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Abstract11

Sea ice plays multiple important roles in regulating the global climate. Rapid sea ice loss in the12

Arctic has been documented over recent decades, yet our understanding of long-term sea ice vari-13

ability and its feedbacks remains limited by a lack of quantitative sea ice reconstructions. The14

sea ice diatom-derived biomarker IP25 has been combined with sterols produced by open-water15

phytoplankton in the PIP25 index as a sea ice proxy to achieve semi-quantitative reconstructions.16

Here, we analyse a compilation of over 600 published core-top measurements of IP25 paired with17

brassicasterol and/or dinosterol across (sub-)Arctic oceans to calculate a new ln(PIP25) index that18

correlates nonlinearly with sea ice concentration. Leveraging sediment trap and sea ice obser-19

vational studies, we develop a spatially varying Bayesian calibration (BaySIC) for ln(PIP25) to20

account for its non-stationary relationship with sea ice concentration and other environmental drivers21

(e.g. sea surface salinity). The model is fully invertible, allowing probabilistic forward modelling22

of the ln(PIP25) index as well as inverse modelling of past sea ice concentration with bi-directional23

uncertainty quantification. BaySIC facilitates direct proxy-model comparisons and palaeoclimate24

data assimilation, providing the polar proxy constraints currently missing in climate model sim-25

ulations and enabling, for the first time, fully quantitative Arctic sea ice reconstructions.26

Plain Language Summary27

A lipid termed IP25 is produced by microorganisms residing in Arctic sea ice and deposited28

in underlying sediments. By measuring its concentration in sediment cores, palaeoclimatologists29

can interpret past sea ice conditions at the core locations. When multiple cores across the Arc-30

tic are analysed, palaeo sea ice extents can be reconstructed. This study refines the quantitative31

relationship of this proxy with sea ice, taking into account seasonal biases and other influencing32

environmental factors. A Bayesian (probabilistic) approach is used to quantify the uncertainties33

in the calibration. The new model enables quantitative Arctic sea ice reconstructions and helps34

us understand its long-term variability.35

1 Introduction36

Sea ice is a key component of the climate system, affecting planetary albedo (Curry et al.,37

1995), air-sea gas and heat exchanges (Ivanov et al., 2019; Rysgaard et al., 2011), and the ther-38

mohaline circulation (Mauritzen & Häkkinen, 1997), with impacts extending far beyond the po-39

lar regions. In recent decades, rising temperatures in the Arctic, caused by anthropogenic green-40

house gas emissions and amplified by the ice-albedo feedback, have led to rapid sea ice loss (Stroeve41

& Notz, 2018), yet our understanding of its long-term variability remains limited by our short-42

term observations (de Vernal et al., 2020). Furthermore, future projections for the Arctic Ocean43

suggest that it will become practically ice-free in summer at least once before the year 2050 un-44

der all emission scenarios, but the multi-model spread in simulated sea ice extent remains wide45

(Notz & SIMIP Community, 2020). To better understand changes in sea ice and associated feed-46

backs, as well as to improve predictions, quantitative palaeo sea ice reconstructions are needed.47

Numerous proxies in marine sediment cores have been used to infer past sea ice conditions48

(e.g. de Vernal, Gersonde, et al., 2013), among which IP25 (Ice Proxy with 25 carbon atoms) is49

one of the most commonly employed. The highly branched isoprenoid (HBI) monoene is pro-50

duced by sympagic diatoms during the spring sea ice algal bloom and released into the water col-51

umn in early summer when sea ice melts (Belt et al., 2007, 2008, 2013; Brown et al., 2011, 2016).52

Having been detected in sediments across the Arctic, IP25 has been used as a proxy for seasonal53

sea ice in palaeo reconstructions extending as far back in time as the late Miocene (Stein et al.,54

2016). Within the Arctic and sub-Arctic regions, the absence of IP25 has been attributed to two55

opposing scenarios. On the one hand, it may reflect year-round ice-free conditions, which do not56

support the growth of IP25 producers (Belt et al., 2007; Belt & Müller, 2013; Müller et al., 2011).57

On the other hand, perennial sea ice cover has been hypothesised to hinder diatom growth by re-58

duced light penetration through thick and dense ice (Belt et al., 2007; Belt & Müller, 2013; Müller59
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et al., 2009, 2011). This would limit the presence of IP25 close to the ice edge or in the marginal60

ice zone (MIZ; Müller et al., 2009, 2011).61

To differentiate between the two contrasting sea ice conditions that preclude IP25 produc-62

tion, pelagic phytoplankton biomarkers have been used as indicators of (seasonal) open water con-63

ditions (e.g. Müller et al., 2009, 2011; Navarro-Rodriguez et al., 2013; Volkman, 1986; Volkman64

et al., 1998). These include brassicasterol (24-methylcholesta-5,22E-dien-3𝛽-ol) and dinosterol65

(4𝛼,23,24-trimethyl-5𝛼-cholest-22E-en-3𝛽-ol), which are mainly derived from diatoms, hapto-66

phytes, cryptophytes, and dinoflagellates during the summer phytoplankton bloom (e.g. Goad67

et al., 1983; Volkman, 1986; Volkman et al., 1993, 1998). Müller et al. (2011) first proposed cou-68

pling them with IP25 in the PIP25 (phytoplankton-IP25) index to achieve quantitative sea ice re-69

constructions. The index is calculated as follows:70

PIP25 =
[IP25]

[IP25] + 𝑐 [phytoplankton biomarker] , (1)

where 𝑐 is conventionally taken as the ratio of the mean IP25 and phytoplankton biomarker con-71

centrations of the sediment samples under study. This factor was introduced to compensate for72

the substantial difference between the concentrations of IP25 and phytoplankton biomarkers: the73

former is typically lower, ascribed to its source-specificity in contrast to the multiple origins of74

the latter (Müller et al., 2011; Navarro-Rodriguez et al., 2013).75

The PIP25 index is, by definition, limited between 0 and 1. As described by Belt and Müller76

(2013), high PIP25 values result from high IP25 and low sterol concentrations, indicative of pre-77

dominantly ice-covered conditions; conversely, low PIP25 values arise from low IP25 and high78

sterol concentrations, which suggest mostly ice-free conditions. Intermediate PIP25 values are79

taken to represent ice-margin conditions. In addition to distinguishing between opposite sea sur-80

face conditions, the sterols serve a second role in the PIP25 index as proxies for productivity in81

the surface ocean (Müller et al., 2011; Belt & Müller, 2013). By normalising IP25 against pri-82

mary productivity, PIP25 indices can be compared across different Arctic regions.83

To realise the full potential of the PIP25 index in quantitative Arctic sea ice reconstructions,84

a robust calibration is needed. Since the initial calibrationcorrelation reported by Müller et al. (2011),85

numerous studies have been undertaken to improve and validate the model’s applicability in dif-86

ferent regions (e.g. Kolling et al., 2020; Navarro-Rodriguez et al., 2013; Stoynova et al., 2013;87

Xiao et al., 2013, 2015) and in deep time (e.g. Hoff et al., 2016; Knies et al., 2014; Kremer, Stein,88

Fahl, Bauch, et al., 2018; Kremer, Stein, Fahl, Ji, et al., 2018; Stein & Fahl, 2013; Stein et al., 2016,89

2017), yet problems associated with the 𝑐 factor and regional variability persist, hindering the90

wider use of this proxy. Furthermore, while possible influences of other environmental variables91

(e.g. salinity) on biomarker production and preservation have been acknowledged (Belt, 2018;92

Ribeiro et al., 2017; Xiao et al., 2013, 2015), they have rarely been included in calibrations, po-93

tentially underrating the aptness of PIP25 for reconstructing sea ice conditions (Su et al., 2022).94

As new biomarker datasets continue to be published and our understanding of the proxy system95

evolves, existing calibrations need to be revisited to take into account such evidence and insights,96

which may further help address previously identified issues.97

At the same time, recent advances have been made in proxy system model (PSM) devel-98

opment using Bayesian statistical methods, with forward and inverse models developed for sev-99

eral commonly used marine geochemical palaeoclimate proxies (e.g. Malevich et al., 2019; Tier-100

ney & Tingley, 2014, 2018; Tierney et al., 2019). The probabilistic approach employed by these101

models enables more rigorous quantification of calibration uncertainties and their propagation102

into proxy estimates or climate reconstructions. In addition, such PSMs facilitate proxy-model103

comparisons (e.g. Hoem et al., 2022) and palaeoclimate data assimilation (e.g. Osman et al., 2021),104

allowing the use of proxy data to validate or constrain model simulations.105

Here, we develop a Bayesian calibration for IP25 (and associated phytoplankton biomark-106

ers) to model the relationship between the sea ice proxy and environmental factors using recently107
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compiled pan-Arctic biomarker, sea ice and oceanographic variable datasets, with. The Bayesian108

framework supports uncertainty quantification and propagation to model predictions in both the109

forward and inverse directions. The model, called BaySIC (Bayesian Sea Ice Concentration),110

is amenable to incorporating additional core-top data as they become available, as well as other111

environmental drivers that may be identified in future investigations. We demonstrate its appli-112

cations with examples and discuss implications for palaeo-sea ice reconstruction.113

2 Data Compilation114

2.1 Biomarkers in Surface Sediments115

We update the pan-Arctic surface biomarker database of Kolling et al. (2020) (Belt et al.,116

