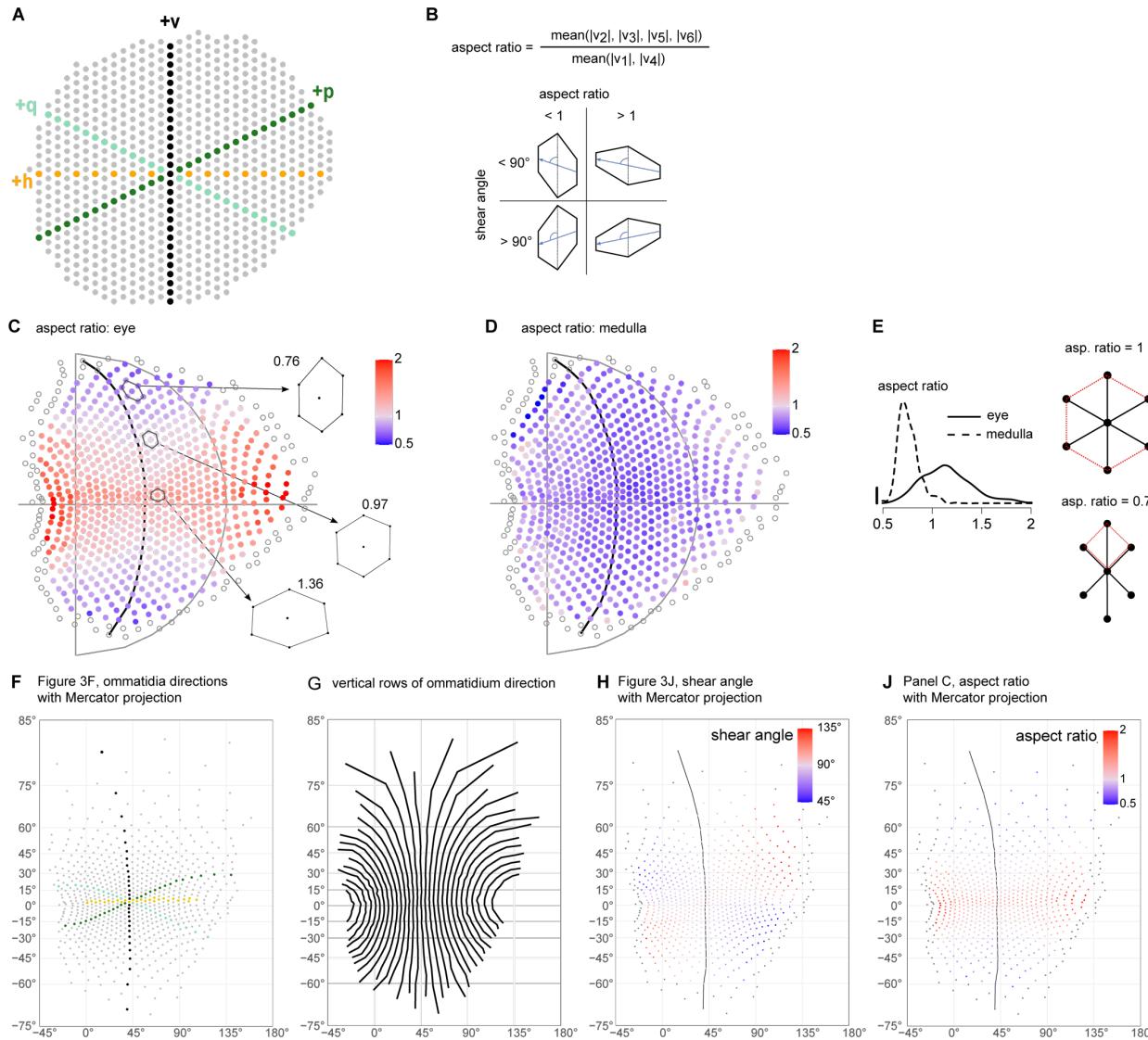


797
798
799
800
801
802
803
804
805
806
807
808
809
810

Extended Data Figure 2: Anatomical considerations for mapping visual neurons throughout the medulla, related to Fig. 2.


