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Abstract—An object detector’s ability to detect and flag novel
objects during open-world deployments is critical for many real-
world applications. Unfortunately, much of the work in open
object detection today is disjointed and fails to adequately address
applications that prioritize unknown object recall in addition to
known-class accuracy. To close this gap, we present a new task
called Open-Set Object Detection and Discovery (OSODD) and
as a solution propose the Open-Set Regions with ViT features
(OSR-ViT) detection framework. OSR-ViT combines a class-
agnostic proposal network with a powerful ViT-based classifier.
Its modular design simplifies optimization and allows users to
easily swap proposal solutions and feature extractors to best suit
their application. Using our multifaceted evaluation protocol, we
show that OSR-ViT obtains performance levels that far exceed
state-of-the-art supervised methods. Our method also excels in
low-data settings, outperforming supervised baselines using a
fraction of the training data.

Index Terms—Computer vision, robustness, open-set.

I. INTRODUCTION

Traditional object detection models are designed, trained,

and evaluated under closed-set conditions [1]–[7], where all

potential classes of interest are assumed to be exhaustively

labeled in the training dataset. If such a model is deployed

in an open-set environment [8], [9] where there exists un-

known objects from outside the training class distribution, the

detector will either misclassify the object as a known class

or miss it altogether – leading to serious safety and reliability

concerns. This motivates the need for open-set object detection

[10], where unknown “out-of-distribution” (OOD) objects are

explicitly handled in addition to the known “in-distribution”

(ID) objects.

Although there have been many works that attempt to

address open-set detection [10]–[15], we posit that the way

they choose to handle unknown objects severely limits their

practical usefulness. Namely, none of them consider OOD
object recall. For example, seminal works by Miller et al. [11],

[12] and Dhamija et al. [9] define proper “Open-Set Object

Detection” (OSOD) behavior as simply avoiding detecting

any OOD objects as ID classes. More recent works by Du

et al. [13]–[15] tackle “Unknown-Aware Object Detection”

(UAOD), where the model is expected to accurately flag OOD

objects that happen to be proposed to the detector’s classifier

head, but does not encourage OOD proposals. While these

behaviors may be sufficient for some tasks, many applications

require the explicit detection (i.e., discovery) of all objects of

interest, both ID and OOD. For example, autonomous vehicles

are often exposed to unforeseeable obstacles that demand

detection for safe operation [16], [17]. Content moderation

systems must also accurately identify evolving types of content

while navigating the complexities of insufficient filtering [18].

Further, medical image processing models are relied upon to

detect abnormalities [19]. In such cases, the consequences of

poor OOD recall are severe, necessitating a new open-set task

that prioritizes it.

In this work, we introduce Open-Set Object Detection and
Discovery (OSODD): a task that explicitly prioritizes both
ID-class accuracy and OOD object recall. OSODD more

appropriately models many realistic applications like the ones

mentioned above. To measure performance on the OSODD

task, we devise a new evaluation protocol that makes no sim-

plifying assumptions about the test data and includes a novel

threshold-independent Average Open Set Precision (AOSP)

summary metric. We test models on three new benchmarks that

are designed to simulate a broad spectrum of feasible settings,

including low-data environments and multiple image domains.

Not only does our OSODD evaluation protocol enable a more

comprehensive analysis of model performance, but it also is

the first that allows for a unified comparison of models from

several subdivisions of open detection (e.g., OSOD [9], UAOD

[13], Open-World Object Detection (OWOD) [10]). Such a

comparison highlights how poorly those solutions perform in

OSODD (see Fig. 1).

To address the OSODD task, we create a new highly-
modular detection framework, called Open Set Regions
with ViT features (OSR-ViT). This framework is comprised

of a dedicated class-agnostic proposal network combined with

a classifier module that leverages powerful off-the-shelf ViT-
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Fig. 1. While other settings ignore OOD recall, the proposed OSODD task prioritizes it in addition to established metrics. In this example, a “perfect” model
according to the OSOD or UAOD protocol may cause severe safety consequences.

based foundation models. OSR-ViT’s bipartite architecture

does not require end-to-end training, so users can easily

replace either of the components with future or custom models.

In this paper’s instantiation of the framework we use the state-

of-the-art Tunable Hybrid Proposal Network (THPN) [20] and

DINOv2 [21] foundation model. We find that our simple, mod-

ular, and user-friendly OSR-ViT framework far exceeds the

performance of all fully supervised open-set-specific baselines.

Our framework has a particular advantage in low-data settings,

where even our most lightweight configuration trained on 25%

of the PASCAL VOC [22] training data outperforms all other

baselines trained on 100% of the data.

