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Abstract—In federated learning systems, the unexpected quit-
ting of participants is inevitable. Such quittings generally do not
incur serious consequences in horizontal federated learning (HFL),
but they do damage to vertical federated learning (VFL), which
has been underexplored in previous research. In this paper, we
show that there are two major vulnerabilities when passive parties
unexpectedly quit in the deployment phase of VFL — severe
performance degradation and intellectual property (IP) leakage of
the active party’s labels. To solve these issues, we design PlugVFL
to improve the VFL model’s robustness against the unexpected
exit of passive parties and protect the active party’s IP in the
deployment phase simultaneously. We evaluate our framework on
multiple datasets against different inference attacks. The results
show that PlugVFL effectively maintains model performance after
the passive party quits and successfully disguises label information
from the passive party’s feature extractor, thereby mitigating IP
leakage.

Index Terms—Federated Learning, Data Privacy, IP Protection

I. INTRODUCTION

Federated learning (FL) [1]-[5] is a distributed learning
method that allows multiple parties to collaboratively train a
model without directly sharing their data, thereby preserving
their data privacy. FL was initially proposed as Horizontal
Federated Learning (HFL) to enable collaborative learning
across devices [6]. In this case, data is "horizontally" split,
where the devices share the same feature space but have
different samples. Another FL framework is Vertical Federated
Learning (VFL) [7]-[15], which focuses on scenarios where
various parties have data with different feature spaces but share
overlapping samples [16], [17]. Different from HFL, VFL is
mostly deployed in cross-silo scenarios. Suppose a service
provider, referred to as active party, owns data and labels of
its clients and wishes to train a deep learning model. The
service provider may collaborate with other parties, namely
passive parties, that possess different data features of the same
clients to boost the model’s performance. Instead of explicitly
sharing the raw data, the passive parties transmit the extracted
representations to the active party for training and inference.
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Fig. 1: The passive party might quit in the deployment
phase, which would cause a substantial performance drop.
The passive party could also extract representations containing

the information of the active party’s labels using its feature
extractor, leading to IP leakage of the active party.

The collaboration of devices in HFL happens in the training
phase, and the global model is deployed on each device for
local inference in the deployment phase. In contrast, VFL
requires the parties to collaborate in both the training and
deployment phases. During the deployment phase, the active
party still requires the representations uploaded by passive
parties to conduct inference. However, in real-world scenarios,
it is possible for passive parties to quit unexpectedly at inference
time due to network crashes, system maintenance, or termi-
nation of collaborations. When unexpected quitting happens,
the service provider faces two challenges: (1) a substantial
performance drop; (2) potential intellectual property (IP)
leakage through the passive party’s feature extractor. This
paper shows that the drop in model performance caused by
the passive party’s quitting results in a model that performs
worse than one trained by the active party alone, ultimately
undermining the motivation for VFL. Furthermore, the passive
parties can retain access to their feature extractors even after
terminating the collaboration. These feature extractors are
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trained using the active party’s labels, which are valuable
IP. From these feature extractors, the passive parties can
extract representations containing the information of the active
party’s labels. Although previous studies made efforts towards
mitigating label information leakage through inference attacks
on gradients during the training phase [18], [19], the robustness
and IP protection of VFL in the deployment phase remain
under-explored.

In this paper, we design a framework named PlugVFL
to solve the two challenges simultaneously. Specifically, to
alleviate the performance drop when passive parties quit
unexpectedly, PlugVFL applies an alternative training method
that can reduce the co-adaptation of feature extractors across
parties. To prevent the IP leakage of the active party’s labels,
we propose a defense that minimizes the mutual information
(MI) between the representations of the passive party and
the true labels. We formulate the defense into an adversarial
training algorithm that jointly minimizes the variational MI
upper bound and prediction loss.

Our key contributions are summarized as follows:

o We reveal two vulnerabilities caused by the unexpected
quitting of parties in the deployment phase of VFL,
including severe performance drop and active party’s label
leakage.

o we design a VFL framework PlugVFL to preserve the
VFL model’s performance against the unexpected exit of
passive parties and protect the active party’s IP in the
deployment phase simultaneously.

« We empirically evaluate the performance of our framework
with different datasets. Our results show that PlugVFL
can improve the accuracy after the passive party’s exit by
more than 8% on CIFAR10. PlugVFL also prevents the
passive party from fine-tuning a classifier that outperforms
random guess levels even using the entire labeled dataset
with only less than 2% drop in the VFL model accuracy,
outperforming baselines significantly.