A. Left: light microscopy of stochastically labeled Mi1 cells in the background of nc82 staining, only showing the M10 portion of the medulla. Right: side view of stochastically labeled Mi1 cells (3 out of 4 columns have visible cells). **B.** A cross section of the equatorial region in the lamina, identified by cartridges (white contour) with 8 (orange) or fewer (yellow) outer photoreceptors. **C.** A zoomed-in view of a single cartridge showing L1/2 cells and 8 photoreceptor cells. L1 cells receive input from photoreceptor cells (R1-6) and output to Mi1 cells. **D.** 3D rendering of the same cartridge. **E.** Chiasm medulla columns (green) with corresponding Mi1 cells at 3 vertical locations identified by the twisting of R7/8 photoreceptor axons (not shown). For comparison, the central meridian is indicated in black. **F.** Extension of medulla column map to the lobula via interpolation of the positions of 63 reconstructed TmY5a neurons. **G.** The dendritic arbors of 114 reconstructed T4d cells in M10. The 2 highlighted neurons are the examples in Fig. 2G.

811
812


813 **Extended Data Figure 3: Analysis of dendritic morphology of T4 neurons, related to Fig. 2.**

814 **A.** The angular distribution of dendritic segments, treating each segment as a vector, and calculating the angle
815 formed with respect to the grid axes. For T4a/b subtypes, the angle was computed with respect to the +h-axis,
816 normalized by solid angle and grouped by Strahler number (SN). For T4c/d, the angle was computed with respect to
817 the -v-axis. To compute the PD vector, we use SN = {2, 3} because these segments are abundant (compared to SN =
818 4) and have more consistent directions (compared to SN = 1). **B.** PD vectors mapped to a regular grid for T4b/d cells
819 above (North) and below (South) the equator. **C.** Angles between the PDs and +v-axis above and below the equator.
820 Wilcoxon rank test for the null-hypothesis that the distributions in the northern and southern hemispheres are the
821 same yields a p-value = 0.00034 for T4b and 0.67 for T4d. **D.** OD vs. PD length in raw physical units [μm] in
822 medulla. **E.** OD vs. PD length: T4b PDs and T4d ODs are normalized by the horizontal hexagon unit D_h , while T4b
823 ODs and T4d PDs are normalized by the vertical hexagon unit D_v .
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

Extended Data Figure 4: Ommatidia viewing directions in *Drosophila* compound eye maps, related to Fig. 3.
A. Left: a high-resolution confocal image showing auto fluorescence (green) from ommatidia and many cells in the medulla. Lamina and medulla neuropils are visible (grey) due to nc82 antibody staining. Right: a different cross section showing the arrangement of individual photoreceptors near the equator. 6 dots (R1-R6) arranged an "n" or "u" shape can be readily seen in each ommatidium. The 7th smaller dot (R7+R8) in the center is often visible as well. **B.** Comparison of ommatidia directions defined by lens-photoreceptor tip pairs (gray, used in this study) and by surface normal (red). The surface normal is a typical approximation for the viewing direction, but this estimate differs substantially from that based on the high-resolution structure of each ommatidium. Two corresponding rows are connected with gray lines to illustrate the differences in different eye regions. Notably these differences are small near the center of the eye, and very large towards the front of the eye. **C.** Ommatidia directions and field of views (contours) for both eyes for the same fly as in Fig. 3. **D.** Six-neighbor inter-ommatidial angle ($\Delta\Phi$) along the equator ($\pm 15^\circ$ elevation) for this same fly. **E.** Ommatidia directions and $\Delta\Phi$ for 2 additional female flies. **F.** Shear angles for these 2 female flies, plotted as in Fig. 3J.

