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Abstract—An object detector’s ability to detect and flag novel
objects during open-world deployments is critical for many real-
world applications. Unfortunately, much of the work in open
object detection today is disjointed and fails to adequately address
applications that prioritize unknown object recall in addition to
known-class accuracy. To close this gap, we present a new task
called Open-Set Object Detection and Discovery (OSODD) and
as a solution propose the Open-Set Regions with ViT features
(OSR-ViT) detection framework. OSR-ViT combines a class-
agnostic proposal network with a powerful ViT-based classifier.
Its modular design simplifies optimization and allows users to
easily swap proposal solutions and feature extractors to best suit
their application. Using our multifaceted evaluation protocol, we
show that OSR-ViT obtains performance levels that far exceed
state-of-the-art supervised methods. Our method also excels in
low-data settings, outperforming supervised baselines using a
fraction of the training data.

Index Terms—Computer vision, robustness, open-set.

I. INTRODUCTION

Traditional object detection models are designed, trained,
and evaluated under closed-set conditions [1]-[7], where all
potential classes of interest are assumed to be exhaustively
labeled in the training dataset. If such a model is deployed
in an open-set environment [8], [9] where there exists un-
known objects from outside the training class distribution, the
detector will either misclassify the object as a known class
or miss it altogether — leading to serious safety and reliability
concerns. This motivates the need for open-set object detection
[10], where unknown “‘out-of-distribution” (OOD) objects are
explicitly handled in addition to the known “in-distribution”
(ID) objects.

Although there have been many works that attempt to
address open-set detection [10]-[15], we posit that the way
they choose to handle unknown objects severely limits their
practical usefulness. Namely, none of them consider OOD
object recall. For example, seminal works by Miller et al. [11],
[12] and Dhamija et al. [9] define proper “Open-Set Object
Detection” (OSOD) behavior as simply avoiding detecting
any OOD objects as ID classes. More recent works by Du
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et al. [13]-[15] tackle “Unknown-Aware Object Detection”
(UAOD), where the model is expected to accurately flag OOD
objects that happen to be proposed to the detector’s classifier
head, but does not encourage OOD proposals. While these
behaviors may be sufficient for some tasks, many applications
require the explicit detection (i.e., discovery) of all objects of
interest, both ID and OOD. For example, autonomous vehicles
are often exposed to unforeseeable obstacles that demand
detection for safe operation [16], [17]. Content moderation
systems must also accurately identify evolving types of content
while navigating the complexities of insufficient filtering [18].
Further, medical image processing models are relied upon to
detect abnormalities [19]. In such cases, the consequences of
poor OOD recall are severe, necessitating a new open-set task
that prioritizes it.

In this work, we introduce Open-Set Object Detection and
Discovery (OSODD): a task that explicitly prioritizes both
ID-class accuracy and OOD object recall. OSODD more
appropriately models many realistic applications like the ones
mentioned above. To measure performance on the OSODD
task, we devise a new evaluation protocol that makes no sim-
plifying assumptions about the test data and includes a novel
threshold-independent Average Open Set Precision (AOSP)
summary metric. We test models on three new benchmarks that
are designed to simulate a broad spectrum of feasible settings,
including low-data environments and multiple image domains.
Not only does our OSODD evaluation protocol enable a more
comprehensive analysis of model performance, but it also is
the first that allows for a unified comparison of models from
several subdivisions of open detection (e.g., OSOD [9], UAOD
[13], Open-World Object Detection (OWOD) [10]). Such a
comparison highlights how poorly those solutions perform in
OSODD (see Fig. 1).

To address the OSODD task, we create a new highly-
modular detection framework, called Open Set Regions
with ViT features (OSR-ViT). This framework is comprised
of a dedicated class-agnostic proposal network combined with
a classifier module that leverages powerful off-the-shelf ViT-

979-8-3503-cAutherizedsicepeed use4imited to: Duke University. Downloaded on July 18,2025 at 00:23:46 UTC from IEEE Xplore. Restrictions apply.



Faste R-CN

0OD Preds
{car, bear}

OSR-ViT

ID mAP 1 1.0 ID mAP 1 1.0 ID mAP 1 1.0
IDvOOD AUROC 1 1.0 IDvOOD AUROC 1 1.0 IDvOOD AUROC 1t 1.0
00D AR@K 1 0/5=10.0 00D AR@k 1 1/5=0.2 00D AR@k 1 5/5=1.0

0OSOD says: Good! Perfect ID mAP! Good! Perfect ID mAP! Good! Perfect ID mAP!
UAOD says: Good! Perfect ID mAP and Good! Perfect ID mAP and Good! Perfect ID mAP and
" IDvOOD AUROC! IDvOOD AUROC! IDvOOD AUROQOC!
Bad! The OOD Recall is zero Better. But the OOD Recall Good! Both the ID mAP and
0OSODD says: —_— _—— = L mAF

despite good ID performance!

could be improved.

