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Key Points:

+ A new In(PIP,s) index is proposed for fully quantitative sea ice reconstruction based on
IP,5 and associated phytoplankton biomarkers.

+ Using a pan-Arctic core-top biomarker database, a Bayesian model is developed to cal-
ibrate the proxy nonlinearly to sea ice concentration.

+ The calibration considers the non-stationary proxy seasonality and the influence of salin-
ity for more accurate palaeoclimate inference.
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Abstract

Sea ice plays multiple important roles in regulating the global climate. Rapid sea ice loss in the
Arctic has been documented over recent decades, yet our understanding of long-term sea ice vari-
ability and its feedbacks remains limited by a lack of quantitative sea ice reconstructions. The
sea ice diatom-derived biomarker IP,5 has been combined with sterols produced by open-water
phytoplankton in the PIP,s index as a sea ice proxy to achieve semi-quantitative reconstructions.
Here, we analyse a compilation of over 600 published core-top measurements of IP,5 paired with
brassicasterol and/or dinosterol across (sub-)Arctic oceans to calculate a new In(PIP;s) index that
correlates nonlinearly with sea ice concentration. Leveraging sediment trap and sea ice obser-
vational studies, we develop a spatially varying Bayesian calibration (BaySIC) for In(PIP;s) to

account for its non-stationary relationship with sea ice concentration and other environmental drivers

(e.g. sea surface salinity). The model is fully invertible, allowing probabilistic forward modelling
of the In(PIP,s) index as well as inverse modelling of past sea ice concentration with bi-directional
uncertainty quantification. BaySIC facilitates direct proxy-model comparisons and palaeoclimate
data assimilation, providing the polar proxy constraints currently missing in climate model sim-
ulations and enabling, for the first time, fully quantitative Arctic sea ice reconstructions.

Plain Language Summary

A lipid termed IPys is produced by microorganisms residing in Arctic sea ice and deposited
in underlying sediments. By measuring its concentration in sediment cores, palacoclimatologists
can interpret past sea ice conditions at the core locations. When multiple cores across the Arc-
tic are analysed, palaeo sea ice extents can be reconstructed. This study refines the quantitative
relationship of this proxy with sea ice, taking into account seasonal biases and other influencing
environmental factors. A Bayesian (probabilistic) approach is used to quantify the uncertainties
in the calibration. The new model enables quantitative Arctic sea ice reconstructions and helps
us understand its long-term variability.

1 Introduction

Sea ice is a key component of the climate system, affecting planetary albedo (Curry et al.,
1995), air-sea gas and heat exchanges (Ivanov et al., 2019; Rysgaard et al., 2011), and the ther-
mohaline circulation (Mauritzen & Hékkinen, 1997), with impacts extending far beyond the po-
lar regions. In recent decades, rising temperatures in the Arctic, caused by anthropogenic green-
house gas emissions and amplified by the ice-albedo feedback, have led to rapid sea ice loss (Stroeve
& Notz, 2018), yet our understanding of its long-term variability remains limited by our short-
term observations (de Vernal et al., 2020). Furthermore, future projections for the Arctic Ocean
suggest that it will become practically ice-free in summer at least once before the year 2050 un-
der all emission scenarios, but the multi-model spread in simulated sea ice extent remains wide
(Notz & SIMIP Community, 2020). To better understand changes in sea ice and associated feed-
backs, as well as to improve predictions, quantitative palaeo sea ice reconstructions are needed.

Numerous proxies in marine sediment cores have been used to infer past sea ice conditions
(e.g. de Vernal, Gersonde, et al., 2013), among which IP,5 (Ice Proxy with 25 carbon atoms) is
one of the most commonly employed. The highly branched isoprenoid (HBI) monoene is pro-
duced by sympagic diatoms during the spring sea ice algal bloom and released into the water col-
umn in early summer when sea ice melts (Belt et al., 2007, 2008, 2013; Brown et al., 2011, 2016).
Having been detected in sediments across the Arctic, IP,5 has been used as a proxy for seasonal
sea ice in palaeo reconstructions extending as far back in time as the late Miocene (Stein et al.,
2016). Within the Arctic and sub-Arctic regions, the absence of IP,5 has been attributed to two
opposing scenarios. On the one hand, it may reflect year-round ice-free conditions, which do not
support the growth of IP»5 producers (Belt et al., 2007; Belt & Miiller, 2013; Miiller et al., 2011).
On the other hand, perennial sea ice cover has been hypothesised to hinder diatom growth by re-
duced light penetration through thick and dense ice (Belt et al., 2007; Belt & Miiller, 2013; Miiller
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et al., 2009, 2011). This would limit the presence of IP»s close to the ice edge or in the marginal
ice zone (MIZ; Miiller et al., 2009, 2011).

To differentiate between the two contrasting sea ice conditions that preclude IP,s produc-
tion, pelagic phytoplankton biomarkers have been used as indicators of (seasonal) open water con-
ditions (e.g. Miiller et al., 2009, 2011; Navarro-Rodriguez et al., 2013; Volkman, 1986; Volkman
et al., 1998). These include brassicasterol (24-methylcholesta-5,22E-dien-35-ol) and dinosterol
(4@,23,24-trimethyl-5a-cholest-22E-en-38-o0l), which are mainly derived from diatoms, hapto-
phytes, cryptophytes, and dinoflagellates during the summer phytoplankton bloom (e.g. Goad
et al., 1983; Volkman, 1986; Volkman et al., 1993, 1998). Miiller et al. (2011) first proposed cou-
pling them with IP,s5 in the PIP,5 (phytoplankton-IP,s) index to achieve quantitative sea ice re-
constructions. The index is calculated as follows:

[IP5s]

PIP,s =
7 [IPys] + ¢ [phytoplankton biomarker]’

(D

where c is conventionally taken as the ratio of the mean IP,5 and phytoplankton biomarker con-
centrations of the sediment samples under study. This factor was introduced to compensate for
the substantial difference between the concentrations of IP,5 and phytoplankton biomarkers: the
former is typically lower, ascribed to its source-specificity in contrast to the multiple origins of
the latter (Miiller et al., 2011; Navarro-Rodriguez et al., 2013).

The PIP,5 index is, by definition, limited between 0 and 1. As described by Belt and Miiller
(2013), high PIP,5 values result from high IP,5 and low sterol concentrations, indicative of pre-
dominantly ice-covered conditions; conversely, low PIP,5 values arise from low IP,5 and high
sterol concentrations, which suggest mostly ice-free conditions. Intermediate PIP,5 values are
taken to represent ice-margin conditions. In addition to distinguishing between opposite sea sur-
face conditions, the sterols serve a second role in the PIP;s index as proxies for productivity in
the surface ocean (Miiller et al., 2011; Belt & Miiller, 2013). By normalising IP»s against pri-
mary productivity, PIP;s indices can be compared across different Arctic regions.

To realise the full potential of the PIP,5 index in quantitative Arctic sea ice reconstructions,
a robust calibration is needed. Since the initial ealibrationcorrelation reported by Miiller et al. (2011),
numerous studies have been undertaken to improve and validate the model’s applicability in dif-
ferent regions (e.g. Kolling et al., 2020; Navarro-Rodriguez et al., 2013; Stoynova et al., 2013;
Xiao et al., 2013, 2015) and in deep time (e.g. Hoff et al., 2016; Knies et al., 2014; Kremer, Stein,
Fahl, Bauch, et al., 2018; Kremer, Stein, Fahl, Ji, et al., 2018; Stein & Fahl, 2013; Stein et al., 2016,
2017), yet problems associated with the ¢ factor and regional variability persist, hindering the
wider use of this proxy. Furthermore, while possible influences of other environmental variables
(e.g. salinity) on biomarker production and preservation have been acknowledged (Belt, 2018;
Ribeiro et al., 2017; Xiao et al., 2013, 2015), they have rarely been included in calibrations, po-
tentially underrating the aptness of PIP,5 for reconstructing sea ice conditions (Su et al., 2022).
As new biomarker datasets continue to be published and our understanding of the proxy system
evolves, existing calibrations need to be revisited to take into account such evidence and insights,
which may further help address previously identified issues.

At the same time, recent advances have been made in proxy system model (PSM) devel-
opment using Bayesian statistical methods, with forward and inverse models developed for sev-
eral commonly used marine geochemical palaesoclimate proxies (e.g. Malevich et al., 2019; Tier-
ney & Tingley, 2014, 2018; Tierney et al., 2019). The probabilistic approach employed by these
models enables more rigorous quantification of calibration uncertainties and their propagation
into proxy estimates or climate reconstructions. In addition, such PSMs facilitate proxy-model
comparisons (e.g. Hoem et al., 2022) and palaeoclimate data assimilation (e.g. Osman et al., 2021),
allowing the use of proxy data to validate or constrain model simulations.

