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Abstract

The application of Machine Learning (ML) in Electronic Design

Automation (EDA) for Very Large-Scale Integration (VLSI) design

has garnered significant research attention. Despite the require-

ment for extensive datasets to build effective ML models, most

studies are limited to smaller, internally generated datasets due to

the lack of comprehensive public resources. In response, we intro-

duce EDALearn, the first holistic, open-source benchmark suite

specifically for ML tasks in EDA. This benchmark suite presents

an end-to-end flow from synthesis to physical implementation,

enriching data collection across various stages. It fosters repro-

ducibility and promotes research into ML transferability across

different technology nodes. Accommodating a wide range of VLSI

design instances and sizes, our benchmark aptly represents the

complexity of contemporary VLSI designs. Additionally, we pro-

vide an in-depth data analysis, enabling users to fully comprehend

the attributes and distribution of our data, which is essential for

creating efficient ML models. Our contributions aim to encourage

further advances in the ML-EDA domain.

CCS Concepts

•Hardware→ Electronic design automation; Logic synthe-

sis; Physical design (EDA); • Computing methodologies →

Machine learning.
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1 Introduction

The process of VLSI circuit design is typically bifurcated into two

stages: front-end and back-end design. While the former focuses on

the circuit’s functionality, the latter is responsible for translating

the circuit into manufacturable geometries or layouts. However,

as technology continues to advance, back-end design often proves

to be a time-intensive process. This is largely due to the iterative

information exchange between the various design stages during

the optimization phase.

To mitigate these delays and streamline the process, cross-stage

prediction techniques have been introduced. By replacing long

feedback loops between design stages with more localized loops

within each stage, these techniques have significantly accelerated

the back-end design process. Machine learning (ML), known for

its predictive capabilities, has been widely employed to expedite
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Table 1: Contribution and Limitations of Previous Benchmarks

Benchmark Contribution Limitations

CircuitNet [4]
First open-source dataset for ML applications

in EDA.

Insufficient variety of circuits (merely 6 RISC-V

designs) and non-reproducible dataset due to

use of closed-sourced industrial technology

node.

TITAN [16]
Focuses on FPGA placement and routing with

23 benchmark circuits.

Limited coverage of possible designs in the

VLSI domain.

Hutton et al. [14]
Discussed parameterized generation of

synthetic combinational circuits.

Oversimplified circuit with limited sizes and

incomplete methods for sequential circuits.

OpenABC [6]
Large labeled dataset focusing on the synthesis

flow of open-source hardware IPs.

Only focuses on synthesis stage and lacks data

collection during backend stages.

various early-stage prediction tasks in the design flow, such as

routability [20] and IR drop [13].

In the face of increasing complexity in modern VLSI circuits and

the evolving demands of advanced technology nodes, EDA tools

are experiencing mounting challenges. In response to this, there

is a growing urgency for more intelligent and efficient methods

to enhance the design process. The objective is to optimize the

performance, power, and area (PPA) metrics of VLSI circuits. In

this respect, machine learning stands out as a promising solution

with its data-driven approach and prediction capabilities, providing

invaluable assistance in overcoming challenges in the EDA domain.

This paper presents EDALearn1, a comprehensive benchmark

suite for evaluating and comparing ML-based approaches in the

context of EDA. Figure 1 presents the overview of the EDALearn

benchmark flow. The benchmark covers a wide range of critical

EDA tasks, such as placement, routing, power analysis, timing

analysis, and IR drop prediction. The suite includes a diverse set

of real-world VLSI design instances, along with a standardized

evaluation framework that facilitates the fair assessment of different

ML models and techniques.

By providing a systematic and unified platform for performance

evaluation, the proposed EDALearn benchmark aims to foster col-

laboration and knowledge sharing within the EDA community,

encourage the development of novel ML-based algorithms and

methodologies, and ultimately contribute to the advancement of

EDA tools and processes. Our contribution is listed as follows:

• We introduce a holistic benchmark suite called EDALearn

which provides an end-to-end flow from synthesis to physi-

cal implementation, and present comprehensive and detailed

data collection across multiple stages of our flow, thus ad-

dressing the limitations of existing benchmarks that only

focus on certain stages.

• We provide an open-source reference flow for our EDALearn

benchmark, fostering reproducibility and enabling research

on ML transferability across different technology nodes, an

area overlooked by other benchmarks [4].