00D Recall are perfect!

Fig. 1. While other settings ignore OOD recall, the proposed OSODD task prioritizes it in addition to established metrics. In this example, a “perfect” model
according to the OSOD or UAOD protocol may cause severe safety consequences.

based foundation models. OSR-ViT’s bipartite architecture
does not require end-to-end training, so users can easily
replace either of the components with future or custom models.
In this paper’s instantiation of the framework we use the state-
of-the-art Tunable Hybrid Proposal Network (THPN) [20] and
DINOV2 [21] foundation model. We find that our simple, mod-
ular, and user-friendly OSR-ViT framework far exceeds the
performance of all fully supervised open-set-specific baselines.
Our framework has a particular advantage in low-data settings,
where even our most lightweight configuration trained on 25%
of the PASCAL VOC [22] training data outperforms all other
baselines trained on 100% of the data.
Overall, our contributions are as follows:

o« We create a new joint open-set object detection and
discovery task that prioritizes both ID and OOD object
detection and is more closely aligned with realistic
open-set detection applications. To measure performance
we develop a new comprehensive evaluation protocol
and AOSP summary metric that allows for a unified
comparison of previously uncompared works.

o We propose a novel OSR-ViT framework for tackling
the OSODD task. OSR-ViT’s modularity allows for the
immediate use of the latest foundation models being
developed, future-proofing our design.

e We show that OSR-ViT wvastly outperforms fully-
supervised alternatives with minimal configuration and
no finicky end-to-end training. We also demonstrate its
effectiveness with sparse-data and in the remote-sensing
domain.

II. LIMITATIONS OF EXISTING WORK

A major limitation of existing “open” object detection
literature is the incongruity of task goals. The evaluation
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protocols used in different works vary significantly, making
it challenging to directly compare methods. Here, we detail
the existing subdivisions of open detection.

Class-Agnostic Object Proposal. Object discovery models
separate objects from background without supervision [23].
Early works in this area identify salient regions with respect
to image transformations [23], [24] or noise [25]. More recent
works leverage convolutional features instead of the images
directly [26], [27]. Class-agnostic object proposal networks
seek to maximize ID and OOD object recall (without further
classification) [20], [28]-[30]. Kim et al. [29] showed that
standard object proposal networks such as Region Proposal
Network (RPN) [3] and its variants [31], [32] overfit to the
ID categories because of its discriminative learning approach.
They instead propose an Object Localization Network (OLN)
which replaces the classification heads of a class-agnostic
Faster R-CNN [3] with localization-quality prediction heads,
yielding a model that more readily generalizes to OOD objects.
Konan et al. [28] and Saito et al. [30] use unknown object
masking and a background erasing augmentation, respectively,
to further reduce ID-bias. While class-agnostic detection is
useful, class separation is often necessary for practical tasks.

Open-Set & Unknown-Aware Object Detection. An
OSOD detector should ignore OOD objects and not let the
presence of OOD or “wilderness” data effect ID accuracy [9],
[11], [12], [33], [34]. In other words, the goal is to simply
avoid mistaking OOD objects as ID classes. Miller et al. [11]
first introduce the notion of open-set object detection and use
dropout sampling [35] to improve label uncertainty. Dhamija
et al. [9] show that closed-set detectors tend to misclassify
OOD objects as ID classes. Recently, Han et al. [34] use
a contrastive feature learner to identify OOD objects from
their latent representations. The limitation of OSOD is that
the recall of OOD objects is irrelevant, which render these
methods unfit for many real applications. An UAOD model
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should maximize ID performance and precisely flag any OOD
objects that happen to be proposed to the classifier head [13]-
[15]. Du et al. [13] generate near-OOD virtual outliers to learn
more compact ID clusters to ease the separation of ID and
OOD objects. SIREN [14] maps ID-class representations onto
a von Mises-Fisher (vMF) distribution to provide a powerful
distance-based OOD algorithm for detectors. Finally, STUD
[15] distills unknown objects from video data to improve OOD
detection in object detection models. A major limitation of
this subdivision is that most works [13]-[15] make several
unrealistic and invalid assumptions to evaluate performance.
For example, they require mutually exclusive ID and OOD
validation sets, and incorrectly assume that all detections with
confidence over a threshold are valid ID and OOD predictions,
respectively.