Here, we develop a Bayesian calibration for IP,5 (and associated phytoplankton biomark-
ers) to model the relationship between the sea ice proxy and environmental factors using recently
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compiled pan-Arctic biomarker, sea ice and oceanographic variable datasets.with. The Bayesian
framework supports uncertainty quantification and propagation to model predictions in both the
forward and inverse directions. The model, called BaySIC (Bayesian Sea Ice Concentration),
is amenable to incorporating additional core-top data as they become available, as well as other
environmental drivers that may be identified in future investigations. We demonstrate its appli-
cations with examples and discuss implications for palaeo-sea ice reconstruction.

2 Data Compilation
2.1 Biomarkers in Surface Sediments

We update the pan-Arctic surface biomarker database of Kolling et al. (2020) (Belt et al.,
2013, 2015; Méheust et al., 2013; Miiller et al., 2011; Navarro-Rodriguez et al., 2013; Piefikowski
et al., 2017; Smik et al., 2016; Xiao et al., 2013, 2015) with paired IP»s-brassicasterol and -dinosterol
core-top measurements from recent literature (Harning et al., 2023), including the location (wa-
ter depth, latitude, longitude), total organic carbon (TOC) content, and concentrations of the biomark-
ers normalised to gram of sediment (j1g/gSed) and/or TOC (1g/gTOC). The expanded database
consists of 644 surface sediment samples collected between 38.00°N and 89.98°N and across the
full range of longitudes (figure 1; dataset S1). Samples within the same sea ice grid cell (see sec-
tion 2.2) are averaged to avoid overrepresenting densely sampled areas. This results in 551 ef-
fective core-top samples with paired IP,s-brassicasterol measurements and 432 with paired 1Pys-
dinosterol measurements for our calibration model.

A dataset published by Stoynova et al. (2013) was excluded from the Kolling et al. (2020)
database as it was obtained with different biomarker extraction solvents and method, and con-
tained measurements inconsistent with those of other studies in the same area (e.g. Navarro-Rodriguez
et al., 2013; Xiao et al., 2015). More recently, a dataset for the East Siberian Sea was made avail-
able by Su et al. (2022). However, it records distinct brassicasterol and dinosterol distributions,
with the former more closely resembling the IP,5 distribution. The authors hypothesised that the
divergence emerged from differential impacts of estuarine turbidity on the respective sterol pro-
ducers, but this is not observed in other datasets from river mouth settings (e.g. Xiao et al., 2013,
2015). In comparing the brassicasterol/dinosterol ratio of each dataset, we find that the Su et al.
(2022) data deviates from the rest of the database (figure S1). Since the cause of this discrepancy
remains conjectural, we refrain from incorporating this dataset into our database.

As biomarker concentrations are affected by sedimentation rates, it has been recommended
that they be normalised to TOC contents prior to comparisons across space and time (Miiller et
al., 2011). The PIP,s index approach further circumvents comparing absolute concentrations by
considering relative concentrations. When calculating PIP;s, the same normalisation should be
applied to both the phytoplankton biomarker and IP,5 concentrations. Since the normalisation
factors are cancelled out in the ratios (Belt, 2018), PIP,5 indices computed from measurements
normalised in either way are directly comparable. However, as the biomarker concentrations are
typically several magnitudes lower when normalised to gram of sediment rather than TOC con-
tent, the reported measurements are less precise, especially near the detection limit. We there-
fore use measurements reported in pg/gTOC where available for our calibration.

Both brassicasterol and dinosterol are commonly used as the phytoplankton biomarker in
the PIP,5 index (PgIP,5 and PpIP,s, respectively) and, in general, their distributions are similar
across the Arctic (figure 1). However, the sources of brassicasterol are more diverse than those
of dinosterol: the former is produced by a range of marine and freshwater phytoplankton as well
as higher plants (Volkman, 1986), while the latter is mainly synthesised by marine dinoflagel-
lates (Nichols et al., 1984; Volkman et al., 1993, 1998). Brassicasterol found in marine sediments
may have been transported by rivers from a lacustrine or terrestrial origin (Fahl et al., 2003; Horner
et al., 2016), thus appearing in higher concentrations than expected for the local sea surface con-
ditions. Brassicasterol may also originate from sea ice diatoms (Belt et al., 2013, 2018), poten-
tially undermining its role as an open ocean proxy. We develop calibrations for both PgIP,5 and
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Figure 1. Locations of published core-top paired IP,5 and brassicasterol and/or dinosterol measurements,
coloured by (a) study of origin, and concentration of (b) IP55, (c) brassicasterol, and (d) dinosterol, nor-
malized to total organic carbon content (j1g/gTOC). In (a), triangle = concentration normalised to gram of

sediment only, and circle = concentration normalised to TOC content also available.
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PpIP,5 but, due to the broader and more variable sources of brassicasterol, focus the discussion
on the latter.

We note that the sterol extraction method (with dichloromethane/methanol) used across all
studies has recently been suggested to underestimate concentrations (Koseoglu, 2019) (figure S2).
However, since sterol data obtained with the more comprehensive method (using potassium hy-
droxide) remain limited, and as only relative concentrations are of importance for their role as
a normalisation factor in the PIP,s index, measurements acquired with the conventional method
are used here for the calibrations in order to investigate Arctic-wide trends and to maintain con-
sistency across datasets. Should sufficient data collected with the saponification step become avail-
able in the future, the calibrations may be updated to correct for any inaccuracies in the existing
core-top sterol concentrations.

2.2 Sea Ice

Sea ice concentrations (SIC) corresponding to the core-top measurements are taken from
the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version
4 (Meier et al., 2021). The data are on a 25 km X 25 km grid and represent the percentage of ocean
surface area covered by sea ice. For each core location, the monthly SIC from January 1979 to
December 2022 in the nearest grid cell are drawn. The great-circle distance between each biomarker
measurement and SIC observation is less than 100 km in all but seven cases. Among these, six
samples are taken from locations in the North Pacific Ocean beyond the data coverage. The matched
SIC data indicate year-round ice-free conditions, as expected for these localities; thus, the sam-
ples are retained in our analysis. The remaining sample in Lake Melville is paired with SIC data
for the ocean and is consequently excluded from the database. Climatologies are created by com-
puting the mean monthly SIC from 1979 to 2000 and from 1979 to 2022. In each case, the in-
terquartile range (IQR) is also computed as a non-parametric measure of year-to-year sea ice vari-
ability.

Complementary SIC datasets are obtained from the Gridded Monthly Sea Ice Extent and
Concentration product, Version 2 (Walsh et al., 2019), which combines various historical sources
such as ship reports, maps by oceanographers, charts from meteorological institutes, etc. to pro-
vide an Arctic-wide SIC record from 1850 onwards. The data are on a 1/4° x 1/4° grid, and the
same procedures are followed to produce climatologies for the core locations. Since the prod-
uct builds on more complete sea ice observations from 1953, we generate climatologies from 1950
to 2000 and from 1950 to 2017.

2.3 Sediment Trap Time Series

To explore proxy seasonality, we also collate measurements of IP,5 fluxes in nine sediment
traps deployed across the Arctic (Bai et al., 2019; Belt et al., 2008; Gal et al., 2022; Koch et al.,
2020; Luostarinen et al., 2023; Nothig et al., 2020; Rontani et al., 2016) (figure 2). Where mul-
tiple traps positioned at the same location are found, data from the deepest one are taken to more
closely reflect the fluxes that eventually reach the sediments. Each trap has a different sampling
period, ranging from one month to a year (see table S1 for details). We focus on the spring and
summer months, when IP,5 is produced and released. Since the time series are approximately
normally distributed, we fit a normal probability density function (PDF) to each of them to fa-

cilitate composite analysis. Monthly SIC during the sampling period are extracted from the NOAA/NSIDC

record. In each case, data from grid cells within a 100 km radius of the trap location are com-
piled to assess regional sea ice variability and to account for lateral advection (Salter et al., 2023).
For sediment traps in the eastern Fram Strait, the source areas simulated by Salter et al. (2023)
spanned sea ice conditions from completely ice-free to mostly ice-covered at any given time
during the sampling period. To avoid dilution of the seasonal signal by lateral transport, we
exclude data from this area, including those previously collected by Lalande et al. (2016), from

our composite analysis.
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Figure 2. (a-i) Sediment-trap IP,5 flux time series and the fitted normal probability density function, as
well as the corresponding sea ice concentration (SIC) trend and uncertainty associated with lateral transport
(range of SIC found within a 100 km radius). The map shows the location of each sediment trap coloured by
the corresponding timing of the peak IP,5 flux, and spatial variations in the timing of the first SIC decrease

(2001-2022, matching the sampling periods of the sediment traps).
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2.4 Oceanographic Variables

Environmental parameters such as temperature, salinity, and nutrient levels may promote
or limit productivity, exerting additional influence on biomarker concentrations. To test for any
such effects, measurements of these variables are acquired from World Ocean Atlas 2018 (Boyer
et al., 2018; Garcia et al., 2019; Locarnini et al., 2019; Zweng et al., 2019). Temperature and salin-
ity data are available at quarter-degree grid resolution, while silicate, nitrate, and phosphate data
are available at one-degree grid resolution. Each core location is matched to the nearest grid cell
to derive the monthly climatologies. For temperature and salinity, these are averages of six decadal
means from 1955 to 2017; for the nutrients, these are averages of all available data. Data from
the top 10 m of the water column (at 0 m, 5 m, and 10 m water depth) are averaged to represent
sea surface conditions.

