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Abstract

The application of Machine Learning (ML) in Electronic Design
Automation (EDA) for Very Large-Scale Integration (VLSI) design
has garnered significant research attention. Despite the require-
ment for extensive datasets to build effective ML models, most
studies are limited to smaller, internally generated datasets due to
the lack of comprehensive public resources. In response, we intro-
duce EDALearn, the first holistic, open-source benchmark suite
specifically for ML tasks in EDA. This benchmark suite presents
an end-to-end flow from synthesis to physical implementation,
enriching data collection across various stages. It fosters repro-
ducibility and promotes research into ML transferability across
different technology nodes. Accommodating a wide range of VLSI
design instances and sizes, our benchmark aptly represents the
complexity of contemporary VLSI designs. Additionally, we pro-
vide an in-depth data analysis, enabling users to fully comprehend
the attributes and distribution of our data, which is essential for
creating efficient ML models. Our contributions aim to encourage
further advances in the ML-EDA domain.

CCS Concepts

« Hardware — Electronic design automation; Logic synthe-
sis; Physical design (EDA); - Computing methodologies —
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Figure 1: Overview of the EDALearn benchmark.
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1 Introduction

The process of VLSI circuit design is typically bifurcated into two
stages: front-end and back-end design. While the former focuses on
the circuit’s functionality, the latter is responsible for translating
the circuit into manufacturable geometries or layouts. However,
as technology continues to advance, back-end design often proves
to be a time-intensive process. This is largely due to the iterative
information exchange between the various design stages during
the optimization phase.

To mitigate these delays and streamline the process, cross-stage
prediction techniques have been introduced. By replacing long
feedback loops between design stages with more localized loops
within each stage, these techniques have significantly accelerated
the back-end design process. Machine learning (ML), known for
its predictive capabilities, has been widely employed to expedite
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Table 1: Contribution and Limitations of Previous Benchmarks

Benchmark Contribution

Limitations

CircuitNet [4]

First open-source dataset for ML applications

Insufficient variety of circuits (merely 6 RISC-V
designs) and non-reproducible dataset due to

in EDA. use of closed-sourced industrial technology
node.
TITAN [16] Focuses on FPGA placement and routing with | Limited coverage of possible designs in the
23 benchmark circuits. VLSI domain.

Hutton et al. [14] ) . >
synthetic combinational circuits.

Discussed parameterized generation of

Oversimplified circuit with limited sizes and
incomplete methods for sequential circuits.

OpenABC [6]

flow of open-source hardware IPs.

Large labeled dataset focusing on the synthesis | Only focuses on synthesis stage and lacks data

collection during backend stages.

various early-stage prediction tasks in the design flow, such as
routability [20] and IR drop [13].

In the face of increasing complexity in modern VLSI circuits and
the evolving demands of advanced technology nodes, EDA tools
are experiencing mounting challenges. In response to this, there
is a growing urgency for more intelligent and efficient methods
to enhance the design process. The objective is to optimize the
performance, power, and area (PPA) metrics of VLSI circuits. In
this respect, machine learning stands out as a promising solution
with its data-driven approach and prediction capabilities, providing
invaluable assistance in overcoming challenges in the EDA domain.

This paper presents EDALearn!, a comprehensive benchmark
suite for evaluating and comparing ML-based approaches in the
context of EDA. Figure 1 presents the overview of the EDALearn
benchmark flow. The benchmark covers a wide range of critical
EDA tasks, such as placement, routing, power analysis, timing
analysis, and IR drop prediction. The suite includes a diverse set
of real-world VLSI design instances, along with a standardized
evaluation framework that facilitates the fair assessment of different
ML models and techniques.

By providing a systematic and unified platform for performance
evaluation, the proposed EDALearn benchmark aims to foster col-
laboration and knowledge sharing within the EDA community,
encourage the development of novel ML-based algorithms and
methodologies, and ultimately contribute to the advancement of
EDA tools and processes. Our contribution is listed as follows:

e We introduce a holistic benchmark suite called EDALearn
which provides an end-to-end flow from synthesis to physi-
cal implementation, and present comprehensive and detailed
data collection across multiple stages of our flow, thus ad-
dressing the limitations of existing benchmarks that only
focus on certain stages.

e We provide an open-source reference flow for our EDALearn
benchmark, fostering reproducibility and enabling research
on ML transferability across different technology nodes, an
area overlooked by other benchmarks [4].

o Unlike benchmarks limited in their coverage of possible de-
signs and circuit sizes [4, 14, 16], our EDALearn benchmark
accommodates a wide variety of VLSI design instances and

!The dataset and a reference flow of our EDALearn benchmark suite is open-sourced
at https://github.com/panjingyu/EDALearn.

sizes, making it more representative of modern VLSI design
complexity.

e We provide an in-depth data analysis, enabling users to better
understand the attributes and distribution of our data, which
is critical for developing effective ML models.

