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Abstract—Authentic detection and prediction of seizures re-
quire 1) multi-class (Mul) and 2) patient-independent (Pi) clas-
sification. Recent implementable chips for seizure classification
rarely satisfy the two requirements due to restricted resources
in small chips; therefore, high efficiency is imperative along
with accuracy. This paper introduces an efficient MulPi chip,
fabricated for the first time to simultaneously fulfill multi-
class and patient independence, based on a co-design approach.
We develop a 5-layer convolutional neural network (CNN),
MulPiCNN, with advanced training techniques for lightness and
accuracy. At the hardware level, our SRAM-based chip leverages
computing-in-memory (CIM) for efficiency. The fabricated MulPi
chip is distinguished from prior CIMs in two folds, namely ISRW-
CIM: a) input-stationary (IS) CIM for resource-saving, and b)
row-wise (RW) computing to address a challenge of SRAM CIM,
empowered by our novel 2T-Hadamard product unit (HPU).
MulPi outperforms state-of-the-art chips with 98.5% sensitivity
and 99.2% specificity, classifying in 0.12s and 0.348mm2.

Index Terms—Seizure classification, computing-in-memory, di-
agnosis automation, input-stationary dataflow, SRAM CIM

I. INTRODUCTION

Epilepsy patients over 50 million across the world suffer

from unexpected seizures in their daily lives. Most patients

up to 70% could live seizure-free with timely treatment,

which necessitates instant and accurate diagnosis. Accordingly,

implementable chips for automated diagnosis have been inves-

tigated to replace labor-expensive and time-consuming visual

assessment or inaccurate and inconvenient wearable devices

[12]. State-of-the-art chips attempt to employ machine learning

(ML) techniques for high accuracy.

However, previous chips have limitations: binary classifica-

tion and patient-specific designs as shown in Fig. 1. Firstly,

predominant chips have adopted traditional ML binary algo-

rithms for detection because of restricted resources [4], [9],

[14], [16]. Unfortunately, patients still need to go through

seizures until treatment takes effect and are exposed to danger

unless they are in a secure place before the occurrence of

unexpected seizures. Since seizure has at least three different

states (inter-ical, pre-ical, and ictal) in practice according to

medical definitions, a recent chip [5] proposes to predict

seizure by recognizing the pre-ictal period. But for the sake
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Fig. 1. Contribution of the proposed MulPi chip, differentiating from prior
chips of binary and/or patient-specific seizure classification.

of randomness of the differed states, multi-class assorting is

necessary to discern each state in chip design, as indicated

in algorithm-level exploration [1]. Second, prior arts have

implemented ML models tailored for specific patients. These

patient-specific models increase resources like area and power

or even need additional fabrication of different chips to apply

to other patients. Instead, patient independence (one model for

all patients) is essential for economic chip costs [10].

The two requirements for seizure classification demand a

more complex algorithm leveraging deep learning techniques

than traditional ML models. Convolutional neural networks

(CNNs) have been experimented with this application, boast-

ing high accuracy [6] and even patient independence [10].

However, the multi-class classification is still missing in

previous chip designs because it needs further resources from

a small chip. Hence, highly efficient design is imperative to

enable the complex algorithm at the edge.

Driven by the limitations in prior chips, we propose an

efficient multi-class and patient-independent (MulPi) classifier

chip, for the first time to satisfy both concurrently, with

algorithm and hardware co-design. At the algorithm level,

we introduce a new one-dimensional (1D) light CNN model,

MulPiCNN. While pursuing lightness with shallow layers and

quantized bits in domain conversion, we attain high accuracy

through training techniques.

Then, we fabricated an SRAM-based chip with TSMC 65nm

technology to implement the developed algorithm. We leverage

the emerging computing-in-memory (CIM) paradigm, which is

energy-efficient for data transfer and parallel multiplications

[11]. While previous CIMs keep weights in macros and accu-
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Fig. 2. (a) The reduced numbers in hidden output size from layers and MAC
operations according to domain conversion. (b) Accuracy improvement by
MulPiCNN keeping the reduced network size.

