
IEEE TRANSACTIONS ON NETWORKING 1

Queueing Network Topology Inference Using

Passive and Active Measurements
Akash Kumar , Student Member, IEEE, Yudi Huang , and Ting He , Senior Member, IEEE

Abstract—We revisit a classic problem of inferring the routing
tree for a given source in a packet-switched network from
end-to-end measurements, with two critical differences from
existing solutions: (i) instead of exclusively relying on active
measurements obtained by probing, we strive to maximally utilize
passive measurements obtained from data packets; (ii) instead of
inferring a logical topology that omits degree-2 nodes, we want
to recover the physical topology containing all the nodes. Our
main idea is to utilize the detailed queueing dynamics inside the
network to estimate a certain parameter (residual capacity) of
each queue, and then use the estimated parameters as fingerprints
to detect the queues shared across paths and thus infer the
topology. To this end, we develop a Laplace-transform-based
estimator to estimate the parameters of a tandem of queues
from end-to-end delays, and efficient algorithms to infer the
topology by identifying the parameters associated with the same
queue. To improve the accuracy, we further develop a hybrid
algorithm that uses the information from active measurements to
identify (generalized) siblings and the information from passive
measurements to detect shared queues on the paths from the
source to each pair of identified siblings. Our inferred topology
is guaranteed to converge to the ground-truth topology as the
number of measurements increases, up to a permutation of the
queues traversed by the same set of paths. Our evaluations
in both queueing-theoretic and packet-level simulations show
that the proposed solutions, particularly the hybrid algorithm,
significantly improve the accuracy over the state of the art.

Index Terms—Network topology inference, passive and active
measurement, queueing network, neighbor joining.

I. INTRODUCTION

UNDERSTANDING the internal structure of a network,
i.e., the network topology, is critical for a variety of

tasks such as routing, content distribution, service placement,
load balancing, and overlay construction. While topology
information is typically available to the network administrator
(who can obtain such information through local monitoring
agents), obtaining this information for multi-domain networks
such as the Internet is much more challenging. In these cases,
it is desirable to have alternative methods that are imple-
mentable by hosts. These methods can be broadly classified
into the protocol-based approach and the measurement-based
approach. The former approach utilizes specific control-
plane protocols such as Internet Control Message Protocol

Received 15 August 2024; revised 28 February 2025 and 4 June 2025;
accepted 17 June 2025; approved by IEEE TRANSACTIONS ON NETWORK-
ING Editor S. Magnusson. This work was supported by the National Science
Foundation under Award CNS-2106294. Part of this work was presented
at IFIP Networking [DOI: 10.23919/IFIPNetworking52078.2021.9472774].
(Corresponding author: Ting He.)

Akash Kumar and Ting He are with the Department of Computer Sci-
ence and Engineering, The Pennsylvania State University, University Park,
PA 16802 USA (e-mail: ajk6173@psu.edu; tinghe@psu.edu).

Yudi Huang was with The Pennsylvania State University, University Park,
PA 16802 USA. He is now with Nvidia, Santa Clara, PA 95050 USA (e-mail:
hyd1123camel@gmail.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TON.2025.3582205, provided by the authors.

Digital Object Identifier 10.1109/TON.2025.3582205

(ICMP) to discover internal nodes (e.g., routers) by triggering
responses from them through specially-designed probes (such
as traceroute), but its success hinges on the cooperation of
internal nodes. The latter approach, which is a branch of net-
work tomography [2], tries to infer the network topology from
end-to-end measurements, which complements the protocol-
based approach when internal cooperation is unavailable (e.g.,
in a network of anonymous routers [3], [4]).

Since the introduction in the late 1990s [5], a number
of measurement-based topology inference algorithms have
been developed, which used multicast measurements [6], [7],
[8], their unicast-based approximations [9], [10], or network
coding [11] to infer the routing tree rooted at each probing
source, and then merged the trees for multiple sources to form
a more comprehensive topology [12], [13]. The foundation of
these works is a probing scheme that generates specifically
correlated measurements across paths, so that the correlation
(caused by shared links) can be used to estimate the “lengths”
of the shared portions of these paths. These shared path
lengths can then be used to reveal the branching/joining
points between different paths and thus the network (routing)
topology.

Despite the extensive studies, existing topology inference
algorithms have the critical limitations that (i) they rely
on active probes to generate the specifically correlated
measurements required by each algorithm, which increases
the network load, and (ii) they can only infer a logical topology
that ignores the degree-2 nodes between branching/joining
points. In this work, we address these limitations in the
context of single-source topology inference, by developing
topology inference algorithms that are designed to utilize
passive measurements with arbitrary (or no) correlation across
paths, and recover the physical (network-layer) topology with
degree-2 nodes. This is achieved by a fundamentally different
approach that utilizes the detailed queueing dynamics inside
the network to fingerprint each link (modeled as a queue)
and then uses these fingerprints to identify the links shared
between paths. As algorithms for multi-source topology
inference usually require inferred single-source topologies
as input [12], [13], our solution also lays the foundation for
improving multi-source topology inference.

A. Related Work

Network topology inference: Our work belongs to a
branch of network tomography aiming at inferring routing
topologies from end-to-end measurements [2]. The technique
originated from the observation that correlated losses observed
at multicast receivers can be used to infer the multicast tree
[5], and was then extended to utilize a variety of multicast
measurements, including losses [6], [14], delays [7], [14] and a
combination of both [8]. As multicast is not widely supported,
solutions based on unicast were proposed [9], [10], [15]. These
solutions, however, were based on specially-designed probing
schemes such as stripes of back-to-back unicast packets [9],

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON NETWORKING

[15] or “sandwiches” of small and large packets [10], both
inducing correlated measurements at different receivers that
can reveal performance metrics on the shared portions of end-
to-end paths. While the above works aimed at inferring a tree
topology rooted at a single source, later works (e.g., [12],
[13] and references therein) addressed more general topologies
by merging trees rooted at multiple sources. However, these
works are still based on multicast or its approximations,
which requires active probing. Another line of works relies
on network coding (e.g., [11]). These solutions require the
internal nodes to perform network coding, thus not applicable
in current packet-switched networks.

In contrast, we propose a fundamentally different approach
of fingerprinting the queues at internal nodes based on (possi-
bly) uncorrelated end-to-end performance measurements, thus
able to leverage passive measurements from data packets.

Queueing parameter inference: Our approach is based
on the inference of queueing parameters from end-to-end
measurements. To this end, a variety of parameters have
been tackled in the context of communication networks. For
example, it was shown in [16] that the difference between the
delays measured when the buffer is full/empty can be used to
estimate the buffer size at the bottleneck link. In [17], packet
arrival times and flow identifiers were used to detect bottleneck
links shared between flows and estimate their bandwidths.
In [18], periodic probes were used to detect the “dominant
congested link” on a path and estimate the maximum queueing
delay at this link. These works only focused on the bottleneck
links, and while useful for performance diagnosis, did not
provide sufficient information for topology inference.

In the context of generic queueing systems, the inference
of queueing parameters has been posed as inverse problems,
with several inversion techniques developed to infer input
and service time characteristics from delay/loss measurements
for a single queue [19]. However, when the system becomes
more complex (e.g., a tandem of queues), inversion techniques
became unstable [19], and solutions fell back to standard algo-
rithms based on maximum likelihood estimation [19], [20].
We refer to [21] for a more comprehensive bibliography in
this space. To our knowledge, all the existing works assumed
the queueing network topology to be known.

B. Summary of Contributions

We aim at inferring the topology of a queueing network
modeling the connections from a given source to a given set
of destinations from the measurements of end-to-end delays.
Our contributions are:

1) We propose a novel approach for topology inference
that can utilize passive measurements and recover the
physical queueing network topology by exploiting the
detailed queueing dynamics inside the network.

2) We develop a Laplace-transform-based estimator that
can estimate certain parameters (the residual capacities)
of a tandem of queues from end-to-end delays, which
outperforms the maximum likelihood estimator (MLE)
at finite sample sizes and is asymptotically consistent.

3) Using the estimated parameters as queue fingerprints, we
develop computationally efficient algorithms to identify
the queues shared by different paths, and then construct
a tree topology accordingly. The constructed topology is
guaranteed to be identical to the ground-truth topology
up to a permutation of the queues traversed by the same

Fig. 1. Queueing network model.

set of paths, if the parameter estimation is sufficiently
accurate.

4) To improve the accuracy for larger networks where
many queues may have similar parameters, we develop a
hybrid algorithm that uses both information from passive
measurements and information from active measure-
ments to infer the topology, which can correctly infer
the ground-truth topology (up to a permutation of the
queues traversed by the same set of paths) in some cases
where the algorithms using only one type of information
cannot.