Overall, our contributions are as follows:

• We create a new joint open-set object detection and
discovery task that prioritizes both ID and OOD object

detection and is more closely aligned with realistic

open-set detection applications. To measure performance

we develop a new comprehensive evaluation protocol

and AOSP summary metric that allows for a unified

comparison of previously uncompared works.

• We propose a novel OSR-ViT framework for tackling

the OSODD task. OSR-ViT’s modularity allows for the

immediate use of the latest foundation models being

developed, future-proofing our design.

• We show that OSR-ViT vastly outperforms fully-

supervised alternatives with minimal configuration and

no finicky end-to-end training. We also demonstrate its

effectiveness with sparse-data and in the remote-sensing

domain.

II. LIMITATIONS OF EXISTING WORK

A major limitation of existing “open” object detection

literature is the incongruity of task goals. The evaluation

protocols used in different works vary significantly, making

it challenging to directly compare methods. Here, we detail

the existing subdivisions of open detection.

Class-Agnostic Object Proposal. Object discovery models

separate objects from background without supervision [23].

Early works in this area identify salient regions with respect

to image transformations [23], [24] or noise [25]. More recent

works leverage convolutional features instead of the images

directly [26], [27]. Class-agnostic object proposal networks

seek to maximize ID and OOD object recall (without further

classification) [20], [28]–[30]. Kim et al. [29] showed that

standard object proposal networks such as Region Proposal

Network (RPN) [3] and its variants [31], [32] overfit to the

ID categories because of its discriminative learning approach.

They instead propose an Object Localization Network (OLN)

which replaces the classification heads of a class-agnostic

Faster R-CNN [3] with localization-quality prediction heads,

yielding a model that more readily generalizes to OOD objects.

Konan et al. [28] and Saito et al. [30] use unknown object

masking and a background erasing augmentation, respectively,

to further reduce ID-bias. While class-agnostic detection is

useful, class separation is often necessary for practical tasks.

Open-Set & Unknown-Aware Object Detection. An

OSOD detector should ignore OOD objects and not let the

presence of OOD or “wilderness” data effect ID accuracy [9],

[11], [12], [33], [34]. In other words, the goal is to simply

avoid mistaking OOD objects as ID classes. Miller et al. [11]

first introduce the notion of open-set object detection and use

dropout sampling [35] to improve label uncertainty. Dhamija

et al. [9] show that closed-set detectors tend to misclassify

OOD objects as ID classes. Recently, Han et al. [34] use

a contrastive feature learner to identify OOD objects from

their latent representations. The limitation of OSOD is that

the recall of OOD objects is irrelevant, which render these

methods unfit for many real applications. An UAOD model
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should maximize ID performance and precisely flag any OOD

objects that happen to be proposed to the classifier head [13]–

[15]. Du et al. [13] generate near-OOD virtual outliers to learn

more compact ID clusters to ease the separation of ID and

OOD objects. SIREN [14] maps ID-class representations onto

a von Mises-Fisher (vMF) distribution to provide a powerful

distance-based OOD algorithm for detectors. Finally, STUD

[15] distills unknown objects from video data to improve OOD

detection in object detection models. A major limitation of

this subdivision is that most works [13]–[15] make several

unrealistic and invalid assumptions to evaluate performance.

For example, they require mutually exclusive ID and OOD

validation sets, and incorrectly assume that all detections with

confidence over a threshold are valid ID and OOD predictions,

respectively.

Open-World & Open-Vocabulary Object Detection. An

OWOD model’s goal is to maximize ID performance and

incrementally learn new classes by forwarding it’s unknown

predictions to a human annotator [10], [36]–[42]. Joseph

et al.’s ORE model [10] uses a conventional RPN with

a contrastive clustering regularization to create a baseline.

Gupta et al. [36] introduce a DETR-based [6], [7] OW-DETR

model that boosts performance via attention-driven pseudo-

labeling. Wu et al. [41] propose a two-branch objectness-

centric model that leverages the benefits of OLN’s localization-

quality prediction head to improve object recall. Finally, Zohar

et al.’s PROB model [42] specifically addresses unknown

object recall with an additional probabilistic objectness head.

While the incremental learning aspect of the OWOD task

is interesting, several outside factors (e.g., threshold choice,

semantic drift between tasks, training data quality) contribute

heavily to perceived performance, making it difficult to judge

a model’s true usability. Also, while some work does enhance

OWOD performance via increased unknown recall [41], [42],

their OOD recall performance still remains modest. Open-

Vocabulary Object Detection (OVOD) models use natural

language models to enable the detector to directly generalize

beyond the ID classes using text prompting [43]–[47]. While

these approaches are powerful under certain circumstances

(i.e., where object classes of interest are well-represented

in language datasets), their practical usefulness is limited

in many domains (i.e., fine-grained ship detection). For fair

comparison, we do not consider OVOD baselines in this work.