The remainder of this paper is organized as follows: Section 2
summarizes previous ML for EDA benchmarks, highlighting their
limitations for comprehensive ML evaluation. Section 3 describes
our EDALearn benchmark suite in detail, including the used de-
sign instances, technology nodes, flow variations, extracted feature
representations, and supported EDA tasks. Section 4 presents a
data analysis of the EDALearn benchmark. Finally, Section 5 con-
cludes the paper and outlines future ML for EDA research directions
enabled by our EDALearn benchmark.

2 Related Works

In this seciton, we review previous ML for EDA benchmarks and
discuss their limitations for comprehensive ML evaluation.

CircuitNet [4] is the first open-source dataset for machine learn-
ing applications in electronic design automation (EDA). It provides
holistic support for cross-stage prediction tasks in back-end design
with diverse samples. However, it only adopted 6 RISC-V designs in
total, which is very limited for practical ML for EDA tasks. Circuit-
Net2 [15], an updated version of CircuitNet, included some GPU/AI
chip designs to increase the span of the designs and covered a 14nm
FinFET tech node besides the 28nm CMOS tech node in the earlier
version. Both are based on closed-sourced industrial technology
nodes, making the generated dataset not reproducible.

TITAN [16] is a benchmark that focuses on FPGA placement
and routing. It uses Altera’s Quartus II FPGA CAD software to
perform HDL synthesis and creates the Titan23 benchmark set,
which consists of 23 benchmark circuits. However, the coverage of
these circuits is limited to a narrow range of possible designs or use
cases in the general VLSI domain. [9] used the TITAN benchmark
to demonstrate a reinforcement learning (RL)-based optimization
for FPGA placement.

[14] discussed parameterized generation of synthetic combina-
tional circuits, providing a convenient way to generate large num-
bers of circuits with a wide range of characteristics. However, the
sizes of the generated circuits are limited to a few thousand gates,
which is insufficient for modern VLSI design. Besides, the paper
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Table 2: Synthesis variations.

Parameters Values
Frequency (MHz) 100/500/1000
Max Fanout 10/40
DRC Max Transition 0.5
Max Capacitance 5
Command compile/compile_ultra
' Dynamic Power Optimization on/off
Options [ eakage Power Optimization on/off

does not extend its methodology to the generation of sequential
circuits, limiting its applicability in comprehensively simulating
and testing the full spectrum of modern VLSI designs.

OpenABC [6] is also a large labeled dataset whose focus is the
synthesis flow of open-source hardware IPs. The hardware IP de-
signs are collected from various sources, including MIT_CEP, IWLS,
OpenROAD, OpenPiton, etc.. For each hardware IP, it generates
synthesis results with around 1500 random variations, or so-called
synthesis recipes. [22] explored RL-based area optimization of logic
synthesis on FPGAs based on the data collected from OpenABC.

While contributions such as CircuitNet, TITAN, synthetic com-
binational circuits, and OpenABC have set the stage for the inte-
gration of machine learning applications in EDA, they also exhibit
certain shortcomings. These limitations range from restricted de-
sign diversity, reliance on closed-sourced technology nodes, limited
size of generated circuits, to a narrowed focus on specific stages
of the design process. Most importantly, current benchmarks lack
comprehensive ML evaluation capabilities, which is instrumental
in addressing practical EDA challenges. Despite these challenges,
each benchmark has added value to the broader pursuit of refining
ML for EDA, paving the way for future research. Moving forward,
the integration of a more comprehensive, diverse, and reproducible
benchmark suite would be instrumental in mitigating these lim-
itations, advancing the scope and precision of machine learning
applications in EDA. This paper introduces such a benchmark, de-
signed to harness the strengths of the earlier works while addressing
their limitations, offering an advanced framework for evaluating
ML models in the EDA domain.

