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ABSTRACT. We present highlights derived from 36 years of weekly observations of 
flower and seed production and 25 years of annual observations of seedling dynamics at 
Barro Colorado Island (BCI), Panama. Highlights concern levels and causes of spatial, 
temporal, and interspecific variation in flower production, seed production, seed dis-
persal, and seedling recruitment, growth, and survival as well as the consequences for 
plant regeneration and diversity. Full tree life cycles are assembled by combining seed 
production, seedling dynamics, and observations of larger plants from the 50-ha Forest 
Dynamics Plot and are used to evaluate the costs of dioecy, lifetime insights from func-
tional traits, and interspecific variation in the impact of lianas among host tree species. 
A variety of results demonstrate the importance of long-term observations to understand 
forest dynamics and responses to rising atmospheric carbon dioxide concentrations and 
a changing climate. 

Keywords: flower phenology; flower production; fruit production; seed dispersal; seed 
limitation; seed production; seedling growth; seedling survival; trade-o!s; tree life cycles

Plant species richness in humid tropical forests is unmatched at spatial scales relevant 
to trees (Wilson et al., 2012). The 605 tree species recorded from a single hectare of humid 
tropical forest in Ecuador exceeds the 543 tree species recorded across the entire Temper-
ate Broadleaf and Mixed Forest Biome of North America (Balslev et al., 1998; Cazzolla 
Gatti et al., 2022). These numbers challenge ecological theory. How can hundreds of tree 
species coexist in sympatry in humid tropical forests? To address this and related ques-
tions, S.J.W. resolved to close tree life cycles by documenting seed production and seedling 
dynamics as Steve Hubbell and Robin Foster conducted the first census of trees larger than 
1 cm in diameter at breast height (dbh) in the Barro Colorado Island (BCI) 50-ha plot.

A surprising number of mechanisms hypothesized to enable plant species coexistence 
concern early regeneration. These include the regeneration niche, enemies, competition-
colonization, tolerance-fecundity, forest architecture, and storage hypotheses. Briefly, the 
regeneration niche hypothesis posits species-specific requirements that deaths of estab-
lished plants alter creating a temporally shifting mosaic of sites suitable for regeneration 
by di!erent species (Grubb, 1977; Hartshorn, 1978). The enemy hypothesis posits spe-
cies-specific pathogens and herbivores that congregate at adult plants preventing success-
ful regeneration of conspecifics, thereby opening space for other species (Janzen, 1970; 
Connell, 1971; Smith, 2022). The competition-colonization hypothesis posits a trade-o! 
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between competitive and dispersal abilities, with inferior com-
petitors colonizing disturbed sites before superior competitors 
arrive (Tilman, 1994). The tolerance-fecundity hypothesis posits 
a seed size-seed number trade-o! with large-seeded species better 
able to survive hazards while small-seeded species reach more 
sites (Muller-Landau, 2010). The forest architecture hypothesis 
posits a trade-o! between recruitment rates and maximum size, 
with smaller statured species having larger recruitment rates per 
unit basal area (Kohyama, 1993). The storage hypothesis pos-
its a long-lived life stage that ensures population continuity and 
interspecific, temporal asynchrony in reproduction that increases 
competition between conspecifics during the early stages of 
regeneration (Chesson, 2018). We started in 1987 and have now 
documented more than 5,500,000 seeds and nearly 100,000 
seedling recruits enabling tests of these hypotheses. 

Additional objectives were to accumulate weekly observa-
tions of flower and seed production and leaf fall over a tempo-
ral scale su"cient to observe rare events. Weekly observations 
accumulated over decades of natural climate variation enable 
discrimination of proximate cues hypothesized to initiate flower 
production and leaf fall. Rare events that might recur and be 
better documented and understood include a community-wide 
failure of fruit production that led to famine among frugivores 
and granivores in 1970–1971 (Foster, 1982). A final objective 
became apparent as time passed, atmospheric carbon dioxide 
(CO2) concentrations continued to rise, climate change began in 
earnest, and our long-term observations detected changing levels 
of production at species-, lifeform-, and community-wide scales. 
The accumulated data now enable tests of hypotheses concern-
ing species coexistence and proximate phenological cues, evalu-
ation of long-term change, and, when combined with data on 
later life stages from censuses of the 50-ha plot, construction of 
full life cycles. Highlights follow.