5) Our evaluations based on real Internet topology show
that: (i) the proposed estimator outperforms existing
estimators in efficiency and accuracy, (ii) the proposed
algorithm based on only passive measurements signifi-
cantly outperforms the state-of-the-art algorithm based
on active probing due to its ability of inferring degree-2
nodes, and (iii) the proposed algorithm that uses both
passive and active measurements further improves the
accuracy.

Roadmap. Section II formulates our problem, Section III
addresses parameter estimation for a tandem of queues,
Section IV addresses topology inference based on only the
estimated parameters, Section V presents a way to jointly
utilize the estimated parameters and information from active
measurements, Section VI evaluates the proposed algorithms
against benchmarks, and Section VII concludes the paper.
Proofs and additional evaluations are provided in the
appendix in Supplementary Material.

II. PROBLEM FORMULATION

A. Network Model

Given the routing tree T ′ connecting a given source s′ to a
given set of destinations {d′1, . . . , d

′
N}, we model this topology

by a queueing network as shown in Fig. 1, where each queue
ql models the outgoing interface at the beginning of a link
l ∈ T ′. This model is motivated by the fact that queueing
in packet-switched networks typically occurs at the outgoing
interfaces [22]. It is easy to see that the resulting queueing
network also has the topology of a rooted tree, denoted by
T , where each vertex represents a queue that corresponds to
a link in the original routing topology. One can easily obtain
the original topology from T . Let di ∈ T (i ∈ [N])1 denote
the leaf modeling the access link for destination d′i, and pi
denote the path from the root of T to di.

We model each ql as an M/M/1 queue, whose sojourn time
Yl models the delay imposed by link l on a packet traversing
l. Specifically, let λl denote the unknown load on link l and

1Given a positive integer N, [N] denotes {1, . . . , N}.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: QUEUEING NETWORK TOPOLOGY INFERENCE USING PASSIVE AND ACTIVE MEASUREMENTS 3

µl denote the unknown capacity of this link, both measured
in packets per unit time. We assume that µl > λl, which
guarantees queue stability. Then it is well-known [23] that
the sojourn time Yl of ql in the steady state is exponentially
distributed with a parameter δl := µl − λl that represents the
residual capacity, i.e., the PDF of Yl at tl > 0 is δle

−δltl .
Moreover, we assume that the sojourn times of a given packet
at different queues are independent of each other, and hence
the end-to-end delay on path pi follows the hypoexponential
distribution with parameters (δl)l∈pi

, where “l ∈ pi” means
for each queue ql on path pi.

Remark 1: Our assumptions are automatically satisfied if
T is a Jackson network with M/M/1 queues, which is
a commonly-used model in queueing theory. We refer to
[19].2] for a detailed discussion on the realism of this model.
We note that we do not assume the same packet to have
independent service times at different queues (these times
will be correlated); what we assume is that different queues
receive independent cross-traffic, and thus a measurement
packet will incur independent waiting times and hence largely
independent sojourn times at different queues (assuming the
sojourn times to be dominated by the waiting times). While
M/M/1 is a simplification of the actual queueing behavior at
each link, prior studies have shown that this model allows one
to approximately estimate the actual residual capacity [24].
Note that this queueing network model is only used for its
tractability, and we will evaluate the solutions derived from
this model in more realistic scenarios (see Section VI).

B. Observation Model

As typical in network topology inference, we assume the
measurements to be collected through the cooperation between
the source and the destinations. However, in contrast to the
previous works that only rely on active measurements from
controlled probing, we utilize both active and passive measure-
ments. Specifically, we assume that by passively monitoring
the transmission of data packets, we can obtain a sequence

of end-to-end delays on each path pj , denoted by x
(0)
j :=

(x
(0)
j,h)

n
(0)
j

h=1, where n
(0)
j is the number of passive measurements

on pj and x
(0)
j,h is the h-th passive measurement on path pj .

In addition, the source may also collect active measurements.
We adopt the probing scheme in [9], where the source sends
pairs of back-to-back probes to each pair of destinations to

mimic multicast to these destinations. Let x
(i)
j := (x

(i)
j,h)

nij

h=1

(i ∈ [N] \ {j}) denote the sequence of end-to-end delays
on path pj measured by (mimicked) multicast on pj and pi,
where nij is the number of multicast probes on pj and pi. As
common in the literature, we assume the measurements to be
temporally i.i.d. The assumption of temporal independence can
be ensured by having sufficient spacing between consecutive
measurements (i.e., between probe pairs or monitored data
packets) as in [10]. The assumption of identical distribution
can be approximated by performing measurements within
a small time window and/or during off-peak hours so that
there is minimal fluctuation in background traffic. In our
experiments, we find that topology inference can converge on
as few as 50 seconds of measurements. As in [9], we assume
that probes in the same pair incur the same delay at shared
links (if any). We do not make any assumption about the cross-
path correlation of the delays from passive measurements (i.e.,
they may be arbitrarily correlated or uncorrelated). Note that

Fig. 2. Motivating example: (a) true topology, (b) estimated queue parameters
for each path, (c) topology inferred from the estimated parameters.

this observation model is only used for deriving our solutions,
and we will evaluate their actual performance in more realistic
scenarios in Section VI.

C. Objective

Given the passive measurements from each path (x
(0)
j)j∈[N]

and (optionally) the active measurements from each pair of

paths
(
(x

(i)
j ,x

(j)
i)

)
i,j∈[N]

, we want to infer the queueing

network topology T to the maximum accuracy.

D. Motivating Example

It is well-known that through carefully-designed probing
schemes such as mimicked multicast [9], we can detect the
existence of links shared between paths and thus infer the
topology. However, we will illustrate by a simple example
that the topology may still be inferrable even if probing is not
allowed. As illustrated in Fig. 2a, T models the connection
from a source to three destinations via paths p1, p2, and
p3. Under the network model in Section II-A, the end-to-
end delay on pj (j = 1, . . . , 3) follows a hypoexponential
distribution with the parameters listed in Fig. 2b, which can be
accurately estimated after collecting sufficiently many passive
measurements as shown later (in Section III). Under the
assumption that different queues have different parameters, we
can infer that there is a queue shared by all three paths with
parameter δ1 and another queue shared by paths p2 and p3
with parameter δ3. Due to the tree structure, we can then infer
the topology as in Fig. 2c, where the only uncertainty is in the
order of the queues with parameters δ2 and δ4 on p1. Since
this order does not affect the end-to-end delay distribution on
any path, Fig. 2c is the most accurate estimate of T that can
be obtained from end-to-end measurements.

Following the idea in this example, we will develop our
solution in two steps: (1) estimating the δ-parameters (i.e.,
residual capacities) for a tandem of queues from the end-
to-end delays, and then (2) inferring the queueing network
topology by identifying the queues shared between paths from
the estimated δ-parameters.

III. PARAMETER ESTIMATION FOR TANDEM QUEUES

We start by studying how to estimate the parameters δj :=

(δj,k)
Kj

k=1 for a tandem of queues on a given path pj based

on the delay measurements xj := (xj,h)
nj

h=1 from pj , where
Kj is the number of queues on pj (i.e., the hop count in the
routing topology), and nj is the number of measurements.2 For

2These can include passive measurements alone (i.e., nj = n
(0)
j) or both

passive and active measurements on pj (i.e., nj = n
(0)
j +

∑
i∈[N]\{j} nij).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NETWORKING

simplicity, we will omit the path index and simply denote the
delay measurements on the considered path by x := (xh)

n
h=1

and the queue parameters by δ := (δk)
K
k=1, where K is the

number of queues on the path, and n is the number of delay
measurements. We assume that the hop count of each source-
to-destination path is known, as even if all the routers are
anonymous, we can still measure the hop count by tools like
traceroute (i.e., the minimum TTL for a packet to reach
the destination).3 As the order of queues does not affect the
end-to-end delay distribution and hence cannot be identified
by the delay measurements from a single path, we assume
δ1 ≤ · · · ≤ δK when comparing the estimated and the true
parameters.

A. Maximum Likelihood Estimation (MLE)

The existing approach as proposed in [19] is to apply MLE.
MLE is considered the state-of-the-art estimator for phase-
type distributions [25], which includes the hypoexponential
distribution as a special case. Specifically, assuming that δi 6=
δj for any i 6= j, we can express the PDF of the end-to-end
delay as:

g(x; δ) =

K∑

i=1

δie
−xδi




K∏

j=1,j 6=i

δj
δj − δi


 , (1)

and the MLE aims at finding the value of δ that maximizes
the log-likelihood

∑n
h=1 log g(xh; δ). If solved exactly, the

MLE has a desirable property that it is asymptotically efficient

under regularity conditions,4 i.e., as the number of measure-
ments increases, it converges to the true parameter at a rate
approximating the Cramér-Rao bound [26].