3 The EDALearn Benchmark

This section presents the details of our comprehensive benchmark
suite, designed to evaluate and compare ML-based approaches in the
context of EDA tasks. The benchmark suite is based on the FreePDK
45nm [19], the Synopsys Armenia Educational Department (SAED)
32nm [12], and ASAP 7nm [7] technology nodes, and it supports
routability prediction, IR drop prediction, and cross-stage data anal-
ysis. The suite includes design instances from the IWLS benchmark
and BOOM CPU designs from Chipyard, facilitating a diverse and
practical evaluation of ML models and techniques.
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Table 3: Physical design variations (global options).

Parameters Values
Design Flow Effort  express/standard
Design Power Effort none/high
Target Utilization (%)  50/60/70/80/90

Table 4: Physical design variations (placement options).

Parameters Values
Global Timing Effort medium/high
Global Congestion Effort medium/high

Detail Wire Length Opt Effort medium/high
Global Max Density 0.75/0.9
Activity Power Driven on/off

Table 5: Physical design variations (CTS options).

Parameters Values
Pre-CTS Opt Max Density 0.8
Pre-CTS Opt Power Effort none/low/high
Pre-CTS Opt Reclaim Area on/off

Pre-CTS Fix Fanout Load on/off

Cell Density 0.5

Clock Gate Buffering Location below
Clone Clock Gates on
Post-CTS Opt Power Effort low/high
Post-CTS Opt Reclaim Area on/off
Post-CTS Fix Fanout Load on/off

3.1 Technology Nodes

Our benchmark suite covers 3 distinct technology nodes: FreePDK
45nm, SAED 32nm and ASAP 7nm. All of them are open-sourced
tech nodes, making our data fully-reproducible. Each node brings
its unique attributes and characteristics to the fore, providing a
diverse and challenging landscape for the assessment of machine
learning techniques within the sphere of EDA tasks.

The FreePDK 45nm and SAED 32 nodes represents an earlier
phase in semiconductor manufacturing technology, characterized
by larger feature sizes and lower transistor density. Consequently,
circuits designed at this node tend to be more straightforward with
respect to layout and thermal management, yet pose challenges in
terms of power efficiency and high-speed performance.

On the other hand, the ASAP 7nm node exemplifies the cutting-
edge in semiconductor technology, characterized by extremely
small feature sizes and high transistor density. Designs at this node
face significant challenges related to power, performance, and area
trade-offs, as well as manufacturing yield and reliability. Further-
more, the high complexity and cost associated with this advanced
node necessitate efficient and accurate EDA tools to ensure optimal
design outcomes.
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(a) Cell density. (b) Density of CTS cells.

(f) Bounding box of cells. (g) RUDY [18].

(c) Pin density.

(h) Horizontal net density.
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(d) Pin accessibility [21]. (e) Pin density of CTS cells.

(i) Vertical net density [5]. (j) Fly lines of all nets.

(k) Fly lines of nets (V1). (1) Fly lines of nets (V2).

(m) Fly lines of nets (V3).

(n) Static IR drop.

(o) DRC violation hotspots.

Figure 2: Examples of image-like feature and label representations. "CTS cells" refers to cells directly connected to clock tree
nets. Sub-figures (k)-(n) depict varying net selections, denoted as V1-V3, each based on a different bounding box area threshold:
4k pm for V1, 1k ym for V2 and 0.1kym for V3. Two examples of post-routing stage labels are IR drop maps and DRC violation

hotspots.

Through the juxtaposition of these distinct technology nodes,
our benchmark suite offers a broad perspective, enabling a compre-
hensive and insightful evaluation of ML techniques across diverse
technological contexts in EDA tasks.

3.2 Flow Variations

Table 2 lists the synthesis variations used in the benchmark suite.
Table 3, Table 4, and Table 5 shows the global option variations,
placement-stage variations and CTS-stage variations used for the
physical design, respectively. The inclusion of these variations af-
fords a broad spectrum of potential physical implementations. This
diversification in data distribution significantly enhances the scope
for development in machine learning for EDA by accommodating
an array of possible real-world scenarios.

3.3 Design Instances

Our EDALearn benchmark suite comprises a varied selection of
practical VLSI design instances, promoting a thorough and depend-
able assessment of machine learning models and methodologies.