• Unlike benchmarks limited in their coverage of possible de-

signs and circuit sizes [4, 14, 16], our EDALearn benchmark

accommodates a wide variety of VLSI design instances and

1The dataset and a reference flow of our EDALearn benchmark suite is open-sourced
at https://github.com/panjingyu/EDALearn.

sizes, making it more representative of modern VLSI design

complexity.

• Weprovide an in-depth data analysis, enabling users to better

understand the attributes and distribution of our data, which

is critical for developing effective ML models.

The remainder of this paper is organized as follows: Section 2

summarizes previous ML for EDA benchmarks, highlighting their

limitations for comprehensive ML evaluation. Section 3 describes

our EDALearn benchmark suite in detail, including the used de-

sign instances, technology nodes, flow variations, extracted feature

representations, and supported EDA tasks. Section 4 presents a

data analysis of the EDALearn benchmark. Finally, Section 5 con-

cludes the paper and outlines future ML for EDA research directions

enabled by our EDALearn benchmark.

2 Related Works

In this seciton, we review previous ML for EDA benchmarks and

discuss their limitations for comprehensive ML evaluation.

CircuitNet [4] is the first open-source dataset for machine learn-

ing applications in electronic design automation (EDA). It provides

holistic support for cross-stage prediction tasks in back-end design

with diverse samples. However, it only adopted 6 RISC-V designs in

total, which is very limited for practical ML for EDA tasks. Circuit-

Net2 [15], an updated version of CircuitNet, included some GPU/AI

chip designs to increase the span of the designs and covered a 14nm

FinFET tech node besides the 28nm CMOS tech node in the earlier

version. Both are based on closed-sourced industrial technology

nodes, making the generated dataset not reproducible.

TITAN [16] is a benchmark that focuses on FPGA placement

and routing. It uses Altera’s Quartus II FPGA CAD software to

perform HDL synthesis and creates the Titan23 benchmark set,

which consists of 23 benchmark circuits. However, the coverage of

these circuits is limited to a narrow range of possible designs or use

cases in the general VLSI domain. [9] used the TITAN benchmark

to demonstrate a reinforcement learning (RL)-based optimization

for FPGA placement.

[14] discussed parameterized generation of synthetic combina-

tional circuits, providing a convenient way to generate large num-

bers of circuits with a wide range of characteristics. However, the

sizes of the generated circuits are limited to a few thousand gates,

which is insufficient for modern VLSI design. Besides, the paper
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Table 2: Synthesis variations.

Parameters Values

Frequency (MHz) 100/500/1000

DRC

Max Fanout 10/40

Max Transition 0.5

Max Capacitance 5

Command compile/compile_ultra

Options
Dynamic Power Optimization on/off

Leakage Power Optimization on/off

does not extend its methodology to the generation of sequential

circuits, limiting its applicability in comprehensively simulating

and testing the full spectrum of modern VLSI designs.

OpenABC [6] is also a large labeled dataset whose focus is the

synthesis flow of open-source hardware IPs. The hardware IP de-

signs are collected from various sources, including MIT_CEP, IWLS,

OpenROAD, OpenPiton, etc.. For each hardware IP, it generates

synthesis results with around 1500 random variations, or so-called

synthesis recipes. [22] explored RL-based area optimization of logic

synthesis on FPGAs based on the data collected from OpenABC.

While contributions such as CircuitNet, TITAN, synthetic com-

binational circuits, and OpenABC have set the stage for the inte-

gration of machine learning applications in EDA, they also exhibit

certain shortcomings. These limitations range from restricted de-

sign diversity, reliance on closed-sourced technology nodes, limited

size of generated circuits, to a narrowed focus on specific stages

of the design process. Most importantly, current benchmarks lack

comprehensive ML evaluation capabilities, which is instrumental

in addressing practical EDA challenges. Despite these challenges,

each benchmark has added value to the broader pursuit of refining

ML for EDA, paving the way for future research. Moving forward,

the integration of a more comprehensive, diverse, and reproducible

benchmark suite would be instrumental in mitigating these lim-

itations, advancing the scope and precision of machine learning

applications in EDA. This paper introduces such a benchmark, de-

signed to harness the strengths of the earlier workswhile addressing

their limitations, offering an advanced framework for evaluating

ML models in the EDA domain.

