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Abstract—In federated learning systems, the unexpected quit-
ting of participants is inevitable. Such quittings generally do not
incur serious consequences in horizontal federated learning (HFL),
but they do damage to vertical federated learning (VFL), which
has been underexplored in previous research. In this paper, we
show that there are two major vulnerabilities when passive parties
unexpectedly quit in the deployment phase of VFL — severe
performance degradation and intellectual property (IP) leakage of
the active party’s labels. To solve these issues, we design PlugVFL
to improve the VFL model’s robustness against the unexpected
exit of passive parties and protect the active party’s IP in the
deployment phase simultaneously. We evaluate our framework on
multiple datasets against different inference attacks. The results
show that PlugVFL effectively maintains model performance after
the passive party quits and successfully disguises label information
from the passive party’s feature extractor, thereby mitigating IP
leakage.

Index Terms—Federated Learning, Data Privacy, IP Protection

I. INTRODUCTION

Federated learning (FL) [1]–[5] is a distributed learning

method that allows multiple parties to collaboratively train a

model without directly sharing their data, thereby preserving

their data privacy. FL was initially proposed as Horizontal

Federated Learning (HFL) to enable collaborative learning

across devices [6]. In this case, data is "horizontally" split,

where the devices share the same feature space but have

different samples. Another FL framework is Vertical Federated

Learning (VFL) [7]–[15], which focuses on scenarios where

various parties have data with different feature spaces but share

overlapping samples [16], [17]. Different from HFL, VFL is

mostly deployed in cross-silo scenarios. Suppose a service

provider, referred to as active party, owns data and labels of

its clients and wishes to train a deep learning model. The

service provider may collaborate with other parties, namely

passive parties, that possess different data features of the same

clients to boost the model’s performance. Instead of explicitly

sharing the raw data, the passive parties transmit the extracted

representations to the active party for training and inference.

Active party (Service provider)

Passive party

cat

dog

Client

Fig. 1: The passive party might quit in the deployment

phase, which would cause a substantial performance drop.

The passive party could also extract representations containing

the information of the active party’s labels using its feature

extractor, leading to IP leakage of the active party.

The collaboration of devices in HFL happens in the training

phase, and the global model is deployed on each device for

local inference in the deployment phase. In contrast, VFL

requires the parties to collaborate in both the training and

deployment phases. During the deployment phase, the active

party still requires the representations uploaded by passive

parties to conduct inference. However, in real-world scenarios,

it is possible for passive parties to quit unexpectedly at inference

time due to network crashes, system maintenance, or termi-

nation of collaborations. When unexpected quitting happens,

the service provider faces two challenges: (1) a substantial

performance drop; (2) potential intellectual property (IP)
leakage through the passive party’s feature extractor. This

paper shows that the drop in model performance caused by

the passive party’s quitting results in a model that performs

worse than one trained by the active party alone, ultimately

undermining the motivation for VFL. Furthermore, the passive

parties can retain access to their feature extractors even after

terminating the collaboration. These feature extractors are
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trained using the active party’s labels, which are valuable
IP. From these feature extractors, the passive parties can

extract representations containing the information of the active

party’s labels. Although previous studies made efforts towards

mitigating label information leakage through inference attacks

on gradients during the training phase [18], [19], the robustness

and IP protection of VFL in the deployment phase remain

under-explored.

In this paper, we design a framework named PlugVFL

to solve the two challenges simultaneously. Specifically, to

alleviate the performance drop when passive parties quit

unexpectedly, PlugVFL applies an alternative training method

that can reduce the co-adaptation of feature extractors across

parties. To prevent the IP leakage of the active party’s labels,

we propose a defense that minimizes the mutual information

(MI) between the representations of the passive party and

the true labels. We formulate the defense into an adversarial

training algorithm that jointly minimizes the variational MI

upper bound and prediction loss.

Our key contributions are summarized as follows:

• We reveal two vulnerabilities caused by the unexpected

quitting of parties in the deployment phase of VFL,

including severe performance drop and active party’s label

leakage.

• we design a VFL framework PlugVFL to preserve the

VFL model’s performance against the unexpected exit of

passive parties and protect the active party’s IP in the

deployment phase simultaneously.

