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Abstract—This work addresses Physical Layer Security (PHY)
in Integrated Sensing and Communication (ISAC) systems
through antenna selection. We consider a MIMO transmitter
communicating with a legitimate multi-antenna receiver while
simultaneously sensing a target, with a multi-antenna eavesdrop-
per intercepting the communication. Previous studies show that
increasing the number of active antennas improves the ergodic
secrecy rate up to a certain point, after which performance
deteriorates. The instantaneous secrecy rate, for fixed channel
conditions, depends not only on the number of active antennas
but also on their positions. This work focuses on optimizing
both the number and positions of active antennas to maximize
the instantaneous secrecy rate, while ensuring that the Cramer
Rao Bound (CRB) of the sensing functionality remains below a
specified threshold. We propose an unsupervised approach based
on Generative Flow Networks (GFlowNets), modeling antenna
selection as a deterministic Markov Decision Process (MDP)
where terminal states correspond to active antenna subsets of
all sizes and configurations. GFlowNets parametrize the action-
sampling distribution, ensuring the probability of reaching a final
antenna subset configuration is proportional to its combination
of the resulting secrecy rate and the CRB.

Index Terms—ISAC, PHY, antenna selection, GFlowNets

I. INTRODUCTION

The 6th generation of wireless networks promises transfor-
mative applications such as smart cities, connected vehicles,
and smart manufacturing [1]. These applications require both
reliable communication and advanced sensing perception of
the environment. Since mmWave sensing and communication
share frequency bands and hardware, this has led to the
Integrated Sensing and Communication (ISAC) [2] paradigm,
where both functions are jointly optimized on a single plat-
form.

Security is a key concern in ISAC systems, especially
when sensitive information is exchanged. Wireless security
can be addressed from two perspectives: cryptography at
higher protocol layers and Physical Layer Security (PHY)
[3] at lower layers, which exploits physical properties of the
wireless channel through signal processing techniques. This
work focuses on enhancing PHY in ISAC while maintaining
its sensing performance.
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Although the PHY aspect of ISAC is relatively new, some
studies have addressed it from various angles. For example, [4]
proposes an approach for ISAC systems with multiple eaves-
droppers, using Capon approximate maximum likelihood esti-
mation to locate the eavesdroppers and optimize a combination
of the secrecy rate and Cramer-Rao Bound (CRB). In [5], the
authors combine successive convex approximations and Block
Coordinate Descent (BCA) to design the beamforming matrix
in order to optimize both the secrecy rate and CRB of an ISAC
system.

While previous research on antenna selection for ISAC
systems exists, it has not focused on PHY. For instance,
[6] uses deep reinforcement learning in an automotive ISAC
scenario to select active transmit antennas and design a beam-
forming matrix that focus the maximum amount of energy
on both the communication receiver and the tracked target.
[7] explores antenna selection for ISAC systems with a single
communication receiver and multiple radar targets, combining
convex optimization and dynamic programming to balance
communication rate and radar tracking accuracy.

Our work addresses antenna selection for ISAC systems
from a PHY perspective, a topic which, to the best of our
knowledge has not been previously explored. In [8], the
authors show that in a MIMO system, the ergodic secrecy rate
increases as more antennas are activated, up to a point where
adding additional antennas degrades secrecy performance. We
observe a similar phenomenon in a related ISAC system (a
MIMO transmitter, multi-antenna receiver, eavesdropper, and
radar target). Additionally, for instantaneous secrecy rate (fixed
channel realizations), we find that performance depends on
both the number of active antennas and their specific positions.