2013, 2015; Méheust et al., 2013; Müller et al., 2011; Navarro-Rodriguez et al., 2013; Pieńkowski117

et al., 2017; Smik et al., 2016; Xiao et al., 2013, 2015) with paired IP25-brassicasterol and -dinosterol118

core-top measurements from recent literature (Harning et al., 2023), including the location (wa-119

ter depth, latitude, longitude), total organic carbon (TOC) content, and concentrations of the biomark-120

ers normalised to gram of sediment (µg/gSed) and/or TOC (µg/gTOC). The expanded database121

consists of 644 surface sediment samples collected between 38.00°N and 89.98°N and across the122

full range of longitudes (figure 1; dataset S1). Samples within the same sea ice grid cell (see sec-123

tion 2.2) are averaged to avoid overrepresenting densely sampled areas. This results in 551 ef-124

fective core-top samples with paired IP25-brassicasterol measurements and 432 with paired IP25-125

dinosterol measurements for our calibration model.126

A dataset published by Stoynova et al. (2013) was excluded from the Kolling et al. (2020)127

database as it was obtained with different biomarker extraction solvents and method, and con-128

tained measurements inconsistent with those of other studies in the same area (e.g. Navarro-Rodriguez129

et al., 2013; Xiao et al., 2015). More recently, a dataset for the East Siberian Sea was made avail-130

able by Su et al. (2022). However, it records distinct brassicasterol and dinosterol distributions,131

with the former more closely resembling the IP25 distribution. The authors hypothesised that the132

divergence emerged from differential impacts of estuarine turbidity on the respective sterol pro-133

ducers, but this is not observed in other datasets from river mouth settings (e.g. Xiao et al., 2013,134

2015). In comparing the brassicasterol/dinosterol ratio of each dataset, we find that the Su et al.135

(2022) data deviates from the rest of the database (figure S1). Since the cause of this discrepancy136

remains conjectural, we refrain from incorporating this dataset into our database.137

As biomarker concentrations are affected by sedimentation rates, it has been recommended138

that they be normalised to TOC contents prior to comparisons across space and time (Müller et139

al., 2011). The PIP25 index approach further circumvents comparing absolute concentrations by140

considering relative concentrations. When calculating PIP25, the same normalisation should be141

applied to both the phytoplankton biomarker and IP25 concentrations. Since the normalisation142

factors are cancelled out in the ratios (Belt, 2018), PIP25 indices computed from measurements143

normalised in either way are directly comparable. However, as the biomarker concentrations are144

typically several magnitudes lower when normalised to gram of sediment rather than TOC con-145

tent, the reported measurements are less precise, especially near the detection limit. We there-146

fore use measurements reported in µg/gTOC where available for our calibration.147

Both brassicasterol and dinosterol are commonly used as the phytoplankton biomarker in148

the PIP25 index (PBIP25 and PDIP25, respectively) and, in general, their distributions are similar149

across the Arctic (figure 1). However, the sources of brassicasterol are more diverse than those150

of dinosterol: the former is produced by a range of marine and freshwater phytoplankton as well151

as higher plants (Volkman, 1986), while the latter is mainly synthesised by marine dinoflagel-152

lates (Nichols et al., 1984; Volkman et al., 1993, 1998). Brassicasterol found in marine sediments153

may have been transported by rivers from a lacustrine or terrestrial origin (Fahl et al., 2003; Hörner154

et al., 2016), thus appearing in higher concentrations than expected for the local sea surface con-155

ditions. Brassicasterol may also originate from sea ice diatoms (Belt et al., 2013, 2018), poten-156

tially undermining its role as an open ocean proxy. We develop calibrations for both PBIP25 and157
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Figure 1. Locations of published core-top paired IP25 and brassicasterol and/or dinosterol measurements,
coloured by (a) study of origin, and concentration of (b) IP25, (c) brassicasterol, and (d) dinosterol, nor-
malized to total organic carbon content (µg/gTOC). In (a), triangle = concentration normalised to gram of
sediment only, and circle = concentration normalised to TOC content also available.
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PDIP25 but, due to the broader and more variable sources of brassicasterol, focus the discussion158

on the latter.159

We note that the sterol extraction method (with dichloromethane/methanol) used across all160

studies has recently been suggested to underestimate concentrations (Köseoğlu, 2019) (figure S2).161

However, since sterol data obtained with the more comprehensive method (using potassium hy-162

droxide) remain limited, and as only relative concentrations are of importance for their role as163

a normalisation factor in the PIP25 index, measurements acquired with the conventional method164

are used here for the calibrations in order to investigate Arctic-wide trends and to maintain con-165

sistency across datasets. Should sufficient data collected with the saponification step become avail-166

able in the future, the calibrations may be updated to correct for any inaccuracies in the existing167

core-top sterol concentrations.168

2.2 Sea Ice169

Sea ice concentrations (SIC) corresponding to the core-top measurements are taken from170

the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version171

4 (Meier et al., 2021). The data are on a 25 km × 25 km grid and represent the percentage of ocean172

surface area covered by sea ice. For each core location, the monthly SIC from January 1979 to173

December 2022 in the nearest grid cell are drawn. The great-circle distance between each biomarker174

measurement and SIC observation is less than 100 km in all but seven cases. Among these, six175

samples are taken from locations in the North Pacific Ocean beyond the data coverage. The matched176

SIC data indicate year-round ice-free conditions, as expected for these localities; thus, the sam-177

ples are retained in our analysis. The remaining sample in Lake Melville is paired with SIC data178

for the ocean and is consequently excluded from the database. Climatologies are created by com-179

puting the mean monthly SIC from 1979 to 2000 and from 1979 to 2022. In each case, the in-180

terquartile range (IQR) is also computed as a non-parametric measure of year-to-year sea ice vari-181

ability.182

Complementary SIC datasets are obtained from the Gridded Monthly Sea Ice Extent and183

Concentration product, Version 2 (Walsh et al., 2019), which combines various historical sources184

such as ship reports, maps by oceanographers, charts from meteorological institutes, etc. to pro-185

vide an Arctic-wide SIC record from 1850 onwards. The data are on a 1/4° × 1/4° grid, and the186

same procedures are followed to produce climatologies for the core locations. Since the prod-187

uct builds on more complete sea ice observations from 1953, we generate climatologies from 1950188

to 2000 and from 1950 to 2017.189

2.3 Sediment Trap Time Series190

To explore proxy seasonality, we also collate measurements of IP25 fluxes in nine sediment191

traps deployed across the Arctic (Bai et al., 2019; Belt et al., 2008; Gal et al., 2022; Koch et al.,192

2020; Luostarinen et al., 2023; Nöthig et al., 2020; Rontani et al., 2016) (figure 2). Where mul-193

tiple traps positioned at the same location are found, data from the deepest one are taken to more194

closely reflect the fluxes that eventually reach the sediments. Each trap has a different sampling195

period, ranging from one month to a year (see table S1 for details). We focus on the spring and196

summer months, when IP25 is produced and released. Since the time series are approximately197

normally distributed, we fit a normal probability density function (PDF) to each of them to fa-198

cilitate composite analysis. Monthly SIC during the sampling period are extracted from the NOAA/NSIDC199

record. In each case, data from grid cells within a 100 km radius of the trap location are com-200

piled to assess regional sea ice variability and to account for lateral advection (Salter et al., 2023).201

For sediment traps in the eastern Fram Strait, the source areas simulated by Salter et al. (2023)202

spanned sea ice conditions from completely ice-free to mostly ice-covered at any given time203

during the sampling period. To avoid dilution of the seasonal signal by lateral transport, we204

exclude data from this area, including those previously collected by Lalande et al. (2016), from205

our composite analysis.206
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Figure 2. (a-i) Sediment-trap IP25 flux time series and the fitted normal probability density function, as
well as the corresponding sea ice concentration (SIC) trend and uncertainty associated with lateral transport
(range of SIC found within a 100 km radius). The map shows the location of each sediment trap coloured by
the corresponding timing of the peak IP25 flux, and spatial variations in the timing of the first SIC decrease
(2001-2022, matching the sampling periods of the sediment traps).