• We empirically evaluate the performance of our framework

with different datasets. Our results show that PlugVFL

can improve the accuracy after the passive party’s exit by

more than 8% on CIFAR10. PlugVFL also prevents the

passive party from fine-tuning a classifier that outperforms

random guess levels even using the entire labeled dataset

with only less than 2% drop in the VFL model accuracy,

outperforming baselines significantly.

II. RELATED WORK

A. Vertical Federated Learning

Vertical federated learning (VFL) [7], [20] has been an

emerging research area since proposed. In contrast to (hor-

izontal) federated learning (HFL), VFL adopts a different

scheme for data partitioning [2], [21]. In VFL, different

parties will have various parts of the data of an overlapping

individual. There has been an amount of research devoted

to VFL. Specifically, [21] proposes a protocol involving a

trusted third party to manage the communication utilizing

homomorphic encryption, with the following works [21], [22]

on protocols design. Others have been following [21], where

[22] is working on assessing the protocols and [23], [24]

are focusing on algorithm design concerning optimization.

Additionally, VFL algorithms on traditional machine learning,

such as tree-boosting [25], gradient boosting [26], [27], random

forest [28], linear regression [29], and logistic regression [16],

[30] are also proposed. Another line of research is working

on communication efficiency [16], which decreases the com-

munication frequency by leveraging stale gradients on local

training. Besides, the assumption of overlapping individuals

in VFL among parties produces a challenge for applying VFL

in the real world, where FedMVT [31] proposes to estimate

representations and labels to alleviate the gap. Other efforts

have also been made to apply VFL in the real world. For

example, FATE [17] is an open-source platform for building

the end-to-end system.

B. IP Leakage in VFL

Intellectual Property (IP) [32]–[34] is drawing more and more

attention as the rapid growth of commercial deployment of

deep learning, especially in federated learning scenarios, whose

primary concern is privacy. IP leakage can be divided into data

IP leakages, such as deep leakage from gradients (DLG) [35],

[36], model inversion [37] and their variants [38]–[42], and

model IP leakage, such as model extraction attacks [43]–[47],

where multiple defensive methods have also been proposed to

tackle data IP leakage [48]–[51] and model IP leakage [52],

[53].

In VFL, we categorize IP stealing attacks into two types, i.e.,

feature inference [39], [42], [54], [55] and label inference [56]–

[58]. Specifically, [54] proposes general attack methods for

complex models, such as Neural Networks, by matching the

correlation between adversary features and target features,

which can be seen as a variant of model inversion [4], [37].

[42], [55] also propose variants of model inversion attack in

VFL. While all these attacks are in the inference phase, [39]

proposes a variant of DLG [35] which can perform attacks in

the training phase. For label inference, [57] proposes an attack

method and a defense method for two-party split learning

on binary classification problems, a special VFL setting.

Additionally, [56] proposes three different label inference attack

methods considering different settings in VFL: direct label

inference attack, passive label inference attack, and active label

inference attack. Defensive methods have also been proposed.

For example, [58] proposes manipulating the labels following

specific rules to defend the direct label inference attack, which

can be seen as a variant of label differential privacy (label

DP) [18], [19] in VFL. However, all these defending methods

focus on preventing data IP leakage from gradients in the

training phase. To the best of our knowledge, we are the

first to provide an analysis of label IP protection in the VFL

deployment phase.

III. PROBLEM DEFINITION AND MOTIVATION

A. Vertical Federated Learning Setting

Suppose K parties train a model. There is a dataset1 across

all parties with size N : D = {xi, yi}Ni=1. The feature vector

xi ∈ Rd is splitted among K parties {xk
i ∈ Rdk}Kk=1, where dk

is the feature dimension of party k, and the labels Y = {yi}Ni=1

are owned by one party. The parties with only features are

1We assume the alignment between overlapping samples is known as a prior.
In some applications, private set intersection could be used before running
VFL to find the sample alignment.
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referred to as passive parties, and the party with both features

and labels is referred to as the active party. We denote party 1
as the active party, and other parties are passive parties.