III. OPEN-SET OBJECT DETECTION AND DISCOVERY

In this section we describe in detail the OSODD task. In

section III-A we formalize the problem with notation and in

section III-B we detail our novel evaluation protocol.

A. Problem Formulation

As with any supervised detection task, we assume access

to a training dataset that contains labels for a set of object

classes of interest. We refer to this set of classes as the

known set K = {1, 2, . . . , C} ⊂ N
+. In OSODD, we also

formally acknowledge the existence of instances of unknown
object classes U = {C + 1, . . . } ⊂ N

+ that coexist with the

known instances in both the training and deployment data.

The goal is to train a model M parameterized by θ to detect

and localize all object instances of interest in a test set (i.e.,

all instances in the set K ∪ U). For a given test image X ,

the model’s function is M(X; θ) = {[x, y, w, h, c, s]i=1...N},

where x, y, w, and h denote the center coordinates, width,

and height of the bounding box, respectively. The predicted

class c ∈ K∪{−1, 0} describes the class category that the ith
prediction belongs to. Here, c = 0 denotes an unknown object

of interest and c = −1 represents background (i.e., no object).

Finally, each prediction has a score s ∈ [0, 1] which represents

the model’s confidence that box i contains an object of class

c.

B. Evaluation Protocol

A key contribution of our work is the novel evaluation

procedure we develop for the OSODD task. Our evaluation

uses four types of metrics to comprehensively evaluate models

with minimal assumptions and thresholds:

• Closed-Set ID mean Average Precision (ID-mAP):
Measures the maximum potential ID-mAP by assuming

all detections are knowns.

• Class-Agnostic Average Recall (CA-AR): Measures

performance of the proposal network by computing

AR@100 assuming a single foreground (FG) class.

• Area Under the Receiver Operating Characteristic
(AUROC): Measures the classifier’s separability across

all possible thresholds. Recent UAOD works [13]–[15]

only measure ID vs. OOD AUROC, since they assume

that an input is always either ID or OOD (binary). How-

ever, such an assumption is inadequate for the OSODD

task where we face a ternary decision: A proposal can

either be an ID object, an OOD object, or background

(BG). Thus, we also compute AUROC for the following

separation axes: ID vs. Non-ID, OOD vs. BG, and FG

vs. BG.

• Average Open-Set Precision (AOSP): Our new AOSP

metric provides a threshold-independent summary of a

model’s tradeoff between ID-mAP and OOD Recall. This

metric is described in detail below.

Computing AUROC. Unlike existing works [13], [14] that

use AUROC for open-set detection, we do NOT require that

ID and OOD data are in mutually exclusive sets, and we

do NOT assume that all high-confidence predictions are valid

object regions. Instead, we take a more scrupulous approach

and partition all proposed regions in the mixed test set (i.e.,

the images contain both ID and OOD objects) into their

corresponding ID/OOD/BG bin based on their IoU overlap

with the ground-truth annotations. Note that during evaluation,

we always pretend that some subset of classes are OOD, so

we have ground truth matches for OOD objects too. Once the

predictions are partitioned, we compute our AUROC scores.

ID vs. OOD and ID vs. Non-ID AUROC are computed using

the proposal’s ID score, which should be high for ID objects

and low for OOD objects (e.g., energy [48], Mahalanobis

distance [49], etc.). BG vs. OOD and FG vs. BG AUROC
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ID_THRESH 

Fig. 2. Our threshold-agnostic Average Open Set Precision (AOSP) performance metric provides a holistic view of the ID-OOD performance trade-off.

are computed using the objectness score, which represents the

likelihood that a region contains a foreground object (either

ID or OOD).

The AOSP metric. While it is tempting to try to use mAP to

measure OOD performance, this is invalid because computing

precision requires that all OOD objects are labeled. Due to

limitations of current datasets, we do not have exhaustive

annotations for every single object. Thus, the accepted stan-

dard for measuring OOD performance is recall given a fixed

number k of detections per image. However, we argue that

the true performance of an OSODD model cannot be fully

understood from a single recall measure, as it only captures

performance at a one operating point. This point is determined

by a model’s ID_THRESH, the threshold which determines

the minimum ID score for a prediction to be deemed an ID

object. We argue that the best way to evaluate a model is to use

a threshold-independent metric that summarizes the tradeoff

between ID and OOD performance, as different applications

require different thresholds.

To this end, we propose Average Open-Set Precision
(AOSP). AOSP summarizes the tradeoff between ID-mAP

(@IoU=0.5) and OOD recall (@k=100 detections per image),

and provides us with a single scalar metric to compare methods

on the OSODD task. Fig. 2 shows a visualization of the AOSP

computation. We specifically find the minimum ID_THRESH
to achieve 21 discrete target OOD recall points in {0: .05:1}.