3 Data Exploration
3.1 Nonlinearity of the PIP,5 Index

Following previous studies (e.g. Miiller et al., 2011; Navarro-Rodriguez et al., 2013; Kolling
et al., 2020), we investigate the relationship between PIP,5 and SIC by assessing their correla-
tion across space in contemporary records. Existing calibrations have sought to establish a pos-
itive linear relationship between the two by invoking the balance factor, c¢; however, complica-
tions arise with its use. For example, the factor has been found to vary both as a function of core
section and location (e.g. Belt et al., 2015; Navarro-Rodriguez et al., 2013), such that the PIP;5
value for a given sediment sample changes with the particular dataset under consideration. This
necessitates the recalculation of PIP;s in each investigation that expands a previous dataset, which
affects the inferred SIC. As Belt and Miiller (2013) pointed out, the approach is particularly prob-
lematic for applications on geologic time scales, as the ¢ factor may change significantly with the
length of the core under study. Furthermore, the factor is susceptible to negative impacts of out-
lying biomarker measurements (Navarro-Rodriguez et al., 2013). Due to these unresolved issues,
the PIP,5 index has thus far remained a semi-quantitative proxy for sea ice.

Another difficulty in applying linear calibration models for past sea ice reconstruction lies
in the highly variable slope and intercept across different regions (e.g. Miiller et al., 2011; Smik
et al., 2016; Xiao et al., 2015). To aid interregional comparisons, Xiao et al. (2015) proposed Arctic-
wide ¢ values (0.11 for PpIP,s), which were subsequently updated by Kolling et al. (2020) us-
ing a larger dataset (0.203). Although similar values (0.238) can be calculated for our expanded
database, marked regional differences persist in the linear correlation with SIC (not shown), pre-
venting a pan-Arctic calibration. More generally, we show that the relationship between PIP;s
and SIC remains nonlinear following correction across a broad range of ¢ factors (figures 3a and
S3). Thus, while the exact value taken for such a uniform factor may be revised by future core-
top studies, it is unlikely that the relationship can ever be fully linearised.

In light of the problems associated with the ¢ factor, we omit its use to develop a robust cal-
ibration. To reduce the positive skewness of the PIP,s data (calculated without c), we transform
the ratio using the natural logarithmic function. The index then becomes:

[IP>s]
In(PIPys) =1 , 2
n(PIP2s) = In( [IPys] + [phytoplankton biomarker| ) @

where the phytoplankton biomarker is either brassicasterol or dinosterol. Our dataset contains
samples where IP,5 and/or the sterols are not detected. Although the biomarkers are recorded as
absent in these cases, they may be present at concentrations below their respective limits of de-
tection, which are expected to vary between laboratories but are rarely reported. Thus, the min-
imum non-zero IP;s concentration in the dataset, taken as the best approximation of the detec-
tion limit, is added to all IP;5 measurements to enable the log transformation. The same treat-
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Figure 3. Mar-Apr-May sea ice concentration (SIC), 1979-2000, vs. (a) PpIP;5 calculated with the ¢ fac-
tor and (b) In(PpIP,5), coloured by sea surface salinity (SSS). Bubble size is inversely proportional to the

interquartile range of the SIC over the 22-year calibration period.

ment is applied to brassicasterol and dinosterol measurements to maintain consistency in the ra-
tio.

Using our expanded database, which includes samples from permanently ice-free and ice-
covered regions in the sub-Arctic and central Arctic, we find that the new In(PIP,5) index exhibits
a sigmoidal (i.e., logistic-like) relationship with SIC: as In(PIP,5) approaches 0, SIC tends to 1;
likewise, as In(PIP,5) approaches negative infinity, SIC tends to O (figure 3b). The suitability of
the logistic function in describing the relationship can be understood intuitively, as SIC values
are inherently limited between 0 and 1. There is a clear transition from SIC = 0 to 1 at In(PIP,5)
~ —4, which mirrors the relatively narrow MIZ in nature. As illustrated subsequently, this abrupt
shift can be well-characterised by logistic regression coefficients, enabling more effective differ-
entiation between ice-free and ice-covered conditions based on In(PIP;s) values. Nevertheless,
some variability is still evident in the the core-top data. This may be partly attributable to the
inherent ambiguity of the PIP,s ratio: the same value can be derived from coevally high or low
concentrations of IP,5 and sterols, caused by different sea ice conditions (Miiller et al., 2011).

To mitigate this, it has been recommended that individual biomarker records be interpreted
along with PIP,5 (Belt & Miiller, 2013; Miiller et al., 2012).

3.2 Uncertainties in SIC Observations

As the proxy signals are taken to reflect the dominant sea ice conditions over the calibra-
tion period, In(PIP,5) is compared against the climatological mean SIC. However, near the ice

edge, the year-to-year variability in SIC can be significant: a location may be completely ice-covered

in one year and ice-free in the next. In such cases, the core-top In(PIP,5) value represents a mix-
ture of variably recorded opposing sea ice conditions, and its relationship with the correspond-
ing mean SIC value is uncertain. To incorporate this source of uncertainty in the calibration, we
calculate the IQR of the SIC data over the calibration period as a non-parametric measure of its
year-to-year variability (figure 3). Data points with high IQR values (high SIC variability) are
associated with more uncertainties and thus are considered less reliable in the regression.

Although the core tops mostly sample the same sediment interval (1 cm, with exceptions
in datasets from Harning et al. (2023) and Kolling et al. (2020)), as sedimentation rates across
the Arctic and sub-Arctic oceans span a wide range, the samples would have accumulated over
different periods, ranging from a few years to several millennia (Stein, 2008; Wegner et al., 2015).
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As a result, most of the core tops represent coarse time composites that cannot be paired with SIC
data over the same period. Considering the accelerated sea ice loss over the last couple of decades
(Stroeve & Notz, 2018), we avoid using SIC data from this period in our calibration to prevent

the potential overrepresentation of anthropogenic signals. The period 1979-2000 is hence cho-
sen to maximise the limited satellite observations available. This means that samples recently
collected from regions with high sedimentation rates (>0.1 cm/year) may be mismatched with
SIC from an earlier period; however, such rapid sediment deposition is rare in the Arctic (Stein,
2008; Wegner et al., 2015). Inour database, only Belt et al. (2015) reported accumulation rates

of this order, for sites in the Barents Sea. In general, all matched SIC values remain estimates

of the real conditions recorded by the core tops, with the largest discrepancies expected in areas
that experienced dramatic SIC changes over recent decades to centuries (e.g. the MIZ). The full
satellite SIC record (1979-2022) and datasets derived from historical sources (1950-2000 and 1950-
2017) are also used to evaluate model sensitivity to the calibration period.

Pairing core-top biomarker measurements with SIC observations from the nearest satel-
lite grid assumes minimal lateral transport. This assumption is valid in ice-covered regions, such
as the Eurasian Basin, where vertical transport has been shown to account for the majority of the
carbon fluxes to the sediments (Belt & Miiller, 2013; Legendre et al., 1992; Néthig et al., 2020).
In other locations, however, lateral advection and resuspension have been found to affect biomarker
fluxes, for example, on the Lomonosov Ridge (Fahl & Né6thig, 2007; Fahl & Stein, 2012) and in
the eastern Fram Strait (Lalande et al., 2016; Salter et al., 2023). By modelling particle trajec-
tories, Salter et al. (2023) showed that a source area could have a radius of approximately 100
km. This particularly complicates the interpretation of samples near the MIZ, where such a large
integration area may span the full gradient of SIC values, resulting in a mixed proxy signal. In

reality, due to variable lateral transport rates across the Arctic, each core top likely integrates biomarker

fluxes over a different area, which may also have changed through time. As this source of uncer-
tainty is poorly constrained, we do not explicitly include it in our model; nonetheless, it mainly
affects core tops near the ice edge, which are already down-weighted in the regression based on
their IQR values.

