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Abstract—Authentic detection and prediction of seizures re-
quire 1) multi-class (Mul) and 2) patient-independent (Pi) clas-
sification. Recent implementable chips for seizure classification
rarely satisfy the two requirements due to restricted resources
in small chips; therefore, high efficiency is imperative along
with accuracy. This paper introduces an efficient MulPi chip,
fabricated for the first time to simultaneously fulfill multi-
class and patient independence, based on a co-design approach.
We develop a 5-layer convolutional neural network (CNN),
MulPiCNN, with advanced training techniques for lightness and
accuracy. At the hardware level, our SRAM-based chip leverages
computing-in-memory (CIM) for efficiency. The fabricated MulPi
chip is distinguished from prior CIMs in two folds, namely IJSRW-
CIM: a) input-stationary (IS) CIM for resource-saving, and b)
row-wise (RW) computing to address a challenge of SRAM CIM,
empowered by our novel 2T-Hadamard product unit (HPU).
MulPi outperforms state-of-the-art chips with 98.5% sensitivity
and 99.2% specificity, classifying in 0.12s and 0.348mm?>.

Index Terms—Seizure classification, computing-in-memory, di-
agnosis automation, input-stationary dataflow, SRAM CIM

I. INTRODUCTION

Epilepsy patients over 50 million across the world suffer
from unexpected seizures in their daily lives. Most patients
up to 70% could live seizure-free with timely treatment,
which necessitates instant and accurate diagnosis. Accordingly,
implementable chips for automated diagnosis have been inves-
tigated to replace labor-expensive and time-consuming visual
assessment or inaccurate and inconvenient wearable devices
[12]. State-of-the-art chips attempt to employ machine learning
(ML) techniques for high accuracy.

However, previous chips have limitations: binary classifica-
tion and patient-specific designs as shown in Fig. 1. Firstly,
predominant chips have adopted traditional ML binary algo-
rithms for detection because of restricted resources [4], [9],
[14], [16]. Unfortunately, patients still need to go through
seizures until treatment takes effect and are exposed to danger
unless they are in a secure place before the occurrence of
unexpected seizures. Since seizure has at least three different
states (inter-ical, pre-ical, and ictal) in practice according to
medical definitions, a recent chip [5] proposes to predict
seizure by recognizing the pre-ictal period. But for the sake
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Fig. 1. Contribution of the proposed MulPi chip, differentiating from prior
chips of binary and/or patient-specific seizure classification.

of randomness of the differed states, multi-class assorting is
necessary to discern each state in chip design, as indicated
in algorithm-level exploration [1]. Second, prior arts have
implemented ML models tailored for specific patients. These
patient-specific models increase resources like area and power
or even need additional fabrication of different chips to apply
to other patients. Instead, patient independence (one model for
all patients) is essential for economic chip costs [10].

The two requirements for seizure classification demand a
more complex algorithm leveraging deep learning techniques
than traditional ML models. Convolutional neural networks
(CNNs) have been experimented with this application, boast-
ing high accuracy [6] and even patient independence [10].
However, the multi-class classification is still missing in
previous chip designs because it needs further resources from
a small chip. Hence, highly efficient design is imperative to
enable the complex algorithm at the edge.

Driven by the limitations in prior chips, we propose an
efficient multi-class and patient-independent (MulPi) classifier
chip, for the first time to satisfy both concurrently, with
algorithm and hardware co-design. At the algorithm level,
we introduce a new one-dimensional (1D) light CNN model,
MulPiCNN. While pursuing lightness with shallow layers and
quantized bits in domain conversion, we attain high accuracy
through training techniques.

Then, we fabricated an SRAM-based chip with TSMC 65nm
technology to implement the developed algorithm. We leverage
the emerging computing-in-memory (CIM) paradigm, which is
energy-efficient for data transfer and parallel multiplications
[11]. While previous CIMs keep weights in macros and accu-
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Fig. 3. (a) Typical training process and (b) the proposed training methodology
to obtain parameters in MulPiCNN for high-performance inference.

mulate along bitlines, our chip proposes a cross-layer solution,
ISRW-CIM, by a) forcing inputs to stay in macros (input-
stationary, IS) at the architecture level for area efficiency and
b) computing row-wise (RW), empowered by two-transistor-
based Hadamard product unit (2T-HPU) at the circuit level, to
avoid an SRAM-CIM challenge. MulPi outperforms state-of-
the-art chips.