However, the log-likelihood function is non-concave,
making it challenging to compute the MLE. To address
this challenge, various algorithms have been proposed to
compute approximations [25]. In particular, the Expectation-
Maximization (EM) algorithm is guaranteed to converge to a
local maximum and was adopted to solve this problem in [19].
However, we find EM to be extremely slow in our case due to
the calculation of numerical integration, which combined with
its known slow convergence [20] makes it impractical for our
problem.

B. Estimation Based on Laplace Transform

Motivated by the need to improve the estimation speed and
accuracy, we exploit estimators based on the Laplace trans-
form. Defined as IE[e−sX] for a random variable X, the Laplace
transform uniquely determines the distribution of X (except
on a set of Lebesgue measure zero), and can be numerically
inverted to compute the CDF/PDF of the distribution [27].
While the transform has been used to estimate PDF/CDF from
data [28], [29], to our knowledge, we are the first to apply it
to parameter estimation.

The Laplace transform is promising for our problem due to
its property that if X is a summation of independent random

variables X1, . . . , XK , then IE[e−sX] =
∏K

i=1 IE[e
−sXi], thus

providing a simple target function for fitting. Specifically, since

3Using traceroute to obtain the hop count implies that the inferred
topology is at the network layer. However, our solution applies to any queueing
network satisfying the model in Section II-A for which the number of queues
on each measurement path is known.

4The conditions are: (i) the log-likelihood function is twice differentiable,
and (ii) the Fisher Information Matrix is non-zero, both satisfied in our case.

Fig. 3. A queue q on the paths to destinations {di}i∈A and a queue q′ on
the paths to destinations {di}i∈A′ cannot coexist in a tree if A ∩ A′ 6= ∅,

A�⊆A′, and A′
�⊆A.

Fig. 4. Overall solution: topology inference using passive measurements.

Fig. 5. Example: (b) has edit distance 1 to (a); (c) has edit distance 3 to (a).

the Laplace transform of an exponential random variable with
parameter δi is δi/(δi + s) (s > −δi), the Laplace transform
of the end-to-end delay is

L(s; δ) :=

K∏

i=1

δi
δi + s

, s > − min
i=1,...,K

δi. (2)

Our idea is to estimate the Laplace transform at a prede-
termined set of values for s, and find the parameter δ that
achieves the best fit.

Estimator: By definition, the empirical Laplace transform

L̂(s; x) :=
1

n

n∑

h=1

e−sxh (3)

gives an unbiased estimate of L(s; δ). Given the empirical
Laplace transform, we propose to estimate δ by fitting the
empirical Laplace transform at a given set of points in S (a
design parameter):

min
∑

s∈S

|L(s; δ)− L̂(s; x)| (4a)

s.t. 0 < δ1 ≤ · · · ≤ δK . (4b)

The above uses absolute error, but other error measures such
as squared error can also be used with similar accuracy.

We note that there are other ways to use the Laplace
transform for estimating δ. For example, [28] proposed to
rewrite the Laplace transform (2) as

L(s; δ) =
a0

a0 + a1s+ · · · aK−1sK−1 + sK
, (5)

where the coefficients are related to δ as

aj :=
∑

A⊆{1,...,K},|A|=j

∏

i∈{1,...,K}\A

δi, j = 0, . . . ,K − 1. (6)

Then they estimated the coefficients a0, . . . , aK−1 from the
empirical moments or the empirical Laplace transform, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: QUEUEING NETWORK TOPOLOGY INFERENCE USING PASSIVE AND ACTIVE MEASUREMENTS 5

Fig. 6. Evaluation of design choices (y-axis trimmed for better visibility).

Fig. 7. Parameter estimation: vary #measurements (#queues =4).

Fig. 8. Parameter estimation: vary #queues (#measurements = 10, 000).

Fig. 9. Topology inference: vary sample size (N = 20, K = 4, #active
measurements = #passive measurements).

solved the system of equations (6) for δ. However, we find
that the proposed estimator achieves much better accuracy (see
Fig. 7- 8 and Fig. 18- 19 in the Supplementary Material).

Performance analysis: The proposed estimator is consistent
under sufficiently large |S| (see proof in Appendix A.1 in the
Supplementary Material).

Theorem 1: As n → ∞, (4) has a unique optimal solution
that equals the ground truth if |S| > K.

Besides the condition in Theorem 1, the values in S also
affect the accuracy of the proposed estimator at finite samples
sizes. Intuitively, S should contain a diverse range of values to
provide a good description of the Laplace transform. It has
been suggested in [28] that these values should be evenly
distributed. We also find the range and the density of the points
in S to matter (see Fig. 6a).

Algorithm: Although one can directly apply a generic opti-
mization method to solve (4), we find the accuracy to be

Fig. 10. Topology inference: vary tree size (#active/passive
measurements = 1, 000).

Algorithm 1 Laplace-Based Tandem Queue Inference

sensitive to initialization. Therefore, we propose a two-step
estimation algorithm as shown in Algorithm 1. Lines 1– 1 are

used to find a good initial value δ(0) by iteratively optimizing
one δi at a time, while fixing the other δj for j 6= i. Then
line 1 further optimizes the estimate by a joint optimization

starting from δ(0). We find that optimization based on such
an initialization method outperforms optimization from an
arbitrary initial value (see Fig. 6b).

IV. TOPOLOGY INFERENCE USING PASSIVE

MEASUREMENTS

Given the inferred δ-parameters for each source-to-
destination path in {pi}i∈[N], we are ready to infer the
queueing network topology T . The key observation is that
if each queue has a distinct δ-parameter (which is likely due
to the unique mix of cross-traffic on each link), then we can
use this parameter as a “fingerprint” of the queue to detect the
queues shared by different paths and hence infer the topology.

Specifically, given the inferred parameters δi := (δi,k)
Ki

k=1 for
path pi (i ∈ [N]) where δi,k is the k-th smallest parameter on
pi, we can view pi as a tandem of Ki queues, referred to as

input queues and denoted by qi := (qi,k)
Ki

k=1, where qi,k is the
input queue with the k-th smallest parameter on pi. Topology
inference aims at merging these tandems of input queues at
the shared queues into a tree-shaped network. We will solve
this problem in two steps: (1) inferring which input queues
represent the same queue in the underlying network, and (2)
inferring the corresponding queueing network topology. Let
K := maxi∈[N] Ki denote the maximum number of queues
per path.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NETWORKING

A. Inferring Shared Queues

We define a set of input queues, each on a different path,
as a shared queue, if they correspond to the same queue in
the underlying queueing network T . Algorithm 2 shows our
algorithm to identify the shared queues based on similarities
of the estimated δ-parameters.

1) Algorithm: Specifically, define

D{qi1,j1 ,...,qik,jk
} := max{δi1,j1 , . . . , δik,jk}

−min{δi1,j1 , . . . , δik,jk} (7)

as the error in associating the input queues {qi1,j1 , . . . , qik,jk}
to the same queue in T . If the maximum estimation error for
any δi,j is ∆/2, then a set of input queues {qi1,j1 , . . . , qik,jk}
may represent the same queue in T only if D{qi1,j1

,...,qik,jk
} ≤

∆. Therefore, we refer to a set q̃ of input queues (each on a
different path) satisfying Dq̃ ≤ ∆ as a candidate set, where
∆ is a design parameter that controls the tradeoff between
detecting truly shared queues and not detecting non-shared
queues as shared queues.

However, the feasibility of different candidate sets (even
if they are disjoint) cannot be determined independently due
to the constraint of tree topology. To see this, we define the
category of a set of input queues q̃ := {qi1,j1 , . . . , qik,jk}
as the set of indices of the paths traversing the queues in q̃,
denoted by

c(q̃) := {i1, . . . , ik}. (8)

We will also refer to the indices of the paths traversing a
queue q in T as the category of q. Clearly, if all the input
queues in q̃ represent the same queue q in T , then q̃ and q
have the same category. For example, the inference results in
Fig. 2b suggest that there is a queue with parameter δ1 that
has category {1, 2, 3}. The problem is that if we associate
a set of input queues of category A ⊆ [N] with the same
queue q in T , then q must reside on the subtree containing
“destinations” {di}i∈A (recall that di is the queue modeling
the last link towards destination d′i), and thus there cannot be
another queue q′ of category A′ for any A′ satisfying

A′ ∩A 6= ∅, A′
�⊆A, and A�⊆A′, (9)

as illustrated in Fig. 3. We say that two candidate sets q̃ and
q̃′ conflict with each other if c(q̃) and c(q̃′) satisfy (9).