At each of these, we set c=0 (unknown) for all detections with

ID score < ID_THRESH and compute ID-mAP on the updated

set. AOSP is the average of ID-mAP over these OOD recall

points:

AOSP :=
1

21

∑

r∈{0:.05:1}
ID-mAP@OOD Recall = r (1)

Note that at ID_THRESH=−∞ every detection is deemed ID

(max ID-mAP), and at ID_THRESH=∞ every detection is

deemed OOD (max OOD recall). At OOD recall points beyond

the detector’s maximum capability (e.g., r={0.9,0.95,1} in Fig.

2), we consider ID-mAP=0.

IV. OSR-VIT MODULAR DETECTION FRAMEWORK

An effective OSODD model must excel at two key subtasks:

(1) localizing all objects in an image, and (2) accurate dis-

cernment between ID and OOD classes. Thus, our proposed

solution is a modular bipartite framework that combines an

arbitrary strong proposal network with a classifier module

that leverages an arbitrary Vision Transformer (ViT) [50]

foundation model (see Fig. 3). An important reason for this
design choice is that in today’s fast-paced ML climate,
modularity is critical for future-proofing. New state-of-

the-art models are being released almost daily, necessitating

frameworks that allow for seamless transitioning between

solutions. The task-agnostic nature of these foundation models

is also critical to being adaptable to dynamic environments

and tasks. This is opposed to developing highly task-specific

solutions that require extra hyperparameters, regularization

terms, and underlying assumptions. We call our solution Open-

Set Regions with ViT features (OSR-ViT), taking inspiration

from the seminal “Regions with CNN features” (R-CNN)

model family [1]–[3], [51]. The remainder of this section

details the Proposal Network (section IV-A), the Foundational

Classifier (section IV-B), and model training (section IV-C).

A. Proposal Network

The upper bound of overall OSODD performance is directly

predicated on the model’s ability to discern foreground objects

vs. background, as even a detector with a perfect classifier is

useless if true positive regions are never proposed in the first

place. One major pitfall of open object proposal is overfitting

to ID classes. Basic supervised proposal networks like RPN

[3] inherently overfit due to their discriminative objective

[29]. Several recent works have tried to combat this issue

[28], [29], however it has been shown that incorporating such

dedicated proposal networks directly into end-to-end open-

set/world detectors yields worse overall performance [41],

[42]. The other major pitfall is a lack of adaptability. A

practically useful OSODD proposal network should be able

to be adapted to different application requirements [20]. For

example, a security system should prioritize the detection of

a couple of key ID classes (e.g., person, car) while ignoring

unrelated OOD objects. However, a household robot should
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Fig. 3. Our OSR-ViT framework consists of two independently-trained models working in conjunction: (1) a class-agnostic Proposal Network, and (2) a
ViT-powered Foundational Classifier. This allows for seamless integration of new or future models.

be much more generalizable to rare and unexpected object

classes.

In our instantiation of OSR-ViT, we use a Tunable Hybrid

Proposal Network (THPN) [20]. THPN is a state-of-the-art

CNN-based proposal network that learns a hybrid objectness

representation via dual prediction heads. Critically, THPN pro-

vides a single hyperparameter λCLS ∈ [0, 1] which balances

both the loss contribution and final confidence score from

each prediction head. The larger λCLS is set, the more ID-

biased the resulting model is, meaning the more propensity

the model has for detecting ID objects at the cost of some

OOD objects. THPN also leverages a self-training optimiza-

tion procedure [52] that significantly enhances data efficiency,

allowing for impressive performance in low-data or semi-

supervised settings. We emphasize that OSR-ViT users can

seamlessly plug-and-play with any proposal model of their

choosing. For example, if an organization has developed an

exquisite proposal network for a specific remote-sensing task,

that network can be leveraged here.

B. Foundational Classifier

The recent emergence of large-scale foundation models has

begun to revolutionize the pipeline of training and deploy-

ing vision AI. Open-source models such as CLIP [53] and

DINOv2 [21] are trained on hundreds of millions of images

for tens of thousands of GPU hours. They provides users

with off-the-shelf task-agnostic models that can be made task-

specific with a minimal fine-tuning stage, and outperform

supervised specialist models. This strong performance is due

to the highly expressive representations that are encoded by the

Vision Transformer (ViT) architecture. However, we argue that

the true power of these foundation models extends far beyond

closed-set recognition. Our hypothesis is that the highly
descriptive ViT representations of the object proposals
will enable effective ID and OOD separation. In this work,

we use a DINOv2 [21] model as the feature extractor of the

foundational classifier in the OSR-ViT. DINOv2 is trained

on the extensive LVD-142M dataset [21], meaning it is fully

capable of well-representing a wide variety of image domains

and object types. Again, we encourage users to plug-and-play

beyond DINOv2 with whatever new or custom foundation

model they see fit.