II. RELATED WORK

A. Vertical Federated Learning

Vertical federated learning (VFL) [7], [20] has been an
emerging research area since proposed. In contrast to (hor-
izontal) federated learning (HFL), VFL adopts a different
scheme for data partitioning [2], [21]. In VFL, different
parties will have various parts of the data of an overlapping
individual. There has been an amount of research devoted
to VFL. Specifically, [21] proposes a protocol involving a
trusted third party to manage the communication utilizing
homomorphic encryption, with the following works [21], [22]
on protocols design. Others have been following [21], where
[22] is working on assessing the protocols and [23], [24]
are focusing on algorithm design concerning optimization.
Additionally, VFL algorithms on traditional machine learning,
such as tree-boosting [25], gradient boosting [26], [27], random
forest [28], linear regression [29], and logistic regression [16],
[30] are also proposed. Another line of research is working
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on communication efficiency [16], which decreases the com-
munication frequency by leveraging stale gradients on local
training. Besides, the assumption of overlapping individuals
in VFL among parties produces a challenge for applying VFL
in the real world, where FedMVT [31] proposes to estimate
representations and labels to alleviate the gap. Other efforts
have also been made to apply VFL in the real world. For
example, FATE [17] is an open-source platform for building
the end-to-end system.

B. IP Leakage in VFL

Intellectual Property (IP) [32]-[34] is drawing more and more
attention as the rapid growth of commercial deployment of
deep learning, especially in federated learning scenarios, whose
primary concern is privacy. IP leakage can be divided into data
IP leakages, such as deep leakage from gradients (DLG) [35],
[36], model inversion [37] and their variants [38]-[42], and
model IP leakage, such as model extraction attacks [43]-[47],
where multiple defensive methods have also been proposed to
tackle data IP leakage [48]-[51] and model IP leakage [52],
[53].

In VFL, we categorize IP stealing attacks into two types, i.e.,
feature inference [39], [42], [54], [55] and label inference [56]-
[58]. Specifically, [54] proposes general attack methods for
complex models, such as Neural Networks, by matching the
correlation between adversary features and target features,
which can be seen as a variant of model inversion [4], [37].
[42], [55] also propose variants of model inversion attack in
VFL. While all these attacks are in the inference phase, [39]
proposes a variant of DLG [35] which can perform attacks in
the training phase. For label inference, [57] proposes an attack
method and a defense method for two-party split learning
on binary classification problems, a special VFL setting.
Additionally, [56] proposes three different label inference attack
methods considering different settings in VFL: direct label
inference attack, passive label inference attack, and active label
inference attack. Defensive methods have also been proposed.
For example, [58] proposes manipulating the labels following
specific rules to defend the direct label inference attack, which
can be seen as a variant of label differential privacy (label
DP) [18], [19] in VFL. However, all these defending methods
focus on preventing data IP leakage from gradients in the
training phase. To the best of our knowledge, we are the
first to provide an analysis of label IP protection in the VFL
deployment phase.

III. PROBLEM DEFINITION AND MOTIVATION
A. Vertical Federated Learning Setting

Suppose K parties train a model. There is a dataset' across
all parties with size N: D = {x;,y;} ;. The feature vector
z; € R% is splitted among K parties {z¥ € R%* }K | where d,
is the feature dimension of party k, and the labels Y = {y;} ¥,
are owned by one party. The parties with only features are

'We assume the alignment between overlapping samples is known as a prior.
In some applications, private set intersection could be used before running
VFL to find the sample alignment.
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referred to as passive parties, and the party with both features
and labels is referred to as the active party. We denote party 1
as the active party, and other parties are passive parties.

Each party (say the k-th) adopts a representation extrac-
tor fo, (-) to extract representations of local data H* =
{HFYN | = {fo, (%)}, and sends them to the active party,
who possesses labels and a predictor. The overall training
objective of VFL is formulated as

A

m1n£ ©;D)

NZL Sos (H}, o HE) yi), (D

where © = [61;...;0k;0s], S denotes a trainable head model
on active party to conduct classification, and £ denotes the loss
function. The objective of each passive par’[y k is to find an
optimal ¢} while not sharing local data {xk} N | and parameters
0x. The objectlve of the active party is to optlmlze 0, and Os
while not sharing 6, s and true labels Y. The active party
calculates the gradients of received representations and send
{%}%[ZM,K] back to passive parties.