3 The EDALearn Benchmark

This section presents the details of our comprehensive benchmark

suite, designed to evaluate and compareML-based approaches in the

context of EDA tasks. The benchmark suite is based on the FreePDK

45nm [19], the Synopsys Armenia Educational Department (SAED)

32nm [12], and ASAP 7nm [7] technology nodes, and it supports

routability prediction, IR drop prediction, and cross-stage data anal-

ysis. The suite includes design instances from the IWLS benchmark

and BOOM CPU designs from Chipyard, facilitating a diverse and

practical evaluation of ML models and techniques.

Table 3: Physical design variations (global options).

Parameters Values

Design Flow Effort express/standard

Design Power Effort none/high

Target Utilization (%) 50/60/70/80/90

Table 4: Physical design variations (placement options).

Parameters Values

Global Timing Effort medium/high

Global Congestion Effort medium/high

Detail Wire Length Opt Effort medium/high

Global Max Density 0.75/0.9

Activity Power Driven on/off

Table 5: Physical design variations (CTS options).

Parameters Values

Pre-CTS Opt Max Density 0.8

Pre-CTS Opt Power Effort none/low/high

Pre-CTS Opt Reclaim Area on/off

Pre-CTS Fix Fanout Load on/off

Cell Density 0.5

Clock Gate Buffering Location below

Clone Clock Gates on

Post-CTS Opt Power Effort low/high

Post-CTS Opt Reclaim Area on/off

Post-CTS Fix Fanout Load on/off

3.1 Technology Nodes

Our benchmark suite covers 3 distinct technology nodes: FreePDK

45nm, SAED 32nm and ASAP 7nm. All of them are open-sourced

tech nodes, making our data fully-reproducible. Each node brings

its unique attributes and characteristics to the fore, providing a

diverse and challenging landscape for the assessment of machine

learning techniques within the sphere of EDA tasks.

The FreePDK 45nm and SAED 32 nodes represents an earlier

phase in semiconductor manufacturing technology, characterized

by larger feature sizes and lower transistor density. Consequently,

circuits designed at this node tend to be more straightforward with

respect to layout and thermal management, yet pose challenges in

terms of power efficiency and high-speed performance.

On the other hand, the ASAP 7nm node exemplifies the cutting-

edge in semiconductor technology, characterized by extremely

small feature sizes and high transistor density. Designs at this node

face significant challenges related to power, performance, and area

trade-offs, as well as manufacturing yield and reliability. Further-

more, the high complexity and cost associated with this advanced

node necessitate efficient and accurate EDA tools to ensure optimal

design outcomes.
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(a) Cell density. (b) Density of CTS cells. (c) Pin density. (d) Pin accessibility [21]. (e) Pin density of CTS cells.

(f) Bounding box of cells. (g) RUDY [18]. (h) Horizontal net density. (i) Vertical net density [5]. (j) Fly lines of all nets.

(k) Fly lines of nets (V1). (l) Fly lines of nets (V2). (m) Fly lines of nets (V3). (n) Static IR drop. (o) DRC violation hotspots.

Figure 2: Examples of image-like feature and label representations. "CTS cells" refers to cells directly connected to clock tree

nets. Sub-figures (k)-(n) depict varying net selections, denoted as V1-V3, each based on a different bounding box area threshold:

4k 𝜇m for V1, 1k 𝜇m for V2 and 0.1k𝜇m for V3. Two examples of post-routing stage labels are IR drop maps and DRC violation

hotspots.

Through the juxtaposition of these distinct technology nodes,

our benchmark suite offers a broad perspective, enabling a compre-

hensive and insightful evaluation of ML techniques across diverse

technological contexts in EDA tasks.

3.2 Flow Variations

Table 2 lists the synthesis variations used in the benchmark suite.

Table 3, Table 4, and Table 5 shows the global option variations,

placement-stage variations and CTS-stage variations used for the

physical design, respectively. The inclusion of these variations af-

fords a broad spectrum of potential physical implementations. This

diversification in data distribution significantly enhances the scope

for development in machine learning for EDA by accommodating

an array of possible real-world scenarios.

3.3 Design Instances

Our EDALearn benchmark suite comprises a varied selection of

practical VLSI design instances, promoting a thorough and depend-

able assessment of machine learning models and methodologies.

Table 6 shows the statistics of the design instances, each sourced

from an openly accessible benchmark, offers a diverse range of

circuit statistics. We proceed to detail the benchmarks that serve as

the origin of these designs.