To avoid such conflict, our idea is to iteratively select
candidate sets via a greedy procedure, where each iteration
selects the candidate set not conflicting with the existing
selections that has the minimum error defined as in (7).
However, a straightforward implementation of this idea will
incur an exponential complexity as there can be O((K+1)N)
candidate sets.

Algorithm 2 avoids the exponential complexity by only
searching among the candidate sets that may achieve the min-
imum error. Specifically, let Q denote the currently selected

candidate sets and Q̃ the candidate sets that will be searched
in the next iteration. For each q̃ ∈ Q̃, let Fq̃ ∈ {0, 1} indicate
whether the candidate set q̃ is feasible, i.e., not conflicting with
any q̃′ ∈ Q. Starting by selecting all the singletons {qi,j} into
Q as D{qi,j} = 0 (lines 2– 3), we see that: (i) for the first
iteration, the minimum error among the candidate sets outside
Q must be achieved at a set of two queues; (ii) for each of the
subsequent iterations, the minimum error among the feasible
candidate sets outside Q must be achieved at the union of two
sets in Q. This allows us to initialize (lines 4– 8) and update

Algorithm 2 Inference of Shared Queues

(lines 13– 29) Q̃ and its corresponding properties only for the
candidate sets that may be selected in the next iteration. The
algorithm continues until all the candidate sets not conflicting
with the already-selected sets have been considered (line 9).

2) Complexity: By design, |Q| starts at O(KN) and
reduces by one in each iteration (as two sets in Q will be

replaced by their union). Moreover, Q̃ contains the union of

each pair of sets in Q, and hence |Q̃| = O(K2N2). This
implies a space complexity of O(K2N3), dominated by the

space for storing Q̃, as the cardinality of each set in Q̃ is
at most N. For time complexity, the initialization (lines 2– 2)
takes O(K2N2), each while loop (lines 2– 2) takes O(K3N4),
dominated by the update of (Fq̃)q̃∈Q̃ in lines 2– 2 (as the

conflict between two sets can be checked in O(N)), and the
while loop is repeated O(KN) times (each reducing |Q| by
one). The total time complexity is thus O(K4N5). Note that
this is only the worst-case complexity when all the considered
sets are candidate sets; in practice, the complexity will be
lower with a smaller ∆.

3) Correctness: We show that the inference by Algorithm 2
will be accurate if the estimated parameters are sufficiently
accurate. For each queue e ∈ T , let δ∗e denote its true

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: QUEUEING NETWORK TOPOLOGY INFERENCE USING PASSIVE AND ACTIVE MEASUREMENTS 7

parameter, and q̃e the true set of all the input queues
associated with e. Algorithm 2 will correctly identify all the
shared queues under the following condition (see proof in
Appendix A.2 in the Supplementary Material).

Theorem 2: Let ∆∗ := mine,e′∈T ,e 6=e′ |δ
∗
e − δ∗e′ |.

Algorithm 2 will output Q = {q̃e}e∈T if every input parameter
δi,j associated with some e ∈ T satisfies |δi,j − δ∗e | ≤

1
2∆ <

1
4∆

∗.

B. Constructing Queueing Network Topology

The result of Algorithm 2 helps to infer the queueing
network T by revealing the set of queues and their positions in
the tree. Specifically, if Algorithm 2 infers that a set of input
queues {qi1,j1 , . . . , qik,jk} correspond to the same queue q
in T , then q must reside on the tree branch covering leaves
{di1 , . . . , dik}. We now use this idea to construct the tree.

Algorithm 3 Topology Construction

1) Algorithm: Algorithm 3 constructs the tree by going
through the shared queues inferred by Algorithm 2 in the
increasing order of cardinality5 (line 2), breaking ties arbi-
trarily, and constructing a vertex (i.e., a queue) to represent
each set (line 3). This results in a bottom-up approach that
constructs the tree from the leaves to the root. At any time,
the set R contains the top-most vertex in each constructed
subtree. After constructing a new vertex vq̃ , the algorithm
will connect it with each vertex vq̃′ ∈ R that is in the same
subtree as vq̃ (indicated by c(q̃′) ∩ c(q̃) 6= ∅) and update R
(lines 3– 3). If Q does not contain any shared queue of category
[N], then the constructed topology will be a forest, in which
case we merge the roots to form a tree (line 10).

2) Complexity: Recall from Section IV-A2 that |Q| =
O(KN). Moreover, |R| = O(N), as after constructing the
N leaves, each new vertex will replace at least one existing
vertex in R. This implies a space complexity of O(KN2),
dominated by the space for storing Q, and a time complexity
of O(KN3), dominated by line 3 (as there are O(KN) loops
in line 3, O(N) loops in line 3, and |c(q̃)| ≤ N for all q̃ ∈ Q).

3) Correctness: We say that v is a branching point in T
if it is a vertex with at least two children. We say that two
vertices v1, v2 in T are on the same branch if they are between
the same pair of adjacent branching points (excluding the
branching point closer to the root, including the branching

5The cardinality is well-defined because each shared queue is by definitiona
set of input queues.

point closer to the leaves), i.e., traversed by the same set of
root-to-leaf paths. Based on these notions, we will show that
the output of Algorithm 3 is correct if its input Q is correct
(see proof in Appendix A.3 in the Supplementary Material).

Theorem 3: If Q = {q̃e}e∈T , where q̃e is the set of all the
input queues associated with queue e ∈ T , then the topology

T̂ constructed by Algorithm 3 will be identical to T , except
that vertices on the same branch may be permuted.

Remark 2: The order of vertices (each representing a queue)
on the same branch of T does not affect the end-to-end delay
distribution on any path and is hence not identifiable.

C. Summary of Solution

Fig. 4 illustrates the overall solution, which (i) first uses end-
to-end delay measurements x := (xi)i∈[N] to infer the queue
parameters δ := (δi)i∈[N] via Algorithm 1, (ii) then uses these
parameters as fingerprints to infer the shared queues Q via
Algorithm 2, and (iii) finally constructs an inferred topology

T̂ based on the shared queues via Algorithm 3. Theorems 1,
2, and 3 together guarantee that the inferred topology will
converge to the ground truth topology (up to a permutation of
queues on the same branch) as the number of measurements
per path increases.

V. TOPOLOGY INFERENCE USING PASSIVE AND

ACTIVE MEASUREMENTS

While the algorithms in Section IV can correctly estimate
the queueing network topology in theory as the number of
measurements goes to infinity, it has a practical limitation that
due to the limited accuracy of parameter estimation at finite
sample sizes, it can be difficult to distinguish the parameters
associated with one queue from those associated with a
different queue, particularly in large networks when many
queues have similar residual capacities. This issue cannot
be addressed by simply increasing the number of (passive)
measurements, as this will take a longer time during which
the underlying routing topology could change. Our idea of
addressing this problem is to augment the information from
passive measurements with information from limited active
measurements.

A. Information From Active Measurements

We will leverage a classical way of extracting topology
information from active measurements. Classical topology
inference relies on additive metrics that can be estimated
from end-to-end measurements to measure the “lengths” of
paths and shared portions between paths, hence inferring the
topology. There are three commonly-used additive metrics:
loss-based metric, utilization-based metric, and delay-based
metric [9], where the delay-based metric is most consistent
with our network model. Specifically, the delay-based met-
ric wl for each link l (modeled as a queue ql) is defined
as the variance of its delay Yl (i.e., sojourn time of ql),
i.e., wl := var(Yl). Under the M/M/1 queueing model in

Section II-A, we can express wl as 1/δ2l , where δl is the
residual capacity of ql. According to the delay-based metric,
the shared length between paths pi and pj is defined as

ρ∗ij := cov(Xi, Xj), (10)

where (Xi, Xj) denotes the pair of delays on pi and pj from
a (mimicked) multicast on these paths. Under the assumption
of independent delays across links in Section II-A, it is easy

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NETWORKING

to see that ρ∗ij =
∑

l∈pi∩pj
wl =

∑
l∈pi∩pj

1/δ2l . Although

the true value of ρ∗ij is unknown, we can estimate it via the

empirical covariance based on the delay pairs ((x
(j)
i,h, x

(i)
j,h))

nij

h=1
measured by (mimicked) multicast probes:

ρij :=
1

nij − 1

nij∑

h=1

(x
(j)
i,h − x

(j)
i)(x

(i)
j,h − x

(i)
j), (11)

where x
(i)
j := 1

nij

∑nij

h=1 x
(i)
j,h is the sample mean, and the

factor 1/(nij − 1) (instead of 1/nij) is used to correct the
bias in the estimation [9]. By the definition of covariance, it
is easy to see that as nij → ∞, ρij will converge to ρ∗ij , i.e.,
the estimator in (11) is consistent.