840

841

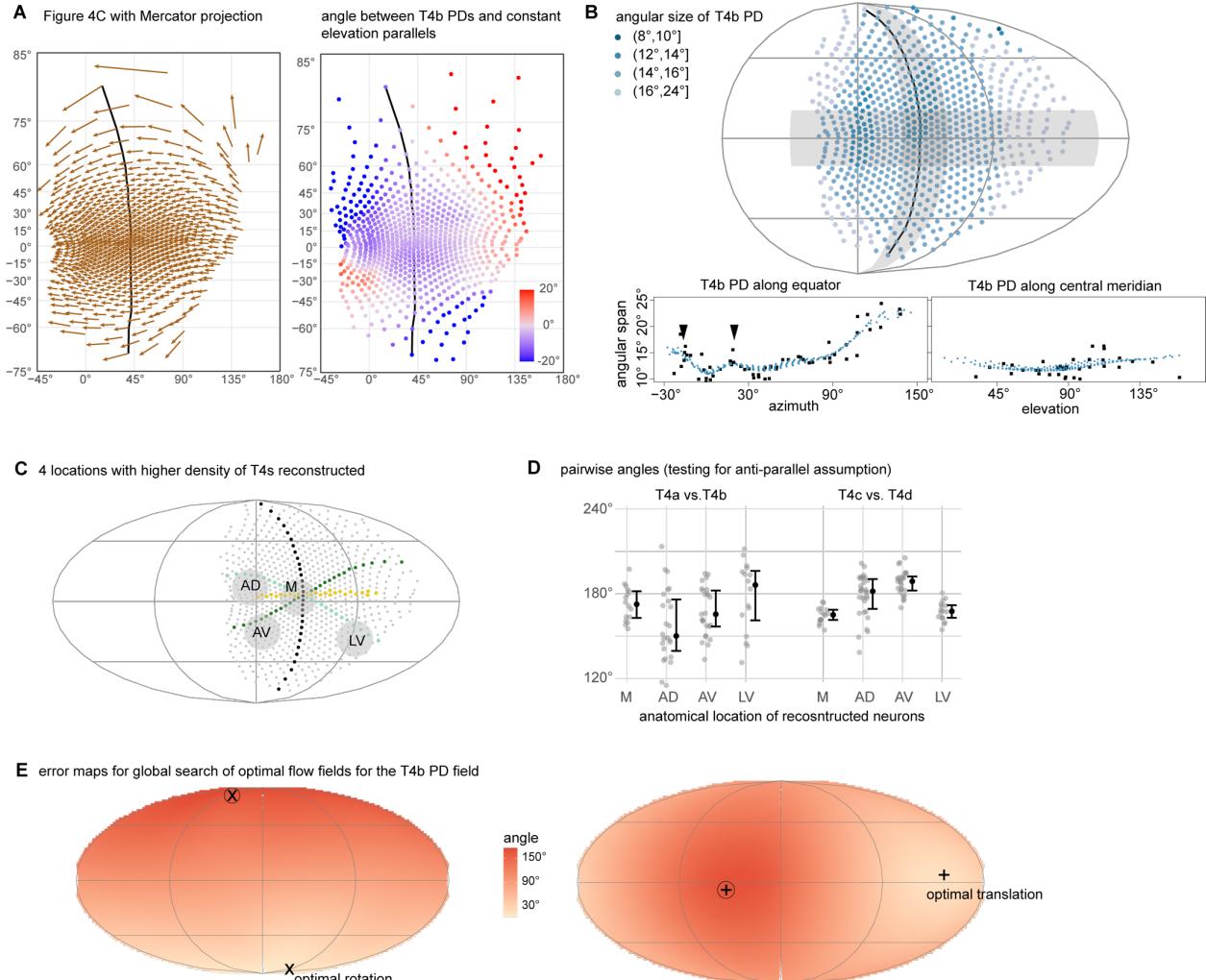
Extended Data Figure 5: Quantification of the ommatidial viewing direction grids, related to Fig. 3.