Each party (say the k-th) adopts a representation extrac-

tor fθk(·) to extract representations of local data Hk =
{Hk

i }Ni=1 = {fθk(xk
i )}Ni=1 and sends them to the active party,

who possesses labels and a predictor. The overall training

objective of VFL is formulated as

min
Θ

L(Θ;D) � 1

N

N∑
i=1

L (SθS
(
H1

i , ..., H
K
i

)
, yi

)
, (1)

where Θ = [θ1; ...; θK ; θS ], S denotes a trainable head model

on active party to conduct classification, and L denotes the loss

function. The objective of each passive party k is to find an

optimal θ∗k while not sharing local data {xk
i }Ni=1 and parameters

θk. The objective of the active party is to optimize θ1 and θS
while not sharing θ1, θS and true labels Y . The active party

calculates the gradients of received representations and send

{ ∂L
∂Hk }k∈[2,...,K] back to passive parties.

Notably, the passive parties still have to communicate with

the active party during the inference phase. For a new data

xi, the passive parties send the extracted representations

{Hk
i }k∈[2,...,K] to the active party, and the active party

generates the prediction SθS
(
H1

i , ..., H
K
i

)
.

B. Performance drop after parties quit

During the deployment phase, some passive parties (say the

k-th party) could quit unexpectedly due to a network crash or

the termination of collaboration. Without the representations

uploaded by party k, the active party can still conduct

inference by setting Hk
i as a zero vector. However, there

will be a substantial performance drop. We conduct two-

party experiments on CIFAR10 to investigate this performance

drop. We follow previous works [16], [59] to split CIFAR10

images into two parts and assign them to the two parties using

ResNet18 as backbone models. The active party (party 1) and

passive party (party 2) collaborate to train the models. We

evaluate and compare the inference accuracy before and after

party 2 quits in the deployment phase. When party 2 quits,

party 1 sets H2
i as a zero vector and conducts inference. Zero

vectors are used because the passive party typically does not

allow the active party to utilize its representations in any way

(e.g., an average vector) after the termination of collaboration.

We set the standalone results as a baseline, where the active

party trains a model independently without ever collaborating

with the passive party.

TABLE I: Compared results before and after party 2 quits on

CIFAR10.

Accuracy(%)
Before party 2 quits 74.53
After party 2 quits 51.24
Party 1 standalone 62.84

The results (shown in Tab. I) demonstrate that the accuracy

drops more than 20% after party 2 quits. Furthermore, the VFL

model after party 2 quits achieves even lower accuracy than the

model party 1 trained without any collaboration, undermining

the motivation of VFL.

C. IP leakage of labels in the deployment phase

The collaborative training process enables passive parties

to extract representations useful for the task of VFL, which

is learned from the labels of the active party. Even after the

collaboration ends, the passive parties will retain access to the

representation extractors. These extractors allow the passive

parties to fine-tune classifier heads with very few labeled data

and conduct inference with decent accuracy after quitting the

collaboration. Given the active party’s significant investment of

effort and money in labeling the data, these extractors retained

by the passive parties constitute costly IP leakage of these

labels. To demonstrate the extent of IP leakage by the feature

extractors of the passive parties, we follow the experimental

setup in Sec. III-B and let party 2 conduct model completion

(MC) attack [60] to train a classifier using a small number of

labeled samples. We report the test accuracy of the complete

model of party 2 created by the MC attack. For comparison,

we also assume party 2 annotates all the training data to train

a model from scratch.

TABLE II: Compared accuracy of the model on party 2 by

conducting MC attack and collecting labels to train from

scratch.

Accuracy(%)
MC attack (400 labels) 58.02
Train from scratch w. all the labels 59.73

We report the accuracy in Tab. II. By fine-tuning a classifier

with the extractor, the passive party can achieve comparable

accuracy using less than 1% of the labeled data compared

to training a model from scratch with all the labels. This

demonstrates that the label information from the active party

is leaked and embedded in the passive party’s extractor.

IV. METHOD

A. Overview of PlugVFL

Without loss of generality, we formulate our PlugVFL

framework in the two-party scenario. Suppose the passive

party (party 2) and active party (party 1) have sample pairs{(
x1
i , x

2
i , yi

)}N

i=1
drawn from a distribution p

(
x1, x2, y

)
, and

the representations of party k is calculated as hk = fθk(x
k).

We use hk, xk and y here to represent random variables, while

Hk
i , xk

i and yi stand for deterministic values. Then the training

of our framework is to achieve three goals:

• Goal 1: To preserve the performance of VFL, the main

objective loss should be minimized.