Notably, the passive parties still have to communicate with
the active party during the inference phase. For a new data
x;, the passive parties send the extracted representations
{Hf}ke[Q’m7 K] to the active party, and the active party
generates the prediction Sy (H, ..., HY).

)

B. Performance drop after parties quit

During the deployment phase, some passive parties (say the
k-th party) could quit unexpectedly due to a network crash or
the termination of collaboration. Without the representations
uploaded by party k, the active party can still conduct
inference by setting H¥ as a zero vector. However, there
will be a substantial performance drop. We conduct two-
party experiments on CIFAR10 to investigate this performance
drop. We follow previous works [16], [59] to split CIFAR10
images into two parts and assign them to the two parties using
ResNet18 as backbone models. The active party (party 1) and
passive party (party 2) collaborate to train the models. We
evaluate and compare the inference accuracy before and after
party 2 quits in the deployment phase. When party 2 quits,
party 1 sets H? as a zero vector and conducts inference. Zero
vectors are used because the passive party typically does not
allow the active party to utilize its representations in any way
(e.g., an average vector) after the termination of collaboration.
We set the standalone results as a baseline, where the active
party trains a model independently without ever collaborating
with the passive party.

TABLE I: Compared results before and after party 2 quits on
CIFAR10.

Accuracy(%)
Before party 2 quits 74.53
After party 2 quits 51.24
Party 1 standalone 62.84
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The results (shown in Tab. I) demonstrate that the accuracy
drops more than 20% after party 2 quits. Furthermore, the VFL
model after party 2 quits achieves even lower accuracy than the
model party 1 trained without any collaboration, undermining
the motivation of VFL.

C. IP leakage of labels in the deployment phase

The collaborative training process enables passive parties
to extract representations useful for the task of VFL, which
is learned from the labels of the active party. Even after the
collaboration ends, the passive parties will retain access to the
representation extractors. These extractors allow the passive
parties to fine-tune classifier heads with very few labeled data
and conduct inference with decent accuracy after quitting the
collaboration. Given the active party’s significant investment of
effort and money in labeling the data, these extractors retained
by the passive parties constitute costly IP leakage of these
labels. To demonstrate the extent of IP leakage by the feature
extractors of the passive parties, we follow the experimental
setup in Sec. III-B and let party 2 conduct model completion
(MC) attack [60] to train a classifier using a small number of
labeled samples. We report the test accuracy of the complete
model of party 2 created by the MC attack. For comparison,
we also assume party 2 annotates all the training data to train
a model from scratch.

TABLE II: Compared accuracy of the model on party 2 by
conducting MC attack and collecting labels to train from
scratch.

Accuracy(%)
MC attack (400 labels) 58.02
Train from scratch w. all the labels 59.73

We report the accuracy in Tab. II. By fine-tuning a classifier
with the extractor, the passive party can achieve comparable
accuracy using less than 1% of the labeled data compared
to training a model from scratch with all the labels. This
demonstrates that the label information from the active party
is leaked and embedded in the passive party’s extractor.

IV. METHOD
A. Overview of PlugVFL

Without loss of generality, we formulate our PlugVFL
framework in the two-party scenario. Suppose the passive
party (party 2) and active party (party 1) have sample pairs
{(m}7xf7yz)}ivzl drawn from a distribution p (2!, z2,y), and
the representations of party k is calculated as h* = fp, (z*).
We use h*, 2F and y here to represent random variables, while
HF, 2% and y; stand for deterministic values. Then the training
of our framework is to achieve three goals:

o Goal 1: To preserve the performance of VFL, the main
objective loss should be minimized.

o Goal 2: To preserve the performance after party 2 quits,
the objective loss without the representations of party 2
should be minimized.
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o Goal 3: To reduce the IP leakage of labels from party
2, 0 should not be able to extract representations h?
containing much information about the true label .

Formally, we have three training objectives:

Prediction performance: Helirb L (Sps (R, 1), y),
2,Us

y),

Robustness against quitting: , r%i% L (Sps (h*,0),
1,V2,Ug5

Label IP protection: r%inl(h2; Y),
2

(@)
where Sy, (h',0) is the prediction when the server does not
receive the representations h? uploaded by party 2. I(h?;y) is
the mutual information between h2 and 1y, which indicates the
information h? preserves for the label variable 3. We minimize
this mutual information to protect the active party’s labels’ IP
from being steal by the passive party.