–7–



manuscript submitted to Paleoceanography and Paleoclimatology

2.4 Oceanographic Variables207

Environmental parameters such as temperature, salinity, and nutrient levels may promote208

or limit productivity, exerting additional influence on biomarker concentrations. To test for any209

such effects, measurements of these variables are acquired from World Ocean Atlas 2018 (Boyer210

et al., 2018; Garcia et al., 2019; Locarnini et al., 2019; Zweng et al., 2019). Temperature and salin-211

ity data are available at quarter-degree grid resolution, while silicate, nitrate, and phosphate data212

are available at one-degree grid resolution. Each core location is matched to the nearest grid cell213

to derive the monthly climatologies. For temperature and salinity, these are averages of six decadal214

means from 1955 to 2017; for the nutrients, these are averages of all available data. Data from215

the top 10 m of the water column (at 0 m, 5 m, and 10 m water depth) are averaged to represent216

sea surface conditions.217

3 Data Exploration218

3.1 Nonlinearity of the PIP25 Index219

Following previous studies (e.g. Müller et al., 2011; Navarro-Rodriguez et al., 2013; Kolling220

et al., 2020), we investigate the relationship between PIP25 and SIC by assessing their correla-221

tion across space in contemporary records. Existing calibrations have sought to establish a pos-222

itive linear relationship between the two by invoking the balance factor, 𝑐; however, complica-223

tions arise with its use. For example, the factor has been found to vary both as a function of core224

section and location (e.g. Belt et al., 2015; Navarro-Rodriguez et al., 2013), such that the PIP25225

value for a given sediment sample changes with the particular dataset under consideration. This226

necessitates the recalculation of PIP25 in each investigation that expands a previous dataset, which227

affects the inferred SIC. As Belt and Müller (2013) pointed out, the approach is particularly prob-228

lematic for applications on geologic time scales, as the 𝑐 factor may change significantly with the229

length of the core under study. Furthermore, the factor is susceptible to negative impacts of out-230

lying biomarker measurements (Navarro-Rodriguez et al., 2013). Due to these unresolved issues,231

the PIP25 index has thus far remained a semi-quantitative proxy for sea ice.232

Another difficulty in applying linear calibration models for past sea ice reconstruction lies233

in the highly variable slope and intercept across different regions (e.g. Müller et al., 2011; Smik234

et al., 2016; Xiao et al., 2015). To aid interregional comparisons, Xiao et al. (2015) proposed Arctic-235

wide 𝑐 values (0.11 for PDIP25), which were subsequently updated by Kolling et al. (2020) us-236

ing a larger dataset (0.203). Although similar values (0.238) can be calculated for our expanded237

database, marked regional differences persist in the linear correlation with SIC (not shown), pre-238

venting a pan-Arctic calibration. More generally, we show that the relationship between PIP25239

and SIC remains nonlinear following correction across a broad range of 𝑐 factors (figures 3a and240

S3). Thus, while the exact value taken for such a uniform factor may be revised by future core-241

top studies, it is unlikely that the relationship can ever be fully linearised.242

In light of the problems associated with the 𝑐 factor, we omit its use to develop a robust cal-243

ibration. To reduce the positive skewness of the PIP25 data (calculated without 𝑐), we transform244

the ratio using the natural logarithmic function. The index then becomes:245

ln(PIP25) = ln( [IP25]
[IP25] + [phytoplankton biomarker] ), (2)

where the phytoplankton biomarker is either brassicasterol or dinosterol. Our dataset contains246

samples where IP25 and/or the sterols are not detected. Although the biomarkers are recorded as247

absent in these cases, they may be present at concentrations below their respective limits of de-248

tection, which are expected to vary between laboratories but are rarely reported. Thus, the min-249

imum non-zero IP25 concentration in the dataset, taken as the best approximation of the detec-250

tion limit, is added to all IP25 measurements to enable the log transformation. The same treat-251

–8–



manuscript submitted to Paleoceanography and Paleoclimatology

Figure 3. Mar-Apr-May sea ice concentration (SIC), 1979-2000, vs. (a) PDIP25 calculated with the 𝑐 fac-
tor and (b) ln(PDIP25), coloured by sea surface salinity (SSS). Bubble size is inversely proportional to the
interquartile range of the SIC over the 22-year calibration period.

ment is applied to brassicasterol and dinosterol measurements to maintain consistency in the ra-252

tio.253

Using our expanded database, which includes samples from permanently ice-free and ice-254

covered regions in the sub-Arctic and central Arctic, we find that the new ln(PIP25) index exhibits255

a sigmoidal (i.e., logistic-like) relationship with SIC: as ln(PIP25) approaches 0, SIC tends to 1;256

likewise, as ln(PIP25) approaches negative infinity, SIC tends to 0 (figure 3b). The suitability of257

the logistic function in describing the relationship can be understood intuitively, as SIC values258

are inherently limited between 0 and 1. There is a clear transition from SIC = 0 to 1 at ln(PIP25)259

∼ −4, which mirrors the relatively narrow MIZ in nature. As illustrated subsequently, this abrupt260

shift can be well-characterised by logistic regression coefficients, enabling more effective differ-261

entiation between ice-free and ice-covered conditions based on ln(PIP25) values. Nevertheless,262

some variability is still evident in the the core-top data. This may be partly attributable to the263

inherent ambiguity of the PIP25 ratio: the same value can be derived from coevally high or low264

concentrations of IP25 and sterols, caused by different sea ice conditions (Müller et al., 2011).265

To mitigate this, it has been recommended that individual biomarker records be interpreted266

along with PIP25 (Belt & Müller, 2013; Müller et al., 2012).267

3.2 Uncertainties in SIC Observations268

As the proxy signals are taken to reflect the dominant sea ice conditions over the calibra-269

tion period, ln(PIP25) is compared against the climatological mean SIC. However, near the ice270

edge, the year-to-year variability in SIC can be significant: a location may be completely ice-covered271

in one year and ice-free in the next. In such cases, the core-top ln(PIP25) value represents a mix-272

ture of variably recorded opposing sea ice conditions, and its relationship with the correspond-273

ing mean SIC value is uncertain. To incorporate this source of uncertainty in the calibration, we274

calculate the IQR of the SIC data over the calibration period as a non-parametric measure of its275

year-to-year variability (figure 3). Data points with high IQR values (high SIC variability) are276

associated with more uncertainties and thus are considered less reliable in the regression.277

Although the core tops mostly sample the same sediment interval (1 cm, with exceptions278

in datasets from Harning et al. (2023) and Kolling et al. (2020)), as sedimentation rates across279

the Arctic and sub-Arctic oceans span a wide range, the samples would have accumulated over280

different periods, ranging from a few years to several millennia (Stein, 2008; Wegner et al., 2015).281
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As a result, most of the core tops represent coarse time composites that cannot be paired with SIC282

data over the same period. Considering the accelerated sea ice loss over the last couple of decades283

(Stroeve & Notz, 2018), we avoid using SIC data from this period in our calibration to prevent284

the potential overrepresentation of anthropogenic signals. The period 1979-2000 is hence cho-285

sen to maximise the limited satellite observations available. This means that samples recently286

collected from regions with high sedimentation rates (>0.1 cm/year) may be mismatched with287

SIC from an earlier period; however, such rapid sediment deposition is rare in the Arctic (Stein,288

2008; Wegner et al., 2015). In our database, only Belt et al. (2015) reported accumulation rates289

of this order, for sites in the Barents Sea. In general, all matched SIC values remain estimates290

of the real conditions recorded by the core tops, with the largest discrepancies expected in areas291

that experienced dramatic SIC changes over recent decades to centuries (e.g. the MIZ). The full292

satellite SIC record (1979-2022) and datasets derived from historical sources (1950-2000 and 1950-293

2017) are also used to evaluate model sensitivity to the calibration period.294

Pairing core-top biomarker measurements with SIC observations from the nearest satel-295

lite grid assumes minimal lateral transport. This assumption is valid in ice-covered regions, such296

as the Eurasian Basin, where vertical transport has been shown to account for the majority of the297

carbon fluxes to the sediments (Belt & Müller, 2013; Legendre et al., 1992; Nöthig et al., 2020).298

In other locations, however, lateral advection and resuspension have been found to affect biomarker299

fluxes, for example, on the Lomonosov Ridge (Fahl & Nöthig, 2007; Fahl & Stein, 2012) and in300

the eastern Fram Strait (Lalande et al., 2016; Salter et al., 2023). By modelling particle trajec-301

tories, Salter et al. (2023) showed that a source area could have a radius of approximately 100302

km. This particularly complicates the interpretation of samples near the MIZ, where such a large303

integration area may span the full gradient of SIC values, resulting in a mixed proxy signal. In304

reality, due to variable lateral transport rates across the Arctic, each core top likely integrates biomarker305

fluxes over a different area, which may also have changed through time. As this source of uncer-306

tainty is poorly constrained, we do not explicitly include it in our model; nonetheless, it mainly307

affects core tops near the ice edge, which are already down-weighted in the regression based on308

their IQR values.309

3.3 Spatiotemporal Variation in Proxy Seasonality310

Given that biomarker production and IP25 release primarily occur during algal blooms and311

ice melt, respectively (Belt et al., 2008, 2013; Brown et al., 2011, 2016), the proxies are biased312

towards seasonal sea ice conditions (figure 4a-b). As sympagic algal blooms, sea ice thawing,313

and pelagic algal blooms do not occur simultaneously, the seasonal signal recorded by ln(PIP25)314

is a mixture of these timings and is not straightforward to characterise. Previous calibrations as-315

sumed a stationary proxy seasonality, usually towards spring (March-April-May or April-May-316

June, e.g. Müller et al., 2011; Navarro-Rodriguez et al., 2013; Smik et al., 2016). However, some317

studies also found good correlations between the PIP25 index and sea ice in summer (July-August-318

September, e.g. Su et al., 2022; Xiao et al., 2015) or autumn (October-November-December, e.g.319

Kolling et al., 2020). In another study, a longer calibration interval spanning the full sea ice re-320

treat period (March-September) similarly produced statistically significant results (Stoynova et321

al., 2013). The proxy seasonality therefore remains poorly diagnosed.322

In reality, the seasonal bias in the ln(PIP25) index is expected to vary with location as the323

timing of algal blooms is determined by numerous factors, most notably light intensity and nu-324

trient availability (e.g. Leu et al., 2015; Oziel et al., 2019), and thus is asynchronous across the325

Arctic (e.g. Ji et al., 2013; Leu et al., 2011). The onset of ice melt, dictated by temperature and326

regional atmosphere-ocean dynamics (e.g. Horvath et al., 2021; Mortin et al., 2016), also dif-327

fers significantly across latitudes (e.g. Bliss & Anderson, 2018; Markus et al., 2009) (figure 2).328