3.3 Spatiotemporal Variation in Proxy Seasonality

Given that biomarker production and IP,5 release primarily occur during algal blooms and
ice melt, respectively (Belt et al., 2008, 2013; Brown et al., 2011, 2016), the proxies are biased
towards seasonal sea ice conditions (figure 4a-b). As sympagic algal blooms, sea ice thawing,
and pelagic algal blooms do not occur simultaneously, the seasonal signal recorded by In(PIP,5)
is a mixture of these timings and is not straightforward to characterise. Previous calibrations as-
sumed a stationary proxy seasonality, usually towards spring (March-April-May or April-May-
June, e.g. Miiller et al., 2011; Navarro-Rodriguez et al., 2013; Smik et al., 2016). However, some
studies also found good correlations between the PIP,5 index and sea ice in summer (July-August-
September, e.g. Su et al., 2022; Xiao et al., 2015) or autumn (October-November-December, e.g.
Kolling et al., 2020). In another study, a longer calibration interval spanning the full sea ice re-
treat period (March-September) similarly produced statistically significant results (Stoynova et
al., 2013). The proxy seasonality therefore remains poorly diagnosed.

In reality, the seasonal bias in the In(PIP,5) index is expected to vary with location as the
timing of algal blooms is determined by numerous factors, most notably light intensity and nu-
trient availability (e.g. Leu et al., 2015; Oziel et al., 2019), and thus is asynchronous across the
Arctic (e.g. Jietal,, 2013; Leu et al., 2011). The onset of ice melt, dictated by temperature and
regional atmosphere-ocean dynamics (e.g. Horvath et al., 2021; Mortin et al., 2016), also dif-
fers significantly across latitudes (e.g. Bliss & Anderson, 2018; Markus et al., 2009) (figure 2).
The significant delay of these events from one region to another means that the In(PIP,5) indices
obtained from different cores likely reflect sea ice conditions for different months of the year.

In order to constrain this spatially varying seasonality, we analyse published IP,s fluxes mea-
sured in sediment traps across the Arctic by compositing fitted PDFs and the corresponding SIC
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Figure 4. Schematic diagrams of the IP,5 proxy system (a) in spring / before sea ice breakup and (b) in
summer / during sea ice breakup, as well as composite probability density functions (PDFs) of 1P,5 fluxes
aligned to (c) calendar months and (d) months relative to the first month of sea ice concentration (SIC) de-
crease. Dashed line denotes the 5™ percentile of the PDF. Shaded area shows the range of SIC observed
across all sediment traps, and the trend line represents the error-weighted mean, calculated based on the
range of SIC found within a 100 km radius of each trap during the collection period. Arrows indicate the

approximate periods corresponding to those illustrated in (a-b).
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records (figure 4c). The resultant PDF shows that, on average, IP,s release begins in May (>95%
confidence), coincident with the average initial sea ice breakup. The highest fluxes occur between
June and August, concurrent with the main ice melt period, corroborating a close link between
IP,5 deposition and sea ice thawing. For an Arctic-wide static calibration, the conventional cal-
ibration interval of March-April-May (supported by our model; see section 4.2 for details) then
corresponds to the three-month interval before IP,5 release, reflecting IP,s production in ice-edge
diatom blooms prior to sea ice breakup. This suggests that IP»5 in the sediments records the max-
imum SIC before sea ice disintegration, i.e., the In(PIP;,5) index is biased towards the time inter-
val immediately prior to local ice melt.

However, the timing of sea ice breakup differs significantly across the trap locations, with
an offset of up to three months, and the bimodal distribution of the PDF indicates that fluxes hap-
pen in two distinct periods, both supporting a spatially varying seasonal bias. To account for lo-
cal differences in the timing of ice melt, we align each time series to the month of the first SIC
decrease leading to the minimum SIC of the year (figure 4d). The aligned PDF shows that IP;s
release begins in the same month as initial sea ice breakup (>95% confidence), with the flux peaks
synchronised to the following one to two months. The tightened distribution indicates a more pre-
cise calibration interval for each sample, which can be determined quantitatively as the three-month
interval before the first SIC decrease.

By identifying the proxy seasonality for every individual core, in place of an ambiguously
defined “’seasonal” bias for the whole Arctic, the spatially varying calibration allows for more ac-
curate and consistent SIC reconstructions across different regions, especially on geologic timescales.
While the timing of sea ice breakup at each individual site may have remained largely constant
over the accumulation period of the core tops and the sediment traps, it likely differed significantly
further back in time under the influence of changing orbital configurations and gateway geome-
tries (e.g. Karami et al., 2021; Timm et al., 2008). It is then unreasonable to assume that a bias
to March-April-May SIC persists throughout the reconstruction period.

For illustration of the non-stationarity in proxy seasonality through time, SIC simulations
are obtained from the TraCE-21ka dataset, which employs the National Center for Atmospheric
Research Community Climate System Model version 3 (NCAR CCSM3) to reconstruct the tran-
sient climate evolution over the last 21 ka (Liu et al., 2009). The monthly average ICEFRAC (equiv-
alent to SIC) for the pre-industrial, Mid Holocene, and Last Glacial Maximum experiments are
used to derive climatologies, from which the month of the first SIC decrease is calculated. As
shown in figure 5, the calendar month in which SIC loss is first observed at any given location
shifts with time. Thus, the intimately linked proxy seasonal bias is also expected to change, and
the necessity of a varying calibration becomes evident.

a 400BP-1990CE b 6200-5701BP c 22000-20001BP

orN

PFNWAUIONWOE
Month of first SIC decrease

Figure 5. Spatial variations in the timing of the first sea ice concentration (SIC) decrease, derived from the

TraCE-21ka experiments for the (a) pre-industrial, (b) Mid Holocene, and (c) Last Glacial Maximum.
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3.4 Other Environmental Drivers of In(PIP;s)

While sea ice conditions evidently control the timing and spatial distribution of IP,s and
sterol production, other potential environmental drivers should not be neglected. For example,
salinity is known to affect the productivity of sea ice algae (e.g. Glud et al., 2007; Gosselin et al.,
1986; Ralph et al., 2007), with laboratory culture experiments showing that sea ice diatom growth
decreases with reduced salinity (Grant & Horner, 1976; Sggaard et al., 2011; Zhang et al., 1999).
Hyposaline conditions caused by freshwater discharge from large rivers have been implicated in
progressively lower IP,s concentrations measured near estuaries in the Kara and Laptev Seas (Xiao
et al., 2013) and a fjord in Northeast Greenland (Belt, 2018; Ribeiro et al., 2017). Based on ra-
tios between IP»5 and Cy5-HBI diene, Xiao et al. (2013) suggested that saturation in HBIs may
decrease with lower sea surface salinity (SSS), but research on IP,5 sensitivity to salinity remains
limited. A subsequent study by Limoges et al. (2018) found an increase in the abundance of 1P,
producers with a slight decrease in bottom sea ice salinity, but did not preclude negative impacts
of low salinity on IP,5 synthesis.

In our dataset, a number of outlying samples with low In(PIP,s) values and high correspond-
ing SIC originate from locations with low SSS values of < 7 g kg~! (figure 3b). When analysing
In(PIP,5) with SSS, we find suggestions of a logarithmic relationship between the two under ice-
covered conditions, with In(PIP,5) decreasing exponentially as SSS lowers (figure 6a). In such
cases, SSS appears to overtake SIC as the limiting factor for IP,s production, hindering direct in-
terpretation of sea ice conditions from In(PIP;s) values. As SSS rises to normal levels, this trend
disappears and is replaced by a strong negative correlation between In(PIP,5) and SSS, likely an
expression of the co-variation between SSS and SIC. As relatively sparse data exist for hypos-
aline settings, further research is needed to establish a robust relationship between SSS and In(PIP;s).

To disentangle the influence of low SSS on In(PIP,5) from that of SIC in our calibration,
we conduct change point analyses on the dataset sorted by SSS using the ruptures package (Truong
et al., 2020) (see figure S4 for details). The change point is interpreted as a threshold below which
SSS overshadows SIC as the dominant predictor of In(PIP,s). For an Arctic-wide calibration to
March-April-May, the change point occurs at SSS ~ 21.74 g kg™! for both PpIP,5 and PgIP;s.
For a spatially varying calibration to the three-month interval before the first SIC decrease, the
threshold is detected at SSS ~ 21.26 g kg™!.