B. Efficient alternative training to Achieve Robustness

A trivial way to improve the robustness against quitting
is to combine the training objectives £ (895 (hl, hz) ,y) and
L (Sys (h',0),y) on the server. However, the server has to
conduct training of Sp, twice, which involves computational
overhead. To improve the efficiency, we propose an alternative
training method to achieve the second goal. Specifically, for
each communication round (i.e., an iteration of training in VFL),
the active party omits the representations from the passive party
with probability p. The expectation of the training objective is
formulated as

E,£(©;D)

— (1 p) £ (Spe (' 12) . ©

y) + L (Ses (1,0 ,9),

which is a weighted sum of the first and the second goal
with weight p. Notably, a larger p sets a larger weight for
L (595 (hl, 0) ,y). Thus, p can be chosen based on the chance
that party 2 quits.

The intuition behind alternative training is to reduce the co-
adaptation between the head predictor and local extractors. The
severe performance drop after the quitting of passive parties
comes from the co-adaptation of the hidden neurons of the
head predictor Sy, and the neurons of local extractors fy,,
where a hidden neuron of the predictor Sy, only depends
on the pattern of several specific neurons of specific parties’
extractors. The dropout was proposed as an effective solution
to co-adaptation [61]. Similar to dropout, which omits some
neurons, our proposed alternative training method omits the
passive party, which solves the party-wise co-adaptation in
VFL.

C. Variational Training Objective of Label Protection

The mutual information term (i.e., goal 3) is hard to compute
in practice as the random variable h? is high-dimensional. In
addition, computing mutual information requires knowing the
distribution p(y|h?), which is difficult to obtain. To derive a
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Active party

ki = fo,(x!)
x ~f@ %

=m; O fo, (XZ)
Passive party 0 L
Fig. 2: Overview of PlugVFL: The active party conducts
alternative training to preserve the performance against the
exit of the passive party. IP of labels is protected by optimizing

L4 and Lp to reduce label information in passive parties’
representations.

Goal 1: Retain classification
accuracy

L = L(So (H, H), ¥:)

( oal 2: Alternative training
against performance drop

Goal 3: Reduce information of
labels in h?

£y =log gy (yilHF)

Lp = —log gy (Yk;|H%)

tractable estimation of the mutual information objective, we
leverage CLUB [62] to formulate a variational upper-bound:

| (h2; y)
< Lcrus (P%5y)
= Ep(n2 ) log gy (y[h?)

“)
= Epn2)p(w) log au (ylh?)
where ¢y, (y|h?) is a variational distribution with parameters v
to approximate p (y|h2). To reduce the computational overhead
of the defense, we apply the sampled vCLUB (vCLUB-S) MI

estimator in [62], which is an unbiased estimator of I,cLyp
and is formulated as

Leruss(h%;y)

1 & ) ) (5)
= 2 logay (uil HY) —log ay (| HY)] .
i=1
where &, is uniformly sampled from indices {1,...,N}. It

is notable that to guarantee the first inequality of Eq. (4),
gy (y|h*) should satisfy

KL (p (h*,y) llay (h*y)) <KL (p (h*) p (v) law (h*,y))
6)
which can be achieved by minimizing

KL (p (h*,9) llay (h*.9)):

minKL (p (h*,9) [lgs (%, 3))
w2,y [log (p (y|h*) p (h*)) —log (ay (ylh*) p (h?))]

= minEpgz,y) [log (p (y1h%)) —log (g (y1h*))] -

= mwin [Ep(

(N
Since the first term has no relation to 1, we just
need to minimize £,z ) — log (qw (y\hz)) With samples

N . , o
{(2},27,5:) },_, we can derive an unbiased estimation

N
1
mj}x N Z log gy (yz|H22) .

i=1

®)
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With Eq. (4), Eq. (5) and Eq. (8), the objective of label IP
protection can be achieved by optimizing

min I(h?;y)
02
& I%in Leruss(h%;y)
2

N

1
= min > [mfxlog qy (yilH?) —logqy (y | HY)

©))
Suppose we use g, to parameterize g, by combining Eq. (9)

and the prediction objective with a weight hyper-parameter A,

we formulate the overall optimizing objective as

min
91792,95

ﬁ: L (Sos (for (i), for (7)) . vi)

Lc

N
1
+m1nmgx)\f210gg¢ Yil fo, ( z))

=1

(10)

La
1 N
+min A - > —log gy (i, (7)) -

i=1

Lr

It is notable that our defense is not limited to any specific type
of task. For the classification problem, —L 4 and Lp are equal
to cross-entropy losses.