The current work proposes an unsupervised method for
selecting both the number and positions of active antennas to
maximize secrecy rate while maintaining the CRB of the radar
component below a threshold. Antenna selection is framed as a
deterministic Markov Decision Process (MDP). The root state
of the MDP is represented by a vector, where each element
is a placeholder that signifies an undefined antenna position.
This vector has the same size as the transmit antenna array. At
the start of the process, all antenna positions are undefined,
indicating that it is unknown whether each antenna will be
active or inactive. As actions are taken, one by one, these
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placeholder values are replaced by binary values—either active
(1) or inactive (0)—corresponding to specific antenna posi-
tions. Terminal states are reached when all antenna positions
are defined, i.e., when the vector contains no more placeholder
values. Rewards are assigned only to terminal states based on
a combination of the secrecy rate and the CRB of the radar
component. Intermediate states, where some antenna positions
remain undefined, are not rewarded. The Generative Flow
Network (GFlowNet) [9] is employed to parametrize an action-
sampling policy, ensuring that the probability of reaching a
terminal state (i.e., a specific configuration of active/inactive
antennas) is proportional to its reward.

Previous works on GFlowNets for antenna selection, such as
[10] and [11], have focused on selecting a fixed apriori defined
number of antennas to optimize beampatterns or a combination
of communication rate and CRB. In contrast, our approach
optimizes both the number and configuration of active an-
tennas, which requires a different MDP formulation. Unlike
prior work where terminal states correspond to subarrays of a
predefined size, our MDP allows terminal states to represent
subarrays of all possible sizes.

Notation: We denote the matrices and vectors by bold up-
percase and bold lowercase letters, respectively. The operators
(-)T and ()" denote transposition and conjugate transposition
respectively. Caligraphic letters will be used to denote sets.

1/p
The £p-norm of x € R™ is |||, = (E:;l |z (z)|p) , for all
N 3 p > 1. The expectation of a random vector X is denoted
as [E(x). Continuous sets are denoted by [-] while discrete

sets are denoted by {-}. The logarithm of the determinant of
a matrix A is denoted as log |A|.

II. SYSTEM MODEL

We consider an ISAC system such as the one depicted in
Fig. 1. It consists of one source with N, antenna elements
and communicates with a destination that is equipped with Ny
antenna elements. At the same time the system tracks a target
and the communication is being overheard by an eavesdropper
that is equipped with N, antennas. The source employs a
precoding matrix F € CV=*Nd_ The channel from the source
to the legitimate receiver is denoted as Hy € CNeXNe_ The
transmitter performs hybrid precoding and the transmitted

signal is:
V=FX (1)

where X consists of N, unit power streams of length L,
which means +E{XX"} =1y,.

Assuming that only a subset of the N, antennas on the
transmitter to be active, the selection vector is denoted as
x € {0,1}"=. The corresponding selection matrix is S(x) =
diag(x).

The secrecy rate of the sparse array is:

R(x,F) =log, Iy, + paHaS(x)FFHS(xHY |-

log [T, + peHeS(X)FF7S(x)H'|, (2)

where py denotes the average SNR at each of the receiver’s
antennas while the p. denotes the SNR at each of the eaves-

dropper’s antennas. The corresponding CRB of the sparse
array is :

CRB(x, F) = %trace (S@FFPs™)) @)

L]
ransmitter
L]
N
J. e’J@L
|
BAC )
destination ||
— 7
L
exvesdropper
L]

Fig. 1. The ISAC system that consists of a MIMO source, legitimate
receiver that is also being tracked by the radar component and a
multi-antenna eavesdropper that overhears the communication.

The problem formulation is to find the sparse selection
vector x € {0,1}"- and the precoding vector F € CN-*Na
such that the secrecy rate of the system is maximized subject
to the CRB being less than a predefined threshold.

maximizex g R(X,F)

4
CRB(x, F) < CRBy,y X

subject to

III. GFLOWNETS FOR ANTENNA SELECTION
A. Overview of the GFlowNet Framework

This section presents an overview of the GFlowNet frame-
work [12]. Consider a deterministic MDP, where S is the set
of all states, and X C & is the set of terminal states. Let A
denote the set of discrete actions, and .A(s) represent the set
of permissible actions at a given state s. The MDP can be
modeled as a Directed Acyclic Graph (DAG), with a unique
root node sy and terminal states serving as the leaf nodes.