• OpenCore [17]: A set of open-source hardware designs

from the OpenCore project. These designs cover a broad

spectrum of complexity and are ideal for evaluating the effec-

tiveness of ML techniques in various open-source hardware

scenarios.

• ISCAS [2, 3]: A collection of benchmark circuits from the

International Symposium on Circuits and Systems (ISCAS).

These designs, which include both combinational and se-

quential circuits, provide a diverse set of challenges for as-

sessing ML techniques in the context of circuit analysis and

optimization.

• Gaisler [11]: A series of designs from Gaisler Research,

known for their work in digital hardware design for commer-

cial and aerospace applications. These designs, including the

LEON2 and LEON3 processors, offer a unique opportunity
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Table 6: Circuit statistics of representative designs.

Designs
Circuit Statistics

Source
#Cells #Nets #Macros

Small BOOM 686k 898k 39 Chipyard

Medium BOOM 998k 1247k 39 Chipyard

simple_spi 500 800 0 OpenCores

pci 25565 33838 0 OpenCores

ac97_ctrl 11317 14032 0 OpenCores

b14 19676 21983 0 ITC’99

b14_1 19622 21912 0 ITC’99

b15 10019 11460 0 ITC’99

b15_1 10017 11455 0 ITC’99

b17 30563 35197 0 ITC’99

b17_1 30697 35312 0 ITC’99

b18 87803 103k 0 ITC’99

b18_1 86107 102k 0 ITC’99

b19 173k 205k 0 ITC’99

b20 38511 43607 0 ITC’99

b20_1 38584 43667 0 ITC’99

b21 38363 43427 0 ITC’99

b21_1 39886 44978 0 ITC’99

b22 56931 64478 0 ITC’99

b22_1 57469 65046 0 ITC’99

des 2895 3388 0 OpenCores

DMA 29268 39715 0 Faraday

DSP 47663 64068 0 Faraday

ethernet 69546 82199 0 OpenCores

fpu 34039 37226 0 OpenCores

i2c 663 778 0 OpenCores

leon2 699k 755k 0 Gaisler

mem_ctrl 10015 12212 0 OpenCores

pci 25565 33838 0 OpenCores

RISC 81160 110k 0 Faraday

s1196 578 597 0 ISCAS

s1238 623 643 0 ISCAS

s13207 1703 1844 0 ISCAS

s1423 989 1068 0 ISCAS

s832 424 449 0 ISCAS

s838_1 363 431 0 ISCAS

s9234_1 1338 1479 0 ISCAS

sasc 786 909 0 OpenCores

spi 2890 3285 0 OpenCores

ss_pcm 433 511 0 OpenCores

systemcaes 10624 12617 0 OpenCores

systemcdes 3693 4376 0 OpenCores

tv80 7724 8378 0 OpenCores

usb_funct 18845 23913 0 OpenCores

usb_phy 681 794 0 OpenCores

vga_lcd 89751 105k 0 OpenCores

wb_conmax 64874 99445 0 OpenCores

wb_dma 81615 94562 0 OpenCores

to evaluate ML techniques in the context of both commercial

and space-grade hardware design.

• Faraday [10]: A set of designs from Faraday Technology

Corporation, a leading ASIC design service and IP provider.

These designs represent a range of modern ASIC implemen-

tations, providing a robust platform for assessing ML tech-

niques in the context of state-of-the-art ASIC design.

• ITC’99[8]: A collection of designs from the International

Test Conference (ITC) 1999 benchmark suite. These designs,

which cover a wide range of complexity and design styles,

are ideal for evaluating the effectiveness of ML techniques

in various test and diagnosis scenarios.

• BOOM CPU designs from Chipyard [1]: A set of modern,

high-performance RISC-V CPU designs from the Chipyard

framework. These designs represent state-of-the-art VLSI

implementations and provide an excellent testbed for evalu-

ating ML approaches in the context of advanced and complex

designs.

3.4 Circuit Features

A critical aspect of applying ML techniques in the EDA domain

lies in the ability to represent circuit designs in a format amenable

to learning. Our benchmark suite offers a comprehensive set of

circuit features, encapsulating the necessary information about the

circuits into two primary forms: image-like representations and

vector-based features.