1.0
2 o, | b e
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o 2, © - 0.8
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e e ! ) 3
° £
e ) L
Aﬁ_4- ° ! E 0.69
=) 1 L n
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—6 - : kS
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€] 1 (]
i ]
e 1 1) 0.2
ol 8 |
1
1
1
T T T —— T T T T T T T T T 0.0
5 10 15 20 25 30 35 22 24 26 28 30 32 34
MAM SSS (g/kg) MAM SSS (g/kg)

Figure 6. (a) Mar-Apr-May sea surface salinity (SSS) vs. In(PpIP,5), with dashed line indicating change
point (SSS ~ 21.74). (b) SSS vs. model residuals. Colours denote sea ice concentration (SIC).
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More generally, as summarised by Belt and Miiller (2013), sympagic algal blooms are in-
fluenced by a range of factors, including nutrient supply in the water column (e.g. Arrigo et al.,
2010; Gradinger, 2009; Leu et al., 2015; Oziel et al., 2019; Rézariska et al., 2009), light avail-
ability (which is in turn regulated by the thicknesses of the ice and snow cover; e.g. Arrigo et al.,
2010; Leu et al., 2015; Mundy et al., 2005; Oziel et al., 2019), and bottom ice melt rate (Castellani
et al., 2017; Lavoie et al., 2005). Their effects on the production of IPs specifically, however,
have not been studied in detail. Furthermore, as normalisation by phytoplankton-derived sterols
in the In(PIP;5) index negates, to a certain extent, the effects of nutrient levels and light inten-
sity on biomarker synthesis (Miiller et al., 2011; Stoynova et al., 2013), and considering that sea
surface temperature co-varies with SIC, the sensitivity of In(PIP»s) to these variables is likely low.
We therefore leave the identification of additional environmental predictors and their incorpo-
ration into the In(PIP,s) calibration for future work.

4 Bayesian Calibration Model
4.1 Model Design

A Bayesian proxy system model (BaySIC) is developed to relate In(PIP,s) to SIC based on
core-top observations. Since the calibration is based on the spatial relationship between In(PIP;s)
and its environmental drivers, and is applied to predict temporal changes in these values, the model
assumes ergodicity (Tierney & Tingley, 2014), i.e., the response of the proxy to different envi-
ronments across space is taken to represent its response to environmental changes over time.

To account for the nonlinear relationship between In(PIP;s) and SIC, as well as to respect
the inherent limit of SIC between 0 and 1, the core-top data may be described with a logistic func-
tion:

1

SIC = , 3)
1 +exp —(Bo + B1 In(PIP2s))

where SIC and In(PIP;s) are vectors representing the core-top data, By is the intercept, and 5;
is the slope. However, a regression model in this form considers SIC as a function of In(PIP;s),
which contradicts the natural causal relationship between the proxy and its environmental pre-
dictors. In nature, SIC serves as the predictor variable for In(PIP,s). Assuming that the predic-
tion errors are normally distributed, the relationship can be expressed as follows:

In(PIP2s;) | Bo. B1, ¢ ~ N(g(SIC;), ¢), “)

“In(L-1)-

where PIP;s; denotes the core-top sample, SIC; denotes the corresponding SIC data, g(x) = W

is the inverse of equation 3, and ¢ is the variance, which is introduced by uncertainties in the SIC
observations. Thus, we obtain the forward model in the following form:

—In(=L —1) =
In(PIPys;) = n(SIC‘;B )~ Fo + €, %)
1

€ ~ N(O’ ¢)’ (6)

where €; represents the residual error associated with each sample. The inverse logistic function
(equation 5) has a domain of (0, 1), which allows the transformation of SIC data within the same
range. As SIC approaches 0, In(PIP;s5) decreases exponentially; as SIC approaches 1, In(PIP,5)
increases exponentially.

The model parameters (8o, 51, and ¢) are inferred using a Bayesian framework. Instead
of a single estimate for each parameter, Bayesian analyses yield probability distributions (pos-
teriors), which serve to quantify the uncertainties of model predictions. The posteriors are de-
rived from (i) the priors, which are assigned to reflect the current scientific understanding of the
parameters, and (#7) the likelihood, which is computed from the data given the parameters. There-
fore, the posteriors represent updated beliefs of the parameters that are informed by the data, which,
in our case, consist of the core-top In(PIP,s) values and their corresponding satellite SIC obser-
vations. Accordingly, their spread reflects uncertainties in both the data and the calibration.
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an To the best of our knowledge, there exists no published nonlinear calibration for In(PIP,s)

aa2 that can provide a basis for prior expectations for the regression coeflicients. Hence, uninforma-
443 tive priors are used such that the posteriors are predominantly influenced by the data. The nor-
444 mal distribution is chosen for its real-valued, unbounded domain (i.e., 8 € R), and is centred
ass around O so as not to favour positive or negative values a priori. For variance, a prior constrained
ass to positive real numbers is required (i.e., ¢ € R*); the inverse gamma distribution is conven-
aa7 tionally employed in Bayesian models for this purpose. The distributions are defined as follows:
Bo ~ N(0,3), (7)
448
” B~ N(0,3), 8)
¢ ~1G(2,05); 9)
450 Using larger prior standard deviations in sensitivity tests does not result in significant changes
451 in the posteriors, indicating that the model is robust to the choice of priors.
as2 Since our 22-year SIC dataset constitutes only a fraction of the time represented in most
453 samples, and its grids do not perfectly match the areas integrated by the core tops, we further treat
as4 the SIC corresponding to each In(PIP) as an unknown. TUnder the Bayesian framework, the
ass distribution associated with each SIC parameter thus simulates the year-to-year sea ice variabil-
ass ity over the (unknown) time and area integrated by the core top.
as7 The prior for each SIC parameter is defined by a beta distribution, chosen for its flexibil-
as8 ity to accommodate vastly different distributions within the fixed limits of 0 and 1, as follows:
SICl ~ Beta(ai,ﬁi), (10)
459 i
f= L 11
@; 10R; (11)
460 1
Bi= 10K, ~ @;, (12)
a6t where ¢ and IQR are the mean and interquartile range of the 1979-2000 SIC dataset, respectively.
a2 This centres the prior distribution on the mean with a variance proportional to the IQR, effec-
483 tively assigning smaller regression weights to samples with higher SIC variability. The Kullback—Leibler
a4 divergence, a measure of the difference between probability distributions (Kullback & Leibler,
a5 1951), is small across all SIC parameters, indicating that the simulated distributions provide good
a6 approximations of the empirical distributions (figures S5 and S6). SIC values of zero are assumed
as7 to be under the satellite detection limit and are replaced by the minimum non-zero SIC value in
as8 the dataset.
489 In the forward model, the spatially varying seasonal bias in In(PIP;s) is addressed by match-
470 ing each core-top sample with the climatological mean SIC of the calibration interval deduced
a1 from sediment trap studies, i.e., the three months before the first SIC decrease (figure 4d). This
a72 means that model-estimated SIC values for different months will be used to infer In(PIP,5) val-
473 ues at different locations. For example, in high latitude regions where sea ice breakup does not
a7a begin until July, the calibration interval will be May-June-July. As the timing of sea ice retreat
475 changes through time, the model also accommodates temporal changes in proxy seasonality, fa-
476 cilitating its application in geologic time. The month of the first SIC decrease at a given location
a77 is determined by rounding the monthly climatologies to the nearest 0.05 and finding the month
a78 of the maximum SIC leading to the minimum. This requires seasonally varying SIC and fails where
a79 SIC remains constant throughout the year, such as locations that are always ice-free or ice-covered.
480 For these cases, the month of the first SIC decrease is taken from the nearest grid with variable
a8t SIC, assuming that any IPs deposition occurs either by lateral transport or during sea ice thin-
a82 ning which would be concurrent with nearby SIC decrease.
483 The likelihood is then calculated by:
L(In(PIPys) | Bo, B1, ¢, SIC) = HP(IH(PIP%[) | Bo, B1, ¢, SIC;), (13)
i=1
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[Modified from £ (B9, 81 ¢, SIC | In(PIPs)) = [T, f(In(PIPys;) | Bo. B1. ¢.SIC;).] where n is the total
number of core tops, and P(-) is used to denote PDFs.

By Bayes’ Theorem, the following proportionality may be obtained:
P(Bo, B1, ¢, SIC | In(PIP2s)) o< L(In(PIP2s) | Bo, B, ¢, SIC) P(Bo, B1. ¢, SIC), (14)

[Modified from f (8o, B1. ¢, SIC | In(PIP25)) o L(Bo.S1. ¢.SIC | In(PIP2s)) f(Bo.B1. &, SIC),] where
#P(Bo, B1, ¢, SIC) is the product of all the prior distributions, with the assumption that the pa-
rameters are independent of one another. Given the large number (>400n + 3) of parameters, we
use the r-walk (Christen & Fox, 2010), a Markov chain Monte Carlo sampler to infer the poste-
riors for all parameters. The ensemble of parameters obtained, representing possible calibra-
tion curves given the data, can then be used to calculate the predictive distribution, which in-
tegrates over model uncertainties and provides a probabilistic estimate of In(PIP;s) given any SIC
value.