B. Idea for Combining Active and Passive Measurements

Recall that q̃e (referred to as a shared queue) denotes
the set of input queues corresponding to e ∈ T , i.e., the
estimated parameters {δj,k}qj,k∈q̃e are all associated with the
same queue e in the underlying network, and c(q̃e) (referred
to as the category of q̃e) denotes the set of indices of the paths
traversing e. We have shown in Theorem 3 that the set Q of all
the shared queues uniquely determines the queueing network
topology T , up to a permutation of queues on the same branch.
Thus, it suffices to infer the set of shared queues Q correctly.

Although Theorem 2 shows that Algorithm 2 can correctly
identify the shared queues if all the queues have sufficiently
distinct parameters that can be estimated with sufficient accu-
racy, the challenge in applying this solution is that (i) the
parameter estimation errors may not be upper-bounded by
∆∗/4 (where ∆∗ is the minimum difference between the
parameters of different queues in T), and (ii) the maximum
estimation error (which is needed for setting the threshold ∆)
is unknown. Nevertheless, we still expect the following to hold
under reasonable estimation accuracy:

1) δj,k’s will be similar for all qj,k ∈ q̃e;
2)

∑
q̃e:i,j∈c(q̃e)

1/δ2e will be close to the estimated shared

path length ρij , where δe :=
(∑

qj,k∈q̃e
δj,k

)
/|q̃e|.

The above observations motivate the following idea: first
using the passive (and possibly active) measurements from
each path to estimate the queue parameters δ := (δj)j∈[N] and
the active measurements from each pair of paths to estimate the
shared path lengths ρ := (ρij)i,j∈[N], and then using both δ
and ρ to infer the shared queues Q. Intuitively, the inference of
shared queues should try to minimize (i) the deviation between
parameters associated with the same queue as well as (ii)
the deviation between the shared path length estimated from
probes (i.e., ρij) and the shared path length predicted by the
estimated queue parameters (i.e.,

∑
q̃e:i,j∈c(q̃e)

1/δ2e), subject

to feasibility constraints. From Section IV-A, we know that a
candidate solution for Q is feasible if and only if

1) @j ∈ [N] and k, k′ ∈ [Kj] (k 6= k′) such that

qj,k, qj,k′ ∈ q̃ for some q̃ ∈ Q, and

2) @q̃, q̃′ ∈ Q such that c(q̃) ∩ c(q̃′) 6= ∅, c(q̃)�⊆c(q̃′), and
c(q̃′)�⊆c(q̃).

The first constraint is because different input queues tra-
versed by the same path are already known to represent
different queues in the underlying network (due to the assump-
tion of tree-based routing in Section II-A), and the second
constraint is because the coexistence of two queues traversed

by partially-overlapping sets of paths will lead to a contra-
diction of the assumption that the underlying topology T is a
tree, as illustrated in Fig. 3.

Remark 3: Directly solving the above optimization is highly
nontrivial due to the discrete and huge solution space. Specif-
ically, the number of possible ways for the paths (pj)j∈[N] to
share queues is given by

∑

A⊆[N]:A 6=∅

∏

j∈A

Kj , (12)

as each nonempty subset of paths {pj}j∈A may share a queue,
and this shared queue can be any of the Kj queues on each
pj . For K := maxj∈[N] Kj and K ′ := minj∈[N] Kj , we have

(K ′)N ≤ (12) ≤ (2K)N . (13)

Since each possible shared queue may or may not appear in
the inferred set of shared queues Q, the number of possible

solutions for Q is between 2(K
′)N and 2(2K)N , which is super-

exponential in the number of measurement paths N. This
observation motivates us to seek more efficient algorithms.

C. Algorithm Design

Algorithm 4 Fingerprint-Aware Neighbor Joining

To infer the shared queues efficiently, we leverage the
approach of neighbor-joining, which is a bottom-up approach

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: QUEUEING NETWORK TOPOLOGY INFERENCE USING PASSIVE AND ACTIVE MEASUREMENTS 9

widely used in inferring trees from distance measurements
[9], [30]. While the original neighbor-joining algorithm for
network topology inference [9] only used the distance infor-
mation, we jointly use the distances in ρ and the fingerprints
in δ to improve the accuracy. The proposed algorithm, called
Fingerprint-aware Neighbor Joining (FNJ), is shown in Algo-
rithm 4. For ease of presentation, we use pv to denote the
path from the root to vertex v in the tree (pv is one of the
measurement paths {pj}j∈[N] if v is a leaf), and Kv to denote
the number of queues (i.e., vertices) on pv . We use q̃v,k to
denote the k-th shared queue on pv according to an arbitrary
order. We use ρvb to denote the estimated shared path length
between pv and pb according to the delay-based metric in
Section V-A, and δv,k to denote the estimated parameter of the
shared queue q̃v,k. We further use nv to denote the number of
measurements used for parameter estimation for pv , and nvb

to denote the number of measurements used for estimating the
shared path length ρvb.

FNJ follows the basic procedure of neighbor joining, i.e.,
it uses a set D to track the vertices the algorithm is trying to
connect (initially the set of leaves), joins the two vertices in D
with the longest shared path from the root, and then uses the
nearest common ancestor of the two vertices to replace them
in D, which leads to a recursive algorithm that constructs a
tree from the leaves to the root. However, it differs from the
original neighbor-joining algorithm [9] in the use of estimated
queue parameters as fingerprints to place all the queues onto
the tree. To this end, it initially treats each δ-parameter as
representing a distinct queue (lines 4– 4), and then iteratively
detects the parameters associated with the same queue by
considering two paths at a time (lines 4– 4). Each iteration
considers the pair of vertices (i, j) in D with the longest shared
path (line 4), and identifies the shared queues between pi and
pj using both the fingerprints and the shared path length (lines
4– 4). It then updates the state variables in preparation for the
next iteration, including replacing vertices {i, j} in D by a
newly constructed vertex b representing their nearest common
ancestor (line 4), updating the shared path lengths between
the new vertex and every other vertex in D (lines 4– 4), and
estimating the parameter of each newly identified shared queue
(line 4) while recording these shared queues (lines 4– 4). The
weighted average in lines 4 and 4 is designed to better mitigate
estimation error during aggregation, by weighing each estimate
by the number of samples used to obtain it. The output of
FNJ can then be used as input for Algorithm 3 to construct
the inferred topology.

Remark 4: In lines 4– 4, FNJ identifies the shared queues
between pi and pj by (i) prioritizing candidate pairings
between the queues on these paths based on the similarity
of their fingerprints (line 4), and (ii) finding a feasible subset
of Kb pairings that lead to a delay-based metric best approx-
imating the estimated shared path length between pi and pj
(line 4). Here, “feasibility” means that no queue on pi or pj
is paired with more than one queue on the other path, i.e., the
selected pairings form a matching.

D. Performance Analysis

Complexity: The memory consumption by Algorithm 4 is
mainly for storing the set of shared queues Q, the estimated
shared path lengths ρ, the estimated parameters δ, and the
sorted result of [Ki] × [Kj] in line 4. The sizes of these
variables are bounded by O(NK) for Q (recall that K :=
maxj∈[N] Kj is the maximum number of queues per path),

O(N2) for ρ, O(NK) for δ, and O(K2) for [Ki]×[Kj]. Thus,
the space complexity of Algorithm 4 is O(N2 +NK +K2).
The running time of Algorithm 4 is dominated by the loop
in lines 4– 4. The loop will be repeated N − 1 times as each
loop will reduce |D| by one. In each loop, line 4 takes O(N2)
time as there are O(N2) pairs of vertices in D, line 4 takes
O(K2 logK) time to sort K2 elements, and the other steps
are subsumed by these steps in terms of time. Thus, the time
complexity of Algorithm 4 is O(N3 +NK2 logK).

Correctness: We define the following notations for the
purpose of analysis. We will refer to vertices i and j in a tree
as generalized siblings if there is no branching point between
them and their nearest common ancestor, e.g., q1 and d4 in
Fig. 5a are generalized siblings but d2 and d4 are not. We will

use D̃ to denote the set of vertices in the ground truth topology

T that are either leaves or branching points, and Qij (i, j ∈ D̃)
to denote the set of index pairs for the queues shared between
pi and pj (recall that pv denotes the root-to-v path), i.e., q̃i,k
and q̃j,k′ represent the same queue if and only if (k, k′) ∈ Qij .
We will use ρ∗ij to denote the true value of the estimated
shared path length ρij between paths pi and pj , and δ∗i,k to
denote the true value of the estimated parameter δi,k of the
k-th queue on path pi. With these notations, we will establish
a set of sufficient conditions under which FNJ correctly infers
the set of shared queues, and thus correctly infers the queueing
network topology with the help of Algorithm 3 (see proof in
Appendix A.4 in the Supplementary Material).