842

843

844

845


846

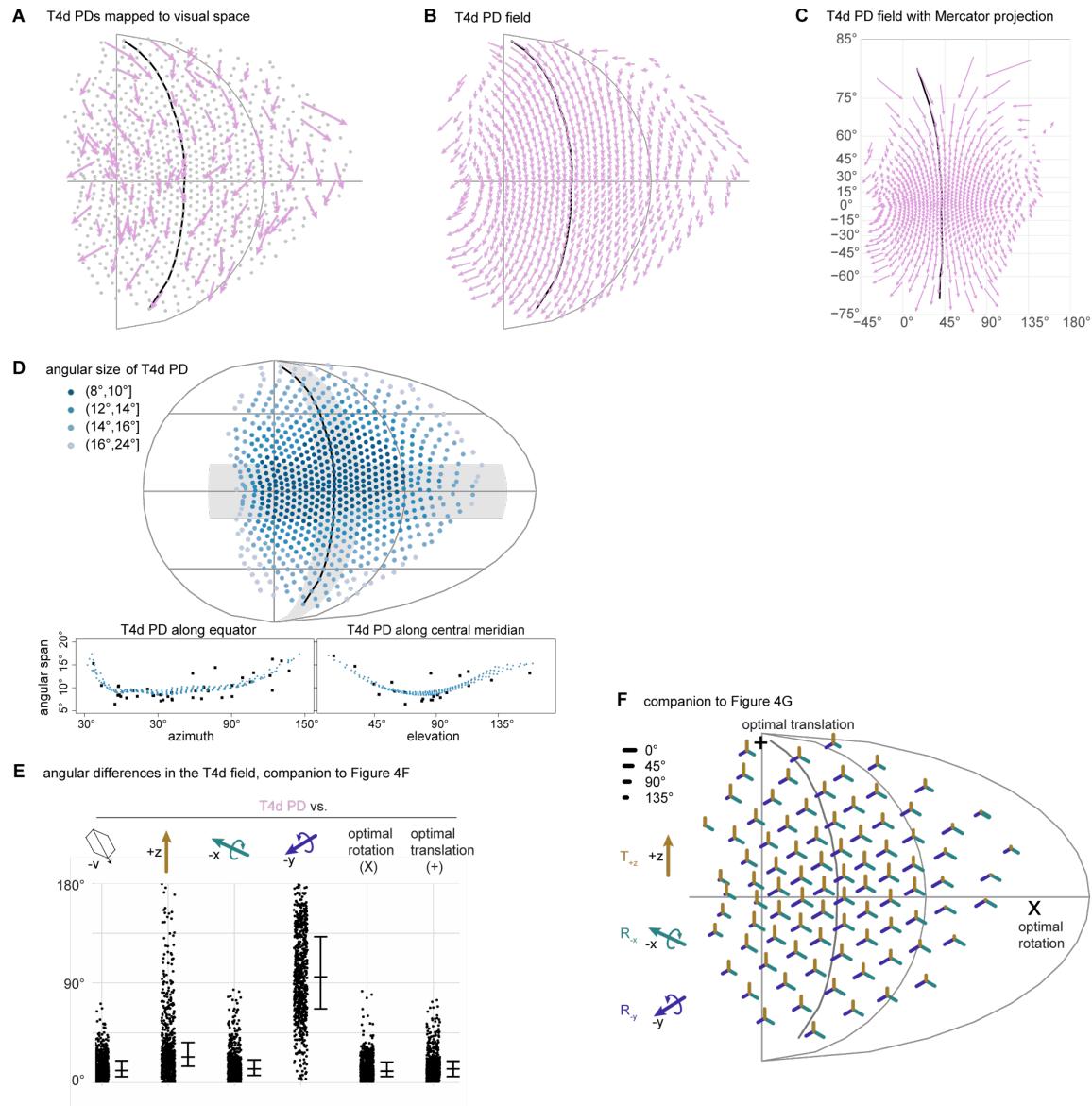
847

848

849

A. Ommatidia directions mapped onto a regular hexagonal grid. **B.** Definitions of aspect ratio and shear angle for a unit hexagon with examples. **C.** Aspect ratios calculated from ommatidia directions. **D.** Aspect ratios calculated from medulla columns. **E.** Distributions of aspect ratio for ommatidia and medulla columns. Comparison with the aspect ratios for a regular hexagonal grid and a regular square grid shows that the arrangement of ommatidia directions is more hexagonal while the arrangement of medulla columns is more square-like. **F.** Fig. 2F replotted using Mercator projection. **G.** Vertical rows of ommatidium directions given by the grid structure, shown using Mercator projection. **H.** Fig. 3J replotted using Mercator projection. **J.** The aspect ratio map in C replotted using Mercator projection.

850


851

852

853

Extended Data Figure 6: Further quantification of T4b PD distribution, related to Fig. 4.

A. Left: Fig. 4C replotted using Mercator projection; right: map of angle between T4b PD field and the constant elevation parallels. B. Visual angles subtended by T4b PD vectors (i.e., angular size). Scatter plots show the reconstructed T4b PDs (black dots, also in Fig. 4B) and interpolated ones (blue dots, also in Fig. 4C) along the equator (+/-15° horizontal shaded band) and the central meridian (+/-15° vertical shaded crescent). Most T4b PDs span between 10°-15° degrees, but there are almost 2-fold differences found across the eye, with larger spans towards the rear and smaller spans near the equatorial higher-acuity zone and front (black arrowheads). C. In an early pilot study we reconstructed all T4 subtypes (16-20 cells) at each of these four locations. D. We first mapped these T4s' PD vectors to the regular grid in Fig. 2H. Then at each location, we computed the angles between all T4a vs T4b pairs. Similarly, for T4c vs T4d. E. Global search for optimal optic flow fields yielded these error maps, showing the average angular differences between the T4b PD field and the optic flow field induced by a rotation (left) or translation (right) along that direction (see Methods: Ideal optic flow). Symbols “+” and “X” denote the axes of translational and rotational motion with minimal angular difference, respectively. Symbols ⊕ and ⊖ denote those with maximal differences (minimum and maximum are antipodal).