Fig. 3. (a) Typical training process and (b) the proposed training methodology
to obtain parameters in MulPiCNN for high-performance inference.

mulate along bitlines, our chip proposes a cross-layer solution,

ISRW-CIM, by a) forcing inputs to stay in macros (input-

stationary, IS) at the architecture level for area efficiency and

b) computing row-wise (RW), empowered by two-transistor-

based Hadamard product unit (2T-HPU) at the circuit level, to

avoid an SRAM-CIM challenge. MulPi outperforms state-of-

the-art chips.

II. MULPICNN DESIGN

MulPiCNN leverages the power of CNN demonstrated in

accurate classification, including EEG signals [6], [10]. For

data preparation, we partition raw EEG signals into 4-second

segments in a moving-window approach.

A. For Lightness

Table I summarizes the MulPiCNN architecture composed

of three extracting (ET) and two flattened (FT) layers. With

the shallow layers, we achieved MulPi, unlike prior CNNs

of binary and patient-specific answers [6]. Considering the

restricted environment, we applied a fast Fourier transform

(FFT) to the 4-second EEG signals for domain conversion

because data and multiply-accumulate (MAC) operations are

reduced in the frequency domain, as shown in Fig. 2(a). The

sampling rate for raw signals is 256Hz, and the frequency

range for filtering noise is 0-128Hz. Also, data are quantized

to 8 bits for compression, considering the hardware property.

B. For Accuracy

However, the transformed and quantized data aggravates the

model accuracy, as Fig. 2(b) shows. Therefore, instead of typ-

ical learning in Fig. 3(a), we conceived a low-complex model

with quantization-aware training (QAT) with straight-through

estimator (STE), as illustrated in Fig. 3(b). QAT executes

Fig. 4. (a) Comparison between weight- and input-stationary dataflow. (b)
Layer-wise CIM memory array saving effect by input-stationary dataflow.

the forward pass using round-nearest quantized weights and

activations [7]. The challenge arises from the computational

difficulty of calculating gradients for backpropagation when

weights and activations are discrete values. Our solution is

STE to update the weights using gradients calculated from

full-precision weight values, which provides a sufficiently

accurate approximation [2]. As a result, MulPiCNN beats the

model performance with raw EEG (Fig. 2(b)) and prior works

exploiting deep learning, as shown in Section IV.

III. MULPI CHIP WITH ISRW-CIM

The MulPi chip proposes a cross-layer solution, for high

performance and efficiency across circuit and architecture

levels. While we utilize CIM for efficiency [11], here are two

design keys distinguished from prior CIMs: 1) IS for saving

(architecture-level design) and 2) RW computing to tackle read

disturbance with our novel low-cost 2T-HPU (circuit-level).

A. ”IS”, Architectural Design with Dataflow and Mapping

To our knowledge, previously fabricated CIM chips have

been based on the weight-stationary (WS) dataflow by main-

taining weights in CIM macros and supplying layer’s inputs

from external memories, as displayed in Fig. 4(a). Yet WS

fundamentally requires a large area for weight parameters, over

1300 macros in our case despite the tiny size of MulPiCNN,

because of the neural network feature, i.e., #weights > #inputs

[8]. Therefore, we implement MulPI as an IS CIM, where

weights are supplied from the outside, to reduce memory and

TABLE I
THE MulPiCNN ARCHITECTURE. IN: INPUT, W: WEIGHT KERNEL.