II. MULPICNN DESIGN

MulPiCNN leverages the power of CNN demonstrated in
accurate classification, including EEG signals [6], [10]. For
data preparation, we partition raw EEG signals into 4-second
segments in a moving-window approach.

A. For Lightness

Table I summarizes the MulPiCNN architecture composed
of three extracting (ET) and two flattened (FT) layers. With
the shallow layers, we achieved MulPi, unlike prior CNNs
of binary and patient-specific answers [6]. Considering the
restricted environment, we applied a fast Fourier transform
(FFT) to the 4-second EEG signals for domain conversion
because data and multiply-accumulate (MAC) operations are
reduced in the frequency domain, as shown in Fig. 2(a). The
sampling rate for raw signals is 256Hz, and the frequency
range for filtering noise is 0-128Hz. Also, data are quantized
to 8 bits for compression, considering the hardware property.

B. For Accuracy

However, the transformed and quantized data aggravates the
model accuracy, as Fig. 2(b) shows. Therefore, instead of typ-
ical learning in Fig. 3(a), we conceived a low-complex model
with quantization-aware training (QAT) with straight-through
estimator (STE), as illustrated in Fig. 3(b). QAT executes
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Fig. 4. (a) Comparison between weight- and input-stationary dataflow. (b)
Layer-wise CIM memory array saving effect by input-stationary dataflow.

Total

the forward pass using round-nearest quantized weights and
activations [7]. The challenge arises from the computational
difficulty of calculating gradients for backpropagation when
weights and activations are discrete values. Our solution is
STE to update the weights using gradients calculated from
full-precision weight values, which provides a sufficiently
accurate approximation [2]. As a result, MulPiCNN beats the
model performance with raw EEG (Fig. 2(b)) and prior works
exploiting deep learning, as shown in Section IV.

III. MULP1 CHIP WITH ISRW-CIM

The MulPi chip proposes a cross-layer solution, for high
performance and efficiency across circuit and architecture
levels. While we utilize CIM for efficiency [11], here are two
design keys distinguished from prior CIMs: 1) IS for saving
(architecture-level design) and 2) RW computing to tackle read
disturbance with our novel low-cost 2T-HPU (circuit-level).

A. 7IS”, Architectural Design with Dataflow and Mapping

To our knowledge, previously fabricated CIM chips have
been based on the weight-stationary (WS) dataflow by main-
taining weights in CIM macros and supplying layer’s inputs
from external memories, as displayed in Fig. 4(a). Yet WS
fundamentally requires a large area for weight parameters, over
1300 macros in our case despite the tiny size of MulPiCNN,
because of the neural network feature, i.e., #weights > #inputs
[8]. Therefore, we implement MulPIl as an IS CIM, where
weights are supplied from the outside, to reduce memory and

TABLE I
THE MulPiCNN ARCHITECTURE. IN: INPUT, W: WEIGHT KERNEL.
In_size #In_channels W_size Conv # Stride Padding

ET1 128 22 4 32 1 2
ReLU 128 32 - - - -
MaxPool 128 32 2 - 2 0
ET2 64 32 4 64 1 2
ReLU 64 64 - -
MaxPool 64 64 2 - 2 0
ET3 32 64 4 128 1 2
ReLU 32 128 - - - -
MaxPool 32 128 2 - 2 0
Flatten 16 128 - - - -
FT1 1 2048 2048 64 0
FT2 1 64 64 2 0

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 14:00:57 UTC from IEEE Xplore. Restrictions apply.



(a)

(b)

kernel size i 5],
X output-channel-size

MwWDC

Memory Write Driver Circuits

JJ 3 #in_
~~ Chnnels

" (22@ET1)

/ I I T T
[ | I |

| I ' I

L 1 I T

Input-channel-wise # In_Size (128@ET1)

32

mi [ w2 [ ws [ wma

me | m7 [ ms
w10 [ mu1 [ w12

ms |
mo |

6T-
Cells

ﬂ—h

w13 |
iz |
21 [

m1a | m1s [ mie
ET7

wi1E | 1o [ mz0

m22 | w23 | ma

) |

w2s | m26 [ w27 [ mas

g

A

A

2T-

WL Driver Circuit & Control Signals

o | { ] oy || (R

A

M29 [ m30 [ m31 [ m32 Comp

M: Macro

:

HPU

A
M

WL Driver Circuit & Control Signals

ISEE

DFFs

Rl

(c) In Comp_en Tr2

R
|.

|

|__

H

0 Off

i

8*'W3[7], ..1 8*WO[7] i3, TR2

H

-

i

-

n3[0] ] ra

off :Cyclel

:E
)
|

Off s*ws(o}, .§ s*woro]

Router_8tol
[
8-bit Shift & Add

:Cycleg

B B o o

w
0
1
0
1

w ol o &

0
0
0 Off

wa:

Router_4tol

(d) Write_En [—1 |

n=8 :

SRAM-CIM Macro

Wordline_En I I ‘

J J SRAM-CIM Macro

Compute_En I |

Router_4tol

DFF_En I I

Write s Compute = |

Top Controller |

Fig. 5.