Based on change point analyses (Truong et al., 2020), we exclude samples with low SSS
in our calibration to focus on the relationship between SIC and In(PIP,5). Therefore, the model
can only predict In(PIP,5) from SIC when and where SSS meets the determined threshold, which
differs slightly depending on the calibration interval. Should the proposed logarithmic relation-
ship between SSS and In(PIP;s) be independently verified in the future, we suggest a pre-treatment
of samples from hyposaline settings to correct for the additional influence.

Since the logit function describes a one-to-one relationship between SIC and In(PIP;s), the
forward model can be inverted to estimate past SIC directly from downcore In(PIP;s) values (equa-
tion 3). Through Bayesian inference, the same ensemble of parameters is used to propagate cal-
ibration uncertainties into the predictions. However, as the timing of the first SIC decrease is un-
known in the inverse case, a spatiotemporally stationary proxy seasonality must be assumed. We
experiment with different calibration intervals to determine the optimum interval for such an Arctic-
wide static calibration. Results from the inverse model should also be analysed with salinity data
wherever possible; if SSS is below the detected threshold for the calibration, the model may be
prone to underestimate SIC.

4.2 Model Results

The BaySIC model and its residuals are shown in figure 7, and its metrics in table 1. The
relationship between SIC and In(PIP,s) is well described by the inverse logistic function. The spa-
tially varying calibration explains 74% of the variance in the In(PpIP,5) index calculated with
our core-top biomarker database, showing a marked improvement from the previous pan-Arctic
calibration (Xiao et al., 2015). The model has a root mean square error of prediction of 0.96, which
is reasonable given the spread of the core-top data, particularly in locations with more variable
SIC. As these samples are down-weighted in the regression, the calibration curve is largely de-
termined by data points with SIC close to O or 1. In general, there exists no strong spatial pat-
tern in the residuals, supporting model application across the Arctic. This is not the case in sen-
sitivity tests that include samples from Stoynova et al. (2013) and Su et al. (2022) (figure S7), fur-
ther justifying their exclusion from our calibration database.

The posteriors for the regression coefficients have significantly smaller spreads than the pri-
ors (figure S8), indicating the dominance of the likelihood function, i.e., the intercept and slope
of the model are mostly informed by the core-top data. Similar results are obtained using the full
satellite SIC record (1979-2022) or historical datasets (1950-2000 and 1950-2017) to inform the
priors (see table S2 for details), further supporting the model’s robustness to different temporal
frameworks. The posterior for variance shows an increase from the prior, reflecting data constraints
on the precision of the model.

uncertaintiosin both-the-observations-and-the-calibration-Uncertainties in both the observations and the
calibration can be quantified using the 95% highest density interval (HDI), which is the smallest
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Figure 7. Calibrations (left) for In(PpIP,5) using the sea ice concentrations (SIC) of (a) the average of the
three months before the first SIC decrease and (b) Mar-Apr-May, and the corresponding spatial distributions
of residuals (right). Bubble size is inversely proportional to the interquartile range of the SIC over the 22-year

calibration period. HDI = highest density interval.

Table 1. Calibration results of different In(PIP,5) indices to the sea ice concentration (SIC) of different
months (e.g. MAM = Mar-Apr-May). RMSEP = root mean squared error of prediction.

3 months before first SIC decrease MAM AMJ  Apr  May

ln(PDIP25)

R? 0.74 074 072 073 070
RMSEP 0.96 096 101 099 1.04
In(PgIP;s5)

R2 0.63 063 059 063 0.57
RMSEP 1.47 148 154 147 158
SSS threshold 21.26 21.74 2145 23.05 21.61
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region that contains 95% of the posterior distribution, representing the most credible values. In
this calibration, the 95% HDI spans approximately 3 In(PIP;s) units. Since the inverse logistic
function is characterised by a gently-sloped body between steeply-sloped tails, the BaySIC model
is more sensitive to extreme than intermediate SIC values. This means that in the inverse fram-
ing, where downcore In(PIP;s) are used to reconstruct SIC, the uncertainties associated with ex-
treme In(PIP,5) values will be smaller than those associated with intermediate In(PIP,5) values
(see section 5 for illustrated examples). As the core-top data show that In(PIP,5) ~ -4 can result
from the full range of SIC, SIC reconstructions from these values are highly uncertain and should
be interpreted with caution. Away from this step-like transition, the model can distinguish be-
tween ice-free and ice-covered conditions with relatively high certainty. Moreover, within the ex-
isting core-top database, there is a ~ 1:4 imbalance of paired IP,5-sterol data collected from sea-
sonally ice-free (SIC ~ 0) versus seasonally ice-covered (SIC ~ 1) locations (figure 7). Increas-
ing data coverage near the seasonally ice-free transition would provide more constraints on the
lower end of the slope.

Following the removal of core tops matched with low SSS, no significant trend is observed
between SSS and the residuals among the remaining samples (figure 6b). Since the influence of
salinity on In(PIP,5) is only apparent at anomalously low SSS levels, the filtering procedure is
deemed more suitable than the addition of a second predictor in the calibration model. Analy-
ses with SST and nutrient data similarly show no correlation between the residuals and these en-
vironmental variables (figure S9), suggesting that they are not major drivers of In(PIP,s). Future
work is needed to identify the source(s) of the variance left unexplained by BaySIC.

Similar calibration curves are obtained for In(PgIP,s), but some structures in the spatial
distribution of residuals are discernible (see Appendix A). In particular, strong negative resid-
uals exist to the northeast of Svalbard, where low In(PgIP,5) values are associated with ice-covered
conditions (and normal SSS levels). As Belt et al. (2015) pointed out in their original study, ad-
ditional brassicasterol may be contributed by non-pelagic sources, which would explain the lower-
than-expected IP,5-brassicasterol ratios. However, as these core tops lack corresponding dinos-
terol measurements, it is possible that their In(PpIP,5) values are equally low, which would point
to other causes of discrepancy. BaySIC incorporates this unknown source of uncertainty by tak-
ing into account these anomalous samples and converging to a higher variance. Thus, the In(PgIP,5)
calibration has a greater uncertainty range that reflects potential additional influences on the proxy
(see examples below).

For an Arctic-wide static calibration, March-April-May appears to be the optimum cali-
bration interval, with an alternative calibration to April-May-June yielding similar results. This
is consistent with previous calibrations and corroborates the interpretation that In(PIP,5) reflects
SIC shortly before sea ice breakup (discussed in section 3.3). Although this model performs sim-
ilarly to the spatially varying model in replicating core-top samples, we argue that the consider-
ation of a variable proxy seasonality remains important for accurate predictions. By identifying
In(PIP,5) as recording the maximum SIC before sea ice disintegration, the model outputs for the
corresponding months may be used to reconstruct the maximum sea ice extent, rather than the
average sea ice conditions over a loosely defined Arctic spring.

To test this hypothesis and to evaluate model performance, we apply BaySIC to out-of-sample
SIC observations from locations with paired IP;s-sterol sediment trap data. The average SIC of
the three months before the first SIC decrease during the sampling period are supplied to the model
to generate probabilistic In(PIP,s) estimates. For the traps at ~ 75° latitude (Gal et al., 2022),
this interval is March-April-May. For those at ~ 83° latitude (Nothig et al., 2020), it is April-
May-June. The results are compared against the observed In(PIP,s) values, which are calculated
using the total biomarker fluxes measured over the sampling period. Overall, there is good agree-
ment between the BaySIC predictions and sediment trap data, with the observations always falling
within the 95% HDI (figure 8). The maximum a posteriori (MAP) estimation, representing the
mode of the predictive distribution, converges closely with the observation.
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Figure 8. Predictions of the spatially varying forward model vs. observations from sediment traps of (a-b)

In(PpIP»>5) and (c-d) In(PgIP,5). Trap locations are shown in figure 2. HDI = highest density interval.
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We repeat the exercise using the Arctic-wide static March-April-May calibration to assess
the potential impacts of assuming stationary proxy seasonality. For the two traps located at a higher
latitude, this results in a one-month offset from the seasonal bias diagnosed by the spatially vary-
ing model. In both cases, the prediction deviates further from the observation than that obtained
above by ~ 0.11 In(PIP,s) units (not shown). This supports our hypothesis that the considera-
tion of a dynamic proxy seasonality yields more accurate forward modelling results and, despite
relatively small differences derived here from modern observations, is consequential in deep-time
applications (discussed in section 3.3).

5 Palaeoclimate Applications
5.1 Quantitative SIC Reconstruction from Downcore Biomarker Measurements

By establishing a fully quantitative relationship between SIC and the new In(PIP;s) index,
BaySIC overcomes the longstanding limitation to semi-quantitative SIC reconstruction of the orig-
inal PIP,5 index. To exemplify its palaeoclimate applications, we apply BaySIC to a sediment
core in northeastern Fram Strait (MSMS5/5-712-2; 78°54.94’N, 6°46.04’E; 1487 m; Budéus, 2007)
that has been analysed for both biomarkers and dinoflagellate cyst (dinocyst) assemblages. The
published IP;5 and sterol measurements (Cabedo-Sanz & Belt, 2016; Miiller & Stein, 2014; Miiller
et al., 2012) are placed on the same chronology as the palynological data (Falardeau et al., 2019)
to permit comparisons between the records, which extend into the Last Glacial Maximum (LGM;
23 ka).