867
868

Extended Data Figure 7: T4d neuron analysis, related to Fig. 4

870 **A.** T4d PDs mapped to eye coordinates. **B.** Interpolated T4d PD field (arrows are re-scaled to 50% of length in A).
 871 **C.** The T4d PD field from **B** replotted using Mercator projection. **D.** Visual angles subtended by T4d PD vectors
 872 (i.e., angular size). Scatter plots show the reconstructed T4d PDs (black dots, also in (A)) and interpolated ones (blue
 873 dots, also in (B)) along the equator (+/-15° horizontal shaded band) and the central meridian (+/-15° vertical shaded
 874 crescent). **E.** Angular differences between T4d PD field, -v axis, three cardinal self-motion optic flow fields (lift,
 875 leftward roll, and upward pitch), and optimized self-motion flow fields. The horizontal bars represent 25%, 50% and
 876 75% quantiles. **F.** Spatial distribution of angular differences between T4b PD field and the three cardinal self-motion
 877 optic flow fields.

878
879

880 **Supplementary Information**

881

882 **Supplementary Video 1: Summary of eyemap, enabling the projection of the compound eye's visal space into**
883 the neural circuits of the optic lobe

884 Whole-head μ CT scan with overlaid EM reconstructed neurons, showing the columnar structure of the compound
885 eye and optic lobe. Ommatidia directions were determined by the lens-photoreceptor tip pairs. Medulla columns
886 were defined as the Mi1 cells' arbor in layer M10. Finally, we established an eyemap: a 1-to-1 mapping between
887 ommatidia directions and medulla columns.

888

889 **Supplementary Video 2: Illustration of how the dendritic orientation of T4 neurons facilitates motion**
890 detection in different directions

891 There are 4 subtypes of T4 cells, innervating 4 distinct layers in lobula plate. A T4 cell's preferred direction (PD) is
892 computed based on its dendritic arborization pattern. PDs can be mapped to eye coordinates using the eyemap
893 defined in Supplementary Video 1. In the central region of the eye, the four T4 subtypes are well aligned with
894 directions of motion in the 4 cardinal directions (forward, backward, up, and down).

895

896 **Supplementary Data files 1-4: galleries of T4 neurons with PDs**

897 All T4 neurons reconstructed in the FAFB data set: 38 T4a, 176 T4b, 22 T4c, 114 T4d, are plotted in a similar
898 fashion as in Fig. 2G. Using the eyemap established in Fig. 4A, we include the position (elevation and azimuth
899 angles) in the eye coordinate. The angle between T4's PD and the local meridian line is computed, instead of using
900 the +v-axis as the reference as in Fig. 2G. The meridian line is defined as the direction line going from south pole to
901 north pole in the eye reference frame (often close to the +v-axis). The cell and surrounding columns are also aligned
902 such that the vertical direction in the plot coincide with the meridian direction. A summary of the Strahler number
903 (SN) analysis for each cell is included.

904

905

906 **References**

907

908 1. Gibson, J. J. *The perception of the visual world*. (Houghton Mifflin, 1950).

909 2. Maisak, M. S. *et al.* A directional tuning map of *Drosophila* elementary motion detectors. *Nature* **500**, 212–216
910 (2013).

911 3. Sabbah, S. *et al.* A retinal code for motion along the gravitational and body axes. *Nat. 2017* **546**, 492–
912 497 (2017).

913 4. Takemura, S. Y. *et al.* A visual motion detection circuit suggested by *Drosophila* connectomics. *Nature* (2013)
914 doi:10.1038/nature12450.

915 5. Shinomiya, K. *et al.* Comparisons between the ON- and OFF-edge motion pathways in the *Drosophila* brain.
916 *eLife* (2019) doi:10.7554/eLife.40025.

917 6. Zheng, Z. *et al.* A Complete Electron Microscopy Volume of the Brain of Adult *Drosophila melanogaster*. *Cell*
918 **174**, 730–743.e22 (2018).