• Goal 2: To preserve the performance after party 2 quits,

the objective loss without the representations of party 2

should be minimized.
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• Goal 3: To reduce the IP leakage of labels from party

2, θ2 should not be able to extract representations h2

containing much information about the true label y.

Formally, we have three training objectives:

Prediction performance: min
θ1,θ2,θS

L (SθS
(
h1, h2

)
, y
)
,

Robustness against quitting: min
θ1,θ2,θS

L (SθS
(
h1, 0

)
, y
)
,

Label IP protection:min
θ2

I(h2; y),

(2)

where SθS
(
h1, 0

)
is the prediction when the server does not

receive the representations h2 uploaded by party 2. I(h2; y) is

the mutual information between h2 and y, which indicates the

information h2 preserves for the label variable y. We minimize

this mutual information to protect the active party’s labels’ IP

from being steal by the passive party.

B. Efficient alternative training to Achieve Robustness

A trivial way to improve the robustness against quitting

is to combine the training objectives L (SθS
(
h1, h2

)
, y
)

and

L (SθS
(
h1, 0

)
, y
)

on the server. However, the server has to

conduct training of SθS twice, which involves computational

overhead. To improve the efficiency, we propose an alternative

training method to achieve the second goal. Specifically, for

each communication round (i.e., an iteration of training in VFL),

the active party omits the representations from the passive party

with probability p. The expectation of the training objective is

formulated as

EpL(Θ;D)

= (1− p)L (SθS
(
h1, h2

)
, y
)
+ pL (SθS

(
h1, 0

)
, y
)
,

(3)

which is a weighted sum of the first and the second goal

with weight p. Notably, a larger p sets a larger weight for

L (SθS
(
h1, 0

)
, y
)
. Thus, p can be chosen based on the chance

that party 2 quits.

The intuition behind alternative training is to reduce the co-

adaptation between the head predictor and local extractors. The

severe performance drop after the quitting of passive parties

comes from the co-adaptation of the hidden neurons of the

head predictor SθS and the neurons of local extractors fθk ,

where a hidden neuron of the predictor SθS only depends

on the pattern of several specific neurons of specific parties’

extractors. The dropout was proposed as an effective solution

to co-adaptation [61]. Similar to dropout, which omits some

neurons, our proposed alternative training method omits the

passive party, which solves the party-wise co-adaptation in

VFL.

C. Variational Training Objective of Label Protection

The mutual information term (i.e., goal 3) is hard to compute

in practice as the random variable h2 is high-dimensional. In

addition, computing mutual information requires knowing the

distribution p(y|h2), which is difficult to obtain. To derive a

= , ,=

= |= |

Active party

Passive party

=
Goal 1: Retain classification 
accuracy

Goal 3: Reduce information of 
labels in 

Goal 2: Alternative training 
against performance drop

Fig. 2: Overview of PlugVFL: The active party conducts

alternative training to preserve the performance against the

exit of the passive party. IP of labels is protected by optimizing

LA and LR to reduce label information in passive parties’

representations.

tractable estimation of the mutual information objective, we

leverage CLUB [62] to formulate a variational upper-bound:

I
(
h2; y

)
≤ IvCLUB

(
h2; y

)
:= Ep(h2,y) log qψ

(
y|h2

)− Ep(h2)p(y) log qψ
(
y|h2

)
,

(4)

where qψ
(
y|h2

)
is a variational distribution with parameters ψ

to approximate p
(
y|h2

)
. To reduce the computational overhead

of the defense, we apply the sampled vCLUB (vCLUB-S) MI

estimator in [62], which is an unbiased estimator of IvCLUB

and is formulated as

ÎvCLUB-S(h
2; y)

=
1

N

N∑
i=1

[
log qψ

(
yi|H2

i

)− log qψ
(
yk′

i
|H2

i

)]
,

(5)

where k′i is uniformly sampled from indices {1, ..., N}. It

is notable that to guarantee the first inequality of Eq. (4),

qψ
(
y|h2

)
should satisfy

KL
(
p
(
h2, y

) ||qψ (
h2, y

)) ≤ KL
(
p
(
h2

)
p (y) ||qψ

(
h2, y

))
,

(6)

which can be achieved by minimizing

KL
(
p
(
h2, y

) ||qψ (
h2, y

))
:

min
ψ

KL
(
p
(
h2, y

) ||qψ (
h2, y

))
= min

ψ
Ep(h2,y)

[
log

(
p
(
y|h2

)
p
(
h2

))− log
(
qψ

(
y|h2

)
p
(
h2

))]
= min

ψ
Ep(h2,y)

[
log

(
p
(
y|h2

))− log
(
qψ

(
y|h2

))]
.