Table 6 shows the statistics of the design instances, each sourced
from an openly accessible benchmark, offers a diverse range of
circuit statistics. We proceed to detail the benchmarks that serve as
the origin of these designs.

e OpenCore [17]: A set of open-source hardware designs
from the OpenCore project. These designs cover a broad
spectrum of complexity and are ideal for evaluating the effec-
tiveness of ML techniques in various open-source hardware
scenarios.

e ISCAS [2, 3]: A collection of benchmark circuits from the
International Symposium on Circuits and Systems (ISCAS).
These designs, which include both combinational and se-
quential circuits, provide a diverse set of challenges for as-
sessing ML techniques in the context of circuit analysis and
optimization.

e Gaisler [11]: A series of designs from Gaisler Research,
known for their work in digital hardware design for commer-
cial and aerospace applications. These designs, including the
LEON2 and LEON3 processors, offer a unique opportunity
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Table 6: Circuit statistics of representative designs.

Circuit Statistics

Designs Source
#Cells #Nets #Macros
Small BOOM 686k 898k 39 Chipyard
Medium BOOM 998k 1247k 39 Chipyard
simple_spi 500 800 0 OpenCores
pci 25565 33838 0 OpenCores
ac97_ctrl 11317 14032 0 OpenCores
b14 19676 21983 0 ITC99
b14_1 19622 21912 0 ITC’99
b15 10019 11460 0 ITC99
b15_1 10017 11455 0 1TC 99
b17 30563 35197 0 ITC’99
b17_1 30697 35312 0 ITC99
b18 87803 103k 0 ITC’99
b18_1 86107 102k 0 ITC’99
b19 173k 205k 0 ITC99
b20 38511 43607 0 ITC’99
b20_1 38584 43667 0 ITC99
b21 38363 43427 0 ITC99
b21_1 39886 44978 0 1TC 99
b22 56931 64478 0 ITC99
b22_1 57469 65046 0 ITC99
des 2895 3388 0 OpenCores
DMA 29268 39715 0 Faraday
DSP 47663 64068 0 Faraday
ethernet 69546 82199 0 OpenCores
fpu 34039 37226 0 OpenCores
i2¢ 663 778 0 OpenCores
leon2 699k 755k 0 Gaisler
mem_ctrl 10015 12212 0 OpenCores
pci 25565 33838 0 OpenCores
RISC 81160 110k 0 Faraday
51196 578 597 0 ISCAS
51238 623 643 0 ISCAS
s13207 1703 1844 0 ISCAS
51423 989 1068 0 ISCAS
$832 424 449 0 ISCAS
s838_1 363 431 0 ISCAS
$9234_1 1338 1479 0 ISCAS
sasc 786 909 0 OpenCores
spi 2890 3285 0 OpenCores
ss_pcm 433 511 0 OpenCores
systemcaes 10624 12617 0 OpenCores
systemcdes 3693 4376 0 OpenCores
tv80 7724 8378 0 OpenCores
usb_funct 18845 23913 0 OpenCores
usb_phy 681 794 0 OpenCores
vga_led 89751 105k 0 OpenCores
wb_conmax 64874 99445 0 OpenCores
wb_dma 81615 94562 0 OpenCores

to evaluate ML techniques in the context of both commercial
and space-grade hardware design.
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e Faraday [10]: A set of designs from Faraday Technology
Corporation, a leading ASIC design service and IP provider.
These designs represent a range of modern ASIC implemen-
tations, providing a robust platform for assessing ML tech-
niques in the context of state-of-the-art ASIC design.
ITC’99[8]: A collection of designs from the International
Test Conference (ITC) 1999 benchmark suite. These designs,
which cover a wide range of complexity and design styles,
are ideal for evaluating the effectiveness of ML techniques
in various test and diagnosis scenarios.

BOOM CPU designs from Chipyard [1]: A set of modern,
high-performance RISC-V CPU designs from the Chipyard
framework. These designs represent state-of-the-art VLSI
implementations and provide an excellent testbed for evalu-
ating ML approaches in the context of advanced and complex
designs.