Open-World & Open-Vocabulary Object Detection. An
OWOD model’s goal is to maximize ID performance and
incrementally learn new classes by forwarding it’s unknown
predictions to a human annotator [10], [36]-[42]. Joseph
et al’s ORE model [10] uses a conventional RPN with
a contrastive clustering regularization to create a baseline.
Gupta et al. [36] introduce a DETR-based [6], [7] OW-DETR
model that boosts performance via attention-driven pseudo-
labeling. Wu et al. [41] propose a two-branch objectness-
centric model that leverages the benefits of OLN’s localization-
quality prediction head to improve object recall. Finally, Zohar
et al’s PROB model [42] specifically addresses unknown
object recall with an additional probabilistic objectness head.
While the incremental learning aspect of the OWOD task
is interesting, several outside factors (e.g., threshold choice,
semantic drift between tasks, training data quality) contribute
heavily to perceived performance, making it difficult to judge
a model’s true usability. Also, while some work does enhance
OWOD performance via increased unknown recall [41], [42],
their OOD recall performance still remains modest. Open-
Vocabulary Object Detection (OVOD) models use natural
language models to enable the detector to directly generalize
beyond the ID classes using text prompting [43]-[47]. While
these approaches are powerful under certain circumstances
(i.e., where object classes of interest are well-represented
in language datasets), their practical usefulness is limited
in many domains (i.e., fine-grained ship detection). For fair
comparison, we do not consider OVOD baselines in this work.

III. OPEN-SET OBJECT DETECTION AND DISCOVERY

In this section we describe in detail the OSODD task. In
section III-A we formalize the problem with notation and in
section III-B we detail our novel evaluation protocol.

A. Problem Formulation

As with any supervised detection task, we assume access
to a training dataset that contains labels for a set of object
classes of interest. We refer to this set of classes as the
known set K = {1,2,...,C} C NT. In OSODD, we also
formally acknowledge the existence of instances of unknown
object classes U = {C' +1,...} C NT that coexist with the
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known instances in both the training and deployment data.
The goal is to train a model M parameterized by 6 to detect
and localize all object instances of interest in a test set (i.e.,
all instances in the set I U Uf). For a given test image X,
the model’s function is M(X;60) = {[z,y, w, h, ¢, s]i=1.. N},
where x, y, w, and h denote the center coordinates, width,
and height of the bounding box, respectively. The predicted
class ¢ € KU{—1,0} describes the class category that the ith
prediction belongs to. Here, ¢ = 0 denotes an unknown object
of interest and ¢ = —1 represents background (i.e., no object).
Finally, each prediction has a score s € [0, 1] which represents
the model’s confidence that box ¢ contains an object of class
c.

B. Evaluation Protocol

A key contribution of our work is the novel evaluation
procedure we develop for the OSODD task. Our evaluation
uses four types of metrics to comprehensively evaluate models
with minimal assumptions and thresholds:

o Closed-Set ID mean Average Precision (ID-mAP):
Measures the maximum potential ID-mAP by assuming
all detections are knowns.

o Class-Agnostic Average Recall (CA-AR): Measures
performance of the proposal network by computing
AR@100 assuming a single foreground (FG) class.

o Area Under the Receiver Operating Characteristic
(AUROC): Measures the classifier’s separability across
all possible thresholds. Recent UAOD works [13]-[15]
only measure ID vs. OOD AUROC, since they assume
that an input is always either ID or OOD (binary). How-
ever, such an assumption is inadequate for the OSODD
task where we face a ternary decision: A proposal can
either be an ID object, an OOD object, or background
(BG). Thus, we also compute AUROC for the following
separation axes: ID vs. Non-ID, OOD vs. BG, and FG
vs. BG.

o Average Open-Set Precision (AOSP): Our new AOSP
metric provides a threshold-independent summary of a
model’s tradeoff between ID-mAP and OOD Recall. This
metric is described in detail below.

Computing AUROC. Unlike existing works [13], [14] that
use AUROC for open-set detection, we do NOT require that
ID and OOD data are in mutually exclusive sets, and we
do NOT assume that all high-confidence predictions are valid
object regions. Instead, we take a more scrupulous approach
and partition all proposed regions in the mixed test set (i.e.,
the images contain both ID and OOD objects) into their
corresponding ID/OOD/BG bin based on their IoU overlap
with the ground-truth annotations. Note that during evaluation,
we always pretend that some subset of classes are OOD, so
we have ground truth matches for OOD objects too. Once the
predictions are partitioned, we compute our AUROC scores.
ID vs. OOD and ID vs. Non-ID AUROC are computed using
the proposal’s ID score, which should be high for ID objects
and low for OOD objects (e.g., energy [48], Mahalanobis
distance [49], etc.). BG vs. OOD and FG vs. BG AUROC
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Fig. 2. Our threshold-agnostic Average Open Set Precision (AOSP) performance metric provides a holistic view of the ID-OOD performance trade-off.

are computed using the objectness score, which represents the
likelihood that a region contains a foreground object (either
ID or OOD).