In this setting, each terminal state is associated with a
positive reward, while intermediate states yield zero reward
(R(s) =0,¥s ¢ X). The DAG is non-injective, meaning that
different sequences of actions starting from the root may lead
to the same state. The main objective is to learn an action-
selection policy such that the probability of reaching a terminal
state is proportional to its reward.

GFlowNet frames this MDP as a flow network, where flow
originates at the root and sinks at each terminal state. If
action a is taken in state s, the resulting state is denoted
by T'(s,a) = s’. Given the deterministic nature of the MDP,
T(s,a) is uniquely determined for each pair. The flow along
the edge (s,a) is represented by F'(s,a), and the total flow
passing through state s is denoted as F(s).

To maintain flow balance, the inflow at each state must equal
the outflow. The inflow to a state s’ is:

F(s') = Z F(s,a). (5)

s,a:T'(s,a)=s’
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Conversely, the outflow from a state s’ is given by:
F(s') = Z F(s',a"). (6)
a'cA(s’)

For any non-terminal state s, the total flow is the sum of its
outgoing flows and its reward, which is:

F(s)=R(s)+ > F(s,a). (@)
acA(s)

For a terminal state sy, the flow is simply the reward:
F(sf) = R(sf) > 0. (8)

Therefore, the flow-matching condition for each state s’ can
be expressed as:

D

s,a:T(s,a)=s’

F(s,a)=R(s)+ Y F(s,a). 9
a’'cA(s)

Given that the state flows F(s) and edge flows F(s,a)
satisfy this equation, the action selection policy at each state
(starting from the root) can be derived as:

F(s,a)
F(s) -
According to [13], two key results follow:

w(als) = (10)

1) The flow at the root (also called the partition function
of the MDP) is the sum of all terminal state rewards:

F(Su) = Z R(Sf).
sfeX
2) The probability of reaching a terminal state s; is pro-
portional to its reward, relative to the partition function:

TI'(S ) _ R(Sf) _ R(Sf) )
DT ¥y ex RiSY) ~ Flso)

The GFlowNet paradigm parameterizes the flow F using
a function approximator, denoted as F,, chosen from a
sufficiently expressive class, such as a deep neural network.
Trajectories of the MDP are sampled, and for each state s’,
the flow-matching objective is minimized via gradient descent
on the parameters w:

Ly (s') = Z Fx(s,a) — R(s") —Z Fy(s',a’).

a'cA(s")

(n

s,a:T (s,a)=s’
B. GFlowNets for Antenna Selection

To apply the GFlowNet paradigm to solve problem 4, an
MDP must be designed to model the antenna selection process.
In previous works on antenna/sensor selection using GFlowNet
[10], [11], the number of active sensors was predefined (se-
lecting k& out of m antennas), with the goal of choosing the
optimal subset from the (T) possible combinations. These
MDPs began with a zero vector, and each action activated an
antenna (switching a 0 to 1), leading to leaf states representing

all possible subsets of k active antennas.

For problem 4, the selection vector x can have any [
norm, meaning the number of active antennas can vary from
0 to N,. Therefore, the MDP is structured as follows: the
root state (sp) is a vector of size N, where each element
is initialized as (), indicating that the status of each antenna
(active or inactive) is undefined. The action space consists of
assigning each () element to either 0 (inactive) or 1 (active).
Each root-to-leaf trajectory consists of N, actions, and the
leaf states represent all possible binary vectors of size N,,
covering all antenna configurations (('7) for k € {0,m}).
Finally, to define the reward function for the MDP, we begin
by noting that all intermediate states receive a reward of 0. The
objective is to maximize the secrecy rate while ensuring the
CRB remains below a specified threshold. Since the reward
inherently depends on both the selection vector x and the
precoding matrix F, we first need to determine the optimal
precoding matrix F*. This is achieved by maximizing the
following expression with respect to F:

F* = arg max ['R,(x, F) — ¢ (CRB(x,F) — CRB;MU)] ,
(12)
where c is a scaling factor to balance the two terms. This is
achieved by a fixed number of gradient ascent steps. Since the
optimization matrix F is complex, we employ the Wirtinger
conjugate gradient definition [14].
With F* determined, the reward for a terminal state sy,
corresponding to the selection vector X, is then given by:

R(s; =x,F*) = R(x,F*) — ¢ (CRB(x, F*) — CRBou) .
(13)
A visual representation of the MDP is provided in Fig. 2.