• Image-like representations: These features capture the

spatial distribution of various circuit components on the sili-

con area. The layout of a circuit can significantly influence

the performance, power, and area (PPA) metrics of a VLSI

design. For instance, closely packed gates can lead to higher

power consumption and may affect the routability. Figure 2

showcases some examples of the image-like feature repre-

sentations generated based on our EDALearn benchmark.

Their representations capture the spatial layout and density

of cells, nets, and macros in the design. These features can

be easily stacked as tensors to be ingested by convolutional

neural network (CNN) models, making them particularly

suitable for tasks such as routability prediction, congestion

estimation, and IR drop prediction.

• Vector-based features: These features capture circuit statis-

tics and other design attributes as multi-dimensional vectors.

They include parameters like the total number of cells, num-

ber of nets, design hierarchy depth, number and type of

macros, target clock frequency, among others. These vector-

based features serve as abstract representations of the de-

signs and can be utilized by various types of ML models

including decision trees, support vector machines, and fully

connected neural networks. They are particularly useful for

tasks that require a high-level understanding of the design,

such as power and timing prediction.

By combining both spatial and statistical features, our EDALearn

benchmark offers a holistic view of the circuits, enablingMLmodels

to exploit both global and local information in their predictions.

Moreover, the feature extraction process is flexible and extensible,

allowing researchers to add more features that they believe may

be relevant for their specific tasks. This hybrid approach paves the

way for exploring complex relationships between circuit attributes
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and design outcomes, fostering more insightful and accurate ML

models for EDA.

3.5 EDA Tasks

Our EDALearn benchmark suite covers the following critical EDA

tasks:

• Power prediction: Estimating the power consumption of

a circuit design is a critical task in EDA. Excessive power

consumption can lead to overheating, decreased reliability,

and shorter battery life in mobile devices. ML models can

be used to predict power consumption early in the design

process, allowing designers to make necessary modifications

to meet power constraints. This task specifically involves

predicting both dynamic and leakage power for a given de-

sign, considering the impact of factors such as operating

voltage, clock frequency, and gate capacitance.

• Slack time prediction: Timing analysis is a vital part of the

EDA process to ensure that a circuit meets its performance

targets. Slack time is the total time that you can delay a task

without delaying the project. More slack time indicates a

higher chance of meeting the timing requirements even with

variations in gate delays. ML models can predict the slack

time for each timing path, enabling designers to identify

potential timing violations and make necessary adjustments

early in the design process. Specifically, this task involves

predicting the slack time at different stages of the design flow,

such as post-synthesis, post-placement, and post-routing.

• Routability prediction: Assessing the feasibility of routing

a design within given constraints, such as routing resources

and timing requirements. MLmodels can be employed to pre-

dict routability early in the design process, reducing the need

for time-consuming iterative refinements. Specifically, we

extract labels for routing congestion and post-routing DRC

violations, which are the two main metrics for routability.

• IR drop prediction: Estimating the voltage drop across

the power distribution network, which can impact the per-

formance and reliability of a design. ML-based approaches

can provide accurate IR drop predictions in the early stages

of design, allowing for more informed power optimization

decisions.

In addition to the aforementioned EDA tasks, our EDALearn

benchmark suite enables the benefits of cross-stage data analysis.

This analysis involves comparing estimations generated by EDA

tools at different stages of the design flow, such as power, timing,

or routability estimations at synthesis, placement, and post-routing

stages. By offering insights into the discrepancies and potential

areas for improvement in the design flow, cross-stage data analysis

can aid in the development of MLmodels tailored for EDA problems,

leading to better optimization and more accurate predictions.

4 Benchmark Analysis

This section conducts an analysis of the data distribution observed

in the EDALearn benchmark. Specifically, it compares the power

and timing data at different stages of the implementation flow.

Figure 3: Distribution of WNS and total power from different

synthesis/implementation results of Medium BOOM CPU

design. Here we compare results based on both the compile
and compile_ultra synthesis command.

Furthermore, it extends these comparisons across different technol-

ogy nodes. The aim of these analyses is to shed light on potential

research directions enabled by the EDALearn benchmark.