The AOSP metric. While it is tempting to try to use mAP to
measure OOD performance, this is invalid because computing
precision requires that all OOD objects are labeled. Due to
limitations of current datasets, we do not have exhaustive
annotations for every single object. Thus, the accepted stan-
dard for measuring OOD performance is recall given a fixed
number k of detections per image. However, we argue that
the true performance of an OSODD model cannot be fully
understood from a single recall measure, as it only captures
performance at a one operating point. This point is determined
by a model’s ID_THRESH, the threshold which determines
the minimum ID score for a prediction to be deemed an ID
object. We argue that the best way to evaluate a model is to use
a threshold-independent metric that summarizes the tradeoff
between ID and OOD performance, as different applications
require different thresholds.

To this end, we propose Average Open-Set Precision
(AOSP). AOSP summarizes the tradeoff between ID-mAP
(@IoU=0.5) and OOD recall (@k=100 detections per image),
and provides us with a single scalar metric to compare methods
on the OSODD task. Fig. 2 shows a visualization of the AOSP
computation. We specifically find the minimum ID_THRESH
to achieve 21 discrete target OOD recall points in {0:.05:1}.
At each of these, we set ¢=0 (unknown) for all detections with
ID score < ID_THRESH and compute ID-mAP on the updated
set. AOSP is the average of ID-mAP over these OOD recall
points:

1
AOSP := 57 ID-mAP@ooD Recall = » (1)

D

re{0:.05:1}

Note that at ID_THRESH=—00 every detection is deemed ID
(max ID-mAP), and at ID_THRESH=00 every detection is
deemed OOD (max OOD recall). At OOD recall points beyond
the detector’s maximum capability (e.g., 7={0.9,0.95,1} in Fig.
2), we consider ID-mAP=0.
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IV. OSR-VIT MODULAR DETECTION FRAMEWORK

An effective OSODD model must excel at two key subtasks:
(1) localizing all objects in an image, and (2) accurate dis-
cernment between ID and OOD classes. Thus, our proposed
solution is a modular bipartite framework that combines an
arbitrary strong proposal network with a classifier module
that leverages an arbitrary Vision Transformer (ViT) [50]
foundation model (see Fig. 3). An important reason for this
design choice is that in today’s fast-paced ML climate,
modularity is critical for future-proofing. New state-of-
the-art models are being released almost daily, necessitating
frameworks that allow for seamless transitioning between
solutions. The task-agnostic nature of these foundation models
is also critical to being adaptable to dynamic environments
and tasks. This is opposed to developing highly task-specific
solutions that require extra hyperparameters, regularization
terms, and underlying assumptions. We call our solution Open-
Set Regions with ViT features (OSR-ViT), taking inspiration
from the seminal “Regions with CNN features” (R-CNN)
model family [1]-[3], [51]. The remainder of this section
details the Proposal Network (section IV-A), the Foundational
Classifier (section IV-B), and model training (section IV-C).

A. Proposal Network

The upper bound of overall OSODD performance is directly
predicated on the model’s ability to discern foreground objects
vs. background, as even a detector with a perfect classifier is
useless if true positive regions are never proposed in the first
place. One major pitfall of open object proposal is overfitting
to ID classes. Basic supervised proposal networks like RPN
[3] inherently overfit due to their discriminative objective
[29]. Several recent works have tried to combat this issue
[28], [29], however it has been shown that incorporating such
dedicated proposal networks directly into end-to-end open-
set/world detectors yields worse overall performance [41],
[42]. The other major pitfall is a lack of adaptability. A
practically useful OSODD proposal network should be able
to be adapted to different application requirements [20]. For
example, a security system should prioritize the detection of
a couple of key ID classes (e.g., person, car) while ignoring
unrelated OOD objects. However, a household robot should
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Fig. 3. Our OSR-ViT framework consists of two independently-trained models working in conjunction: (1) a class-agnostic Proposal Network, and (2) a
ViT-powered Foundational Classifier. This allows for seamless integration of new or future models.

be much more generalizable to rare and unexpected object
classes.

In our instantiation of OSR-ViT, we use a Tunable Hybrid
Proposal Network (THPN) [20]. THPN is a state-of-the-art
CNN-based proposal network that learns a hybrid objectness
representation via dual prediction heads. Critically, THPN pro-
vides a single hyperparameter Acrs € [0, 1] which balances
both the loss contribution and final confidence score from
each prediction head. The larger A\crg is set, the more ID-
biased the resulting model is, meaning the more propensity
the model has for detecting ID objects at the cost of some
OOD objects. THPN also leverages a self-training optimiza-
tion procedure [52] that significantly enhances data efficiency,
allowing for impressive performance in low-data or semi-
supervised settings. We emphasize that OSR-ViT users can
seamlessly plug-and-play with any proposal model of their
choosing. For example, if an organization has developed an
exquisite proposal network for a specific remote-sensing task,
that network can be leveraged here.