The significant delay of these events from one region to another means that the ln(PIP25) indices329

obtained from different cores likely reflect sea ice conditions for different months of the year.330

In order to constrain this spatially varying seasonality, we analyse published IP25 fluxes mea-331

sured in sediment traps across the Arctic by compositing fitted PDFs and the corresponding SIC332
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Figure 4. Schematic diagrams of the IP25 proxy system (a) in spring / before sea ice breakup and (b) in
summer / during sea ice breakup, as well as composite probability density functions (PDFs) of IP25 fluxes
aligned to (c) calendar months and (d) months relative to the first month of sea ice concentration (SIC) de-
crease. Dashed line denotes the 5th percentile of the PDF. Shaded area shows the range of SIC observed
across all sediment traps, and the trend line represents the error-weighted mean, calculated based on the
range of SIC found within a 100 km radius of each trap during the collection period. Arrows indicate the
approximate periods corresponding to those illustrated in (a-b).
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records (figure 4c). The resultant PDF shows that, on average, IP25 release begins in May (>95%333

confidence), coincident with the average initial sea ice breakup. The highest fluxes occur between334

June and August, concurrent with the main ice melt period, corroborating a close link between335

IP25 deposition and sea ice thawing. For an Arctic-wide static calibration, the conventional cal-336

ibration interval of March-April-May (supported by our model; see section 4.2 for details) then337

corresponds to the three-month interval before IP25 release, reflecting IP25 production in ice-edge338

diatom blooms prior to sea ice breakup. This suggests that IP25 in the sediments records the max-339

imum SIC before sea ice disintegration, i.e., the ln(PIP25) index is biased towards the time inter-340

val immediately prior to local ice melt.341

However, the timing of sea ice breakup differs significantly across the trap locations, with342

an offset of up to three months, and the bimodal distribution of the PDF indicates that fluxes hap-343

pen in two distinct periods, both supporting a spatially varying seasonal bias. To account for lo-344

cal differences in the timing of ice melt, we align each time series to the month of the first SIC345

decrease leading to the minimum SIC of the year (figure 4d). The aligned PDF shows that IP25346

release begins in the same month as initial sea ice breakup (>95% confidence), with the flux peaks347

synchronised to the following one to two months. The tightened distribution indicates a more pre-348

cise calibration interval for each sample, which can be determined quantitatively as the three-month349

interval before the first SIC decrease.350

By identifying the proxy seasonality for every individual core, in place of an ambiguously351

defined ”seasonal” bias for the whole Arctic, the spatially varying calibration allows for more ac-352

curate and consistent SIC reconstructions across different regions, especially on geologic timescales.353

While the timing of sea ice breakup at each individual site may have remained largely constant354

over the accumulation period of the core tops and the sediment traps, it likely differed significantly355

further back in time under the influence of changing orbital configurations and gateway geome-356

tries (e.g. Karami et al., 2021; Timm et al., 2008). It is then unreasonable to assume that a bias357

to March-April-May SIC persists throughout the reconstruction period.358

For illustration of the non-stationarity in proxy seasonality through time, SIC simulations359

are obtained from the TraCE-21ka dataset, which employs the National Center for Atmospheric360

Research Community Climate System Model version 3 (NCAR CCSM3) to reconstruct the tran-361

sient climate evolution over the last 21 ka (Liu et al., 2009). The monthly average ICEFRAC (equiv-362

alent to SIC) for the pre-industrial, Mid Holocene, and Last Glacial Maximum experiments are363

used to derive climatologies, from which the month of the first SIC decrease is calculated. As364

shown in figure 5, the calendar month in which SIC loss is first observed at any given location365

shifts with time. Thus, the intimately linked proxy seasonal bias is also expected to change, and366

the necessity of a varying calibration becomes evident.367
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Figure 5. Spatial variations in the timing of the first sea ice concentration (SIC) decrease, derived from the
TraCE-21ka experiments for the (a) pre-industrial, (b) Mid Holocene, and (c) Last Glacial Maximum.

–12–



manuscript submitted to Paleoceanography and Paleoclimatology

3.4 Other Environmental Drivers of ln(PIP25)368

While sea ice conditions evidently control the timing and spatial distribution of IP25 and369

sterol production, other potential environmental drivers should not be neglected. For example,370

salinity is known to affect the productivity of sea ice algae (e.g. Glud et al., 2007; Gosselin et al.,371

1986; Ralph et al., 2007), with laboratory culture experiments showing that sea ice diatom growth372

decreases with reduced salinity (Grant & Horner, 1976; Søgaard et al., 2011; Zhang et al., 1999).373

Hyposaline conditions caused by freshwater discharge from large rivers have been implicated in374

progressively lower IP25 concentrations measured near estuaries in the Kara and Laptev Seas (Xiao375

et al., 2013) and a fjord in Northeast Greenland (Belt, 2018; Ribeiro et al., 2017). Based on ra-376

tios between IP25 and C25-HBI diene, Xiao et al. (2013) suggested that saturation in HBIs may377

decrease with lower sea surface salinity (SSS), but research on IP25 sensitivity to salinity remains378

limited. A subsequent study by Limoges et al. (2018) found an increase in the abundance of IP25379

producers with a slight decrease in bottom sea ice salinity, but did not preclude negative impacts380

of low salinity on IP25 synthesis.381

In our dataset, a number of outlying samples with low ln(PIP25) values and high correspond-382

ing SIC originate from locations with low SSS values of < 7 g kg−1 (figure 3b). When analysing383

ln(PIP25) with SSS, we find suggestions of a logarithmic relationship between the two under ice-384

covered conditions, with ln(PIP25) decreasing exponentially as SSS lowers (figure 6a). In such385

cases, SSS appears to overtake SIC as the limiting factor for IP25 production, hindering direct in-386

terpretation of sea ice conditions from ln(PIP25) values. As SSS rises to normal levels, this trend387

disappears and is replaced by a strong negative correlation between ln(PIP25) and SSS, likely an388

expression of the co-variation between SSS and SIC. As relatively sparse data exist for hypos-389

aline settings, further research is needed to establish a robust relationship between SSS and ln(PIP25).390

To disentangle the influence of low SSS on ln(PIP25) from that of SIC in our calibration,391

we conduct change point analyses on the dataset sorted by SSS using the ruptures package (Truong392

et al., 2020) (see figure S4 for details). The change point is interpreted as a threshold below which393

SSS overshadows SIC as the dominant predictor of ln(PIP25). For an Arctic-wide calibration to394

March-April-May, the change point occurs at SSS ∼ 21.74 g kg−1 for both PDIP25 and PBIP25.395

For a spatially varying calibration to the three-month interval before the first SIC decrease, the396

threshold is detected at SSS ∼ 21.26 g kg−1.397

Figure 6. (a) Mar-Apr-May sea surface salinity (SSS) vs. ln(PDIP25), with dashed line indicating change
point (SSS ∼ 21.74). (b) SSS vs. model residuals. Colours denote sea ice concentration (SIC).
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More generally, as summarised by Belt and Müller (2013), sympagic algal blooms are in-398

fluenced by a range of factors, including nutrient supply in the water column (e.g. Arrigo et al.,399

2010; Gradinger, 2009; Leu et al., 2015; Oziel et al., 2019; Rózańska et al., 2009), light avail-400

ability (which is in turn regulated by the thicknesses of the ice and snow cover; e.g. Arrigo et al.,401

2010; Leu et al., 2015; Mundy et al., 2005; Oziel et al., 2019), and bottom ice melt rate (Castellani402

et al., 2017; Lavoie et al., 2005). Their effects on the production of IP25 specifically, however,403

have not been studied in detail. Furthermore, as normalisation by phytoplankton-derived sterols404

in the ln(PIP25) index negates, to a certain extent, the effects of nutrient levels and light inten-405

sity on biomarker synthesis (Müller et al., 2011; Stoynova et al., 2013), and considering that sea406

surface temperature co-varies with SIC, the sensitivity of ln(PIP25) to these variables is likely low.407

We therefore leave the identification of additional environmental predictors and their incorpo-408

ration into the ln(PIP25) calibration for future work.409

4 Bayesian Calibration Model410

4.1 Model Design411

A Bayesian proxy system model (BaySIC) is developed to relate ln(PIP25) to SIC based on412

core-top observations. Since the calibration is based on the spatial relationship between ln(PIP25)413

and its environmental drivers, and is applied to predict temporal changes in these values, the model414

assumes ergodicity (Tierney & Tingley, 2014), i.e., the response of the proxy to different envi-415

ronments across space is taken to represent its response to environmental changes over time.416

To account for the nonlinear relationship between ln(PIP25) and SIC, as well as to respect417

the inherent limit of SIC between 0 and 1, the core-top data may be described with a logistic func-418

tion:419

SIC =
1

1 + exp−(𝛽0 + 𝛽1 ln(PIP25))
, (3)

where SIC and ln(PIP25) are vectors representing the core-top data, 𝛽0 is the intercept, and 𝛽1420

is the slope. However, a regression model in this form considers SIC as a function of ln(PIP25),421

which contradicts the natural causal relationship between the proxy and its environmental pre-422

dictors. In nature, SIC serves as the predictor variable for ln(PIP25). Assuming that the predic-423

tion errors are normally distributed, the relationship can be expressed as follows:424

ln(PIP25𝑖) | 𝛽0, 𝛽1, 𝜙 ∼ N(𝑔(SIC𝑖), 𝜙), (4)

where PIP25𝑖 denotes the core-top sample, SIC𝑖 denotes the corresponding SIC data, 𝑔(𝑥) = − ln( 1
𝑥
−1)−𝛽0
𝛽1