(7)

Since the first term has no relation to ψ, we just

need to minimize Ep(h2,y) − log
(
qψ

(
y|h2

))
. With samples{(

x1
i , x

2
i , yi

)}N

i=0
, we can derive an unbiased estimation

max
ψ

1

N

N∑
i=1

log qψ
(
yi|H2

i

)
. (8)
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With Eq. (4), Eq. (5) and Eq. (8), the objective of label IP

protection can be achieved by optimizing

min
θ2

I(h2; y)

⇔ min
θ2

ÎvCLUB-S(h
2; y)

= min
θ2

1

N

N∑
i=1

[
max
ψ

log qψ
(
yi|H2

i

)− log qψ
(
yk′

i
|H2

i

)]
.

(9)

Suppose we use gψ to parameterize qψ , by combining Eq. (9)

and the prediction objective with a weight hyper-parameter λ,

we formulate the overall optimizing objective as

min
θ1,θ2,θS

(1− λ)
1

N

N∑
i=1

L (SθS
(
fθ1

(
x1
i

)
, fθ2

(
x2
i

))
, yi

)
︸ ︷︷ ︸

LC

+min
θ2

max
ψ

λ
1

N

N∑
i=1

log gψ
(
yi|fθ2

(
x2
i

))
︸ ︷︷ ︸

LA

+min
θ2

λ
1

N

N∑
i=1

− log gψ
(
yk′

i
|fθ2

(
x2
i

))
︸ ︷︷ ︸

LR

.

(10)

It is notable that our defense is not limited to any specific type

of task. For the classification problem, −LA and LR are equal

to cross-entropy losses.

D. Training procedure

The overall objective has three terms. The first term is the

prediction objective. The second term is an adversarial training

objective, where an auxiliary predictor gψ is trained to capture

label information while the feature extractor fθ2 is trained

to extract as little label information as possible. The third

term regularizes fθ2 to capture the information of a randomly

selected label. For simplicity, we denote these three objective

terms as LC , LA and LR, respectively, as shown in Eq. (10).

The adversarial loss LA and LR are formulated from the goal

of label protection. We reorganize the overall training objective

as

θ1, θ2, θS , ψ

= argmin
θ2

[
(1− λ) min

θ1,θS
LC + λmax

ψ
LA + λLR

]
.

(11)

We develop an algorithm of label-protecting training to

optimize Eq. (11), summarized in Alg. 1. For each batch of

data, we first optimize θ1 and θS based on the primary task

loss. Then we optimize the auxiliary predictor ψ. Finally, θ2
is optimized with (1− λ)LC + λLA + λLR.

Note that θ1, θS and ψ are owned by the active party, and

their optimization does not require additional information from

the passive party except the representations h2, which should

Algorithm 1 Training algorithm of PlugVFL. ← means

information is sent to the active party; ← means information

is sent to the passive party; red steps are conducted on the

passive party.

Input: Dataset
{(

x1
i , x

2
i , yi

)}N

i=1
; Learning rate η.

Output: θ1; θS ;ψ.

1: Initialize θ1; θS ;ψ;

2: for a batch of data
{(

x1
i , x

2
i , yi

)}
i∈B

do
3: {H2

i }i∈B←{fθ2
(
x2
i

)}i∈B;

4: LA ← 1
|B|

∑
i∈B

log gψ
(
yi|H2

i

)
;

5: ψ ← ψ + η∇ψLA;

6: Randomly generate binary mask vectors {mi} with

probability p to be zeros;

7: LC ←
1
|B|

∑
i∈B

L (SθS
(
fθ1

(
x1
i

)
,mi �H2

i

)
, yi

)
;

8: θ1 ← θ1 − η∇θ1LC ;

9: θS ← θS − η∇θSLC ;

10: {yk′
i
}i∈B ← randomly sample {yk′

i
}i∈B from

{yi}i∈[N ].