As shown in Fig. 3, the input image is first processed by

the proposal network PropNet(X) : RD → {(pbboxi , oi)}100i=1,

which maps a D-dimensional input image X to N=100

pairs of object proposal boxes pbboxi and their corresponding

predicted objectness oi. The pixel region of each proposal

is then cropped from the image and resized to the 224x224

resolution that the DINOv2 model can ingest. We call these

resulting resized proposal “images” pi. The proposal images

are then forwarded through the ViT feature extractor V (p) :
R

224·224 → R
d, where d is the dimensionality of the ViT’s

feature space. We refer to the ViT representation of proposal

pi as vi. We use a simple 2-layer fully connected (non-linear)

module f(v) : Rd → R
C on top of the ViT feature extractor to

enable C-way classification. The output logits of each proposal

f(vi) are then forwarded to the Open-Set Classifier which

makes the final output decision.

Reaching a final detection involves two sequential predic-

tions. First, we must predict if a proposal is ID or OOD. We

use a post-hoc Energy-based OOD detection algorithm [48]

that uses a proposal’s free energy as its ID score:

E(vi; f) = −T · log
C∑

j

efj(vi)/T (2)

where T is a temperature parameter. Note that for a given

proposal, the larger this energy score is, the more likely it is

to be an ID class object. If −E(vi; f) > ID_THRESH we

call the ith proposal an ID object, else we call it unknown.

For deployment, one would use a validation set to choose a

reasonable ID_THRESH.
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The second decision that must be made by the Open-Set

Classifier is the final output class ci and confidence score si.
Fig. 3 shows this decision in the “Final Output Decision” box.

If pi is deemed OOD, the assigned class label is ci = unknown,

but if it is deemed ID then ci = argmax(f(vi)). Regardless of

class label, the confidence score is the product of the predicted

objectness from the proposal network oi and the max Softmax

confidence over the ID classes:

si = oi ·max(Softmax(f(vi))). (3)

Note that many existing works [13]–[15] simply use the

maximum Softmax score for OOD predictions. Although this

may be valid for the binary open-set classification task (ID vs.

non-ID), it is not appropriate for the ternary open-set detection
task (ID vs. OOD vs. BG). In other words, just because a
proposal does not significantly excite any one ID output
node does NOT necessarily mean that it does not have
strong general object features. For this reason, our score

measure si directly incorporates the objectness score from the

class agnostic proposal network, meaning the resulting scores

for both ID and OOD predictions will be more appropriately

calibrated. Finally, we reuse the boxes output by the proposal

network as the final box predictions.

C. Training

Much of OSR-ViT’s user-friendliness is due to its disen-

tangled training of the proposal network and the foundational

classifier. This allows users to easily incorporate new custom

or off-the-shelf models for either role. In this work, we opti-

mize the THPN following the procedure outlined in the paper

[20]. We adapt the foundational classifier separately, and in

two stages. In the first stage, we freeze the DINOv2-pretrained

ViT and update the fully connected classifier module f using

cross-entropy loss for 50 epochs. To improve model flexibility

while maintaining the expressiveness of the ViT’s pre-trained

representations, we then perform a short 5-epoch fine-tuning

stage in which we train the ViT and the classifier module

together with a much smaller learning rate.

V. EXPERIMENTS

To evaluate models on the OSODD task, we create three

separate benchmarks which offer far more diversity than

contemporary literature [9], [11], [13], [14], [33], [34]. Sec-

tion V-A contains our Natural Imagery Benchmark, Section

V-B contains our Limited Data Benchmark, and section V-C

covers model performance on the Ships Benchmark. Finally, in

section V-D we perform additional analysis on our OSR-ViT

method.

A. Natural Imagery Benchmark

This benchmark considers two cross-dataset transfer tasks

between common natural imagery datasets. The first is to

train on the 20-class PASCAL VOC [22] training dataset and

test on the 80-class COCO [54] validation set. In this case,

the OOD classes are the non-VOC classes of COCO. The

second is to train on the COCO training set and test on 40,000

images from the 365-class Objects365 [55] dataset. Here, the

OOD classes are the non-COCO classes of Objects365. Since

the Objects365 label space is more granular we consider all

synsets or hyponyms of the COCO classes as ID. Table I

contains the results for this benchmark. Note that the “-S”, “-

B”, and “-L” specifiers on the DINOv2 models indicate the size

of the ViT. Our OSR-ViT method outperforms all baselines

on all OOD-related metrics on both tasks. In general, OSR-

ViT’s margin of improvement over the baselines is greater

on VOC→COCO compared to COCO→Objects365. This is

because the stronger supervised baselines (e.g., DETR-based

models) can learn better representations of the ID classes in

tasks with more data.