Paired IPys-dinosterol and IP;s-brassicasterol measurements are supplied to the inverse model
to estimate past SIC from In(PpIP,5) and In(PgIP,5), respectively. Within BaySIC, all biomarker
measurements are treated with the best estimate of the detection limit prior to calculating the In(PIP,5)
index (discussed in section 3.1). Based on reconstructions presented by Falardeau et al. (2018),
SSS at the core site fluctuated between 24 and 36 psu in the last 23 ka, remaining well above the
determined threshold (table 1). Thus, salinity is assumed to have negligible influence on the biomarker
records presented here.

Overall, the SIC reconstructions using either index show good agreement with each other
(figure 9a-b). For the LGM, both indices reconstruct near-complete ice cover, with amplified SIC
fluctuations in the In(PpIP,s) reconstruction. Partial ice cover persisted during Heinrich event
1 and the Bglling-Allergd, but higher SICs are reconstructed from In(PgIP;s) in several intervals.
These discrepancies are due to differences in the IPys-sterol ratios and are also found in recon-
structions using the original PIP,5 index (see section 5.2). Near-identical trends are obtained for
the Younger Dryas (YD) and throughout most of the Holocene, only diverging in the last 2 ka.
The inconsistencies here are due to the integration of the Cabedo-Sanz and Belt (2016) dataset,
which reports lower IP,5 concentrations than (and similar brassicasterol concentrations as) mea-
surements at the same depths provided by Miiller et al. (2012), and does not include data for di-
nosterol. Near the top of the core, rapid sea ice loss is inferred from both indices and the recon-
structions converge towards the modern March-April-May SIC observed at the core site.

The 95% HDI for both reconstructions are large (given site MSMS5/5-712-2’s location near
the MIZ), but realistic considering the various sources of uncertainty incorporated. As explained
in the previous section, the uncertainty ranges associated with extreme In(PIP,s) values are smaller,
for example, during the YD when the proxy strongly indicates ice-covered conditions. In addi-
tion, reconstructions based on In(PpIP,s) feature less uncertainty than those derived from In(PgIP»s),
which reflects higher confidence in its correlation with SIC in the core-top calibration.

5.2 Comparison with Prior SIC Reconstruction Approaches

To illustrate the differences in SIC reconstruction via In(PIP,5) and the original PIP;s in-
dex, we apply previous linear calibrations for the region of East Greenland and West Spitsber-
gen (Miiller et al., 2011) to the same biomarker data. As the core was divided into sections and
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Figure 9. Reconstructions of Mar-Apr-May sea ice concentration (SIC) at site MSM5/5-712-2 based on
paired (a) IP»5-dinosterol and (b) IP,s-brassicasterol measurements (Cabedo-Sanz & Belt, 2016; Miiller &
Stein, 2014; Miiller et al., 2012), using the BaySIC inverse model and the regional linear calibrations pre-
sented by Miiller et al. (2011). HDI = highest density interval. (c) Reconstruction of annual SIC at the same
site via dinocyst assemblages from Falardeau et al. (2018). Circles denote modern (1979-2000) SIC observed

at the core site. Greyshadingindicates-cold-intervals: YD = Younger Dryas; BA = Bglling-Allergd.

analysed separately, different ¢ factors were employed in the calculation of PIP,s by each study
(Cabedo-Sanz & Belt, 2016; Miiller & Stein, 2014; Miiller et al., 2012). In order to use the pub-
lished calibrations, we recalculate the PpIP>5 and PgIP,s values based on the ¢ factors derived
by Miiller et al. (2011). The highly variable and somewhat arbitrarily defined ¢ factor is an in-
herent limitation of the original PIP,5 index approach; by eliminating it from In(PIP;s), BaySIC
enables consistent proxy interpretation over space and time. Its applicability across the Arctic
further removes the need for a regional calibration, allowing quantitative proxy interpretation in
locations where it was previously not possible.

Unlike BaySIC, the linear regression model takes SIC beyond 0 and 1 at extreme PIP;s val-
ues; we place additional limits on the reconstructions to restrict them to the natural range of the
parameter. In general, BaySIC predictions are consistent with the results of the adapted PIP,5 in-

dex approach (figure 9a-b), which reflects the common biomarker data used for both indices. BaySIC

tends to estimate greater magnitude SIC changes than the linear regression model, for instance,
the rapid decrease from full ice cover at the end of the LGM. Similarly, the reconstructions di-
verge from Mid Holocene onwards, with BaySIC suggesting near-complete ice cover in contrast
to the partial ice cover indicated by the linear calibration model. This is an expression of the demon-
strated nonlinearity of the proxy: at the transition between ice-covered and ice-free conditions,
BaySIC captures small shifts in In(PIP,5) and deduces relatively large SIC changes.

Between 18 and 19 ka, completely ice-free conditions are reconstructed from the original
PIP,5 indices, whereas BaySIC estimates partial ice cover. These inconsistencies arise from the
zero IPs concentrations measured for the sediment samples, leading to zero PIP;s values indica-
tive of open ocean conditions. However, based on the low corresponding sterol concentrations,
Miiller and Stein (2014) concluded that the biomarkers record permanent ice cover instead. This
has conventionally been handled by designating a PIP,5 value of 1 to samples with IP5 and sterol
concentrations under or near their limit of detection (Belt, 2018). BaySIC results show that once
the biomarker measurements are treated with the detection limit, they can be readily related to
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the full range of SIC via the In(PIP,s) index (section 4.2), suggesting that the relative biomarker
abundances remain informative even when absolute abundances are low. As reported IP,s and

sterol concentrations both tend to 0, In(PIP,5) approaches —2.35 to —3.06, depending on the sterol
and the unit of measurement used. According to the calibrations, these values would indicate mostly
ice-covered conditions, in agreement with previous interpretations of the proxy system. As biomarker
concentrations increase, their ratio becomes less sensitive to the added minimum concentrations.
The BaySIC approach maintains the separation between observation and interpretation to avoid
introducing additional bias into SIC reconstructions.

Despite similarities in the reconstructions, the major breakthrough made by BaySIC lies
in its fully quantitative proxy interpretation. Owing to challenges in quantifying the original PIPs
index, it has traditionally been used to reconstruct sea ice only semi-quantitatively by categoris-
ing sea ice conditions and matching each to a range of index values. In their original stdyrecon-
struction, Miiller et al. (2012) distinguish between extended, marginal, and variable/less ice cover,
as well as ice-free conditions, instead of deriving SIC from the PIP,5 index as attempted here.
With BaySIC, In(PIP,5) is mapped to the full, continuous range of SIC, clarifying the proxy in-
terpretation and facilitating direct comparison with model outputs. Its Bayesian framework fur-
ther quantifies the uncertainties, which have been lacking in previous linear calibrations for PIP;s.
The resultant probabilistic estimates may help reconcile different proxy records and achieve more
robust palaeoclimate reconstructions.

As an example, we compare BaySIC results against an independent sea ice reconstruction
using dinocyst assemblages (Falardeau et al., 2018). The reconstruction is converted from ice-
covered months per year, where ice cover is defined as SIC > 0.5, to annual SIC (figure 9c¢); a
good correlation has previously been shown between the two variables (de Vernal, Rochon, et
al., 2013). The average SIC reconstructions are therefore expected to be lower and less variable
than those from In(PIP,5) and PIP,s, which are seasonally biased. A detailed analysis of the record
is presented in the original study; here, we highlight several key differences between the proxy
reconstructions.

During the LGM, persistent ice cover is reconstructed from In(PIP,5), followed by a rapid
transition to mostly ice-free conditions at 19 ka. An opposite trend is shown by dinocyst assem-
blages, which suggest little to no ice cover throughout the LGM, succeeded by partial ice cover.
The contradiction is likely due to limitations of the modern analogue technique employed in quan-
titative sea ice reconstruction from dinocyst assemblages: as Falardeau et al. (2018) pointed out,
the best matches found for their LGM samples were from a location that experienced distinct hy-
drographical conditions to those expected for the core site. Without suitable modern equivalents,
the resultant SIC reconstructions may be inaccurate. In contrast, the diverse settings in which IP5s
and the sterols have been detected and the clear relationship between the In(PIP;s) index and SIC
renders the proxy applicable in different palaco-environments.