11: LR ← 1
|B|

∑
i∈B

− log gψ
(
yk′

i
|H2

i

)
;

12: {∇H2
i
L}i∈B←

{∇H2
i
[(1− λ)LC + λ(LA + LR)]}i∈B;

13: ∇θ2L ← 1
|B|

∑
i∈B

∇H2
i
L∇θ2H

2
i

14: θ2 ← θ2 − η∇θ2L;

15: end for

be uploaded to the active party even without defense. For the

passive party, the training procedure of local extractor θ2 does

not change, making our defense concealed from the passive

party.

E. Theoretical analysis

We also derive some theoretical results of the label IP

protection. Let gψ parameterize qψ in Eq. 5. Suppose the

passive party optimizes an auxiliary model fm(y|h2) to

estimate p(y|h2). For any fm, we have:

1

N

N∑

i=1

log fm(yi|H2
i ) <

1

N

N∑

i=1

log p(yi) + ε, (12)

where

ε = IvCLUBgψ
(h2; y) + KL(p(y|h2)||gψ(y|h2)). (13)

Notably, this theorem does not set any constraints or

assumptions on the type of label. Specifically, if the task of

collaborative inference is classification, we have the following

results:

1

N

N∑

i=1

CE
[
fm(H2

i ), yi
]
> CErandom − ε, (14)

where CE denotes the cross-entropy loss, CErandom is the

cross-entropy loss of random guessing. This theoretical analysis

results demonstrate that by applying our algorithm, the passive
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party cannot solely infer the collaborative task results with a

high performance, which prevents the label IP leakage from

the passive party. The proof can be found in Appendix A.

V. EXPERIMENTS

We evaluate our proposed PlugVFL on multiple datasets. We

focuse on two-party scenarios following the VFL literature [2],

[16], [17], [28], [56].

Baselines. To thoroughly analyze PlugVFL, we first evaluate

PlugVFL against performance drop and label leakage separately

and compare with the baselines achieving the same goal,

respectively. To our knowledge, PlugVFL is the first approach

to mitigate the performance drop after the passive party

quits in VFL. But we still compare with a baseline, where

the active party trains an additional head model without

the quitting party to make predictions if the passive party

quits, which we call Multi-head training. For defense against

label leakage, we evaluate PlugVFL against two attacks: (1)

Passive Model Completion (PMC) [56] attack assumes that

the passive party has access to an auxiliary labeled dataset.

The passive party utilizes this auxiliary dataset to fine-tune

a classifier that can be applied to its local feature extractor.

(2) Active Model Completion (AMC) [56] attack is included

as an adaptive attack method when the passive party is aware

of our method. The passive party conducts AMC to trick the

federated model to rely more on its feature extractor so as to

increase its expressiveness. The passive party conducts AMC

attack by actively adapting its local training configurations. We

compare PlugVFL with four existing defense baselines: (1)

Noisy Gradient (NG) [60] is proven effective against privacy

leakage in FL by adding Laplacian noise to gradients. (2)

Gradient Compression (GC) [60] prunes gradients that are

below a threshold magnitude, such that only a part of gradients

are sent to the passive party. (3) Privacy-preserving Deep
Learning (PPDL) [63] is a comprehensive privacy-enhancing

method including three defense strategies: differential privacy,

gradient compression, and random selection. (4) DiscreteSGD
(DSGD) [60] conducts quantization to the gradients sent to

the passive party such that the discrete gradients are used to

update the adversarial party’s extractor.

Datasets. We evaluate PlutVFL on CIFAR10 [64] and

CIFAR100 [64]. We follow [2], [16], [17], [59] to split images

into halves.

Hyperparameter configurations. For both CIFAR10 and

CIFAR100, we use ResNet18 as backbone models with batch

size 32. We apply SGD optimizer with learning rate 0.01. We

apply a 3-layer MLP to parameterize gψ for PlugVFL. For NG

defense, we apply Laplacian noise with mean of zero and scale

between 0.0001-0.01. For GC baseline, we set the compression

rate from 90% to 100%. For PPDL, we set the Laplacian noise

with scale of 0.0001-0.01, τ = 0.001 and θ between 0 and

0.01. For DSGD, we set the number of gradient value’s levels

from 1 to 2 and added Laplacian noise with the same scale

as PPDL. To simulate the realistic settings in that the passive

party uses different model architectures to conduct MC attacks,

we apply different model architectures (MLP & MLP_sim) for

MC attacks. MLP_sim has one FC layer. MLP has three FC

layers with a hidden layer of size 512×256. The passive party

has 40 and 400 labeled samples to conduct MC attacks for

CIFAR10 and CIFAR100, respectively.