OSR-ViT significantly outperforms all baselines in terms of

CA-AR, showcasing the utility of a non-ID-biased proposal

network like THPN. The relatively mediocre AOSP and CA-

AR scores from the major OWOD methods (ORE [10], OW-

DETR [36], and PROB [42]) shows that the incremental learn-

ing aspect of the OWOD task does indeed distract from the

relatively poor OOD recall, justifying the need for our OSODD

task. Finally, OSR-ViT excels in terms of classifier separability

(i.e., AUROC metrics). The strong ID score-based separation

(ID vs. OOD, ID vs. Non-ID) demonstrates that ViT’s strong

nuanced representations allow superior OOD detectability,

even compared to strong regularized UAOD baselines such

as VOS [13] and SIREN [14] that are specifically designed

for this capability. The objectness-based separation (OOD vs.

BG, FG vs. BG) is also much better than the baselines, with

the FG vs. BG AUROC being 16.02% higher than the best

baseline (OLN).

As expected, the size of the DINOv2 ViT does posi-

tively correlate with performance, but even DINOv2-S can

provide state-of-the-art performance on both tasks in terms

of AOSP. On the moderately-scaled VOC→COCO task, the

smallest DINOv2-S is still sufficient to outperform the UAOD

methods in terms of classifier separability, but on the larger

COCO→Objects365 task the larger DINOv2-L is required to

beat SIREN-DETR [14]. One limitation of our particular OSR-

ViT configuration is that it trades off far superior OOD recall

for slightly worse closed-set ID-mAP. Our analysis shows that

this is not due to Foundational Classifier error, but rather to the

ID/OOD tradeoff made by the THPN proposal network. Here,

we configure the THPN in these experiments with λCLS=.10,

yielding a more OOD-biased model. In additional experiments

we explore the impact of λCLS and find that this ID-mAP

discrepancy can be minimized.

B. Limited Data Benchmark

While performance on large-scale benchmarks is important,

in many scenarios and applications we do not have training

datasets with hundreds of thousands of annotations at our

disposal. For this reason, we devise a Limited Data Benchmark

in which models are trained on a random (class-balanced) set

of 25%, 50%, and 75% of the VOC training annotations and

tested on the COCO validation set.
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TABLE I
RESULTS ON THE NATURAL IMAGERY BENCHMARK TASKS.

IDvOOD IDvNONID OODvBG FGvBG
Data Training Model OOD Algo. AOSP ID-mAP CA-AR AUROC AUROC AUROC AUROC

VOC →
COCO

Plain
Supervised

Faster R-CNN
Energy 17.8 31.1 37.2 73.41 64.00 59.77 65.64
Mahalanobis 18.0 31.1 37.2 56.27 68.32 59.77 65.64

OLN
Energy 18.8 30.0 38.5 72.42 64.94 59.44 66.29
Mahalanobis 18.4 30.0 38.5 51.66 65.81 59.44 66.29

Deformable DETR
Energy 10.1 34.6 33.3 58.77 69.05 58.58 57.62
Mahalanobis 9.8 34.6 33.3 55.25 63.35 58.58 57.62

VOS Faster R-CNN Energy 18.6 31.5 36.3 78.68 73.55 61.44 73.68

SIREN
Faster R-CNN SIREN-KNN 17.3 31.3 36.7 82.74 77.15 58.91 64.23
Deformable DETR SIREN-KNN 12.0 33.6 33.1 75.87 82.70 57.98 57.74

ORE Faster R-CNN Energy 18.3 28.0 35.4 75.13 74.90 53.91 63.01

OW-DETR Deformable DETR Direct Pred. 10.7 30.2 30.9 - - - -

PROB Deformable DETR Direct Pred. 12.6 32.5 31.7 - - - -

THPN+DINOv2-S Energy 23.6 30.2 43.2 84.79 85.08 63.26 80.69
THPN+DINOv2-B Energy 25.0 31.4 43.2 86.49 86.28 63.42 81.86OSR-ViT
THPN+DINOv2-L Energy 25.1 31.5 43.2 87.57 85.52 64.87 82.31

COCO →
Obj365

Plain
Supervised

Faster R-CNN
Energy 17.6 24.5 44.1 61.84 65.10 63.62 66.99
Mahalanobis 14.6 24.5 44.1 53.71 56.97 63.62 66.99

OLN
Energy 17.5 23.0 44.9 62.66 65.06 63.25 66.32
Mahalanobis 13.6 23.0 44.9 52.39 56.60 63.25 66.32