(a) Channel-wise mapping for one-shot accumulation in each macro. (b) The proposed MulPi architecture of macros, mainly including 6T-cells,

sense-amp, 2T-HPU in the orange box, and DFFs, and peripheries of routers and shift&adds, (c) operation results following the Hadamard product, and (d)

timing diagram of control signals.

area consumption. As generated outputs including intermediate
results are forwarded to CIM in IS, IS needs even fewer macros
with the feasibility of recycling cells. IS CIM with recycling
decreased the memory footprint by 42.7x and 2.2x than WS
and IS without recycling, as compared in Fig. 4(b).

Fig. 5(a) shows the proposed mapping scheme to maximize
the utilization rate of SRAM arrays in IS. Since inputs of 1D
CNN are 2D and the total input size is larger than the total
macro size, we should split and map 2D data into multiple
macros. However, one macro in RW accumulates all partial
results from one row in one shot, so naive mapping could cause
inefficiency due to array under-utilization or redundant repen-
tance of the same operations. Based on our observation that
input-channel-wise accumulation always follows kernel-wise
and output-channel-wise sum, we prioritize input-channel-wise
data in our mapping, which enables the one-shot accumulation
of each macro. We perform addition across kernel-sized sub-
sequent rows by hopping the rows under the kernel window,
repeating it as many times as the output channel size.

B. "RW”, Macro and Circuit Design

Unlike emerging-memory-based CIM [11], SRAM-CIM has
a representative issue with the prevalent column-wise (CS)
computing, called read disturbance, which interferes with
adjacent memory cell data. Rather than employing CS with
stopgaps (e.g., under-driven wordline with slow operations [3]
or adding transistors [15]), we enforce RW with a novel 2T-
HPU circuit.

Fig. 5(b) provides the overview of MulPi, including macro
details. The macro operates cells in rows corresponding to
the kernel window sequentially to multiply the memory data
(inputs) with supplied weights through 2T-HPU colored in
orange. The 2T-HPU follows the outcomes of the truth table

Pre-ictal Detected
(Prediction) || ammseizure l Technology | TSMC 65nm 1p9m
; fre Chip 1.02 x 1.00mm?
I il Core | 0.60 x 0.58mm?
o 1600 2000 3000 4000 = 000 Core VDD 0.6V—1V
4 Iﬂﬁ | “’ “MH.]['}[ ][N . N /o 25V-3.3V
EEEEERENE SRAM 32Kb
I L I Power 0.28mW @ 0.6V
: : : Latency 0.12s
1 I I Frequency 100MHz
: : : Precision FXP8
I I I Sensitivity 98.5%
. I . Specificity 99.2%
| ,l !_ JLS‘]!,IHI\ ,IL I ‘]I 3 Accuracy 98.4%
N EREENRE PPV 98.4%

Fig. 6. Classification results, which successfully predicts and detects seizures,
a die photo, and chip performance summary.

in Fig. 5(c). Specifically, operands are given to TR1 in 2T-
HPU, and COMP_EN (active_low) controls TR2. When TR2
is OFF, TR1 delivers Vg4 to the output according to V,. TR2
is added to restrain reverse currents in TR1.

The final accumulation is performed based on the bit-slicing
technique, where each bit of the corresponding weight is
supplied per cycle and the partial outputs are summed through
shift-and-add circuits. To reduce the number of peripheral
circuitry sets, routers are used to deliver outputs and control
signals between macro arrays and other circuits. Fig. 5(d) gives
a simplified timing diagram for important control signals.

IV. MEASUREMENT AND RESULTS

The unique feature of this work is its ability to efficiently
perform multi-class classification with highly accurate results
across patients for authentic detection and prediction. We
verified MulPi with the CHB-MIT dataset by the cross-patient
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TABLE II
COMPARISON BETWEEN THE PROPOSED CHIP, MulPi, AND STATE-OF-THE-ART WORKS
(*LS: LEAST-SQUARES, *GTCA: GUIDED TIME-CHANNEL AVERAGING, -: NOT REPORTED, A : ESTIMATED BASED ON THE REPORTED DATA).