Evaluation metrics. (1) Utility metric (Model accuracy): We

use the test data accuracy of the classifier on the active party

to measure the performance. (2) Robustness metric (Attack
accuracy): We use the test accuracy of the passive party’s

model after MC attack to evaluate the effectiveness of our IP

protecting method. The lower the attack accuracy, the higher

the robustness against IP leakage.
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Fig. 3: Results of Party-wise Dropout on CIFAR10. The black

dashed line denotes the accuracy of the model that party 1

trains independently.

TABLE III: Results of Party-wise Dropout on CIFAR100.

Accuracy before
party 2 quits(%)

Accuracy after
party 2 quits(%)

p = 0 44.95 26.65
p = 0.05 44.58 32.01
p = 0.1 44.29 32.03
p = 0.3 42.11 33.05
p = 0.5 40.29 33.85
Standalone N/A 34.02
Multi-head training 39.17 32.72

A. Results of Performance Preservation against Unexpected
Exit

To evaluate the effectiveness of the alternative training

against performance drop, we first conduct experiments by

setting λ as 0 in Eq. (11). We set p from 0 to 0.5 to simulate the

settings that the passive party has different levels of reliability.

We evaluate the trade-off between the accuracy before and after

the passive party quits in the deployment phase. The results of

CIFAR10 are shown in Fig. 3, and the results of CIFAR100

are shown in Tab. III. The upper bound of the test accuracy

after party 2 quits is the accuracy of the model that party 1
trains independently (standalone). For CIFAR10, PlugVFL can

improve the accuracy after party 2 quits by more than 7%

with nearly no accuracy drop before party 2 quits. By applying

alternative training, the active party can achieve nearly the

same accuracy as retraining a model locally after the passive
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party quits by sacrificing less than 1.5% accuracy before the

passive party quits. Multi-head training can also mitigate the

accuracy drop after party 2 quits. However, it cannot achieve

a better trade-off than ours since it introduces computational

overhead increasing exponentially with K.

For CIFAR100, PlugVFL improves the accuracy after party

2 quits by more than 5.5% with less than 0.5% accuracy drop

before party 2 quits. It is shown that applying alternative train-

ing by just setting a relatively small p value can significantly

improve the robustness of VFL against unexpected quitting,

demonstrating the effectiveness of PlugVFL in solving the

problem of party-wise co-adaptation.

A naïve solution for mitigating the accuracy drop is to fine-

tune the head model after a passive party quits. However, this

process is time-consuming, and the service provider cannot

afford to shut down the service while fine-tuning. Therefore,

achieving a decent accuracy before fine-tuning is crucial.

B. Results of Defense against Label Leakage

To evaluate the effectiveness of PlugVFL against label IP

leakage, we conduct experiments setting p as 0 in alternative

training. We evaluate PlugVFL on two datasets against two

attack methods. We set different defense levels for our methods

(i.e., different λ values in Eq. (11)) and baselines to show the

trade-off between the model accuracy and attack accuracy. The

defense results against PMC and AMC attacks are shown in

Fig. 4 and Fig. 5, respectively. To evaluate the effectiveness

of our defense in extreme cases, we also conduct experiments

that the passive party has the whole labeled dataset to perform

MC attacks, of which the results are shown in sub-figures (e)

and (f) of Fig. 4 and Fig. 5.

For defense against PMC on CIFAR10, our PlugVFL can

achieve 10% attack accuracy (equal to random guess) by

sacrificing less than 2% model accuracy, while the other

defenses drop model accuracy by more than 12% to achieve

the same defense performance. Similarly, our PlugVFL can

achieve 1% attack accuracy on CIFAR100 while maintaining

a model accuracy drop of less than 3%. In contrast, the other

defenses drop model accuracy by more than 9% to achieve

the same attack accuracy. Even if the passive party conducts

attacks using the whole labeled training dataset, PlugVFL can

reduce attack accuracy to random guess with less than 3%

model accuracy drop.

Our method achieves similar results against AMC. PlugVFL

can achieve high defense performance of an attack accuracy

rate of random guess with nearly no model accuracy drop.