Deformable DETR
Energy 17.3 29.0 43.9 55.57 60.50 58.04 61.34
Mahalanobis 13.2 29.0 43.9 48.11 46.98 58.04 61.34

VOS Faster R-CNN Energy 17.8 24.4 43.6 65.20 68.16 63.25 67.34

SIREN
Faster R-CNN SIREN-KNN 17.0 24.4 43.4 68.34 68.68 62.91 66.99
Deformable DETR SIREN-KNN 8.2 28.8 43.4 71.45 73.75 58.43 60.75

ORE Faster R-CNN Energy 16.9 22.7 42.4 62.35 66.17 60.09 64.07

THPN+DINOv2-S Energy 18.7 23.9 49.7 67.01 73.57 68.55 73.89
THPN+DINOv2-B Energy 19.7 25.1 49.7 70.72 75.81 67.16 73.70OSR-ViT
THPN+DINOv2-L Energy 20.2 25.7 49.7 71.60 76.67 67.33 74.04

Fig. 4. While supervised baselines struggle in the data-constrained settings of our Limited Data Benchmark, our OSR-ViT model maintains good performance.

Fig. 4 visualizes the results from this benchmark as AOSP

vs. closed-set ID mAP. In this experiment we vary the THPN

λCLS parameter in our OSR-ViT(-B) model. The key take-

away from this result is that OSR-ViT maintains ID-mAP and

AOSP much better than fully supervised models when training

data gets scarce. In fact, the most lightweight OSR-ViT model

(THPN(λCLS=.10)+DINOv2-S) trained on 25% of the VOC

data achieves 20.6% AOSP, which is higher than any baseline

method trained on 100% of the VOC data! It should also be

noted that the CA-AR of the OSR-ViT models trained on the

25% split is 38.4%, which essentially matches the highest

performing baseline (i.e., OLN) trained on the 100% split.

This performance can be mainly attributed to the ViT’s ability

to generalize well with very limited task-specific data.

As discussed in section V-A above, some DETR-based

baselines outperform our OSR-ViT configuration in terms

of closed-set ID-mAP. However, this challenging benchmark

reveals that these methods require significant training data

to reach this level of performance. Notice that decreasing

the labeled training annotations even to 75% of the original

number drastically reduces the performance of these models.

In a scenario like VOC25→COCO, where we have less than

12,000 training annotations, these methods are essentially

useless. Finally, these results showcase the effect of THPN’s

λCLS parameter. In general, the higher we set λCLS , the

higher the ID mAP. Using an adaptable proposal network like

THPN in the OSR-ViT model greatly increases its flexibility,

as we can more effectively configure the model for a given

set of requirements.

C. Ships Benchmark

Our final benchmark evaluates performance in the remote-

sensing image domain. We consider the ShipRSImageNet
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TABLE II
RESULTS ON THE SHIPS BENCHMARK.

IDvOOD IDvNONID OODvBG FGvBG
Training Model OOD Algo. AOSP ID-mAP CA-AR AUROC AUROC AUROC AUROC

Plain
Supervised

Faster R-CNN
Energy 39.7 60.8 58.6 70.55 64.65 78.00 77.38
Mahalanobis 40.9 60.8 58.6 45.35 55.96 78.00 77.38

OLN
Energy 46.5 61.3 59.7 73.17 65.99 78.59 76.14
Mahalanobis 46.9 61.3 59.7 41.66 52.07 78.59 76.14

Deformable DETR
Energy 9.8 8.5 32.0 49.33 81.21 65.56 64.63
Mahalanobis 9.5 8.5 32.0 50.70 78.45 65.56 64.63

VOS Faster R-CNN Energy 42.6 59.5 59.0 71.49 68.45 75.05 72.70

SIREN
Faster R-CNN SIREN-KNN 43.1 60.7 58.6 77.11 75.03 72.47 70.44
Deformable DETR SIREN-KNN 1.5 1.3 19.6 49.72 79.09 64.62 64.25

ORE Faster R-CNN Energy 44.5 58.7 54.1 74.61 62.26 68.30 63.05

OW-DETR Deformable DETR Direct Pred. 8.3 11.4 31.7 - - - -

PROB Deformable DETR Direct Pred. 14.2 12.5 38.5 - - - -

THPN+DINOv2-S Energy 53.4 57.2 64.3 75.22 87.78 94.07 95.49
OSR-ViT

THPN+DINOv2-B Energy 55.4 58.9 64.3 77.16 85.72 94.16 95.81

TABLE III
MODEL DESIGN ANALYSIS ON THE VOC→COCO TASK.