TBioCAS’21 [14] JSSC22 [4] JSSC’22 [16] ISSCC’22 [9] JSSC’23 [5] | ISSCC’23 [10] This Work
Dataset CHB-MIT UoM [ CHB-MIT CHB-MIT IEEE.org [ CHB-MIT CHB-MIT CHB-MIT CHB-MIT
#Chnnels 8 8 16 256 - 22 22
Prediction No No No No Yes No Yes
Classification Binary Binary Binary Binary Binary Binary Multi-Class
Classifier LS*-SVM Logistic Regression | GTCA* -SVM NeuralTree SVM SciCNN MulPiCNN
Sensitivity [%] 97.8 97.9 97.5 97.8 94 [ 95.6 92 90.3 98.5
Specificity [%] 99.7 98.2 98.2 99.5 9.9 | 96.8 99.1 93.6 99.2
Target Patient Specific Specific Specific Specific Specific Independent Independent
Classification «
Latency [s] 12.2 2.6 ‘ 1.6 <1 <1 - 8.3 0.12
Technology [nm] 180 28 40 65 40 40 65
Supply Voltage [V] 5 0.5 .1 (A) 0.7 (D) 12 0.49 .1 (A) 0.9 (D) 0.6
Energy Efficiency 142 39 ‘ 24 123.73° 0.23 - 2833 34.0
[nJ/classification]
Average Power for . N
Classification [1W] 1.16 1.5 123.73 - 2310.0 341 283.8
Core Area [mm?] 5.83 0.1 2.08 0.336 1.96 2.508 0.348
tram—tesF dat.a split, different frorp the patlenF—spemﬁc training o [ ] ®) e
and testing in other works. While more seizure classes can =ENNACNN [13]° mm SVM [4]* oy e,

exist according to various definitions, we aim to detect and
predict seizures with the uncontroversial three classes. MulPi
predicts seizure by identifying the pre-ictal phase, which
expects a potential seizure to occur within the next 30 minutes.
The chip was tested with an FPGA for inputs and outputs.

Fig. 6 summarizes the specs and performance of the chip
fabricated in TSMC 65nm technology and integrated into a
core area of 0.348mm?. While the inference from the chip suc-
cessfully predicts and detects the seizure based on the multi-
class classification, inference takes 0.12s with a 100MHz clock
and consumes 0.28mW at 0.6V. MulPi shows high accuracy,
sensitivity, specificity, F1, and PPV of over 98%. FAR for each
alarm is 1.6%, and activations and weights are represented
as 8-bit fixed-point numbers. In Fig. 7, it is worth noting
that MulPi achieved similar and even higher performance than
state-of-the-art works of patient-specific binary prediction [4],
[13] and patient-independent binary detection [10].

The area-saving effect of Pi and IS stands out in the inter-
comparison to a patient-specific chip. As Fig. 8(a) describes,
a patient-specific chip [14] necessitates a considerable area
for the overall implementation. Furthermore, the area should
increase according to the number of patients because separate
classification units are required for added patients. On the
contrary, MulPi keeps a small area regardless of the number
of patients due to Pi with IS reducing the total area notice-
ably. High accuracy across patients is confirmed as Fig. 8(b)
displays. Fig. 9 provides breakdowns in power and area.

TABLE II compares MulPi to recently fabricated chips for
seizure classification based on results per inference with CHB-
MIT for a fair comparison. Since the papers reported their
latency and efficiency with different standards, we defined
the classification latency as the total time consumed for one
patient. Our chip shows lower power than the prediction
chip but higher than the detection chips, where prediction is
unavailable. Our fast classification compensates for this higher
power, consuming comparable energy. In short, MulPi is com-
petitive with the latest arts for binary prediction, Pi, and even
the simpler binary detectors, providing further functionality.
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V. CONCLUSION

This work presents MulPi, the first fabricated chip simulta-
neously satisfying multi-class and patient-independent seizure
classification for authentic diagnosis. The proposed 5-layer
MulPiCNN sets multiple classes up, targeting high accuracy
across diverse patients. Our cross-layer solution, ISRW-CIM
with 2T-HPU, tackles challenges in SRAM CIM and ensures
efficiency. The proposed chip proves high accuracy and effi-
ciency in area, time, and power despite the higher complexity
of the algorithm. The chip can be further extended with more
classes, thereby offering the potential for highly complex
epilepsy diagnosis in the future.
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