919 7. Ullman, S. & Brenner, S. The interpretation of structure from motion. *Proc. R. Soc. Lond. B Biol. Sci.* **203**, 405–
920 426 (1979).

921 8. Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R. & Lindemann, J. P. Spatial vision in insects is facilitated by
922 shaping the dynamics of visual input through behavioral action. *Front. Neural Circuits* **6**, 108 (2012).

923 9. Krapp, H. G. Neuronal Matched Filters for Optic Flow Processing in Flying Insects. in *International Review of*
924 *Neurobiology* (ed. Lappe, M.) vol. 44 93–120 (Academic Press, 2000).

925 10. Land, M. F. & Nilsson, D.-E. *Animal Eyes*. (OUP Oxford, 2012).

926 11. Agi, E. *et al.* The Evolution and Development of Neural Superposition. *J. Neurogenet.* **28**, 216–232 (2014).

927 12. Mauss, A. S., Vlasits, A., Borst, A. & Feller, M. VISUAL CIRCUITS FOR DIRECTION SELECTIVITY. *Annu.*
928 *Rev. Neurosci.* **40**, 211–230 (2017).

929 13. Fischbach, K.-F. & Dittrich, A. P. M. The optic lobe of *Drosophila melanogaster*. I. A Golgi analysis of wild-
930 type structure. *Cell Tissue Res.* **258**, (1989).

931 14. Gruntman, E., Romani, S. & Reiser, M. B. Simple integration of fast excitation and offset, delayed inhibition
932 computes directional selectivity in *Drosophila*. *Nat. Neurosci.* **21**, (2018).

933 15. Strother, J. A. *et al.* The Emergence of Directional Selectivity in the Visual Motion Pathway of *Drosophila*.
934 *Neuron* **94**, 168–182.e10 (2017).

935 16. Gruntman, E., Romani, S. & Reiser, M. B. The computation of directional selectivity in the *Drosophila* OFF
936 motion pathway. *eLife* **8**, e50706 (2019).

937 17. Haag, J., Mishra, A. & Borst, A. A common directional tuning mechanism of *Drosophila* motion-sensing neurons
938 in the ON and in the OFF pathway. *eLife* (2017) doi:10.7554/elife.29044.

939 18. Fisher, Y. E., Silies, M. & Clandinin, T. R. Orientation Selectivity Sharpens Motion Detection in *Drosophila*.
940 *Neuron* **88**, 390–402 (2015).

941 19. Shinomiya, K., Nern, A., Meinertzhagen, I. A., Plaza, S. M. & Reiser, M. B. Neuronal circuits integrating visual
942 motion information in *Drosophila melanogaster*. *Curr. Biol.* (2022) doi:10.1016/j.cub.2022.06.061.

943 20. Krapp, H. G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual
944 interneurons. *Nature* **384**, 463–466 (1996).

945 21. Wei, H., Kyung, H. Y., Kim, P. J. & Desplan, C. The diversity of lobula plate tangential cells (LPTCs) in the
946 *Drosophila* motion vision system. *J. Comp. Physiol. A* **206**, 139–148 (2020).

947 22. Hausen, K. The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour. in
948 *Photoreception and Vision in Invertebrates* 523–559 (Springer US, 1984). doi:10.1007/978-1-4613-2743-1_15.

949 23. Farrow, K., Haag, J. & Borst, A. Nonlinear, binocular interactions underlying flow field selectivity of a motion-
950 sensitive neuron. *Nat. Neurosci.* **9**, 1312–1320 (2006).

951 24. Henning, M., Ramos-Traslosheros, G., Gür, B. & Silies, M. Populations of local direction-selective cells encode
952 global motion patterns generated by self-motion. *Sci. Adv.* **8**, eabi7112 (2022).

953 25. Strahler, A. N. Quantitative analysis of watershed geomorphology. *Eos Trans. Am. Geophys. Union* **38**, 913–920
954 (1957).

955 26. Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P. & Zipursky, S. L. Transcriptional Programs of
956 Circuit Assembly in the *Drosophila* Visual System. *Neuron* **108**, 1045–1057.e6 (2020).

957 27. Ready, D. F., Hanson, T. E. & Benzer, S. Development of the *Drosophila* retina, a neurocrystalline lattice. *Dev.*
958 *Biol.* **53**, 217–240 (1976).

959 28. Buchner, E. Dunkelanregung des stationären Flugs der Fruchtfliege *Drosophila*. (University of Tuebingen,
960 1971).