IDvOOD IDvNONID OODvBG FGvBG
Model OOD Algo. AOSP ID-mAP CA-AR AUROC AUROC AUROC AUROC

THPN+DINOv2-B

MSP 24.8 31.4 43.2 83.97 83.33 63.42 81.86
MaxLogit 25.0 31.4 43.2 86.48 86.20 63.42 81.86
ODIN 25.0 31.4 43.2 86.00 85.41 63.42 81.86
Energy 25.0 31.4 43.2 86.49 86.28 63.42 81.86

FT→No FT Energy 24.8 31.1 43.2 85.46 85.41 63.87 81.88
THPN→Faster R-CNN Energy 20.0 32.4 37.2 84.38 82.51 61.59 71.81
DINOv2-B→CLIP-B Energy 22.3 29.0 43.2 78.74 83.53 64.70 80.21

dataset [56], which contains overhead imagery of coastal

regions with 50 fine-grained ship classes. Here, we manually

create the ID/OOD class split by deeming all “other” ship

categories as OOD. An implicit challenge of this dataset is that

there are relatively few annotations to train on compared to the

natural imagery benchmarks (i.e., 2k ship instances compared

to 47k VOC instances). Table II contains the results. Even

in this different domain, OSR-ViT beats all fully-supervised

baselines in terms of AOSP and CA-AR. Our method lags

OLN slightly in ID-mAP, but achieves a substantial 8.5%

higher AOSP than OLN’s best post-hoc OOD algorithm

(Mahalanobis [49]). OSR-ViT’s classifier separability is also

superior, specifically in terms of objectness-based separability.

Our method outperforms the closest baseline (OLN) in OOD

vs. BG AUROC and FG vs. BG AUROC by 15.57% and

19.67%, respectively! We note that DETR-based methods were

unable to converge to a reasonable solution on this smaller-

scale task, highlighting their limitations in many settings.

D. OSR-ViT Performance Analysis

OSR-ViT’s modular design allows for arbitrary proposal

networks and feature extractors to be incorporated. In Table III

we investigate several different variants of our base configura-

tion using THPN and DINOv2-B on the VOC→COCO task.

The exact choice of post-hoc OOD algorithm does not have

a massive effect on performance, although Energy is the best

overall. The FT→No FT row represents our base configuration

but without the 5-epoch end-to-end fine-tuning step described

in section IV-B. While this fine-tuning is not necessary, it does

boost overall performance. When we swap THPN (λCLS=.10)

for a class-agnostic Faster R-CNN [3] proposal network, we

get noticeably worse AOSP and CA-AR, but better ID-mAP

due to Faster R-CNN’s inherent ID bias. But again, it should

be noted that a THPN with λCLS=.50 can outperform Faster

R-CNN with an ID mAP of 32.9. Finally, we compare the

impact of swapping the DINOv2 foundation model for a CLIP

[53] model of the same size. We find that OSR-ViT with CLIP

achieves substandard results across the board.

Fig. 5 depicts 2D t-SNE visualizations [57] of the penul-

timate object features of four different models on the

VOC→COCO task. Note that the colored circle, star, and

triangle markers represent detections that positively match ID

ground-truth objects, the chartreuse squares represent detec-

tions matched to OOD ground truth objects, and the black

squares represent detections matched to background. Ulti-

mately, the performance of a model is directly related to how

separable these features are, with more compact ID and OOD

clusters being indicative of better models. The key takeaway

from this analysis is that the DINOv2 feature extractor does a

far better job of separating the OOD objects from ID objects

and BG compared to the baselines. These findings support our

hypothesis from section IV-B: The DINOv2 representations

are indeed nuanced enough to not only distinguish ID and

OOD objects, but also different OOD objects from each other.

This quality of representation is generally not feasible with

task-specific supervised training alone. Finally, this OOD sep-

arability would make our method a powerful starting starting
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Fig. 5. 2D t-SNE visualization of penultimate features on the VOC→COCO task. OSR-ViT models generate the most compact ID-class clusters, aiding in
ID vs. OOD separation. Also, OSR-ViT’s ability to segregate OOD instances into different sub-clusters is infeasible with only task-specific supervision.

point for the OWOD task which incrementally learns new

classes, but we leave this for future work.

VI. CONCLUSION

As ML becomes more and more ubiquitous in our real-

world systems, it is important to keep safety at the forefront of

model design. In this work, we identify a serious vulnerability

of state-of-the-art “open-set object detection” models: the

detection of unknown objects is not explicitly prioritized. We

use this finding to motivate a new OSODD task, and create

an evaluation protocol that allows different related works to

be directly compared to each other for the first time. We also

introduce a modular new OSR-ViT framework that leverages

self-contained proposal networks and and off-the-shelf ViT

models in a plug-and-play fashion to achieve far superior

performance to all previous supervised baselines.
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