Notably, the other baselines improve the attack accuracy of

AMC in some cases (Fig. 5.(a) and (c)). The reason is that,

by applying AMC, the model updating of the passive party is

adaptive to the defense methods, making the global classifier

rely more on the passive party’s feature extractor.

Notably, the baselines achieve low attack accuracy only when

the test accuracy degrades to nearly independent training level,

that is, baselines can only achieve strong defense performance

by severely limiting the expressiveness of the passive party’s

feature extractor. Our method can achieve a better trade-off
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Fig. 4: Results of model accuracy v.s. attack accuracy on

CIFAR10 and CIFAR100 against PMC attack. The black dashed

line denotes the accuracy of the model that party 1 trains

independently.

between the model utility and the defense performance because

PlugVFL only reduces the information of the true labels in the

representations extracted by the passive party’s feature extractor,

while the general information of the data is preserved in the

passive party’s representations.

C. Results of the Integrated Framework

We evaluate PlugVFL against performance drop and label

leakage simultaneously under PMC-CIFAR10-whole and PMC-

CIFAR100-whole settings. The passive party quits in the

deployment phase and tries to conduct a model completion

attack using the labeled dataset. We set p = 0.05 and λ
from 0 to 1 for PlugVFL. The results in Fig. 6 show that

by applying alternative training, the active party achieves 5%

higher accuracy than without alternative training if the passive

party quits. Further, we prevent the passive party from achieving

an attack accuracy higher than random guess levels using its

feature extractor by sacrificing less than 3% model accuracy

for both datasets. Thus, our proposed PlugVFL can improve

the robustness of VFL against unexpected quitting and protect

the active party’s label IP effectively.
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Fig. 5: Results of model accuracy v.s. attack accuracy on

CIFAR10 and CIFAR100 against AMC attack. The black

dashed line denotes the accuracy of the model that party 1

trains independently.
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Fig. 6: The results of PlugVFL against performance drop and

label IP leakage simultaneously.

D. Objective Analysis of PlugVFL

The training objective Eq. (11) of PlugVFL consists of 3

terms: LC , LA and LR. LC maintains the model utility. LA

is the adversarial objective to reduce the information of labels

in the passive party’s representations. LR is also derived from

the goal of mutual information reduction, but it is non-trivial

to describe its functionality. To analyze the effect of LR, we

conduct experiments that train with and without the objective

LR under the setting PMC-CIFAR10-whole. The results are

shown in Fig. 7. Notably, LR does not influence the model

accuracy, but the defense performances differ. It is shown

that without LR, the attack accuracy can also degrade to 10%

in some communication rounds, but the degradation is much

slower than training with LR. In addition, applying LR can

stabilize the defense’s performance. Thus, LR can boost and

stabilize the performance of PlugVFL.
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Fig. 7: Defense results on model accuracy and attack accuracy

with and without LR on CIFAR10 against PMC attack.

VI. CONCLUSION

We have proposed a framework, called PlugVFL, that

maintains model performance after the passive party quits VFL

in the deployment phase and mitigates the active party’s label IP

leakage simultaneously. The experimental results have shown

that PlugVFL can improve the robustness against unexpected

quitting and effectively protect the active party’s IP. In this

paper, we have evaluated the two-party scenario, but our theory

and algorithm are naturally extendable to settings with more

parties.
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APPENDIX

Proof 1: According to Corollary 3.3 in [62], we have:

I(h2; y) < IvCLUB(h
2; y) + KL(p(y|z)||hφ(y|z)). (15)

Then we have

I(h2; y) = Ep(h2,y) log p
(
y|h2

)− Ep(y) log p (y) < ε, (16)

where ε = IvCLUB(h
2; y) + KL(p(y|h2)||hφ(y|h2)). With the

samples {xi, yi}, I(h2; y) has an unbiased estimation as:

1

N

N∑
i=1

log p(yi|H2
i )−

1

N

N∑
i=1

log p(yi) < ε. (17)

Suppose the adversary has an optimal model hm to estimate

p(yi|H2
i ) such that hm(yi|H2

i ) = p(yi|H2
i ) for any i, then

1

N

N∑
i=1

log hm(yi|H2
i )−

1

N

N∑
i=1

log p(yi) < ε. (18)

For classification tasks, we have

1

N

N∑
i=1

CE
[
hm(H2

i ), yi
]
> CErandom − ε. (19)
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