D. Training procedure

The overall objective has three terms. The first term is the
prediction objective. The second term is an adversarial training
objective, where an auxiliary predictor gy, is trained to capture
label information while the feature extractor fp, is trained
to extract as little label information as possible. The third
term regularizes fy, to capture the information of a randomly
selected label. For simplicity, we denote these three objective

terms as Lo, L£4 and Lp, respectively, as shown in Eq. (10).

The adversarial loss £4 and Lp are formulated from the goal
of label protection. We reorganize the overall training objective
as

0179279571/]
(11)

= argmin |(1 — A\) min Lo + Amax L4 + ALg| .
92 01795 w

We develop an algorithm of label-protecting training to
optimize Eq. (11), summarized in Alg. 1. For each batch of
data, we first optimize 6; and s based on the primary task
loss. Then we optimize the auxiliary predictor . Finally, 0o
is optimized with (1 — X\)Lo + ALA + ALkg.

Note that 0, 60s and 1) are owned by the active party, and
their optimization does not require additional information from
the passive party except the representations h?, which should
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Algorithm 1 Training algorithm of PlugVFL. < means
information is sent to the active party; <— means information
is sent to the passive party; red steps are conducted on the
passive party.

Input: Dataset {(le, x?, yl) }f\il
Output: 61;0s;.
1: Initialize 01;0s;;
2: for a batch of data { (=, 27,yi) },_p do
3 {HP}ient{fo, (47) bicss
4 L+ ﬁB‘ Z[:Bloggw (vi|H?);

1€
=P +nVyLa;

; Learning rate 7).

S:

6: Randomly generate binary mask vectors {m;} with
probability p to be zeros;

7: Lo (—

T 25(505 (fo, (1) ,mi © HZ) ,y:);
8: 01 — 91 - UVQl Ec,
9 bs < 0s—nVesLcs
10: {yk;}ie[B < randomly sample {yk;}ieB from

{yitieny- ) )
11 ERHW%—loggw (ynr | H?):
1€
12: {VHQE}LEEBF
{VHQ [( NLc + MLa + LR)]}ies:
13: VQ,ﬁ — “B| ZVHZEVQZHQ
1€B
14: Oy < 05 — I/V()HAC,

15: end for

be uploaded to the active party even without defense. For the
passive party, the training procedure of local extractor #5 does
not change, making our defense concealed from the passive

party.
E. Theoretical analysis

We also derive some theoretical results of the label IP
protection. Let g, parameterize g, in Eq. 5. Suppose the
passive party optimizes an auxiliary model f™(y|h?) to
estimate p(y|h?). For any f™, we have:

Zlogp yi) + e,

N Zlogf (yil H7) (12)

where

€ = Lycrusy,, (h*;y) + KL(p(y[h?)[| gy (y|h*))- (13)

Notably, this theorem does not set any constraints or
assumptions on the type of label. Specifically, if the task of
collaborative inference is classification, we have the following
results:

)7 yz] > CErandom — €, (14)

1 N
v O CE[/M(H

1=1
where CE denotes the cross-entropy loss, CE,qndom 1s the
cross-entropy loss of random guessing. This theoretical analysis
results demonstrate that by applying our algorithm, the passive
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party cannot solely infer the collaborative task results with a
high performance, which prevents the label IP leakage from
the passive party. The proof can be found in Appendix A.

V. EXPERIMENTS

We evaluate our proposed PlugVFL on multiple datasets. We
focuse on two-party scenarios following the VFL literature [2],
[16], [17], [28], [56].