4.1 Trade-off between timing and power

Figure 3 shows the distribution of worst negative slack and total

power from different synthesis/implementation results of Medium

BOOM CPU design from chipyard. Here we compare the differ-

ence of distribution observed from results of the compile and

compile_ultra synthesis command. It clearly shows that the re-

sults from both synthesis commands form two distinct clusters,

indicating a noticeable difference in the outcomes based on the

command used. The compile command results in one distribution,

while the compile_ultra command results in another. Most no-

tably, the compile_ultra command appears to produce superior

results in terms of both worst negative slack time and total power

consumption. It is found that the compile_ultra command results

in less worst negative slack time, indicating a better timing per-

formance. Similarly, the total power consumption is less with the

compile_ultra command, suggesting improved energy efficiency.

4.2 Chipyard Boom designs

The discussion here centers on the distribution of Chipyard Boom

CPU designs, which bear distinct attributes due to their larger size

and incorporation of memory macros. As depicted in Figure 4, the

worst negative slack time and total power of the Boom CPU designs,

based on the FreePDK 45nm technology node, are distributed in

unique clusters corresponding to each design size. An observable

trend is that the total power consumed is commensurate with the

size of the design, presenting a logical correlation between these

two parameters. When scrutinizing the small and medium Boom

CPUs, it becomes apparent that their worst negative slack times are

notably similar. However, this isn’t the case for the larger designs.
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Figure 4:WNS and total power distribution of chipyard Boom

designs implemented based on FreePDK45.

For the large Boom CPUs and Mega Boom CPUs, the worst neg-

ative slack time is conspicuously higher, suggesting an increased

complexity in managing timing for these larger designs. This anal-

ysis provides valuable insights into the intricate interplay between

design size, power consumption, and timing performance.

4.3 Comparison between different stages or
technology node

Figure 5 and Figure 6 respectively depict the distribution of total

power consumption estimated at the post-routing stage for the

FreePDK 45nm and ASAP 7nm technology nodes. A trend observed

in both nodes is that the post-routing total power typically surpasses

the post-placement total power, suggesting an over-optimistic esti-

mation of total power at the post-placement stage by the golden

tool. This increase can be attributed to the additional wire length

incurred during the routing and optimization stage, which is com-

monly underestimated. Notably, the extent of this over-estimation

Figure 5: Total power distribution comparison between post-

placement stage and post-routing stage of implementations

based on the FreePDK 45nm technology node.

Figure 6: Total power distribution comparison between post-

placement stage and post-routing stage of implementations

based on the ASAP 7nm technology node.

varies between different designs, as evidenced by Figure 5 and

Figure 6. This observation illustrates the value of our EDALearn

benchmark in enabling novel research directions, such as explor-

ing more accurate power estimation models at the post-placement

stage, identifying the sources of over-optimism in current tools, or

developing ML models capable of more accurately predicting the

impact of routing on power consumption.

In addition to offering insights into power estimations, Figure 5

and Figure 6 also facilitate a comparative view of the power distri-

bution differences across two distinct technology nodes. This com-

parison not only underscores the diversity in power consumption

patterns but also highlights the potential for disparities between

different technology nodes. This paves the way for future research

endeavors into the transferability of machine learning models, in-

vestigating whether models developed and trained on data from

one technology node can perform accurately when applied to data

from another node. This would further our understanding of how

machine learning models can adapt to new scenarios, potentially

leading to more robust and versatile ML solutions in electronic

design automation.

5 Conclusion

In this work, we have introduced EDALearn, a comprehensive

benchmark suite designed to facilitate the evaluation and compar-

ison of ML-based methodologies within the realm of Electronic

Design Automation. EDALearn addresses several limitations in ex-

isting benchmarks by providing a holistic, end-to-end flow that cov-

ers various critical EDA tasks including placement, routing, power

analysis, timing analysis, and IR drop prediction. Our open-source

reference flow fosters reproducibility and promotes research on ML

transferability across different technology nodes, filling the gap left

by previous benchmarks. Furthermore, EDALearn accommodates a

broad variety of VLSI design instances and sizes, overcoming the

narrow focus of prior benchmarks and making it a more represen-

tative solution for the modern, complex VLSI design scenario. The

in-depth data analysis included in the suite enables users to gain

a better understanding of data attributes and distribution, which
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are essential for the development of effective ML models. In conclu-

sion, the EDALearn benchmark suite is a significant step forward

in the fusion of machine learning and EDA, providing a unified

and systematic platform for performance evaluation, fostering col-

laboration and knowledge sharing, and encouraging innovation

in ML-based algorithms and methodologies. We anticipate that

this initiative will contribute substantially to the evolution and

optimization of EDA tools and processes, steering the direction of

future research in the field.
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