425

is the inverse of equation 3, and 𝜙 is the variance, which is introduced by uncertainties in the SIC426

observations. Thus, we obtain the forward model in the following form:427

ln(PIP25𝑖) =
− ln( 1

SIC𝑖
− 1) − 𝛽0

𝛽1
+ 𝜖𝑖 , (5)

428
𝜖𝑖 ∼ N(0, 𝜙), (6)

where 𝜖𝑖 represents the residual error associated with each sample. The inverse logistic function429

(equation 5) has a domain of (0, 1), which allows the transformation of SIC data within the same430

range. As SIC approaches 0, ln(PIP25) decreases exponentially; as SIC approaches 1, ln(PIP25)431

increases exponentially.432

The model parameters (𝛽0, 𝛽1, and 𝜙) are inferred using a Bayesian framework. Instead433

of a single estimate for each parameter, Bayesian analyses yield probability distributions (pos-434

teriors), which serve to quantify the uncertainties of model predictions. The posteriors are de-435

rived from (i) the priors, which are assigned to reflect the current scientific understanding of the436

parameters, and (ii) the likelihood, which is computed from the data given the parameters. There-437

fore, the posteriors represent updated beliefs of the parameters that are informed by the data, which,438

in our case, consist of the core-top ln(PIP25) values and their corresponding satellite SIC obser-439

vations. Accordingly, their spread reflects uncertainties in both the data and the calibration.440
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To the best of our knowledge, there exists no published nonlinear calibration for ln(PIP25)441

that can provide a basis for prior expectations for the regression coefficients. Hence, uninforma-442

tive priors are used such that the posteriors are predominantly influenced by the data. The nor-443

mal distribution is chosen for its real-valued, unbounded domain (i.e., 𝛽 ∈ R), and is centred444

around 0 so as not to favour positive or negative values a priori. For variance, a prior constrained445

to positive real numbers is required (i.e., 𝜙 ∈ R+); the inverse gamma distribution is conven-446

tionally employed in Bayesian models for this purpose. The distributions are defined as follows:447

𝛽0 ∼ N(0, 3), (7)
448

𝛽1 ∼ N(0, 3), (8)
449

𝜙 ∼ IG(2, 0.5); (9)
Using larger prior standard deviations in sensitivity tests does not result in significant changes450

in the posteriors, indicating that the model is robust to the choice of priors.451

Since our 22-year SIC dataset constitutes only a fraction of the time represented in most452

samples, and its grids do not perfectly match the areas integrated by the core tops, we further treat453

the SIC corresponding to each ln(PIP) as an unknown. TUnder the Bayesian framework, the454

distribution associated with each SIC parameter thus simulates the year-to-year sea ice variabil-455

ity over the (unknown) time and area integrated by the core top.456

The prior for each SIC parameter is defined by a beta distribution, chosen for its flexibil-457

ity to accommodate vastly different distributions within the fixed limits of 0 and 1, as follows:458

SIC𝑖 ∼ B𝑒𝑡𝑎(𝛼𝑖 , 𝛽𝑖), (10)
459

𝛼𝑖 =
𝜇𝑖

𝐼𝑄𝑅𝑖

, (11)
460

𝛽𝑖 =
1

𝐼𝑄𝑅𝑖

− 𝛼𝑖 , (12)

where 𝜇 and IQR are the mean and interquartile range of the 1979-2000 SIC dataset, respectively.461

This centres the prior distribution on the mean with a variance proportional to the IQR, effec-462

tively assigning smaller regression weights to samples with higher SIC variability. The Kullback–Leibler463

divergence, a measure of the difference between probability distributions (Kullback & Leibler,464

1951), is small across all SIC parameters, indicating that the simulated distributions provide good465

approximations of the empirical distributions (figures S5 and S6). SIC values of zero are assumed466

to be under the satellite detection limit and are replaced by the minimum non-zero SIC value in467

the dataset.468

In the forward model, the spatially varying seasonal bias in ln(PIP25) is addressed by match-469

ing each core-top sample with the climatological mean SIC of the calibration interval deduced470

from sediment trap studies, i.e., the three months before the first SIC decrease (figure 4d). This471

means that model-estimated SIC values for different months will be used to infer ln(PIP25) val-472

ues at different locations. For example, in high latitude regions where sea ice breakup does not473

begin until July, the calibration interval will be May-June-July. As the timing of sea ice retreat474

changes through time, the model also accommodates temporal changes in proxy seasonality, fa-475

cilitating its application in geologic time. The month of the first SIC decrease at a given location476

is determined by rounding the monthly climatologies to the nearest 0.05 and finding the month477

of the maximum SIC leading to the minimum. This requires seasonally varying SIC and fails where478

SIC remains constant throughout the year, such as locations that are always ice-free or ice-covered.479

For these cases, the month of the first SIC decrease is taken from the nearest grid with variable480

SIC, assuming that any IP25 deposition occurs either by lateral transport or during sea ice thin-481

ning which would be concurrent with nearby SIC decrease.482

The likelihood is then calculated by:483

L(ln(PIP25) | 𝛽0, 𝛽1, 𝜙, SIC) =
𝑛∏
𝑖=1

𝑃(ln(PIP25𝑖) | 𝛽0, 𝛽1, 𝜙, SIC𝑖), (13)
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[Modified from L(𝛽0, 𝛽1, 𝜙, SIC | ln(PIP25 ) ) =
∏𝑛

𝑖=1 𝑓 (ln(PIP25𝑖 ) | 𝛽0, 𝛽1, 𝜙, SIC𝑖 ) ,] where 𝑛 is the total484

number of core tops, and 𝑃(·) is used to denote PDFs.485

By Bayes’ Theorem, the following proportionality may be obtained:486

𝑃(𝛽0, 𝛽1, 𝜙, SIC | ln(PIP25)) ∝ L(ln(PIP25) | 𝛽0, 𝛽1, 𝜙, SIC) 𝑃(𝛽0, 𝛽1, 𝜙, SIC), (14)

[Modified from 𝑓 (𝛽0, 𝛽1, 𝜙, SIC | ln(PIP25 ) ) ∝ L(𝛽0, 𝛽1, 𝜙, SIC | ln(PIP25 ) ) 𝑓 (𝛽0, 𝛽1, 𝜙, SIC) ,] where487

𝑓𝑃(𝛽0, 𝛽1, 𝜙, SIC) is the product of all the prior distributions, with the assumption that the pa-488

rameters are independent of one another. Given the large number (> 400𝑛 + 3) of parameters, we489

use the t-walk (Christen & Fox, 2010), a Markov chain Monte Carlo sampler to infer the poste-490

riors for all parameters. The ensemble of parameters obtained, representing possible calibra-491

tion curves given the data, can then be used to calculate the predictive distribution, which in-492

tegrates over model uncertainties and provides a probabilistic estimate of ln(PIP25) given any SIC493

value.494

Based on change point analyses (Truong et al., 2020), we exclude samples with low SSS495

in our calibration to focus on the relationship between SIC and ln(PIP25). Therefore, the model496

can only predict ln(PIP25) from SIC when and where SSS meets the determined threshold, which497

differs slightly depending on the calibration interval. Should the proposed logarithmic relation-498

ship between SSS and ln(PIP25) be independently verified in the future, we suggest a pre-treatment499

of samples from hyposaline settings to correct for the additional influence.500

Since the logit function describes a one-to-one relationship between SIC and ln(PIP25), the501

forward model can be inverted to estimate past SIC directly from downcore ln(PIP25) values (equa-502

tion 3). Through Bayesian inference, the same ensemble of parameters is used to propagate cal-503

ibration uncertainties into the predictions. However, as the timing of the first SIC decrease is un-504

known in the inverse case, a spatiotemporally stationary proxy seasonality must be assumed. We505

experiment with different calibration intervals to determine the optimum interval for such an Arctic-506

wide static calibration. Results from the inverse model should also be analysed with salinity data507

wherever possible; if SSS is below the detected threshold for the calibration, the model may be508

prone to underestimate SIC.509

4.2 Model Results510

The BaySIC model and its residuals are shown in figure 7, and its metrics in table 1. The511

relationship between SIC and ln(PIP25) is well described by the inverse logistic function. The spa-512

tially varying calibration explains 74% of the variance in the ln(PDIP25) index calculated with513

our core-top biomarker database, showing a marked improvement from the previous pan-Arctic514

calibration (Xiao et al., 2015). The model has a root mean square error of prediction of 0.96, which515

is reasonable given the spread of the core-top data, particularly in locations with more variable516

SIC. As these samples are down-weighted in the regression, the calibration curve is largely de-517

termined by data points with SIC close to 0 or 1. In general, there exists no strong spatial pat-518

tern in the residuals, supporting model application across the Arctic. This is not the case in sen-519

sitivity tests that include samples from Stoynova et al. (2013) and Su et al. (2022) (figure S7), fur-520

ther justifying their exclusion from our calibration database.521

The posteriors for the regression coefficients have significantly smaller spreads than the pri-522

ors (figure S8), indicating the dominance of the likelihood function, i.e., the intercept and slope523

of the model are mostly informed by the core-top data. Similar results are obtained using the full524

satellite SIC record (1979-2022) or historical datasets (1950-2000 and 1950-2017) to inform the525

priors (see table S2 for details), further supporting the model’s robustness to different temporal526

frameworks. The posterior for variance shows an increase from the prior, reflecting data constraints527

on the precision of the model.528

The 95% highest density interval (HDI) spans approximately 3 ln(PIP25) units, which represent quantified529

uncertainties in both the observations and the calibration.Uncertainties in both the observations and the530

calibration can be quantified using the 95% highest density interval (HDI), which is the smallest531
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Figure 7. Calibrations (left) for ln(PDIP25) using the sea ice concentrations (SIC) of (a) the average of the
three months before the first SIC decrease and (b) Mar-Apr-May, and the corresponding spatial distributions
of residuals (right). Bubble size is inversely proportional to the interquartile range of the SIC over the 22-year
calibration period. HDI = highest density interval.