3.4 Circuit Features

A critical aspect of applying ML techniques in the EDA domain
lies in the ability to represent circuit designs in a format amenable
to learning. Our benchmark suite offers a comprehensive set of
circuit features, encapsulating the necessary information about the
circuits into two primary forms: image-like representations and
vector-based features.

e Image-like representations: These features capture the
spatial distribution of various circuit components on the sili-
con area. The layout of a circuit can significantly influence
the performance, power, and area (PPA) metrics of a VLSI
design. For instance, closely packed gates can lead to higher
power consumption and may affect the routability. Figure 2
showcases some examples of the image-like feature repre-
sentations generated based on our EDALearn benchmark.
Their representations capture the spatial layout and density
of cells, nets, and macros in the design. These features can
be easily stacked as tensors to be ingested by convolutional
neural network (CNN) models, making them particularly
suitable for tasks such as routability prediction, congestion
estimation, and IR drop prediction.

e Vector-based features: These features capture circuit statis-
tics and other design attributes as multi-dimensional vectors.
They include parameters like the total number of cells, num-
ber of nets, design hierarchy depth, number and type of
macros, target clock frequency, among others. These vector-
based features serve as abstract representations of the de-
signs and can be utilized by various types of ML models
including decision trees, support vector machines, and fully
connected neural networks. They are particularly useful for
tasks that require a high-level understanding of the design,
such as power and timing prediction.

By combining both spatial and statistical features, our EDALearn
benchmark offers a holistic view of the circuits, enabling ML models
to exploit both global and local information in their predictions.
Moreover, the feature extraction process is flexible and extensible,
allowing researchers to add more features that they believe may
be relevant for their specific tasks. This hybrid approach paves the
way for exploring complex relationships between circuit attributes
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and design outcomes, fostering more insightful and accurate ML
models for EDA.

3.5 EDA Tasks

Our EDALearn benchmark suite covers the following critical EDA
tasks:

e Power prediction: Estimating the power consumption of
a circuit design is a critical task in EDA. Excessive power
consumption can lead to overheating, decreased reliability,
and shorter battery life in mobile devices. ML models can
be used to predict power consumption early in the design
process, allowing designers to make necessary modifications
to meet power constraints. This task specifically involves
predicting both dynamic and leakage power for a given de-
sign, considering the impact of factors such as operating
voltage, clock frequency, and gate capacitance.

o Slack time prediction: Timing analysis is a vital part of the
EDA process to ensure that a circuit meets its performance
targets. Slack time is the total time that you can delay a task
without delaying the project. More slack time indicates a
higher chance of meeting the timing requirements even with
variations in gate delays. ML models can predict the slack
time for each timing path, enabling designers to identify
potential timing violations and make necessary adjustments
early in the design process. Specifically, this task involves
predicting the slack time at different stages of the design flow,
such as post-synthesis, post-placement, and post-routing.

e Routability prediction: Assessing the feasibility of routing
a design within given constraints, such as routing resources
and timing requirements. ML models can be employed to pre-
dict routability early in the design process, reducing the need
for time-consuming iterative refinements. Specifically, we
extract labels for routing congestion and post-routing DRC
violations, which are the two main metrics for routability.

e IR drop prediction: Estimating the voltage drop across
the power distribution network, which can impact the per-
formance and reliability of a design. ML-based approaches
can provide accurate IR drop predictions in the early stages
of design, allowing for more informed power optimization
decisions.

In addition to the aforementioned EDA tasks, our EDALearn
benchmark suite enables the benefits of cross-stage data analysis.
This analysis involves comparing estimations generated by EDA
tools at different stages of the design flow, such as power, timing,
or routability estimations at synthesis, placement, and post-routing
stages. By offering insights into the discrepancies and potential
areas for improvement in the design flow, cross-stage data analysis
can aid in the development of ML models tailored for EDA problems,
leading to better optimization and more accurate predictions.

4 Benchmark Analysis

This section conducts an analysis of the data distribution observed
in the EDALearn benchmark. Specifically, it compares the power
and timing data at different stages of the implementation flow.
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Figure 3: Distribution of WNS and total power from different
synthesis/implementation results of Medium BOOM CPU
design. Here we compare results based on both the compile
and compile_ultra synthesis command.

Furthermore, it extends these comparisons across different technol-
ogy nodes. The aim of these analyses is to shed light on potential
research directions enabled by the EDALearn benchmark.

