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Abstract

Federated learning (FL) offers a privacy-preserving way to

train models across decentralized data. However, fine-tuning

pre-trained language models (PLMs) in FL is challenging due

to restricted model parameter access, high computational de-

mands, and communication overheads. Our method treats

large languagemodels (LLMs) as black-box inferenceAPIs, op-

timizing prompts with gradient-free methods. This approach,

FedBPT, reduces exchanged variables, boosts communication

efficiency, and minimizes computational and memory costs.

We demonstrate the practical implementation of FedBPT on

resource-limited edge devices, showcasing its ability to effi-

ciently achieve collaborative on-device LLM fine-tuning.
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1 Introduction

Large LanguageModels (LLMs) [1, 3, 4, 8, 9, 11, 14, 15] have

revolutionized Natural Language Processing (NLP) by achiev-

ing high accuracy across tasks. Typically pre-trained on di-

verse datasets, they are fine-tuned with task-specific data for

real-world applications[12]. However, fine-tuning often in-

volves sensitive user data, raising critical privacy and security

concerns[7, 13]. Federated Learning (FL) enables decentral-

ized, collaborative LLM fine-tuning while preserving data

privacy[2, 6].However,deployingFLforLLMsonedgedevices

faces key challenges, such as limited access to model param-

eters, high computational demands on local clients, and ex-

cessive communication overhead, hindering its practical use.

To tackle these challenges,weproposedFedBPT (Federated

Black-boxPromptTuning) [10], a frameworkthatusesgradient-

free optimization to train prompts, drastically lowering re-

source demands on edge devices. FedBPT enhances privacy

while reducing communication and computational overhead,

enabling efficient LLM adaptation across distributed devices.

This demo paper builds upon our original FedBPT framework,

focusing on the real-world implementation of a system based

on the FedBPT algorithm across various edge devices.

To the best of our knowledge, we are the first to implement

on-device finetuning of LLMs at the scale of Llama2-7B on

a mobile phone and Raspberry Pi. Furthermore, this is also

the first-ever successful attempt to customize Llama.cpp to

realize distributed LLM tuning without backpropagation.

2 SystemDesign

Figure 1 provides an overview of the system, including three

key modules, with cross-device communication managed via

HTTP. Originally, FedBPT was implemented entirely in a

Python environment, where edge devices are simulated by

Python class objects, with LLM inference performed in Py-

Torch and communication between the FL server and edge

device handled via Python function calls. To implement it

with the real edge device, we need to run efficient LLM infer-

ence locally on the edge device and provide a communication

solution between the edge devices (clients) and the server.

∗Both authors contributed equally to this work.
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Figure 1: Overview of the implementation of

FedBPT [10] on edge devices.

LLM inference engine for various edge devices. To in-

sert a soft prompt into the embedding token and obtain the

raw results, we leverage the llama.cpp library (a C++ library
designed for fast and efficient inference of LLMs) [5] and

customize the interface to insert the FedBPT algorithm.

For any given input, we first perform the usual tokenizing

and embedding steps and then concatenate the soft prompt

to the front of the embedded token, which is the output of

the embedding layer. Themodified embedded token then pro-

ceeds through the normal inference procedures to generate

the final output.

llama.cpp provides a well-abstracted inference process. It
first generates the computational graph and then applies it to

any supported computing backend, including CPU and var-

ious acceleration frameworks like CUDA, Metal, and Vulkan.

Tomaintainmaximumcompatibilitywith theofficialllama.cpp,
we implement our soft prompt support function during the

compute graph generation step.

HTTP-basedFL communication. We introduce an adapter

class into the original FedBPT code, which functions as an

HTTP client using the Requests library to redirect all com-

munication to the actual edge devices. On the edge device

side, we reused the llama.cpp server mode and modified the

source code to accept customized FL communication.

3 Experiment Setup

We select three representative edge devices to illustrate how

diverse and heterogeneous device can effectively contribute

to the collaborative fine-tuning of LLMwithout direct access

tomodel parameters: i)GooglePixel 5: This device exemplifies

a standard Android smartphone with limited computational

power. ii) Raspberry Pi 5 (8GB): Serving as a typical edge

device. iii) NVIDIA Jetson TX2: This device represents an

advanced edge unit equipped with a dedicated acceleration

unit.FedbPT has already demonstrated its ability to fine-tune

various LLMs. Given the uneven and limited computational

Raspberry 
Pi 5

Google
Pixel 5

Nvidia 
Jetson TX2

Figure 2: Devices with different form factors and com-

puting capabilities used for the demonstration: Rasp-

berry Pi 5 (8GB), Google Pixel 5, and Nvidia Jetson TX2.

resources of the three selected devices, we chose the AG’s

News dataset and Llama2 7b q2 model, which maintains a

compact size while still achieving good accuracy.

4 Demonstrations

We will provide a real-time demonstration of fine-tuning

LLMs on edge devices, during which the users can interact

with the edge devices and compare the performance of the

fine-tuned model against the original model.

Real-time fine-tuning of LLM on edge device. This real-

time demonstration shows the real-time fine-tuning of LLMs

on edge devices. By observing the process, we can see that the

accuracy metrics improve significantly. Additionally, we will

demonstrate the significant reduction in GPUmemory con-

sumption and communication costs achieved by the FedBPT

algorithm during the on-device optimization process.

Comparisonbetween thefine-tunedmodel and theorig-

inalmodel. The fine-tuning process can be lengthy, so we

have prepared a fine-tuned model for immediate use. This

allowsusers to compare the difference between thefine-tuned

model and the original model. Users can select from pre-

defined questions or input their questions to see the perfor-

mance variations between the two models.
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