Table 1. Calibration results of different ln(PIP25) indices to the sea ice concentration (SIC) of different
months (e.g. MAM = Mar-Apr-May). RMSEP = root mean squared error of prediction.

3 months before first SIC decrease MAM AMJ Apr May

ln(PDIP25)
R2 0.74 0.74 0.72 0.73 0.70
RMSEP 0.96 0.96 1.01 0.99 1.04

ln(PBIP25)
R2 0.63 0.63 0.59 0.63 0.57
RMSEP 1.47 1.48 1.54 1.47 1.58

SSS threshold 21.26 21.74 21.45 23.05 21.61
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region that contains 95% of the posterior distribution, representing the most credible values. In532

this calibration, the 95% HDI spans approximately 3 ln(PIP25) units. Since the inverse logistic533

function is characterised by a gently-sloped body between steeply-sloped tails, the BaySIC model534

is more sensitive to extreme than intermediate SIC values. This means that in the inverse fram-535

ing, where downcore ln(PIP25) are used to reconstruct SIC, the uncertainties associated with ex-536

treme ln(PIP25) values will be smaller than those associated with intermediate ln(PIP25) values537

(see section 5 for illustrated examples). As the core-top data show that ln(PIP25) ∼ -4 can result538

from the full range of SIC, SIC reconstructions from these values are highly uncertain and should539

be interpreted with caution. Away from this step-like transition, the model can distinguish be-540

tween ice-free and ice-covered conditions with relatively high certainty. Moreover, within the ex-541

isting core-top database, there is a ∼ 1:4 imbalance of paired IP25-sterol data collected from sea-542

sonally ice-free (SIC ∼ 0) versus seasonally ice-covered (SIC ∼ 1) locations (figure 7). Increas-543

ing data coverage near the seasonally ice-free transition would provide more constraints on the544

lower end of the slope.545

Following the removal of core tops matched with low SSS, no significant trend is observed546

between SSS and the residuals among the remaining samples (figure 6b). Since the influence of547

salinity on ln(PIP25) is only apparent at anomalously low SSS levels, the filtering procedure is548

deemed more suitable than the addition of a second predictor in the calibration model. Analy-549

ses with SST and nutrient data similarly show no correlation between the residuals and these en-550

vironmental variables (figure S9), suggesting that they are not major drivers of ln(PIP25). Future551

work is needed to identify the source(s) of the variance left unexplained by BaySIC.552

Similar calibration curves are obtained for ln(PBIP25), but some structures in the spatial553

distribution of residuals are discernible (see Appendix A). In particular, strong negative resid-554

uals exist to the northeast of Svalbard, where low ln(PBIP25) values are associated with ice-covered555

conditions (and normal SSS levels). As Belt et al. (2015) pointed out in their original study, ad-556

ditional brassicasterol may be contributed by non-pelagic sources, which would explain the lower-557

than-expected IP25-brassicasterol ratios. However, as these core tops lack corresponding dinos-558

terol measurements, it is possible that their ln(PDIP25) values are equally low, which would point559

to other causes of discrepancy. BaySIC incorporates this unknown source of uncertainty by tak-560

ing into account these anomalous samples and converging to a higher variance. Thus, the ln(PBIP25)561

calibration has a greater uncertainty range that reflects potential additional influences on the proxy562

(see examples below).563

For an Arctic-wide static calibration, March-April-May appears to be the optimum cali-564

bration interval, with an alternative calibration to April-May-June yielding similar results. This565

is consistent with previous calibrations and corroborates the interpretation that ln(PIP25) reflects566

SIC shortly before sea ice breakup (discussed in section 3.3). Although this model performs sim-567

ilarly to the spatially varying model in replicating core-top samples, we argue that the consider-568

ation of a variable proxy seasonality remains important for accurate predictions. By identifying569

ln(PIP25) as recording the maximum SIC before sea ice disintegration, the model outputs for the570

corresponding months may be used to reconstruct the maximum sea ice extent, rather than the571

average sea ice conditions over a loosely defined Arctic spring.572

To test this hypothesis and to evaluate model performance, we apply BaySIC to out-of-sample573

SIC observations from locations with paired IP25-sterol sediment trap data. The average SIC of574

the three months before the first SIC decrease during the sampling period are supplied to the model575

to generate probabilistic ln(PIP25) estimates. For the traps at ∼ 75◦ latitude (Gal et al., 2022),576

this interval is March-April-May. For those at ∼ 83◦ latitude (Nöthig et al., 2020), it is April-577

May-June. The results are compared against the observed ln(PIP25) values, which are calculated578

using the total biomarker fluxes measured over the sampling period. Overall, there is good agree-579

ment between the BaySIC predictions and sediment trap data, with the observations always falling580

within the 95% HDI (figure 8). The maximum a posteriori (MAP) estimation, representing the581

mode of the predictive distribution, converges closely with the observation.582
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Figure 8. Predictions of the spatially varying forward model vs. observations from sediment traps of (a-b)
ln(PDIP25) and (c-d) ln(PBIP25). Trap locations are shown in figure 2. HDI = highest density interval.
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We repeat the exercise using the Arctic-wide static March-April-May calibration to assess583

the potential impacts of assuming stationary proxy seasonality. For the two traps located at a higher584

latitude, this results in a one-month offset from the seasonal bias diagnosed by the spatially vary-585

ing model. In both cases, the prediction deviates further from the observation than that obtained586

above by ∼ 0.11 ln(PIP25) units (not shown). This supports our hypothesis that the considera-587

tion of a dynamic proxy seasonality yields more accurate forward modelling results and, despite588

relatively small differences derived here from modern observations, is consequential in deep-time589

applications (discussed in section 3.3).590

5 Palaeoclimate Applications591

5.1 Quantitative SIC Reconstruction from Downcore Biomarker Measurements592

By establishing a fully quantitative relationship between SIC and the new ln(PIP25) index,593

BaySIC overcomes the longstanding limitation to semi-quantitative SIC reconstruction of the orig-594

inal PIP25 index. To exemplify its palaeoclimate applications, we apply BaySIC to a sediment595

core in northeastern Fram Strait (MSM5/5-712-2; 78°54.94’N, 6°46.04’E; 1487 m; Budéus, 2007)596

that has been analysed for both biomarkers and dinoflagellate cyst (dinocyst) assemblages. The597

published IP25 and sterol measurements (Cabedo-Sanz & Belt, 2016; Müller & Stein, 2014; Müller598

et al., 2012) are placed on the same chronology as the palynological data (Falardeau et al., 2019)599

to permit comparisons between the records, which extend into the Last Glacial Maximum (LGM;600

23 ka).601

Paired IP25-dinosterol and IP25-brassicasterol measurements are supplied to the inverse model602

to estimate past SIC from ln(PDIP25) and ln(PBIP25), respectively. Within BaySIC, all biomarker603

measurements are treated with the best estimate of the detection limit prior to calculating the ln(PIP25)604

index (discussed in section 3.1). Based on reconstructions presented by Falardeau et al. (2018),605

SSS at the core site fluctuated between 24 and 36 psu in the last 23 ka, remaining well above the606

determined threshold (table 1). Thus, salinity is assumed to have negligible influence on the biomarker607

records presented here.608

Overall, the SIC reconstructions using either index show good agreement with each other609

(figure 9a-b). For the LGM, both indices reconstruct near-complete ice cover, with amplified SIC610

fluctuations in the ln(PDIP25) reconstruction. Partial ice cover persisted during Heinrich event611

1 and the Bølling-Allerød, but higher SICs are reconstructed from ln(PBIP25) in several intervals.612

These discrepancies are due to differences in the IP25-sterol ratios and are also found in recon-613

structions using the original PIP25 index (see section 5.2). Near-identical trends are obtained for614

the Younger Dryas (YD) and throughout most of the Holocene, only diverging in the last 2 ka.615

The inconsistencies here are due to the integration of the Cabedo-Sanz and Belt (2016) dataset,616

which reports lower IP25 concentrations than (and similar brassicasterol concentrations as) mea-617

surements at the same depths provided by Müller et al. (2012), and does not include data for di-618

nosterol. Near the top of the core, rapid sea ice loss is inferred from both indices and the recon-619

structions converge towards the modern March-April-May SIC observed at the core site.620