Baselines. To thoroughly analyze PlugVFL, we first evaluate
PlugVFL against performance drop and label leakage separately
and compare with the baselines achieving the same goal,
respectively. To our knowledge, PlugVFL is the first approach
to mitigate the performance drop after the passive party
quits in VFL. But we still compare with a baseline, where
the active party trains an additional head model without
the quitting party to make predictions if the passive party
quits, which we call Multi-head training. For defense against
label leakage, we evaluate PlugVFL against two attacks: (1)
Passive Model Completion (PMC) [56] attack assumes that
the passive party has access to an auxiliary labeled dataset.
The passive party utilizes this auxiliary dataset to fine-tune
a classifier that can be applied to its local feature extractor.
(2) Active Model Completion (AMC) [56] attack is included
as an adaptive attack method when the passive party is aware
of our method. The passive party conducts AMC to trick the
federated model to rely more on its feature extractor so as to
increase its expressiveness. The passive party conducts AMC
attack by actively adapting its local training configurations. We
compare PlugVFL with four existing defense baselines: (1)
Noisy Gradient (NG) [60] is proven effective against privacy
leakage in FL by adding Laplacian noise to gradients. (2)
Gradient Compression (GC) [60] prunes gradients that are
below a threshold magnitude, such that only a part of gradients
are sent to the passive party. (3) Privacy-preserving Deep
Learning (PPDL) [63] is a comprehensive privacy-enhancing
method including three defense strategies: differential privacy,
gradient compression, and random selection. (4) DiscreteSGD
(DSGD) [60] conducts quantization to the gradients sent to
the passive party such that the discrete gradients are used to
update the adversarial party’s extractor.

Datasets. We evaluate PlutVFL on CIFAR10 [64] and
CIFARI100 [64]. We follow [2], [16], [17], [59] to split images
into halves.

Hyperparameter configurations. For both CIFAR10 and
CIFAR100, we use ResNetl18 as backbone models with batch
size 32. We apply SGD optimizer with learning rate 0.01. We
apply a 3-layer MLP to parameterize g, for PlugVFL. For NG
defense, we apply Laplacian noise with mean of zero and scale
between 0.0001-0.01. For GC baseline, we set the compression
rate from 90% to 100%. For PPDL, we set the Laplacian noise
with scale of 0.0001-0.01, 7 = 0.001 and 6 between 0 and
0.01. For DSGD, we set the number of gradient value’s levels
from 1 to 2 and added Laplacian noise with the same scale
as PPDL. To simulate the realistic settings in that the passive
party uses different model architectures to conduct MC attacks,
we apply different model architectures (MLP & MLP_sim) for
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MC attacks. MLP_sim has one FC layer. MLP has three FC
layers with a hidden layer of size 512 x 256. The passive party
has 40 and 400 labeled samples to conduct MC attacks for
CIFAR10 and CIFAR100, respectively.

Evaluation metrics. (1) Utility metric (Model accuracy): We
use the test data accuracy of the classifier on the active party
to measure the performance. (2) Robustness metric (Attack
accuracy): We use the test accuracy of the passive party’s
model after MC attack to evaluate the effectiveness of our IP
protecting method. The lower the attack accuracy, the higher
the robustness against IP leakage.

64
/&\ I i e B i By
St AT
2z N\,
560 *
> |
258
8 e PlugVFL |
8 56 -| ® Vanilla VFL I
N A Multi-head training| |
8 54|
2 .

52 1 1 1 1 1 1

69 70 71 72 73 74 75 76

Acc before party 2 quits(%)T

Fig. 3: Results of Party-wise Dropout on CIFARI10. The black
dashed line denotes the accuracy of the model that party 1
trains independently.

TABLE III: Results of Party-wise Dropout on CIFAR100.

Accuracy before Accuracy after

party 2 quits(%) | party 2 quits(%)
p=20 44.95 26.65
p = 0.05 44.58 32.01
p=0.1 44.29 32.03
p=0.3 42.11 33.05
p=0.5 40.29 33.85
Standalone N/A 34.02
Multi-head training 39.17 32.72

A. Results of Performance Preservation against Unexpected
Exit

To evaluate the effectiveness of the alternative training
against performance drop, we first conduct experiments by
setting \ as 0 in Eq. (11). We set p from 0 to 0.5 to simulate the
settings that the passive party has different levels of reliability.
We evaluate the trade-off between the accuracy before and after
the passive party quits in the deployment phase. The results of
CIFARI10 are shown in Fig. 3, and the results of CIFAR100
are shown in Tab. III. The upper bound of the test accuracy
after party 2 quits is the accuracy of the model that party 1
trains independently (standalone). For CIFAR10, PlugVFL can
improve the accuracy after party 2 quits by more than 7%
with nearly no accuracy drop before party 2 quits. By applying
alternative training, the active party can achieve nearly the
same accuracy as retraining a model locally after the passive
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party quits by sacrificing less than 1.5% accuracy before the
passive party quits. Multi-head training can also mitigate the
accuracy drop after party 2 quits. However, it cannot achieve
a better trade-off than ours since it introduces computational
overhead increasing exponentially with K.