Theorem 4: Let ∆̃ be the minimum length (measured by the
delay-based metric) of any branch in T , and ∆∗

ij be the mini-
mum difference between the parameters of any two queues in

pi ∪ pj (∀i, j ∈ D̃). Then FNJ (Algorithm 4) correctly infers
all the shared queues if the following conditions hold:

1) |ρij − ρ∗ij | < ∆̃/2, ∀i, j ∈ D̃;

2) |δi,k− δ∗i,k| < ∆∗
ij/4 and |δj,k′ − δ∗j,k′ | < ∆∗

ij/4, ∀i, j ∈

D̃ that are generalized siblings and ∀k ∈ [Ki], k
′ ∈

[Kj];
3) ∃δ0 > 0 such that ∀i, j ∈ D̃ that are generalized siblings

and ∀k ∈ [Ki], k
′ ∈ [Kj],

δ∗i,k, δ
∗
j,k′ ∈

[
δ0 +

∆∗
ij

4
,

(
(2|Qij |+ 1)f

(
δ0,

∆∗
ij

4

)
+ ∆̃

)−1/2]
, (14)

where f(x, y) := 1/x2 − 1/(x+ y)2.

Although the conditions in Theorem 4 depend on some
internal variables of FNJ (e.g., ρij and δi,k for a branching
point i), we can simplify them into conditions only depending
on the input parameters (see proof in Appendix A.5 in the
Supplementary Material).

Corollary 1: Let ∆̃ and f(x, y) be defined as in

Theorem 4, and ∆† := min{∆∗
ij : i, j ∈ D̃,

(i, j) is a pair of generalized siblings}. Then FNJ correctly
infers all the shared queues if the following holds:

1) |ρij − ρ∗ij | < ∆̃/2, ∀i, j ∈ [N];
2) |δi,k − δ∗i,k| < ∆†/4, ∀i ∈ [N], k ∈ [Ki];
3) ∃δ0 > 0 such that ∀i ∈ [N], k ∈ [Ki],

δ∗i,k ∈

[
δ0 +

∆†

4
,

(
(2K − 1)f

(
δ0,

∆†

4

)
+ ∆̃

)−1/2
]
.

(15)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NETWORKING

TABLE I

STATISTICS IN TOPOLOGY GENERATION FROM AS6461

Remark 5: Theorem 4 and Corollary 1 essentially state
that FNJ will correctly infer the shared queues if the given
shared path lengths and queue fingerprints are sufficiently
accurate, and the true parameters are not too large or too

small. In comparison, RNJ [9] requires |ρij − ρ∗ij | < ∆̃/4
(∀i, j ∈ [N]) to have guaranteed correctness6,and Algorithm 2
requires |δi,k−δ∗i,k| < ∆∗/4 (∀i ∈ [N], k ∈ [Ki]). Comparing
these conditions with the conditions in Corollary 1 shows that
by leveraging both shared path lengths and queue fingerprints,
FNJ can correctly infer the topology based on lower accuracy
of each of these input parameters compared to algorithms that
only use one type of information. Note that ∆∗ ≤ ∆†, as ∆∗

is between any two queues in T and ∆† is only between
the queues on two paths (to a pair of generalized siblings).
Although it appears that FNJ requires more conditions than
RNJ or Algorithm 2, we note that these are only sufficient
conditions, and will resort to empirical evaluations to compare
their actual accuracy.

VI. PERFORMANCE EVALUATION

We evaluate the proposed algorithms against benchmarks
via both queueing-theoretic simulations under our network
model and packet-level simulations in NS3 [31] that stress-
test our model, based on real Internet topology.

A. Simulation Setup

1) Topology Generation: We generate the ground-truth tree
topology based on an Autonomous System (AS) topology
AS6461 from [32], which represents IP-level connections
between the routers in Abovenet with 182 nodes and 294 links.
Similar results have been obtained under other topologies
(see Appendix B.1 in the Supplementary Material). Given a
maximum path length (measured in #nodes) of K, we start
from a source node s′ selected to cover the maximum number
of nodes within path length K, and perform a breadth first
search to obtain a tree of height K. We then randomly pick N
of the leaves of this tree as destinations to form a tree with
N leaves, which is used as the ground truth topology T in
one Monte Carlo run. The statistics for each tested value of
K is given in Table I. We note that although the constructed
topology is technically a routing topology, the corresponding
queueing network topology will have the same structure as
illustrated in Fig. 1 if s′ is treated as the gateway router for
the actual source. We can thus interpret the constructed T as
a queueing network topology.

2) Parameter Setting: We set all the link capacities to
1 Gbps according to [33]. Assuming a link utilization of
20–80%, we randomly generate a residual capacity δl from
[0.2, 0.8] Gbps for each node ql ∈ T (representing its

6Note that being correct for RNJ only means to correctly infer the
multicasttree that ignores the degree-2 vertices.

incoming link in the routing topology). For queueing-theoretic
simulations, we convert the unit to packets/sec using a packet
size of 1, 500 bytes. For NS3 simulations, we randomly draw
the sizes of background packets from 80, 606, and 1, 500 bytes
with probabilities 0.4, 0.2, and 0.4 according to [34], and set
the data packet size to 1, 500 bytes and the probing packet
size to 50 bytes (these include the 30-byte header added by
NS3 to every packet). In NS3, we collect both passive and
active measurements at an interval of 5 ms, which corresponds
to a data rate of 2.4 Mbps per path, and a probing rate of
1.52 Mbps per path for N = 20 (i.e., a probing load of
no more than 3% of the link capacity). By default, we set
K = 4, N = 20, and both #passive measurements per path
and #active measurements per path pair to 1, 000, which will
take 5 seconds to collect.7 We will vary these parameters to
test their impacts. All the results are averaged over 20 Monte
Carlo runs per combination of (K,N).

3) Benchmarks: For estimating the δ-parameters on each
path from end-to-end delays, we compare the proposed esti-
mation algorithm (Algorithm 1), based on either absolute or
squared error, with the MLE (solved by the Nelder-Mead
simplex method [35]) and the two methods proposed by
Harris et al. [28] (‘Harris 1’, ‘Harris 2’) discussed in
Section III-B.

For topology inference, we use the Rooted Neighbor Joining
algorithm (RNJ) [9] as the benchmark, which is a state-of-
the-art topology inference algorithm guaranteed to correctly
reconstruct the multicast tree from sufficiently many active
measurements. The multicast tree, which is a logical topology
obtained by merging nodes on the same branch (e.g., Fig. 5c),
is a common target of existing topology inference algorithms
(see Section I-A). None of the existing solutions can perform
topology inference by only using passive measurements or
jointly using both active and passive measurements.

A challenge in applying FNJ is that the relationship between
the δ-parameters (residual capacities) and the ρ-parameters
(delay covariances) often deviates from the ideal relationship
given by the model of M/M/1 queue, as the queueing dynamics
are not exactly M/M/1 and the parameters are estimated
from different measurements. To correct such deviation, we
normalize the estimated values of (ρij)i,j∈[N] with respect to
the estimated values of (δj)j∈[N] as follows: (1) replace all
the negative ρ-values by 0; (2) normalize all the ρ-values to
[0, 1]; (3) scale all the ρ-values by the maximum possible delay
covariance according to the estimated δ-parameters, calculated
by summing 1/δ2e for the K−1 smallest δe values (because in
a tree topology of height K, the maximum number of queues
shared between any two paths is at most K − 1).

4) Metrics: We evaluate the accuracy of parameter esti-

mation by the normalized absolute error, defined as ‖δ̂ −
δ∗‖1/‖δ

∗‖1, where δ̂ is the estimate and δ∗ the ground truth.
We evaluate the accuracy of topology inference by a version

of graph edit distance [36] that allows merging/splitting nodes.
Graph edit distance is a typical performance metric for topol-
ogy inference algorithms [37]. In our case, a common error is
duplicating the same node due to the failure in recognizing that
some queues traversed by different paths are the same shared
queue, and another common error is incorrectly merging nodes
due to mistakenly identifying different queues as a shared

7This refers to the simulated time, which differs from the running time of
the simulation. Due to its single-threaded execution, the NS3 simulation often
takes much longer than the time period it simulates, as it needs to simulate
all the discrete events (packet transmissions/receptions) during this period.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: QUEUEING NETWORK TOPOLOGY INFERENCE USING PASSIVE AND ACTIVE MEASUREMENTS 11

queue. Both types of errors can be captured by the above
graph edit distance. As illustrated in Fig. 5, the inferred
topology (Fig. 5b) has an edit distance of 1 to the ground truth
(Fig. 5a), as merging q11 and q12 will make it identical to the
ground truth. The multicast tree (Fig. 5c) has an edit distance
of 3 to the ground truth, requiring d4 to be split once and d5
to be split twice.