The 95% HDI for both reconstructions are large (given site MSM5/5-712-2’s location near621

the MIZ), but realistic considering the various sources of uncertainty incorporated. As explained622

in the previous section, the uncertainty ranges associated with extreme ln(PIP25) values are smaller,623

for example, during the YD when the proxy strongly indicates ice-covered conditions. In addi-624

tion, reconstructions based on ln(PDIP25) feature less uncertainty than those derived from ln(PBIP25),625

which reflects higher confidence in its correlation with SIC in the core-top calibration.626

5.2 Comparison with Prior SIC Reconstruction Approaches627

To illustrate the differences in SIC reconstruction via ln(PIP25) and the original PIP25 in-628

dex, we apply previous linear calibrations for the region of East Greenland and West Spitsber-629

gen (Müller et al., 2011) to the same biomarker data. As the core was divided into sections and630
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Figure 9. Reconstructions of Mar-Apr-May sea ice concentration (SIC) at site MSM5/5-712-2 based on
paired (a) IP25-dinosterol and (b) IP25-brassicasterol measurements (Cabedo-Sanz & Belt, 2016; Müller &
Stein, 2014; Müller et al., 2012), using the BaySIC inverse model and the regional linear calibrations pre-
sented by Müller et al. (2011). HDI = highest density interval. (c) Reconstruction of annual SIC at the same
site via dinocyst assemblages from Falardeau et al. (2018). Circles denote modern (1979-2000) SIC observed
at the core site. Grey shading indicates cold intervals. YD = Younger Dryas; BA = Bølling-Allerød.

analysed separately, different 𝑐 factors were employed in the calculation of PIP25 by each study631

(Cabedo-Sanz & Belt, 2016; Müller & Stein, 2014; Müller et al., 2012). In order to use the pub-632

lished calibrations, we recalculate the PDIP25 and PBIP25 values based on the 𝑐 factors derived633

by Müller et al. (2011). The highly variable and somewhat arbitrarily defined 𝑐 factor is an in-634

herent limitation of the original PIP25 index approach; by eliminating it from ln(PIP25), BaySIC635

enables consistent proxy interpretation over space and time. Its applicability across the Arctic636

further removes the need for a regional calibration, allowing quantitative proxy interpretation in637

locations where it was previously not possible.638

Unlike BaySIC, the linear regression model takes SIC beyond 0 and 1 at extreme PIP25 val-639

ues; we place additional limits on the reconstructions to restrict them to the natural range of the640

parameter. In general, BaySIC predictions are consistent with the results of the adapted PIP25 in-641

dex approach (figure 9a-b), which reflects the common biomarker data used for both indices. BaySIC642

tends to estimate greater magnitude SIC changes than the linear regression model, for instance,643

the rapid decrease from full ice cover at the end of the LGM. Similarly, the reconstructions di-644

verge from Mid Holocene onwards, with BaySIC suggesting near-complete ice cover in contrast645

to the partial ice cover indicated by the linear calibration model. This is an expression of the demon-646

strated nonlinearity of the proxy: at the transition between ice-covered and ice-free conditions,647

BaySIC captures small shifts in ln(PIP25) and deduces relatively large SIC changes.648

Between 18 and 19 ka, completely ice-free conditions are reconstructed from the original649

PIP25 indices, whereas BaySIC estimates partial ice cover. These inconsistencies arise from the650

zero IP25 concentrations measured for the sediment samples, leading to zero PIP25 values indica-651

tive of open ocean conditions. However, based on the low corresponding sterol concentrations,652

Müller and Stein (2014) concluded that the biomarkers record permanent ice cover instead. This653

has conventionally been handled by designating a PIP25 value of 1 to samples with IP25 and sterol654

concentrations under or near their limit of detection (Belt, 2018). BaySIC results show that once655

the biomarker measurements are treated with the detection limit, they can be readily related to656
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the full range of SIC via the ln(PIP25) index (section 4.2), suggesting that the relative biomarker657

abundances remain informative even when absolute abundances are low. As reported IP25 and658

sterol concentrations both tend to 0, ln(PIP25) approaches −2.35 to −3.06, depending on the sterol659

and the unit of measurement used. According to the calibrations, these values would indicate mostly660

ice-covered conditions, in agreement with previous interpretations of the proxy system. As biomarker661

concentrations increase, their ratio becomes less sensitive to the added minimum concentrations.662

The BaySIC approach maintains the separation between observation and interpretation to avoid663

introducing additional bias into SIC reconstructions.664

Despite similarities in the reconstructions, the major breakthrough made by BaySIC lies665

in its fully quantitative proxy interpretation. Owing to challenges in quantifying the original PIP25666

index, it has traditionally been used to reconstruct sea ice only semi-quantitatively by categoris-667

ing sea ice conditions and matching each to a range of index values. In their original studyrecon-668

struction, Müller et al. (2012) distinguish between extended, marginal, and variable/less ice cover,669

as well as ice-free conditions, instead of deriving SIC from the PIP25 index as attempted here.670

With BaySIC, ln(PIP25) is mapped to the full, continuous range of SIC, clarifying the proxy in-671

terpretation and facilitating direct comparison with model outputs. Its Bayesian framework fur-672

ther quantifies the uncertainties, which have been lacking in previous linear calibrations for PIP25.673

The resultant probabilistic estimates may help reconcile different proxy records and achieve more674

robust palaeoclimate reconstructions.675

As an example, we compare BaySIC results against an independent sea ice reconstruction676

using dinocyst assemblages (Falardeau et al., 2018). The reconstruction is converted from ice-677

covered months per year, where ice cover is defined as SIC > 0.5, to annual SIC (figure 9c); a678

good correlation has previously been shown between the two variables (de Vernal, Rochon, et679

al., 2013). The average SIC reconstructions are therefore expected to be lower and less variable680

than those from ln(PIP25) and PIP25, which are seasonally biased. A detailed analysis of the record681

is presented in the original study; here, we highlight several key differences between the proxy682

reconstructions.683

During the LGM, persistent ice cover is reconstructed from ln(PIP25), followed by a rapid684

transition to mostly ice-free conditions at 19 ka. An opposite trend is shown by dinocyst assem-685

blages, which suggest little to no ice cover throughout the LGM, succeeded by partial ice cover.686

The contradiction is likely due to limitations of the modern analogue technique employed in quan-687

titative sea ice reconstruction from dinocyst assemblages: as Falardeau et al. (2018) pointed out,688

the best matches found for their LGM samples were from a location that experienced distinct hy-689

drographical conditions to those expected for the core site. Without suitable modern equivalents,690

the resultant SIC reconstructions may be inaccurate. In contrast, the diverse settings in which IP25691

and the sterols have been detected and the clear relationship between the ln(PIP25) index and SIC692

renders the proxy applicable in different palaeo-environments.693

Both proxies record a relatively short-lived SIC increase at 14 ka, followed by partial ice694

cover during the Bølling-Allerød. Evidence of the YD cooling is similarly clear in all reconstruc-695

tions, with the ln(PIP25) indices indicating a sharper SIC rise to completely ice-covered condi-696

tions, compared to a slower and more modest increase shown by dinocyst assemblages. The el-697

evated SIC persisting into Early Holocene registered by the dinocyst assemblages is not discernible698

in ln(PIP25) reconstructions. From Mid to Late Holocene, the reconstructions further diverge:699

a steady SIC increase is reconstructed via ln(PIP25), following the decline in the orbital forcing700

in the Northern Hemisphere, while the dinocyst assemblages suggest relatively stable, low an-701

nual SIC. As ln(PIP25) tracks the maximum SIC, sea ice changes in seasonally ice-covered lo-702

cations are more readily observable, providing more precise insights into past sea ice conditions.703

5.3 Sea Ice in Past Warm Periods704

The new calibrations offer opportunities to reevaluate available proxy records for proba-705

bilistic insights into Arctic sea ice responses to past warming. For additional examples, we ap-706

ply BaySIC to sites with paired IP25-sterol measurements dated to the Last Interglacial (LIG, ∼707
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130 − 118 ka) and the mid-Pliocene Warm Period (mPWP, ∼ 3.3 − 3.0 Ma). These data have708

previously been interpreted either qualitatively or semi-quantitatively (summarised in table 2).709

In the absence of reliable salinity data for each site and period, we ignore, for illustrative purposes,710

the possibility of drastic SSS changes. The published biomarker concentrations (Clotten et al.,711

2017; Knies et al., 2014; Kremer et al., 2018; Stein et al., 2017, 2018; Steinsland et al., 2023) are712

averaged over the target interval as inputs for the inverse model, yielding a non-Gaussian PDF713

for each SIC reconstruction (figure 10). This means that the HDIs are not centred at the MAP714

estimation, i.e., there is a higher probability for SIC to fall closer to one end of the spectrum (also715

seen in figure 9), and reflects that most of the ocean is either ice-covered or ice-free, such that716

the chances of the core site being within the MIZ is relatively low.717

Table 2. Previous interpretation of sea ice conditions during the mid-Pliocene Warm Period (mPWP) or the
Last Interglacial (LIG) at each site. Core locations are shown in figure 10.