B. Foundational Classifier

The recent emergence of large-scale foundation models has
begun to revolutionize the pipeline of training and deploy-
ing vision Al. Open-source models such as CLIP [53] and
DINOV2 [21] are trained on hundreds of millions of images
for tens of thousands of GPU hours. They provides users
with off-the-shelf task-agnostic models that can be made task-
specific with a minimal fine-tuning stage, and outperform
supervised specialist models. This strong performance is due
to the highly expressive representations that are encoded by the
Vision Transformer (ViT) architecture. However, we argue that
the true power of these foundation models extends far beyond
closed-set recognition. Our hypothesis is that the highly
descriptive ViT representations of the object proposals
will enable effective ID and OOD separation. In this work,
we use a DINOv2 [21] model as the feature extractor of the
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foundational classifier in the OSR-ViT. DINOv2 is trained
on the extensive LVD-142M dataset [21], meaning it is fully
capable of well-representing a wide variety of image domains
and object types. Again, we encourage users to plug-and-play
beyond DINOv2 with whatever new or custom foundation
model they see fit.

As shown in Fig. 3, the input image is first processed by
the proposal network PropNet(X) : RP — {(p?*°% 0;)}1%9,
which maps a D-dimensional input image X to N=100
pairs of object proposal boxes p?*°* and their corresponding
predicted objectness o;. The pixel region of each proposal
is then cropped from the image and resized to the 224x224
resolution that the DINOv2 model can ingest. We call these
resulting resized proposal “images” p;. The proposal images
are then forwarded through the ViT feature extractor V' (p) :
R224:224 _, R where d is the dimensionality of the ViT’s
feature space. We refer to the ViT representation of proposal
p; as v;. We use a simple 2-layer fully connected (non-linear)
module f(v) : R? — R on top of the ViT feature extractor to
enable C-way classification. The output logits of each proposal
f(v;) are then forwarded to the Open-Set Classifier which
makes the final output decision.

Reaching a final detection involves two sequential predic-
tions. First, we must predict if a proposal is ID or OOD. We
use a post-hoc Energy-based OOD detection algorithm [48]
that uses a proposal’s free energy as its ID score:

C
E(vi; f) = =T -log Y _ els®)/T
J

2

where 7' is a temperature parameter. Note that for a given
proposal, the larger this energy score is, the more likely it is
to be an ID class object. If —F(v;; f) > ID_THRESH we
call the ith proposal an ID object, else we call it unknown.
For deployment, one would use a validation set to choose a
reasonable ID_THRESH.
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The second decision that must be made by the Open-Set
Classifier is the final output class ¢; and confidence score s;.
Fig. 3 shows this decision in the “Final Output Decision” box.
If p; is deemed OOD, the assigned class label is ¢; = unknown,
but if it is deemed ID then ¢; = arg max(f(v;)). Regardless of
class label, the confidence score is the product of the predicted
objectness from the proposal network o; and the max Softmax
confidence over the ID classes:

s; = 0; - max(Softmax(f(v;))).

3)

Note that many existing works [13]-[15] simply use the
maximum Softmax score for OOD predictions. Although this
may be valid for the binary open-set classification task (ID vs.
non-ID), it is not appropriate for the ternary open-set detection
task (ID vs. OOD vs. BG). In other words, just because a
proposal does not significantly excite any one ID output
node does NOT necessarily mean that it does not have
strong general object features. For this reason, our score
measure s; directly incorporates the objectness score from the
class agnostic proposal network, meaning the resulting scores
for both ID and OOD predictions will be more appropriately
calibrated. Finally, we reuse the boxes output by the proposal
network as the final box predictions.

C. Training

Much of OSR-ViT’s user-friendliness is due to its disen-
tangled training of the proposal network and the foundational
classifier. This allows users to easily incorporate new custom
or off-the-shelf models for either role. In this work, we opti-
mize the THPN following the procedure outlined in the paper
[20]. We adapt the foundational classifier separately, and in
two stages. In the first stage, we freeze the DINOv2-pretrained
ViT and update the fully connected classifier module f using
cross-entropy loss for 50 epochs. To improve model flexibility
while maintaining the expressiveness of the ViT’s pre-trained
representations, we then perform a short 5-epoch fine-tuning
stage in which we train the ViT and the classifier module
together with a much smaller learning rate.

V. EXPERIMENTS

To evaluate models on the OSODD task, we create three
separate benchmarks which offer far more diversity than
contemporary literature [9], [11], [13], [14], [33], [34]. Sec-
tion V-A contains our Natural Imagery Benchmark, Section
V-B contains our Limited Data Benchmark, and section V-C
covers model performance on the Ships Benchmark. Finally, in
section V-D we perform additional analysis on our OSR-ViT
method.