In size #In channels W size Conv # Stride Padding
ET1 128 22 4 32 1 2

ReLU 128 32 - - - -
MaxPool 128 32 2 - 2 0

ET2 64 32 4 64 1 2
ReLU 64 64 - - - -

MaxPool 64 64 2 - 2 0
ET3 32 64 4 128 1 2

ReLU 32 128 - - - -
MaxPool 32 128 2 - 2 0
Flatten 16 128 - - - -

FT1 1 2048 2048 64 - 0
FT2 1 64 64 2 - 0
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Fig. 5. (a) Channel-wise mapping for one-shot accumulation in each macro. (b) The proposed MulPi architecture of macros, mainly including 6T-cells,
sense-amp, 2T-HPU in the orange box, and DFFs, and peripheries of routers and shift&adds, (c) operation results following the Hadamard product, and (d)
timing diagram of control signals.

area consumption. As generated outputs including intermediate

results are forwarded to CIM in IS, IS needs even fewer macros

with the feasibility of recycling cells. IS CIM with recycling

decreased the memory footprint by 42.7× and 2.2× than WS

and IS without recycling, as compared in Fig. 4(b).

Fig. 5(a) shows the proposed mapping scheme to maximize

the utilization rate of SRAM arrays in IS. Since inputs of 1D

CNN are 2D and the total input size is larger than the total

macro size, we should split and map 2D data into multiple

macros. However, one macro in RW accumulates all partial

results from one row in one shot, so naive mapping could cause

inefficiency due to array under-utilization or redundant repen-

tance of the same operations. Based on our observation that

input-channel-wise accumulation always follows kernel-wise

and output-channel-wise sum, we prioritize input-channel-wise

data in our mapping, which enables the one-shot accumulation

of each macro. We perform addition across kernel-sized sub-

sequent rows by hopping the rows under the kernel window,

repeating it as many times as the output channel size.

B. ”RW”, Macro and Circuit Design

Unlike emerging-memory-based CIM [11], SRAM-CIM has

a representative issue with the prevalent column-wise (CS)

computing, called read disturbance, which interferes with

adjacent memory cell data. Rather than employing CS with

stopgaps (e.g., under-driven wordline with slow operations [3]

or adding transistors [15]), we enforce RW with a novel 2T-

HPU circuit.

Fig. 5(b) provides the overview of MulPi, including macro

details. The macro operates cells in rows corresponding to

the kernel window sequentially to multiply the memory data

(inputs) with supplied weights through 2T-HPU colored in

orange. The 2T-HPU follows the outcomes of the truth table

Fig. 6. Classification results, which successfully predicts and detects seizures,
a die photo, and chip performance summary.

in Fig. 5(c). Specifically, operands are given to TR1 in 2T-

HPU, and COMP EN (active low) controls TR2. When TR2

is OFF, TR1 delivers Vd to the output according to Vg . TR2

is added to restrain reverse currents in TR1.

The final accumulation is performed based on the bit-slicing

technique, where each bit of the corresponding weight is

supplied per cycle and the partial outputs are summed through

shift-and-add circuits. To reduce the number of peripheral

circuitry sets, routers are used to deliver outputs and control

signals between macro arrays and other circuits. Fig. 5(d) gives

a simplified timing diagram for important control signals.

IV. MEASUREMENT AND RESULTS

The unique feature of this work is its ability to efficiently

perform multi-class classification with highly accurate results

across patients for authentic detection and prediction. We

verified MulPi with the CHB-MIT dataset by the cross-patient
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TABLE II
COMPARISON BETWEEN THE PROPOSED CHIP, MulPi, AND STATE-OF-THE-ART WORKS

(*LS: LEAST-SQUARES, *GTCA: GUIDED TIME-CHANNEL AVERAGING, -: NOT REPORTED, ∧ : ESTIMATED BASED ON THE REPORTED DATA).

TBioCAS’21 [14] JSSC’22 [4] JSSC’22 [16] ISSCC’22 [9] JSSC’23 [5] ISSCC’23 [10] This Work
Dataset CHB-MIT UoM CHB-MIT CHB-MIT IEEE.org CHB-MIT CHB-MIT CHB-MIT CHB-MIT

#Chnnels 8 8 16 256 - 22 22
Prediction No No No No Yes No Yes

Classification Binary Binary Binary Binary Binary Binary Multi-Class
Classifier LS*-SVM Logistic Regression GTCA* -SVM NeuralTree SVM SciCNN MulPiCNN