Fig. 2. An illustration of the MDP structure. It corresponds to an
MDP whose transmit antenna array is of size 2.

The MDP flow is parameterized by a function approximator,
Fy, implemented as a deep neural network with parameters
w. Trajectories from the MDP are sampled, and the param-
eters are updated via gradient descent to minimize the loss
in equation (11). The training algorithm is provided below
(Algorithm 1) and is denoted as GFLOW-TAS-PHY.

IV. EXPERIMENTS

We conducted a series of experiments to validate the
effectiveness of the proposed framework. Specifically, we
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Algorithm 1 GFLOW-TAS-PHY

Initialize Fi, ¢ € [0, 1] for exploration, learning rate n
for all root-to-leaf trajectories do
s =sg = [0]N=
for N, — 1 transitions do
Sample z ~ U(0,1) (Uniform distribution)
If z < ¢ choose a € A(s) randomly
If z >= ( choose a = argmax,, Fy(s,a’)
Apply action a, compute sub. state s’
w — W —nVwLw(s') eq. (11) R(s')=0
s=¢
end for
Sample z ~ U(0,1)
If z > ¢ choose a € A(s) randomly
If z < ¢ choose a = argmax,, Fy,(s,a’)
Apply action a, compute terminal state x
Compute F* = arg max R(x, F) (fixed num of grad steps)
w = W —nVwLw(xX) R(x)= R(x,F*) eq. (13)
end for

utilized a MIMO transmit array with N, = 50 antennas,
while both the eavesdropper and destination arrays consisted
of N, = Ng = 5 antennas. The communication channels from
the source to the destination (H,) and from the source to the
eavesdropper (H.) were assumed to be known and sampled
from a complex normal distribution. The CRB threshold was
set to CRBjqy = 2.5. The parameters pg and p, are chosen to
be 1 and 0.1, respectively. The optimal precoding matrix F*
was computed using 10 Wirtinger conjugate gradient ascent
steps for each root-to-leaf trajectory.

The flow was parameterized using a deep neural network
as proposed in [15], consisting of three layers: the first layer
is a learnable Fourier kernel, initialized from a zero-mean
Gaussian with variance 1e-3, while the second and third layers
are linear. A Rectified Linear Unit (ReLU) activation function
was applied between the second and third layers. Each layer
consisted of 150 neurons. The flow parameters were updated
using the Adam optimizer [16], with a learning rate of 3e-4.
Training involved 15,000 root-to-leaf trajectories, with each
trajectory corresponding to N, = 50 gradient steps.

Upon completion of training, the optimal antenna subset can
be sampled from the trained flow network by starting at the
root and, at each state, selecting the action that maximizes the
estimated outgoing flow, continuing this process until reaching
the final state.

Fig. 3 illustrates the performance of the best antenna subset
selected by GFLOW-TAS-PHY. Each point on the “Average
Performance™ line is calculated as follows: For a given value
k on the x-axis (representing the number of active antennas),
we sample 10 distinct subsets of k active antennas (wherever
possible; for example, when k = 50, there is only one possible
subset). For each subset, we compute the optimal precoding
matrix F* and calculate the corresponding secrecy rate. The
final point is the average secrecy rate across the 10 sampled
subsets.

b —8— fyverage performance
2251 »,  GFLOW-TAS-PHY

20,0

Secrecy Rate

._.
b
o

7.5

5.0

o 10 20 30 40 50
# of active antennas

Fig. 3. Plot of the secrecy rate achieved by GFLOW-TAS-PHY. Each
point on the ”Average Performance” line (x-axis value is k) represents
the average secrecy rate over 10 subsets with k active antennas and
N, — k inactive antennas, computed using the corresponding F*
matrix. The final values are averaged over 5 seeds, each representing
a new channel realization where GFLOW-TAS-PHY is trained from
scratch.