Core Previous sea ice interpretation Study

mPWP
ODP910C Similar to the modern summer minimum Knies et al. (2014)
ODP151-907A Ice-covered in spring, ice-free in summer Clotten et al. (2018)

LIG
PS2200-5 Perennial ice cover Stein et al. (2017)
PS2138-2 Spring/summer SIC of ∼ 20% or less Stein et al. (2017)
PS92/039-2 Perennial ice cover Kremer, Stein, Fahl, Ji, et al. (2018)
PS93/006-1 Partially ice-covered in summer Kremer, Stein, Fahl, Bauch, et al. (2018)
GS16-204-22CC-B Marginal ice zone Steinsland et al. (2023)

For the LIG, BaySIC predicts relatively high (∼ 0.7 or more) March-April-May SIC for718

PS2200-5, PS93/006-1, and GS16-204-22CC-B, supporting the presence of sea ice in spring as719

formerly inferred for these sites (Kremer, Stein, Fahl, Bauch, et al., 2018; Stein et al., 2017; Steins-720

land et al., 2023). The tight PDF obtained for PS2200-5 in particular indicates high confidence721

in the interpreted ice-covered conditions, which is broadly consistent with this site’s northerly722

location. Slightly more sea ice coverage is estimated for GS16-204-22CC-B than in the original723

study, which considered the biomarkers individually rather than combined in an index. Compared724

with the traditional approach of classifying sea ice conditions, with categories like the MIZ span-725

ning a wide range of SIC, the redefined ln(PIP25) index and its calibration to SIC allow more spe-726

cific reconstructions.727

BaySIC estimates very low (∼ 0.1 or less) March-April-May SIC for PS92/039-2, contra-728

dicting the previously inferred perennial ice cover (Kremer, Stein, Fahl, Ji, et al., 2018). This dis-729

agreement stems from the setting of PIP25 to 1 for samples with low IP25 and brassicasterol con-730

centrations in the original study, as opposed to the detection limit treatment implemented within731

BaySIC (discussed in section 5.2). By considering the ratios of the biomarkers via ln(PIP25), our732

model suggests that this site had more likely experienced ice-free conditions during the LIG. For733

PS2138, the BaySIC prediction via ln(PBIP25) corroborates sea ice conditions deduced from PBIP25734

by Stein et al. (2017), but diverges from the much higher SIC predicted via ln(PDIP25). Further735

investigation is needed to explain this discrepancy. One potential cause is additional brassicas-736

terol sources (discussed in section 2.1), in which case the local SIC over the LIG would have been737

previously underestimated. As BaySIC provides the full probability distributions for each recon-738

struction, it is also possible to determine the most probable SIC as indicated by all biomarkers739

by considering the results obtained via both sterols.740

Turning to the mPWP, a similar divergence is observed in predictions for ODP151-907A:741

the ln(PDIP25) record strongly indicates SIC to be close to 1, whereas the ln(PBIP25) record pro-742
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Figure 10. BaySIC reconstructions of Mar-Apr-May sea ice concentration (SIC) for seven sites with mid-
Pliocene Warm Period (mPWP, yellow) or Last Interglacial (LIG, white) paired IP25-sterol measurements.
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HDI = highest density interval.
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vides only weak constraints on SIC. Clotten et al. (2018) attributed the decoupling of the two sterols743

during this period to non-marine sources of brassicasterol, which would lend more credibility744

to the fully ice-covered scenario suggested by ln(PDIP25). The ODP910C site is estimated to be745

ice-free based on ln(PBIP25), consistent with the former interpretation (Knies et al., 2014). How-746

ever, dinosterol data is not available for this core. Given the occasional but significant conflicts747

between SIC reconstructions employing different sterols, interpretations based on only one of the748

two should be treated with extra caution.749

Direct comparisons of SIC across distant localities and distinct ages, as shown above, have750

previously proven difficult due to issues pertaining to the 𝑐 factor and regional correlations; BaySIC751

facilitates spatially and temporally consistent sea ice interpretations, bringing a new perspective752

to ongoing debates about Arctic sea ice extent during past warm periods. While recent studies753

have inferred seasonally ice-free conditions in the LIG indirectly through summer surface air tem-754

perature proxies (Sime et al., 2023), or qualitatively through the presence of an open water proxy755

(Vermassen et al., 2023), more proxy-based investigations are required to confirm such propo-756

sition and to better define sea ice sensitivity to warming. In this regard, BaySIC provides a crit-757

ical step toward achieving direct and quantitative solutions.758

6 Conclusions759

A new ln(PIP25) index is proposed as a robust Arctic sea ice proxy that enables fully quan-760

titative proxy reconstructions of palaeo-sea ice concentration (SIC). It improves on the established761

PIP25 index by eliminating the use of a problematic balance factor, thus allowing direct compar-762

isons across different Arctic regions and consistent interpretations on longer (geologic) timescales.763

The ln(PIP25) index is found to correlate nonlinearly with SIC, with an apparent additional in-764

fluence of low sea surface salinity warranting further investigation. Observations from published765

sediment trap studies indicate a proxy seasonal bias towards the interval preceding local sea ice766

breakup, which varies over both space and time.767

Using a pan-Arctic core-top biomarker database, we develop a set of Bayesian models, called768

BaySIC, to calibrate the ln(PIP25) index to seasonal SIC. Calibration uncertainties are quantified769

and propagated to model predictions, providing better constraints on model uncertainties. The770

spatially varying forward model considers differences in the timing of ice melt, yielding more771

accurate proxy predictions while facilitating proxy-model comparisons and palaeoclimate data772

assimilation. An inverse model is also devised, by assuming an Arctic-wide stationary bias to773

March-April-May, to support direct SIC reconstructions from downcore ln(PIP25) measurements.774

Finally, we provide a number of examples that demonstrate the applicability of BaySIC to palaeo-775

climate investigations, which highlight the advances made in sea ice reconstruction using IP25776

and open-water sterols.777

As the first model of its kind, BaySIC represents an important step in translating the now778

well-established sea ice proxy into a quantified climate variable, opening up new possibilities for779

its use in constraining the long-term variability of Arctic sea ice, thereby improving our under-780

standing of past and future climate changes. Future research may provide more insights into the781

proxy system, including the identification of other environmental factors affecting ln(PIP25), which782

may help explain the remaining variance in the index. Additional core-top biomarker datasets,783

especially from currently under-sampled Arctic and sub-Arctic regions, may further strengthen784

the constraints on the calibration curves and their associated uncertainty ranges, enabling more785

robust sea ice, and thus global climate, reconstructions.786

Appendix A Model results for ln(PBIP25) calibrations787

Open Research788

The core-top biomarker database investigated for the development of BaySIC is available as Sup-789

porting Information. The BaySIC software package (Python) is publicly available on GitHub via790
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Figure A1. Calibrations (left) for ln(PBIP25) using the sea ice concentrations (SIC) of (a) the average of the
three months before the first SIC decrease and (b) Mar-Apr-May, and the corresponding spatial distributions
of residuals (right). Bubble size is inversely proportional to the interquartile range of the SIC over the 22-year
calibration period. HDI = highest density interval.
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https://github.com/CrystalCYFu/PyBaySIC with the Creative Commons Attribution-NonCommercial791

4.0 International License. Both the software and the data are also archived in Zenodo (Fu et al.,792

2025a, 2025b).793
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Fahl, K., & Nöthig, E.-M. (2007). Lithogenic and biogenic particle fluxes on the Lomonosov887

Ridge (central Arctic Ocean) and their relevance for sediment accumulation: Vertical888

vs. lateral transport. Deep Sea Research Part I: Oceanographic Research Papers,889

54(8), 1256–1272. doi: 10.1016/j.dsr.2007.04.014890

Fahl, K., & Stein, R. (2012). Modern seasonal variability and deglacial/Holocene change of891

central Arctic Ocean sea-ice cover: New insights from biomarker proxy records. Earth892

and Planetary Science Letters, 351-352, 123–133. doi: 10.1016/j.epsl.2012.07.009893

Fahl, K., Stein, R., Gaye-Haake, B., Gebhardt, C., Kodina, L. A., Unger, D., & Ittekkot, V.894

(2003). Biomarkers in surface sediments from the Ob and Yenisei estuaries and the895

southern Kara Sea: Evidence for particulate organic carbon sources, pathways, and896

–28–



manuscript submitted to Paleoceanography and Paleoclimatology
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emergence of modern sea ice cover in the Arctic Ocean. Nat Commun, 5(1), 5608. doi:966

10.1038/ncomms6608967

Koch, C. W., Cooper, L. W., Lalande, C., Brown, T. A., Frey, K. E., & Grebmeier, J. M.968

(2020). Seasonal and latitudinal variations in sea ice algae deposition in the North-969

ern Bering and Chukchi Seas determined by algal biomarkers. PLOS ONE, 15(4),970

e0231178. doi: 10.1371/journal.pone.0231178971

Kolling, H. M., Stein, R., Fahl, K., Sadatzki, H., de Vernal, A., & Xiao, X. (2020).972

Biomarker Distributions in (Sub)-Arctic Surface Sediments and Their Potential for973

Sea Ice Reconstructions. Geochem Geophys Geosyst, 21(10), e2019GC008629. doi:974

10.1029/2019GC008629975

Kremer, A., Stein, R., & Fahl, K. (2018). Organic-geochemical bulk parameter and976

biomarker distribution of sediment core PS92/039-2 [dataset publication series].977

PANGAEA. (Supplement to: Kremer, Anne; Stein, Ruediger; Fahl, Kirsten; Ji, Z;978

Yang, Z; Wiers, Steffen; Matthiessen, Jens; Forwick, Matthias; Löwemark, Lud-979
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