961 29. Baumgärtner, H. Der Formensinn und die Sehschärfe der Bienen. *Z. Für Vgl. Physiol.* **7**, 56–143 (1928).

962 30. Land, M. F. Compound eye structure: Matching eye to environment. in *Adaptive Mechanisms in the Ecology of*
963 *Vision* (eds. Archer, S. N., Djamgoz, M. B. A., Loew, E. R., Partridge, J. C. & Vallerga, S.) 51–71 (Springer
964 Netherlands, 1999). doi:10.1007/978-94-017-0619-3_3.

965 31. Stone, T. *et al.* An Anatomically Constrained Model for Path Integration in the Bee Brain. *Curr. Biol.* **27**, 3069–
966 3085.e11 (2017).

967 32. Lyu, C., Abbott, L. F. & Maimon, G. Building an allocentric travelling direction signal via vector computation.
968 *Nature* **601**, 92–97 (2022).

969 33. Gonzalez-Suarez, A. D. *et al.* Excitatory and inhibitory neural dynamics jointly tune motion detection. *Curr.*
970 *Biol.* **32**, 3659–3675.e8 (2022).

971 34. Buchner, E. Elementary movement detectors in an insect visual system. *Biol. Cybern.* **1976** **24**, 85–101
972 (1976).

973 35. Götz, K. G. & Buchner, E. Evidence for one-way movement detection in the visual system of *Drosophila*. *Biol.*
974 *Cybern.* **31**, 243–248 (1978).

975 36. Egelhaaf, M. *et al.* Neural encoding of behaviourally relevant visual-motion information in the fly. *Trends*
976 *Neurosci.* **25**, 96–102 (2002).

977 37. Petrowitz, R., Dahmen, H., Egelhaaf, M. & Krapp, H. G. Arrangement of optical axes and spatial resolution in
978 the compound eye of the female blowfly *Calliphora*. *J. Comp. Physiol. A* **186**, 737–746 (2000).

979 38. Klapoetke, N. C. *et al.* Ultra-selective looming detection from radial motion opponency. *Nature* **551**, (2017).

980 39. Karmeier, K., van Hateren, J. H., Kern, R. & Egelhaaf, M. Encoding of Naturalistic Optic Flow by a Population
981 of Blowfly Motion-Sensitive Neurons. *J. Neurophysiol.* **96**, 1602–1614 (2006).

982 40. Huston, S. J. & Krapp, H. G. Visuomotor transformation in the fly gaze stabilization system. *PLoS Biol.* (2008)
983 doi:10.1371/journal.pbio.0060173.

984 41. Hörmann, N. *et al.* A combinatorial code of transcription factors specifies subtypes of visual motion-sensing
985 neurons in *Drosophila*. *Development* **147**, dev186296 (2020).

986 42. Kurmangaliyev, Y. Z., Yoo, J., LoCascio, S. A. & Zipursky, S. L. Modular transcriptional programs separately
987 define axon and dendrite connectivity. *eLife* **8**, e50822 (2019).

988 43. Davis, F. P. *et al.* A genetic, genomic, and computational resource for exploring neural circuit function. *eLife*
989 (2020) doi:10.7554/elife.50901.

990 44. Buschbeck, E. K. & Strausfeld, N. J. Visual Motion-Detection Circuits in Flies: Small-Field Retinotopic
991 Elements Responding to Motion Are Evolutionarily Conserved across Taxa. *J. Neurosci.* **16**, 4563–4578 (1996).

992 45. Strausfeld, N. J. & Olea-Rowe, B. Convergent evolution of optic lobe neuropil in Pancrustacea. *Arthropod*
993 *Struct. Dev.* **61**, 101040 (2021).

994 46. Wehner, R. ‘Matched filters’ — neural models of the external world. *J. Comp. Physiol. A* **161**, 511–531 (1987).

995 47. Saalfeld, S., Cardona, A., Hartenstein, V. & Tomančák, P. CATMAID: Collaborative annotation toolkit for
996 massive amounts of image data. *Bioinformatics* (2009) doi:10.1093/bioinformatics/btp266.

997 48. Schneider-Mizell, C. M. *et al.* Quantitative neuroanatomy for connectomics in *Drosophila*. *eLife* **5**, e12059
998 (2016).