Several observations can be made from Fig. 3. First, the
behavior noted in [8] for PHY in MIMO systems also holds
for ISAC systems. Specifically, the secrecy rate initially in-
creases as more antennas are activated, but beyond a certain
point, adding more antennas results in a decline in secrecy
rate. Secondly, since the experiments are conducted on fixed
channel realizations, the focus is on optimizing the instanta-
neous secrecy rate rather than the ergodic secrecy rate. As a
result, the specific positions of the selected antennas become
crucial. The proposed GFlowNet paradigm not only identifies
the optimal number of active antennas but also selects the
optimal antenna positions, leading to an average improvement
of approximately 30% in the secrecy rate.

Fig. 4 shows the CRB performance of the antenna subsets
selected by GFLOW-TAS-PHY. The points on the “Average
Performance” line are computed in the same way as in Fig. 3,
where each point represents the average CRB derived from
multiple randomly sampled subsets of active antennas. For
each subset size k, several random subsets are generated, and
their CRB values are averaged.

Unlike the behavior observed with the secrecy rate, where
adding more active antennas beyond a certain point can
degrade performance, the CRB consistently improves as more
active antennas are added. However, the subsets selected by
GFLOW-TAS-PHY consistently achieve better CRB perfor-
mance compared to the average performance of randomly
selected subsets with the same number of active antennas,
demonstrating the effectiveness of the method in optimizing
both the number and positioning of antennas.

To illustrate the reduction in complexity, GFLOW-TAS-
PHY searches a solution space consigtﬂing of over 105 pos-
sible combinations, represented by 3", ; (°). The algorithm
runs for 15,000 root-to-leaf trajectories, allowing it to explore
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Fig. 4. Plot of the CRB achieved by GFLOW-TAS-PHY. Each point
on the "Average Performance” line represents the average CRB over
10 subsets with k active antennas and N, — k inactive antennas,
computed using the corresponding F* matrix. The final values are
averaged over 5 seeds, each representing a new channel realization
where GFLOW-TAS-PHY is trained from scratch.

only a tiny fraction of the solution space. By parametrizing the
flow, we leverage the generalization capabilities of the function
approximator, enabling the GFlowNet to extrapolate and infer
reward estimations for subsets not encountered during training.

V. CONCLUSIONS

This paper examines the impact of antenna selection on the
PHY performance of ISAC systems. The scenario involves a
MIMO source communicating with a multi-antenna destina-
tion while tracking a target, with an eavesdropper attempting
to intercept the communication. The system’s instantaneous
secrecy rate increases as more antennas are activated, but
beyond a certain point, additional antennas degrade secrecy
performance. Conversely, the sensing performance, measured
by the CRB, improves consistently with more active antennas.
The goal is to optimize the number and configuration of
active antennas to maximize the secrecy rate while ensuring
the CRB remains below a set threshold. We propose an
unsupervised approach based on the GFlowNet framework,
modeling antenna selection as a MDP where actions determine
whether antennas are active or inactive, leading to terminal
states representing different antenna configurations. The re-
ward for each terminal state combines the secrecy rate and
the difference between the CRB and its threshold. GFlowNet
learns an action-sampling policy that makes the probability
of reaching a terminal state proportional to its reward. The
method consistently selects antenna subsets that achieve a 30%
improvement in secrecy rate over random subsets, while also
slightly improving average CRB performance for subsets of
the same size. This is achieved after being trained on a minute
fraction of the possible antenna configurations (15 x 103 of the
105 possible ones).
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