For conciseness, we only present the results from queueing-
theoretic simulations below and defer the results from NS3
simulations to Appendix B in the Supplementary Material, as
the observations are similar.

B. Results on Parameter Estimation

We start by evaluating the parameter (i.e., residual capacity)
estimation for a single path.

Evaluation of design choices: We first evaluate the design
of the points S for fitting the empirical Laplace transform.
As [28] suggested the values in S to be evenly distributed,
we set S to contain |S| points evenly distributed in [0, smax],
and evaluate the parameter estimation error under various
combinations of |S| and smax as shown in Fig. 6a. The results
show that smax should be large enough so that the Laplace
transform is sufficiently described within [0, smax], but not too
large to avoid fitting the noise when the Laplace transform
is nearly zero. Meanwhile, |S| should be large enough to
provide enough points to fit. Setting |S| too large, however,
will unnecessarily increase the running time (as the complexity
of evaluating the objective function (4a) is proportional to |S|)
without further decreasing the estimation error. Based on the
results of Fig. 6a, we chose smax = 10 and |S| = 50, i.e.,
S = {1, 1.2, 1.4, . . . , 10}. Next, we evaluate the proposed two-
step method of solving (4) as in lines 1– 1 of Algorithm 1
(J = 100) against only performing the iterative single-variate
optimization in lines 1– 1 (‘iterative’) or directly optimizing
(4) from an arbitrary initial value (‘direct’). The results,
given in Fig. 6b, show that the proposed method significantly
improves the estimation accuracy.

Comparison with benchmarks: We compare the proposed
estimator (‘proposed: absolute/squared’) against benchmarks
in a variety of settings as in Fig. 7- 8 in terms of both esti-
mation error and running time. We see that: (i) the estimators
based on the Laplace transform are much more efficient than
MLE as the number of measurements or queues increases;
(ii) directly optimizing the parameter of interest (i.e., δ) to fit
the Laplace transform as in the proposed solution is much
more accurate than first estimating the Laplace transform
and then inferring the corresponding parameter as in ‘Harris
1’ and ‘Harris 2’; (iii) which error measure to use in the
proposed estimator does not affect its accuracy, although the
squared error is faster to optimize than the absolute error. We
also see that the proposed estimator converges quickly with
#measurements (Fig. 7a), and that it largely maintains the same
accuracy as the path length increases (Fig. 8a).

C. Results on Topology Inference

Having validated the proposed estimator, we now evaluate
the accuracy of using its outputs in topology inference. We
compare the accuracy of the FNJ algorithm proposed in
Section V that jointly uses passive and active measurements
(‘passive&active’), the solution proposed in Section IV that
only uses passive measurements (‘passive’), and the RNJ
algorithm [9] that only uses active measurements (‘active’). To

TABLE II

IMPACT OF PROBING RATE (50 BYTES/PROBE, N = 20, 1000 ACTIVE

MEASUREMENTS PER PATH PAIR)

have a conservative estimation of the advantage of combining
passive and active measurements, we set the design parameters
of the other algorithms to their ideal values, even though in
practice these ideal values are unknown.8

We first compare the algorithms as the number of passive/
active measurements increases, as shown in Fig. 9. The results
show that (i) the FNJ algorithm that combines passive and
active measurements achieves much better accuracy than both
the solution using only passive measurements and the solu-
tion using only active measurements; (ii) all the algorithms
converge fast (within 1, 000 measurements). We also observe
that the accuracy of the passive-only solution does not notably
improve after a few passive measurements, even if theoreti-
cally its error should converge to zero as the conditions of
Theorems 1 and 2 are satisfied here. This is because of the
deviation between the actual queueing behavior and the model
of independent M/M/1 queues adopted in our analysis, as
well as the suboptimality in numerically solving the parameter
estimation problem in (4). Meanwhile, as FNJ only uses the
estimated parameters to detect the queues shared between two
sub-paths (from the root to a pair of generalized siblings)
instead of all the root-to-leaf paths, it can achieve better
accuracy under the same parameter estimation error.

We then compare the scalability of the algorithms as the
width (controlled by N) or height (controlled by K) of the
ground truth topology increases, as shown in Fig. 10. We
see that (i) the FNJ algorithm (‘passive&active’) can maintain
good accuracy as the tree grows wider (Fig. 10a) or taller
(Fig. 10b), while (ii) the passive-only or active-only solution
deteriorates quickly with the increase of width (Fig. 10a),
and (iii) the width of the tree has a greater impact on the
accuracy of topology inference than the height. Qualitatively
similar observations have been obtained through packet-level
simulations in NS3; see Appendix B in the Supplementary
Material.

While augmenting passive measurements with active prob-
ing can improve the accuracy of topology inference, the
probing will also impact the network. Table II examines
such impact in terms of the time to collect enough active
measurements as well as the maximum increase in link load
and link delay as the probing rate varies. The results show
that the amount of active measurements required by our FNJ
algorithm can be collected within a reasonably short time with
negligible performance impact to data traffic. Meanwhile, our
evaluation of the computation time shows that generating the
inferred topology from given measurements takes negligible
time compared to the time to collect the measurements (see
Appendix B.2 in the Supplementary Material).

8For ‘passive’, we set the threshold ∆ in Algorithm 2 to ∆∗/2 (∆∗:
minimum difference between the parameters of different queues); for ‘active’,
we set the parameter of RNJ (also denoted as ‘∆’ in [9]) to the minimum
delay-based metric of a link in the multicast tree.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NETWORKING

Although we have assumed a static network state to
focus on the one-shot topology inference problem, our
proposed algorithms can be combined with change detec-
tion techniques to handle dynamic network states to
some extent, as detailed in Appendix B.3 in the Sup-
plementary Material. However, the design of algorithms
tailored for detecting network state changes from end-to-
end measurements remains an open problem that is left to
future work.

VII. CONCLUSION

We revisited a classic problem of inferring a tree topol-
ogy from end-to-end measurements sent by a single source,
through a fundamentally different approach that utilizes the
detailed queueing dynamics inside the network. Compared to
the existing solutions based on multicast or its approximations,
our approach has the advantages that it can utilize passive
measurements to reduce probing overhead and recover the
physical topology with degree-2 nodes. Our solution consists
of (i) a novel estimator that infers the residual capacities of a
tandem of queues from end-to-end delays, (ii) an algorithm
that uses the estimated residual capacities as fingerprints
to identify the queues shared between paths, and (iii) an
algorithm that combines the estimated residual capacities and
the shared path lengths estimated from active measurements
to improve the accuracy in identifying the shared queues.
Our solutions were theoretically proved to be asymptotically
accurate, and empirically validated to beat the state-of-the-
art solution in data-driven simulations based on real Internet
topologies. Meanwhile, the proposed algorithms are designed
for a fixed network state (including routing topology and queue
parameters), and need to be combined with other algorithms,
e.g., change detection algorithms that can identify suitable time
windows for performing inference and adaptation algorithms
that can update the inferred topology while maximally reusing
previous results, to keep up with network dynamics, the
detailed investigation of which is left to future work.

REFERENCES

[1] Y. Lin, T. He, and G. Pang, “Queuing network topology inference using
passive measurements,” in Proc. IFIP Netw. Conf. (IFIP Netw.), Jun.
2021, pp. 1–9.

[2] T. He, L. Ma, A. Swami, and D. Towsley, Network Tomography: Identi-

fiability, Measurement Design, and Network State Inference. Cambridge,
U.K.: Cambridge Univ. Press, 2021.

[3] B. Yao, R. Viswanathan, F. Chang, and D. Waddington, “Topology
inference in the presence of anonymous routers,” in Proc. 22nd Annu.

Joint Conf. IEEE Comput. Commun. Societies (IEEE INFOCOM),
vol. 1, Aug. 2003, pp. 353–363.

[4] M. H. Gunes and K. Sarac, “Resolving anonymous routers in Internet
topology measurement studies,” in Proc. 27th Conf. Comput. Commun.