A. Natural Imagery Benchmark

This benchmark considers two cross-dataset transfer tasks
between common natural imagery datasets. The first is to
train on the 20-class PASCAL VOC [22] training dataset and
test on the 80-class COCO [54] validation set. In this case,
the OOD classes are the non-VOC classes of COCO. The
second is to train on the COCO training set and test on 40,000
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images from the 365-class Objects365 [55] dataset. Here, the
OOD classes are the non-COCO classes of Objects365. Since
the Objects365 label space is more granular we consider all
synsets or hyponyms of the COCO classes as ID. Table I
contains the results for this benchmark. Note that the “-S, “-
B”, and “-L” specifiers on the DINOv2 models indicate the size
of the ViT. Our OSR-ViT method outperforms all baselines
on all OOD-related metrics on both tasks. In general, OSR-
ViT’s margin of improvement over the baselines is greater
on VOC—COCO compared to COCO—Objects365. This is
because the stronger supervised baselines (e.g., DETR-based
models) can learn better representations of the ID classes in
tasks with more data.

OSR-VIiT significantly outperforms all baselines in terms of
CA-AR, showcasing the utility of a non-ID-biased proposal
network like THPN. The relatively mediocre AOSP and CA-
AR scores from the major OWOD methods (ORE [10], OW-
DETR [36], and PROB [42]) shows that the incremental learn-
ing aspect of the OWOD task does indeed distract from the
relatively poor OOD recall, justifying the need for our OSODD
task. Finally, OSR-ViT excels in terms of classifier separability
(i.e., AUROC metrics). The strong ID score-based separation
(ID vs. OOD, ID vs. Non-ID) demonstrates that ViT’s strong
nuanced representations allow superior OOD detectability,
even compared to strong regularized UAOD baselines such
as VOS [13] and SIREN [14] that are specifically designed
for this capability. The objectness-based separation (OOD vs.
BG, FG vs. BG) is also much better than the baselines, with
the FG vs. BG AUROC being 16.02% higher than the best
baseline (OLN).

As expected, the size of the DINOv2 ViT does posi-
tively correlate with performance, but even DINOv2-S can
provide state-of-the-art performance on both tasks in terms
of AOSP. On the moderately-scaled VOC—COCO task, the
smallest DINOv2-S is still sufficient to outperform the UAOD
methods in terms of classifier separability, but on the larger
COCO—Objects365 task the larger DINOv2-L is required to
beat SIREN-DETR [14]. One limitation of our particular OSR-
ViT configuration is that it trades off far superior OOD recall
for slightly worse closed-set ID-mAP. Our analysis shows that
this is not due to Foundational Classifier error, but rather to the
ID/OOD tradeoff made by the THPN proposal network. Here,
we configure the THPN in these experiments with Acpg=.10,
yielding a more OOD-biased model. In additional experiments
we explore the impact of A\crs and find that this ID-mAP
discrepancy can be minimized.

B. Limited Data Benchmark

While performance on large-scale benchmarks is important,
in many scenarios and applications we do not have training
datasets with hundreds of thousands of annotations at our
disposal. For this reason, we devise a Limited Data Benchmark
in which models are trained on a random (class-balanced) set
of 25%, 50%, and 75% of the VOC training annotations and
tested on the COCO validation set.
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TABLE I
RESULTS ON THE NATURAL IMAGERY BENCHMARK TASKS.

IDVOOD IDVNONID OODvBG  FGvBG
Data Training Model OOD Algo. AOSP  ID-mAP CA-AR  AUROC AUROC AUROC AUROC
Energy 17.8 31.1 372 7341 64.00 59.77 65.64
Faster R-CNN Mahalanobis ~ 18.0 31.1 372 56.27 68.32 59.77 65.64
Plain OLN Energy 18.8 30.0 38.5 72.42 64.94 59.44 66.29
Supervised Mahalanobis 18.4 30.0 38.5 51.66 65.81 59.44 66.29
) Energy 10.1 34.6 333 58.77 69.05 58.58 57.62
Deformable DETR | i ionobis 9.8 346 333 555 63.35 58.58 57.62
VOC — | VOS Faster R-CNN Energy 186 315 36.3 78.68 7355 61.44 73.68
COCO SIREN Faster R-CNN SIREN-KNN _ 17.3 313 36.7 82.74 77.15 5891 64.23
Deformable DETR | SIREN-KNN  12.0 33.6 33.1 75.87 82.70 57.98 57.74
ORE Faster R-CNN Energy 183 28.0 354 75.13 74.90 5391 63.01
OW-DETR | Deformable DETR | Direct Pred. 10.7 30.2 30.9 - - - -
PROB Deformable DETR | Direct Pred. 12.6 32.5 31.7 - - - -
THPN+DINOv2-S | Energy 23.6 30.2 432 84.79 85.08 63.26 30.69
OSR-ViT | THPN+DINOv2-B | Energy 25.0 314 432 86.49 86.28 63.42 81.86
THPN+DINOvV2-L | Energy 25.1 315 432 87.57 85.52 64.87 82.31
Energy 17.6 245 441 61.84 65.10 63.62 66.99
Faster R-CNN Mahalanobis ~ 14.6 24,5 44.1 5371 56.97 63.62 66.99
Plain OLN Energy 17.5 23.0 44.9 62.66 65.06 63.25 66.32
Supervised Mahalanobis  13.6 23.0 44.9 52.39 56.60 63.25 66.32
] Energy 173 29.0 439 55.57 60.50 58.04 6134
COCO s Deformable DETR | ypopoianobis 132 290 439 4811 46.98 5804 61.34
Obj365 VOS Faster R-CNN Energy 178 244 4356 65.20 68.16 63.25 67.34
SIREN Faster R-CNN SIREN-KNN  17.0 244 434 6834 63.68 62.91 66.99
Deformable DETR | SIREN-KNN 8.2 28.8 434 71.45 73.75 58.43 60.75
ORE Faster R-CNN Energy 16.9 227 424 62.35 66.17 60.09 64.07
THPN+DINOV2-S | Energy 18.7 239 497 67.01 7357 68.55 73.89
OSR-ViT | THPN+DINOV2-B | Energy 19.7 25.1 49.7 70.72 75.81 67.16 73.70
THPN+DINOV2-L | Energy 20.2 257 49.7 71.60 76.67 67.33 74.04
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Fig. 4. While supervised baselines struggle in the data-constrained settings of our Limited Data Benchmark, our OSR-ViT model maintains good performance.