For CIFAR100, PlugVFL improves the accuracy after party
2 quits by more than 5.5% with less than 0.5% accuracy drop
before party 2 quits. It is shown that applying alternative train-
ing by just setting a relatively small p value can significantly
improve the robustness of VFL against unexpected quitting,
demonstrating the effectiveness of PlugVFL in solving the
problem of party-wise co-adaptation.

A naive solution for mitigating the accuracy drop is to fine-
tune the head model after a passive party quits. However, this
process is time-consuming, and the service provider cannot
afford to shut down the service while fine-tuning. Therefore,
achieving a decent accuracy before fine-tuning is crucial.

B. Results of Defense against Label Leakage

To evaluate the effectiveness of PlugVFL against label IP
leakage, we conduct experiments setting p as 0 in alternative
training. We evaluate PlugVFL on two datasets against two
attack methods. We set different defense levels for our methods
(i.e., different A\ values in Eq. (11)) and baselines to show the
trade-off between the model accuracy and attack accuracy. The
defense results against PMC and AMC attacks are shown in
Fig. 4 and Fig. 5, respectively. To evaluate the effectiveness
of our defense in extreme cases, we also conduct experiments
that the passive party has the whole labeled dataset to perform
MC attacks, of which the results are shown in sub-figures (e)
and (f) of Fig. 4 and Fig. 5.

For defense against PMC on CIFAR10, our PlugVFL can
achieve 10% attack accuracy (equal to random guess) by
sacrificing less than 2% model accuracy, while the other
defenses drop model accuracy by more than 12% to achieve
the same defense performance. Similarly, our PlugVFL can
achieve 1% attack accuracy on CIFAR100 while maintaining
a model accuracy drop of less than 3%. In contrast, the other
defenses drop model accuracy by more than 9% to achieve
the same attack accuracy. Even if the passive party conducts
attacks using the whole labeled training dataset, PlugVFL can
reduce attack accuracy to random guess with less than 3%
model accuracy drop.

Our method achieves similar results against AMC. PlugVFL
can achieve high defense performance of an attack accuracy
rate of random guess with nearly no model accuracy drop.
Notably, the other baselines improve the attack accuracy of
AMC in some cases (Fig. 5.(a) and (c)). The reason is that,
by applying AMC, the model updating of the passive party is
adaptive to the defense methods, making the global classifier
rely more on the passive party’s feature extractor.

Notably, the baselines achieve low attack accuracy only when
the test accuracy degrades to nearly independent training level,
that is, baselines can only achieve strong defense performance
by severely limiting the expressiveness of the passive party’s
feature extractor. Our method can achieve a better trade-off
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Fig. 4: Results of model accuracy v.s. attack accuracy on
CIFAR10 and CIFAR100 against PMC attack. The black dashed
line denotes the accuracy of the model that party 1 trains
independently.

between the model utility and the defense performance because
PlugVFL only reduces the information of the true labels in the
representations extracted by the passive party’s feature extractor,
while the general information of the data is preserved in the
passive party’s representations.

C. Results of the Integrated Framework

We evaluate PlugVFL against performance drop and label
leakage simultaneously under PMC-CIFAR10-whole and PMC-
CIFAR100-whole settings. The passive party quits in the
deployment phase and tries to conduct a model completion
attack using the labeled dataset. We set p = 0.05 and A
from O to 1 for PlugVFL. The results in Fig. 6 show that
by applying alternative training, the active party achieves 5%
higher accuracy than without alternative training if the passive
party quits. Further, we prevent the passive party from achieving
an attack accuracy higher than random guess levels using its
feature extractor by sacrificing less than 3% model accuracy
for both datasets. Thus, our proposed PlugVFL can improve
the robustness of VFL against unexpected quitting and protect
the active party’s label IP effectively.

Authorized licensed use limited to: Duke University. Downloaded on July 18,2025 at 00:25:28 UTC from IEEE Xplore. Restrictions apply.