999 49. Li, P. H. *et al.* Automated Reconstruction of a Serial-Section EM *Drosophila* Brain with Flood-Filling Networks
1000 and Local Realignment. 605634 Preprint at <https://doi.org/10.1101/605634> (2020).

1001 50. Dorkenwald, S. *et al.* FlyWire: online community for whole-brain connectomics. *Nat. Methods* **19**, 119–128
1002 (2022).

1003 51. Kind, E. *et al.* Synaptic targets of photoreceptors specialized to detect color and skylight polarization in
1004 *Drosophila*. *eLife* **10**, e71858 (2021).

1005 52. Dionne, H., Hibbard, K. L., Cavallaro, A., Kao, J. C. & Rubin, G. M. Genetic reagents for making split-GAL4
1006 lines in *Drosophila*. *Genetics* (2018) doi:10.1534/genetics.118.300682.

1007 53. Wu, M. *et al.* Visual projection neurons in the *Drosophila* lobula link feature detection to distinct behavioral
1008 programs. *eLife* **5**, (2016).

1009 54. Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse
1010 stereotyped cell arrangements in the fly visual system. *Proc. Natl. Acad. Sci.* **112**, E2967–E2976 (2015).

1011 55. Ott, S. R. Confocal microscopy in large insect brains: Zinc–formaldehyde fixation improves synapsin
1012 immunostaining and preservation of morphology in whole-mounts. *J. Neurosci. Methods* **172**, 220–230 (2008).

1013 56. Baird, E. & Taylor, G. X-ray micro computed-tomography. *Curr. Biol.* **27**, R289–R291 (2017).

1014 57. Charlton-Perkins, M. & Cook, T. A. Building a Fly Eye. in *Current Topics in Developmental Biology* vol. 93
1015 129–173 (Elsevier, 2010).

1016 58. Sombke, A., Lipke, E., Michalik, P., Uhl, G. & Harzsch, S. Potential and limitations of X-Ray micro-computed
1017 tomography in arthropod neuroanatomy: A methodological and comparative survey. *J. Comp. Neurol.* **523**,
1018 1281–1295 (2015).

1019 59. Pfeiffer, B. D., Truman, J. W. & Rubin, G. M. Using translational enhancers to increase transgene expression in
1020 *Drosophila*. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 6626–6631 (2012).

1021 60. Demerec, M. *Biology of Drosophila*. (Hafner Press, 1950).

1022 61. von Reyn, C. R. *et al.* Feature Integration Drives Probabilistic Behavior in the *Drosophila* Escape Response.
1023 *Neuron* **94**, 1190–1204.e6 (2017).

1024 62. Wilson, R. I. & Laurent, G. Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in
1025 the *Drosophila* Antennal Lobe. *J. Neurosci.* **25**, 9069–9079 (2005).

1026 63. Edelstein, A. D. *et al.* Advanced methods of microscope control using μManager software. *J. Biol. Methods* **1**,
1027 e10 (2014).

1028 64. Isaacson, M. *et al.* A high-speed, modular display system for diverse neuroscience applications.
1029 2022.08.02.502550 Preprint at <https://doi.org/10.1101/2022.08.02.502550> (2022).

1030 65. Kim, A. J., Fenk, L. M., Lyu, C. & Maimon, G. Quantitative Predictions Orchestrate Visual Signaling in
1031 *Drosophila*. *Cell* (2017) doi:10.1016/j.cell.2016.12.005.

1032 66. Horridge, G. A. & Meinertzhagen, I. A. The accuracy of the patterns of connexions of the first- and second-order
1033 neurons of the visual system of *Calliphora*. *Proc. R. Soc. Lond. B Biol. Sci.* **175**, 69–82 (1970).

1034 67. Hayfield, T. & Racine, J. S. Nonparametric Econometrics: The np Package. *J. Stat. Softw.* **27**, 1–32 (2008).

1035 68. Lin, H. V., Rogulja, A. & Cadigan, K. M. Wingless eliminates ommatidia from the edge of the developing eye
1036 through activation of apoptosis. *Development* **131**, 2409–2418 (2004).

1037 69. Koenderink, J. J. & van Doorn, A. J. Facts on optic flow. *Biol. Cybern. 1987 56* **56**, 247–254 (1987).

1038 70. Dickson, W. B., Straw, A. D. & Dickinson, M. H. Integrative Model of *Drosophila* Flight. *AIAA J.* **46**, 2150–
1039 2164 (2008).

1040