Fig. 4 visualizes the results from this benchmark as AOSP
vs. closed-set ID mAP. In this experiment we vary the THPN
Acrs parameter in our OSR-VIiT(-B) model. The key take-
away from this result is that OSR-ViT maintains ID-mAP and
AOSP much better than fully supervised models when training
data gets scarce. In fact, the most lightweight OSR-ViT model
(THPN(A¢1,5=.10)+DINOvV2-S) trained on 25% of the VOC
data achieves 20.6% AOSP, which is higher than any baseline
method trained on 100% of the VOC data! It should also be
noted that the CA-AR of the OSR-ViT models trained on the
25% split is 38.4%, which essentially matches the highest
performing baseline (i.e., OLN) trained on the 100% split.
This performance can be mainly attributed to the ViT’s ability
to generalize well with very limited task-specific data.

As discussed in section V-A above, some DETR-based
baselines outperform our OSR-ViT configuration in terms
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of closed-set ID-mAP. However, this challenging benchmark
reveals that these methods require significant training data
to reach this level of performance. Notice that decreasing
the labeled training annotations even to 75% of the original
number drastically reduces the performance of these models.
In a scenario like VOC25—COCO, where we have less than
12,000 training annotations, these methods are essentially
useless. Finally, these results showcase the effect of THPN’s
Acrs parameter. In general, the higher we set A\cpg, the
higher the ID mAP. Using an adaptable proposal network like
THPN in the OSR-ViT model greatly increases its flexibility,
as we can more effectively configure the model for a given
set of requirements.

C. Ships Benchmark

Our final benchmark evaluates performance in the remote-
sensing image domain. We consider the ShipRSImageNet
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TABLE II
RESULTS ON THE SHIPS BENCHMARK.

IDvOOD IDVYNONID OODVBG  FGvBG

Training Model 00D Algo.  AOSP ID-mAP CA-AR AUROC  AUROC AUROC  AUROC
- Energy 397 608 58.6 70.55 64.65 78.00 77.38
Faster R-CNN Mahalanobis ~ 40.9  60.8 586 4535 55.96 78.00 77.38
Plain OLN Energy 46.5 61.3 59.7 73.17 65.99 78.59 76.14
Supervised Mahalanobis  46.9 61.3 59.7 41.66 52.07 78.59 76.14
Energy 98 85 32.0 4933 81.21 65.56 64.63
Deformable DETR |y p.poinobis 9.5 8.5 32.0 50.70 78.45 65.56 64.63
VOS Faster R-CNN Energy 426 595 59.0 7149 68.45 75.05 72.70
SIREN Faster R-CNN SIREN-KNN  43.1  60.7 586 7711 75.03 7247 70.44
Deformable DETR | SIREN-KNN 1.5 13 19.6 49.72 79.09 64.62 64.25
ORE Faster R-CNN Energy 445 587 54.1 74.61 62.26 68.30 63.05

OW-DETR | Deformable DETR | Direct Pred. 8.3 1.4 317 B - - -
PROB Deformable DETR Direct Pred. 14.2 12.5 38.5 - - - -
oSRViT | THPN+DINOV2-S | Energy 534 572 64.3 75.22 8778 94.07 95.49
THPN+DINOV2-B | Energy 554 589 64.3 77.16 85.72 94.16 95.81
TABLE III
MODEL DESIGN ANALYSIS ON THE VOC—COCO TASK.