Both proxies record a relatively short-lived SIC increase at 14 ka, followed by partial ice
cover during the Bglling-Allergd. Evidence of the YD cooling is similarly clear in all reconstruc-
tions, with the In(PIP,5) indices indicating a sharper SIC rise to completely ice-covered condi-
tions, compared to a slower and more modest increase shown by dinocyst assemblages. The el-
evated SIC persisting into Early Holocene registered by the dinocyst assemblages is not discernible
in In(PIP;s) reconstructions. From Mid to Late Holocene, the reconstructions further diverge:

a steady SIC increase is reconstructed via In(PIP;s), following the decline in the orbital forcing
in the Northern Hemisphere, while the dinocyst assemblages suggest relatively stable, low an-
nual SIC. As In(PIP,s) tracks the maximum SIC, sea ice changes in seasonally ice-covered lo-
cations are more readily observable, providing more precise insights into past sea ice conditions.

5.3 Sea Ice in Past Warm Periods

The new calibrations offer opportunities to reevaluate available proxy records for proba-
bilistic insights into Arctic sea ice responses to past warming. For additional examples, we ap-
ply BaySIC to sites with paired IPps-sterol measurements dated to the Last Interglacial (LIG, ~
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130 — 118 ka) and the mid-Pliocene Warm Period (mPWP, ~ 3.3 — 3.0 Ma). These data have
previously been interpreted either qualitatively or semi-quantitatively (summarised in table 2).

In the absence of reliable salinity data for each site and period, we ignore, for illustrative purposes,
the possibility of drastic SSS changes. The published biomarker concentrations (Clotten et al.,
2017; Knies et al., 2014; Kremer et al., 2018; Stein et al., 2017, 2018; Steinsland et al., 2023) are
averaged over the target interval as inputs for the inverse model, yielding a non-Gaussian PDF

for each SIC reconstruction (figure 10). This means that the HDIs are not centred at the MAP
estimation, i.e., there is a higher probability for SIC to fall closer to one end of the spectrum (also
seen in figure 9), and reflects that most of the ocean is either ice-covered or ice-free, such that

the chances of the core site being within the MIZ is relatively low.

Table 2. Previous interpretation of sea ice conditions during the mid-Pliocene Warm Period (mPWP) or the

Last Interglacial (LIG) at each site. Core locations are shown in figure 10.

Core Previous sea ice interpretation Study

mPWP

ODP910C Similar to the modern summer minimum  Khnies et al. (2014)

ODP151-907A Ice-covered in spring, ice-free in summer  Clotten et al. (2018)

LIG

PS2200-5 Perennial ice cover Stein et al. (2017)

PS2138-2 Spring/summer SIC of ~ 20% or less Stein et al. (2017)

PS92/039-2 Perennial ice cover Kremer, Stein, Fahl, Ji, et al. (2018)
PS93/006-1 Partially ice-covered in summer Kremer, Stein, Fahl, Bauch, et al. (2018)

GS16-204-22CC-B  Marginal ice zone Steinsland et al. (2023)

For the LIG, BaySIC predicts relatively high (~ 0.7 or more) March-April-May SIC for
PS2200-5, PS93/006-1, and GS16-204-22CC-B, supporting the presence of sea ice in spring as
formerly inferred for these sites (Kremer, Stein, Fahl, Bauch, et al., 2018; Stein et al., 2017; Steins-
land et al., 2023). The tight PDF obtained for PS2200-5 in particular indicates high confidence
in the interpreted ice-covered conditions, which is broadly consistent with this site’s northerly
location. Slightly more sea ice coverage is estimated for GS16-204-22CC-B than in the original
study, which considered the biomarkers individually rather than combined in an index. Compared
with the traditional approach of classifying sea ice conditions, with categories like the MIZ span-
ning a wide range of SIC, the redefined In(PIP,s) index and its calibration to SIC allow more spe-
cific reconstructions.

BaySIC estimates very low (~ 0.1 or less) March-April-May SIC for PS92/039-2, contra-
dicting the previously inferred perennial ice cover (Kremer, Stein, Fahl, Ji, et al., 2018). This dis-
agreement stems from the setting of PIP,5 to 1 for samples with low IP,5 and brassicasterol con-
centrations in the original study, as opposed to the detection limit treatment implemented within
BaySIC (discussed in section 5.2). By considering the ratios of the biomarkers via In(PIP,s), our
model suggests that this site had more likely experienced ice-free conditions during the LIG. For
PS2138, the BaySIC prediction via In(PgIP,5) corroborates sea ice conditions deduced from PgIP55
by Stein et al. (2017), but diverges from the much higher SIC predicted via In(PpIP,5). Further
investigation is needed to explain this discrepancy. One potential cause is additional brassicas-
terol sources (discussed in section 2.1), in which case the local SIC over the LIG would have been
previously underestimated. As BaySIC provides the full probability distributions for each recon-
struction, it is also possible to determine the most probable SIC as indicated by all biomarkers
by considering the results obtained via both sterols.

Turning to the mPWP, a similar divergence is observed in predictions for ODP151-907A:
the In(PpIP;s5) record strongly indicates SIC to be close to 1, whereas the In(PgIP55) record pro-
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Figure 10. BaySIC reconstructions of Mar-Apr-May sea ice concentration (SIC) for seven sites with mid-

Pliocene Warm Period (mPWP, yellow) or Last Interglacial (LIG, white) paired IP,5-sterol measurements.
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vides only weak constraints on SIC. Clotten et al. (2018) attributed the decoupling of the two sterols
during this period to non-marine sources of brassicasterol, which would lend more credibility

to the fully ice-covered scenario suggested by In(PpIPs). The ODP910C site is estimated to be
ice-free based on In(PgIP;s), consistent with the former interpretation (Knies et al., 2014). How-
ever, dinosterol data is not available for this core. Given the occasional but significant conflicts
between SIC reconstructions employing different sterols, interpretations based on only one of the
two should be treated with extra caution.

Direct comparisons of SIC across distant localities and distinct ages, as shown above, have
previously proven difficult due to issues pertaining to the ¢ factor and regional correlations; BaySIC
facilitates spatially and temporally consistent sea ice interpretations, bringing a new perspective
to ongoing debates about Arctic sea ice extent during past warm periods. While recent studies
have inferred seasonally ice-free conditions in the LIG indirectly through summer surface air tem-
perature proxies (Sime et al., 2023), or qualitatively through the presence of an open water proxy
(Vermassen et al., 2023), more proxy-based investigations are required to confirm such propo-
sition and to better define sea ice sensitivity to warming. In this regard, BaySIC provides a crit-
ical step toward achieving direct and quantitative solutions.

6 Conclusions

A new In(PIP;s) index is proposed as a robust Arctic sea ice proxy that enables fully quan-
titative proxy reconstructions of palaco-sea ice concentration (SIC). It improves on the established
PIP,5 index by eliminating the use of a problematic balance factor, thus allowing direct compar-
isons across different Arctic regions and consistent interpretations on longer (geologic) timescales.
The In(PIP,5) index is found to correlate nonlinearly with SIC, with an apparent additional in-
fluence of low sea surface salinity warranting further investigation. Observations from published
sediment trap studies indicate a proxy seasonal bias towards the interval preceding local sea ice
breakup, which varies over both space and time.

Using a pan-Arctic core-top biomarker database, we develop a set of Bayesian models, called
BaySIC, to calibrate the In(PIP,5) index to seasonal SIC. Calibration uncertainties are quantified
and propagated to model predictions, providing better constraints on model uncertainties. The
spatially varying forward model considers differences in the timing of ice melt, yielding more
accurate proxy predictions while facilitating proxy-model comparisons and palaeoclimate data
assimilation. An inverse model is also devised, by assuming an Arctic-wide stationary bias to
March-April-May, to support direct SIC reconstructions from downcore In(PIP,5) measurements.
Finally, we provide a number of examples that demonstrate the applicability of BaySIC to palaeo-
climate investigations, which highlight the advances made in sea ice reconstruction using IP;s
and open-water sterols.

As the first model of its kind, BaySIC represents an important step in translating the now
well-established sea ice proxy into a quantified climate variable, opening up new possibilities for
its use in constraining the long-term variability of Arctic sea ice, thereby improving our under-
standing of past and future climate changes. Future research may provide more insights into the
proxy system, including the identification of other environmental factors affecting In(PIP;s), which
may help explain the remaining variance in the index. Additional core-top biomarker datasets,
especially from currently under-sampled Arctic and sub-Arctic regions, may further strengthen
the constraints on the calibration curves and their associated uncertainty ranges, enabling more
robust sea ice, and thus global climate, reconstructions.

Appendix A Model results for In(PgIP;s) calibrations
Open Research

The core-top biomarker database investigated for the development of BaySIC is available as Sup-
porting Information. The BaySIC software package (Python) is publicly available on GitHub via
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