(IEEE INFOCOM), Apr. 2008, pp. 1076–1084.
[5] R. Caceres, N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley,

“Loss-based inference of multicast network topology,” in Proc. 38th

IEEE Conf. Decis. Control, vol. 3, Jul. 1999, pp. 3065–3070.
[6] N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley, “Multicast

topology inference from measured end-to-end loss,” IEEE Trans. Inf.

Theory, vol. 48, no. 1, pp. 26–45, Jan. 2002.
[7] N. G. Duffield and F. LoPresti, “Network tomography from measured

end-to-end delay covariance,” IEEE/ACM Trans. Netw., vol. 12, no. 6,
pp. 978–992, Dec. 2004.

[8] N. G. Duffield, J. Horowitz, and F. Lo Prestis, “Adaptive multicast
topology inference,” in Proc. Conf. Comput. Communications. 20th

Annu. Joint Conf. IEEE Comput. Commun. Soc. (IEEE INFOCOM),
vol. 3, Sep. 2001, pp. 1636–1645.

[9] J. Ni, H. Xie, S. Tatikonda, and Y. R. Yang, “Efficient and dynamic
routing topology inference from end-to-end measurements,” IEEE/ACM

Trans. Netw., vol. 18, no. 1, pp. 123–135, Feb. 2010.

[10] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang,
“Maximum likelihood network topology identification from edge-based
unicast measurements,” in Proc. ACM SIGMETRICS Int. Conf. Meas.

Model. Comput. Syst., Jun. 2002, pp. 11–20.

[11] H. Yao, S. Jaggi, and M. Chen, “Passive network tomography for
erroneous networks: A network coding approach,” IEEE Trans. Inf.

Theory, vol. 58, no. 9, pp. 5922–5940, Sep. 2012.

[12] P. Sattari, M. Kurant, A. Anandkumar, A. Markopoulou, and M. G. Rab-
bat, “Active learning of multiple source multiple destination topologies,”
IEEE Trans. Signal Process., vol. 62, no. 8, pp. 1926–1937, Apr. 2014.

[13] M. Rabbat, M. Coates, and R. Nowak, “Multiple source Inter-
net tomography,” IEEE J. Sel. Areas Commun., vol. 24, no. 12,
pp. 2221–2234, Dec. 2006.

[14] N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, “Multicast
topology inference from end-to-end measurements,” Adv. Perform. Anal.,
vol. 3, pp. 207–226, Jan. 2013.

[15] J. Ni and S. Tatikonda, “Network tomography based on additive
metrics,” IEEE Trans. Inf. Theory, vol. 57, no. 12, pp. 7798–7809, Dec.
2011.

[16] M. Hirabaru, “Impact of bottleneck queue size on TCP protocols and
its measurement,” IEICE Trans. Inf. Syst., vol. 89, no. 1, pp. 132–138,
Jan. 2006.

[17] D. Katabi and C. Blake, “Inferring congestion sharing and path
characteristics from packet interarrival times,” Mass. Inst. Technol.,
Cambridge, MA, USA, Tech. Rep. MIT-LCS-TR-828, 2001.

[18] W. Wei, B. Wang, D. Towsley, and J. Kurose, “Model-based identifi-
cation of dominant congested links,” in Proc. ACM SIGCOMM Conf.

Internet Meas. (IMC), 2003, pp. 115–128.

[19] F. Baccelli, B. Kauffmann, and D. Veitch, “Inverse problems in queue-
ing theory and Internet probing,” Queueing Syst., vol. 63, nos. 1–4,
pp. 59–107, Dec. 2009.

[20] F. Pin, D. Veitch, and B. Kauffmann, “Statistical estimation of delays in
a multicast tree using accelerated EM,” Queueing Syst., vol. 66, no. 4,
pp. 369–412, Dec. 2010.

[21] A. Asanjarani, Y. Nazarathy, and P. K. Pollett, “Parameter and state
estimation in queues and related stochastic models: A bibliography,”
2017, arXiv:1701.08338.

[22] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach,
7th ed., Hoboken, NJ, USA: Pearson, 2017.

[23] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris, Fundamentals

of Queuing Theory. Hoboken, NJ, USA, 5th ed., 2018.

[24] Y. Huang, Y. Lin, and T. He, “Optimized cross-path attacks via adver-
sarial reconnaissance,” ACM SIGMETRICS Perform. Eval. Rev., vol. 52,
no. 1, pp. 51–52, Jun. 2024.

[25] L. Esparza, “Maximum likelihood estimation of phase-type
distributions,” Ph.D. dissertation, Dept. Inform. Math. Model.,
Tech. Univ. Denmark, Lyngby, Denmark, 2011.

[26] H. L. Van Trees, Detection, Estimation, and Modulation Theory. Hobo-
ken, NJ, USA: Wiley, 2004.

[27] J. Abate and W. Whitt, “Numerical inversion of Laplace transforms of
probability distributions,” ORSA J. Comput., vol. 7, no. 1, pp. 36–43,
Feb. 1995.

[28] C. M. Harris and W. G. Marchal, “Distribution estimation using Laplace
transforms,” INFORMS J. Comput., vol. 10, no. 4, pp. 448–458, Nov.
1998.

[29] A. V. den Boer and M. Mandjes, “Convergence rates of laplace-transform
based estimators,” Bernoulli, vol. 23, no. 4A, pp. 2533–2557, Nov.
2017.

[30] N. Saitou and M. Nei, “The neighbor-joining method: A new method
for reconstructing phylogenetic trees,” Mol. Biol. Evol., vol. 4, no. 4,
pp. 406–425, 1987.

[31] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the NS-3 simulator,” SIGCOMM Demon-

stration, vol. 14, no. 14, p. 527, 2008.

[32] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. Conf. Appl., Technol., Architectures, Protocols

Comput. Commun., Aug. 2002, pp. 133–145.

[33] S. Gay, P. Schaus, and S. Vissicchio, “REPETITA: Repeatable exper-
iments for performance evaluation of traffic-engineering algorithms,”
2017, arXiv:1710.08665.

[34] A. Svigelj, M. Mohorcic, G. Kandus, A. Kos, M. Pustisek, and J. Bester,
“Routing in ISL networks considering empirical IP traffic,” IEEE J. Sel.

Areas Commun., vol. 22, no. 2, pp. 261–272, Feb. 2004.

[35] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence properties of the nelder-mead simplex method in low
dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, Jan. 1998.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

KUMAR et al.: QUEUEING NETWORK TOPOLOGY INFERENCE USING PASSIVE AND ACTIVE MEASUREMENTS 13

[36] P. Bille, “A survey on tree edit distance and related problems,” Theor.

Comput. Sci., vol. 337, nos. 1–3, pp. 217–239, Jun. 2005.
[37] Y. Lin, T. He, S. Wang, K. Chan, and S. Pasteris, “Looking glass of

NFV: Inferring the structure and state of NFV network from external
observations,” IEEE/ACM Trans. Netw., vol. 28, no. 4, pp. 1477–1490,
Aug. 2020.

[38] O. A. Grigg, V. T. Farewell, and D. J. Spiegelhalter, “Use of risk-adjusted
CUSUM and RSPRTcharts for monitoring in medical contexts,” Stat.

Methods Med. Res., vol. 12, no. 2, pp. 147–170, Apr. 2003.
[39] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.

Internet Meas., Nov. 2010, pp. 267–280.

Akash Kumar (Student Member, IEEE) received
the B.S. and M.S. degrees in computer science from
West Chester University. He is currently pursuing the
Ph.D. degree in computer science and engineering
with The Pennsylvania State University, advised by
Dr. Ting He. His research interests include computer
networking, network topology inference, network
management, and machine learning.

Yudi Huang received the B.Eng. and M.Eng.
degrees in communication and information engi-
neering from the University of Electronic Science
and Technology of China and the Ph.D. degree
in computer science and engineering from The
Pennsylvania State University. He is currently a
Senior Software Engineer with Nvidia. His interests
include computer networking, wireless communica-
tion, and machine learning.

Ting He (Senior Member, IEEE) received the
Ph.D. degree in ECE from Cornell University.
She is currently an Associate Professor with the
School of EECS, The Pennsylvania State University,
University Park, PA, USA. Her research interests
include computer networking, performance evalua-
tion, and machine learning. She received multiple
paper awards from IEEE Communications Society,
ICDCS, SIGMETRICS, ICASSP, IMC, and Smart-
GridComm. She served as an Associate Editor for
IEEE TRANSACTIONS ON COMMUNICATIONS and

IEEE/ACM TRANSACTIONS ON NETWORKING, the General Co-Chair of
IEEE RTCSA, the TPC Co-Chair of ACM MobiHoc and IEEE ICCCN, and
the Area TPC Chair of IEEE INFOCOM.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Penn State University. Downloaded on August 01,2025 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.