IDvOOD IDVNONID OODvBG FGvBG

Model 00D Algo. AOSP ID-mAP CA-AR  AUROC AUROC AUROC  AUROC
MSP 24.8 314 432 83.97 83.33 63.42 81.86
MaxLogit 25.0 314 43.2 86.48 86.20 63.42 81.86
THPN+DINOv2-B ODIN 250 314 432 86.00 85.41 63.42 81.86

o _____1L Energy 250 314 432 = 8649 = 8628 6342 8186

FT—No FT Energy 24.8 31.1 43.2 85.46 85.41 63.87 81.88
THPN—Faster R-CNN | Energy 20.0 324 37.2 84.38 82.51 61.59 71.81
DINOv2-B—CLIP-B Energy 223 29.0 43.2 78.74 83.53 64.70 80.21

dataset [56], which contains overhead imagery of coastal
regions with 50 fine-grained ship classes. Here, we manually
create the ID/OOD class split by deeming all “other” ship
categories as OOD. An implicit challenge of this dataset is that
there are relatively few annotations to train on compared to the
natural imagery benchmarks (i.e., 2k ship instances compared
to 47k VOC instances). Table II contains the results. Even
in this different domain, OSR-ViT beats all fully-supervised
baselines in terms of AOSP and CA-AR. Our method lags
OLN slightly in ID-mAP, but achieves a substantial 8.5%
higher AOSP than OLN’s best post-hoc OOD algorithm
(Mahalanobis [49]). OSR-ViT’s classifier separability is also
superior, specifically in terms of objectness-based separability.
Our method outperforms the closest baseline (OLN) in OOD
vs. BG AUROC and FG vs. BG AUROC by 15.57% and
19.67%, respectively! We note that DETR-based methods were
unable to converge to a reasonable solution on this smaller-
scale task, highlighting their limitations in many settings.

D. OSR-ViT Performance Analysis

OSR-ViT’s modular design allows for arbitrary proposal
networks and feature extractors to be incorporated. In Table III
we investigate several different variants of our base configura-
tion using THPN and DINOv2-B on the VOC—COCO task.
The exact choice of post-hoc OOD algorithm does not have
a massive effect on performance, although Energy is the best
overall. The FT—No FT row represents our base configuration
but without the 5-epoch end-to-end fine-tuning step described
in section IV-B. While this fine-tuning is not necessary, it does
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boost overall performance. When we swap THPN (A¢,5=.10)
for a class-agnostic Faster R-CNN [3] proposal network, we
get noticeably worse AOSP and CA-AR, but better ID-mAP
due to Faster R-CNN'’s inherent ID bias. But again, it should
be noted that a THPN with Ac15=.50 can outperform Faster
R-CNN with an ID mAP of 32.9. Finally, we compare the
impact of swapping the DINOv2 foundation model for a CLIP
[53] model of the same size. We find that OSR-ViT with CLIP
achieves substandard results across the board.

Fig. 5 depicts 2D t-SNE visualizations [57] of the penul-
timate object features of four different models on the
VOC—COCO task. Note that the colored circle, star, and
triangle markers represent detections that positively match ID
ground-truth objects, the chartreuse squares represent detec-
tions matched to OOD ground truth objects, and the black
squares represent detections matched to background. Ulti-
mately, the performance of a model is directly related to how
separable these features are, with more compact ID and OOD
clusters being indicative of better models. The key takeaway
from this analysis is that the DINOv2 feature extractor does a
far better job of separating the OOD objects from ID objects
and BG compared to the baselines. These findings support our
hypothesis from section IV-B: The DINOV2 representations
are indeed nuanced enough to not only distinguish ID and
OOD objects, but also different OOD objects from each other.
This quality of representation is generally not feasible with
task-specific supervised training alone. Finally, this OOD sep-
arability would make our method a powerful starting starting
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Fig. 5. 2D t-SNE visualization of penultimate features on the VOC—COCO task. OSR-ViT models generate the most compact ID-class clusters, aiding in
ID vs. OOD separation. Also, OSR-ViT’s ability to segregate OOD instances into different sub-clusters is infeasible with only task-specific supervision.

point for the OWOD task which incrementally learns new
classes, but we leave this for future work.

VI. CONCLUSION

As ML becomes more and more ubiquitous in our real-
world systems, it is important to keep safety at the forefront of
model design. In this work, we identify a serious vulnerability
of state-of-the-art “open-set object detection” models: the
detection of unknown objects is not explicitly prioritized. We
use this finding to motivate a new OSODD task, and create
an evaluation protocol that allows different related works to
be directly compared to each other for the first time. We also
introduce a modular new OSR-ViT framework that leverages
self-contained proposal networks and and off-the-shelf ViT
models in a plug-and-play fashion to achieve far superior
performance to all previous supervised baselines.
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