Sensitivity [%] 97.8 97.9 97.5 97.8 94 95.6 92 90.3 98.5
Specificity [%] 99.7 98.2 98.2 99.5 96.9 96.8 99.1 93.6 99.2
Target Patient Specific Specific Specific Specific Specific Independent Independent
Classification
Latency [s] 12.2ˆ 2.6 1.6 <1 <1 - 8.3 0.12

Technology [nm] 180 28 40 65 40 40 65
Supply Voltage [V] 1.5 0.5 1.1 (A) 0.7 (D) 1.2 0.49 1.1 (A) 0.9 (D) 0.6
Energy Efficiency
[μJ/classification] 14.2 3.9 2.4 123.73ˆ 0.23 - 28.33 34.0

Average Power for
Classification [μW] 1.16 1.5 123.73ˆ - 2310.0 3.41ˆ 283.8

Core Area [mm2] 5.83 0.1 2.08 0.336 1.96 2.508 0.348

train-test data split, different from the patient-specific training

and testing in other works. While more seizure classes can

exist according to various definitions, we aim to detect and

predict seizures with the uncontroversial three classes. MulPi
predicts seizure by identifying the pre-ictal phase, which

expects a potential seizure to occur within the next 30 minutes.

The chip was tested with an FPGA for inputs and outputs.
Fig. 6 summarizes the specs and performance of the chip

fabricated in TSMC 65nm technology and integrated into a

core area of 0.348mm2. While the inference from the chip suc-

cessfully predicts and detects the seizure based on the multi-

class classification, inference takes 0.12s with a 100MHz clock

and consumes 0.28mW at 0.6V. MulPi shows high accuracy,

sensitivity, specificity, F1, and PPV of over 98%. FAR for each

alarm is 1.6%, and activations and weights are represented

as 8-bit fixed-point numbers. In Fig. 7, it is worth noting

that MulPi achieved similar and even higher performance than

state-of-the-art works of patient-specific binary prediction [4],

[13] and patient-independent binary detection [10].
The area-saving effect of Pi and IS stands out in the inter-

comparison to a patient-specific chip. As Fig. 8(a) describes,

a patient-specific chip [14] necessitates a considerable area

for the overall implementation. Furthermore, the area should

increase according to the number of patients because separate

classification units are required for added patients. On the

contrary, MulPi keeps a small area regardless of the number

of patients due to Pi with IS reducing the total area notice-

ably. High accuracy across patients is confirmed as Fig. 8(b)

displays. Fig. 9 provides breakdowns in power and area.
TABLE II compares MulPi to recently fabricated chips for

seizure classification based on results per inference with CHB-

MIT for a fair comparison. Since the papers reported their

latency and efficiency with different standards, we defined

the classification latency as the total time consumed for one

patient. Our chip shows lower power than the prediction

chip but higher than the detection chips, where prediction is

unavailable. Our fast classification compensates for this higher

power, consuming comparable energy. In short, MulPi is com-

petitive with the latest arts for binary prediction, Pi, and even

the simpler binary detectors, providing further functionality.

Fig. 7. Model performance comparison in (a) prediction and (b) patient
independence. Unlike MulPi, compared works attained either one with binary
results.

Fig. 8. (a) Comparison in area between MulPi and a patient-specific chip [14].
Increasing channels indicate the patient increment. (b) Accuracy according to
patients by the proposed chip.

Fig. 9. Measured power and area breakdown.

V. CONCLUSION

This work presents MulPi, the first fabricated chip simulta-

neously satisfying multi-class and patient-independent seizure

classification for authentic diagnosis. The proposed 5-layer

MulPiCNN sets multiple classes up, targeting high accuracy

across diverse patients. Our cross-layer solution, ISRW-CIM

with 2T-HPU, tackles challenges in SRAM CIM and ensures

efficiency. The proposed chip proves high accuracy and effi-

ciency in area, time, and power despite the higher complexity

of the algorithm. The chip can be further extended with more

classes, thereby offering the potential for highly complex

epilepsy diagnosis in the future.
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