4.1 Trade-off between timing and power

Figure 3 shows the distribution of worst negative slack and total
power from different synthesis/implementation results of Medium
BOOM CPU design from chipyard. Here we compare the differ-
ence of distribution observed from results of the compile and
compile_ultra synthesis command. It clearly shows that the re-
sults from both synthesis commands form two distinct clusters,
indicating a noticeable difference in the outcomes based on the
command used. The compile command results in one distribution,
while the compile_ultra command results in another. Most no-
tably, the compile_ultra command appears to produce superior
results in terms of both worst negative slack time and total power
consumption. It is found that the compile_ultra command results
in less worst negative slack time, indicating a better timing per-
formance. Similarly, the total power consumption is less with the
compile_ultra command, suggesting improved energy efficiency.

4.2 Chipyard Boom designs

The discussion here centers on the distribution of Chipyard Boom
CPU designs, which bear distinct attributes due to their larger size
and incorporation of memory macros. As depicted in Figure 4, the
worst negative slack time and total power of the Boom CPU designs,
based on the FreePDK 45nm technology node, are distributed in
unique clusters corresponding to each design size. An observable
trend is that the total power consumed is commensurate with the
size of the design, presenting a logical correlation between these
two parameters. When scrutinizing the small and medium Boom
CPUs, it becomes apparent that their worst negative slack times are
notably similar. However, this isn’t the case for the larger designs.
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Figure 4: WNS and total power distribution of chipyard Boom
designs implemented based on FreePDK45.

For the large Boom CPUs and Mega Boom CPUs, the worst neg-
ative slack time is conspicuously higher, suggesting an increased
complexity in managing timing for these larger designs. This anal-
ysis provides valuable insights into the intricate interplay between
design size, power consumption, and timing performance.

4.3 Comparison between different stages or
technology node

Figure 5 and Figure 6 respectively depict the distribution of total
power consumption estimated at the post-routing stage for the
FreePDK 45nm and ASAP 7nm technology nodes. A trend observed
in both nodes is that the post-routing total power typically surpasses
the post-placement total power, suggesting an over-optimistic esti-
mation of total power at the post-placement stage by the golden
tool. This increase can be attributed to the additional wire length
incurred during the routing and optimization stage, which is com-
monly underestimated. Notably, the extent of this over-estimation
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Figure 5: Total power distribution comparison between post-
placement stage and post-routing stage of implementations
based on the FreePDK 45nm technology node.
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Figure 6: Total power distribution comparison between post-
placement stage and post-routing stage of implementations
based on the ASAP 7nm technology node.

varies between different designs, as evidenced by Figure 5 and
Figure 6. This observation illustrates the value of our EDALearn
benchmark in enabling novel research directions, such as explor-
ing more accurate power estimation models at the post-placement
stage, identifying the sources of over-optimism in current tools, or
developing ML models capable of more accurately predicting the
impact of routing on power consumption.

In addition to offering insights into power estimations, Figure 5
and Figure 6 also facilitate a comparative view of the power distri-
bution differences across two distinct technology nodes. This com-
parison not only underscores the diversity in power consumption
patterns but also highlights the potential for disparities between
different technology nodes. This paves the way for future research
endeavors into the transferability of machine learning models, in-
vestigating whether models developed and trained on data from
one technology node can perform accurately when applied to data
from another node. This would further our understanding of how
machine learning models can adapt to new scenarios, potentially
leading to more robust and versatile ML solutions in electronic
design automation.

5 Conclusion

In this work, we have introduced EDALearn, a comprehensive
benchmark suite designed to facilitate the evaluation and compar-
ison of ML-based methodologies within the realm of Electronic
Design Automation. EDALearn addresses several limitations in ex-
isting benchmarks by providing a holistic, end-to-end flow that cov-
ers various critical EDA tasks including placement, routing, power
analysis, timing analysis, and IR drop prediction. Our open-source
reference flow fosters reproducibility and promotes research on ML
transferability across different technology nodes, filling the gap left
by previous benchmarks. Furthermore, EDALearn accommodates a
broad variety of VLSI design instances and sizes, overcoming the
narrow focus of prior benchmarks and making it a more represen-
tative solution for the modern, complex VLSI design scenario. The
in-depth data analysis included in the suite enables users to gain
a better understanding of data attributes and distribution, which
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are essential for the development of effective ML models. In conclu-
sion, the EDALearn benchmark suite is a significant step forward
in the fusion of machine learning and EDA, providing a unified
and systematic platform for performance evaluation, fostering col-
laboration and knowledge sharing, and encouraging innovation
in ML-based algorithms and methodologies. We anticipate that
this initiative will contribute substantially to the evolution and
optimization of EDA tools and processes, steering the direction of
future research in the field.
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