----- NG=-=PPDL
35
2 | 212
K30 F =
<! <ot
Eost ! g U
g ! : (!
S0 sl
g ! g 4
ERRE | 8N
Q Q -
Swf! s
II 1 1 1 1 0 I 1 1 1 1 1
63 66 69 72 75 34 36 38 40 42 44
Test accuracy(%) T Test accuracy(%) T
(a) AMC-CIFAR10-40-MLP_sim (b) AMC-CIFAR100-400-MLP_sim
35
2 |1 =127
X 30 F =
= ! =10 H
Eost ! g .
= 1 s 8 Il
§20 1 g6h
e I ERAL
8 g 4
RSN | = ]
o O 2t
Siof! = !
L I I I I o L I I I L I
63 66 69 72 75 34 36 38 40 42 44
Test accuracy(%)T Test accuracy(%)T
(c) AMC-CIFAR10-40-MLP (d) AMC-CIFAR10-400-MLP
—= 60 1 cesad R30I
2 RSO <
\;SO-I .'/’I ;25-'
g | g0 !
40k 1 .~ ’ N
g | ! ’/ 215 H
2230 I' ’ 2
g ! . ’ giop!
s20 01 7 7 = |
g |t / g M
10 L T 1 1 1 Ul 1 1 1 1 1
63 66 69 72 75 34 36 38 40 42 44
Test accuracy(%)T Test accuracy(%)T

(e) AMC-CIFAR0-40-whole (f) AMC-CIFAR100-whole

Fig. 5: Results of model accuracy v.s. attack accuracy on
CIFARI10 and CIFARI00 against AMC attack. The black
dashed line denotes the accuracy of the model that party 1
trains independently.

PlugVFLeee2= PlugVFL without alternative training

— —
=2 6535 2 355
60 S S
50 1602 325 2
g 5 % 4302
540 13 = ~
430 10 g g 25
- -~ 7 c
§20 d 45 g é g
8 10 t I 205 5 0 1 1 1 20 =
= 70 72 74 76 S = 40 42 44 3
Acc before party 2 quits(%) T < Acc before party 2 quits(%) T <

(a) PMC-CIFAR10-whole (b) PMC-CIFAR100-whole

Fig. 6: The results of PlugVFL against performance drop and
label IP leakage simultaneously.

D. Objective Analysis of PlugVFL

The training objective Eq. (11) of PlugVFL consists of 3
terms: Lo, L4 and Li. Lo maintains the model utility. £ 4
is the adversarial objective to reduce the information of labels
in the passive party’s representations. L is also derived from
the goal of mutual information reduction, but it is non-trivial
to describe its functionality. To analyze the effect of Lg, we
conduct experiments that train with and without the objective
L under the setting PMC-CIFAR10-whole. The results are
shown in Fig. 7. Notably, L does not influence the model
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accuracy, but the defense performances differ. It is shown
that without Lg, the attack accuracy can also degrade to 10%
in some communication rounds, but the degradation is much
slower than training with Lg. In addition, applying L can
stabilize the defense’s performance. Thus, Lz can boost and
stabilize the performance of PlugVFL.
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Fig. 7: Defense results on model accuracy and attack accuracy
with and without £ on CIFAR10 against PMC attack.

VI. CONCLUSION

We have proposed a framework, called PlugVFL, that
maintains model performance after the passive party quits VFL
in the deployment phase and mitigates the active party’s label IP
leakage simultaneously. The experimental results have shown
that PlugVFL can improve the robustness against unexpected
quitting and effectively protect the active party’s IP. In this
paper, we have evaluated the two-party scenario, but our theory
and algorithm are naturally extendable to settings with more
parties.
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APPENDIX

Proof 1: According to Corollary 3.3 in [62], we have:

I(h*y) < Lewus(h?;y) + KL(p(yl2)[|hg(y]2)).  (15)

Then we have

I(h*;y) = Epgne,y) logp (y|h?) — Epy) logp (y) <€, (16)

where ¢ = Lcpus(h?;y) + KL(p(y|h?)||hg(y|h?)). With the
samples {x;,v;}, I(h?;y) has an unbiased estimation as:

N N
1 o1
N ;21 log p(y;|H}) — N ;:1 log p(y;) < e. (17)
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Suppose the adversary has an optimal model "™ to estimate
p(y;|H?) such that h™(y;|H?) = p(y;|H?) for any i, then

N N
1 m 1
~ Zlogh (vl H) — ~ Zlogp(yi) <e (18
i=1 i=1
For classification tasks, we have

N
% ZCE [hm(HE)a yz} > CErandom — €. (19)
i=1
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