METHODS AND CAVEATS

Methods are described in detail in cited publications. Briefly, 
we quantify flower and seed production through weekly censuses 
of 200 0.5-m2 traps located randomly near preexisting trails in 
the BCI 50-ha plot and woody seedling dynamics through annual 
censuses of 600 1-m2 plots associated with the seed traps (Fig. 1). 
These censuses began in January 1987 and 1994, respectively, 
with the seedling census only being possible after Nancy Gar-
wood learned to identify all BCI seedlings (Garwood, 2009). We 
added another 50 sets of seed traps and seedling plots in natural 
treefall gaps between 2002 and 2004, traps that continue to be 
censused today. We censused another 200 seed traps colocated 
with the original traps for two years (2013 and 2014) to quan-
tify spatial variation in seed production at the distance between 
traps and seedling plots (Detto et al., 2019). Finally, we quanti-
fied flower and fruit production since November 1985 with the 
same methods albeit fewer and smaller traps (59 0.25-m2 traps) 
at Poacher’s Peninsula, approximately 1.5 km south of the Forest 

Dynamics Plot (FDP). From the start, the litter trap censuses 
included all plant species, not just trees, and the seedling censuses 
included all woody plants, enabling insights regarding lianas as 
well as trees (e.g., Wright et al., 2004). COVID-19 interrupted 
the 2020 seedling census but not the trap censuses. We therefore 
report results through 2019 for seedlings and through 2021 for 
flowers and fruit.

There are four caveats. The smallest diaspore reliably cap-
tured in seed traps has a mean dry mass of 95 µg and belongs 
to Alseis blackiana. At least 35 woody BCI species have smaller 
diaspores (Garwood, 2024) that pass through the 1-mm trap 
mesh and are omitted from analyses of seed production. A 
second caveat concerns identifications of seeds in the genera 
Anthurium, Ficus, Inga, and Philodendron. Fruit are identified 
to species, but seeds, except for Inga marginata, are identified 
only to genus. A third caveat concerns seedling identifications, 
which are corrected on rare occasions as seedlings mature and 
leaf form changes. A small percentage of seedlings that die in 
their first year will have been misidentified. Finally, several 
cryptic species have been separated in recent years, including 
one after we captured unknown seeds (Mascagnia ovatifolia). 
Fortunately, in all cases except Mascagnia, the newly separated 
species is rare. 

FIGURE 1. The 50-ha plot (1 km by 0.5 km) with potentially repro-
ductive individuals of Beilschmedia tovarensis (formerly B. pendula) 
(brown) and seed traps that did (green) and did not (red) capture B. 
tovarensis seeds. The size of the green symbols indicates the number 
of seeds captured in 35 years, which ranges from 1 to 542 seeds 
per trap (2,824 total seeds). Seeds are large (6.8 g fresh mass), esti-
mated mean dispersal distance is 4.8 m (Muller-Landau et al., 2008), 
and 78 out of 200 traps failed to capture a single seed in 35 years. 
The opacity of the brown symbols indicates the number of five-year 
censuses when trees were alive and larger than the reproductive size 
threshold of 20 cm dbh between 1985 and 2015. The lightest and 
darkest opacity correspond to 1 and 7 censuses, respectively. Traps 
are located at 13.5-m intervals on alternating sides and 4 to 10 m 
from 2.7 km of preexisting trails. The median distance between a 
trap and its nearest neighbor is 18 m.
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FLOWER PRODUCTION AND PHENOLOGY

Tropical forest plants allocate more resources to flowers and 
pollination than is generally realized. At the species level, flower 
dry mass production exceeds 50% of fruit dry mass production 
for 28 of 44 well-sampled species (Fig. 2A), with fruit produc-
tion defined broadly to include immature and mature fruit, seeds, 
capsules, bracts, and other fruit fragments that arrive in the litter 
traps. Fruit and flowers consumed in the canopy are missed. At 
the community level, flower production (709 kg ha−1 yr−1) aver-
ages 70% of broadly defined fruit production (1,001 kg ha−1 yr−1). 
Flower production also accounts for 4.2% of aboveground wood 
and fine litter production combined, which averages 17 Mg ha−1 
yr−1 on BCI (Muller-Landau et al., 2024). Total aboveground net 
primary production (ANPP) includes consumption by hetero-
trophs in addition to aboveground wood and fine litter produc-
tion. The nectar, pollen, and resins consumed by bees account 
for 3.2% of ANPP on BCI (Roubik, 1993), which exceeds the 
2% of ANPP consumed by frugivores on BCI (Leigh and Wind-
sor, 1982). Flower biomass production plus the nectar, pollen, 
and resins consumed by bees account for approximately 7.4% of 
ANPP. Given the direct consequences of pollination for fitness, 
this massive investment in flowers should not surprise. 

Because of its direct link to fitness, reproduction is expected 
to increase if availability of a previously limiting resource 
increases. Thus, we expect flower production to rise with atmo-
spheric CO2 concentrations if carbon was previously limiting. 
Flower production increased significantly between 1987 and 
2003 as atmospheric CO2 rose from 349 to 376 ppm (Wright 
and Calderón, 2006) and continued to rise for selected life forms 
through 2014 (Pau et al., 2013, 2018). Figure 2B extends this 

FIGURE 2. Flower production and phenology. (A) The ratio of 
flower-to-fruit dry mass production. Flower production exceeds 50% 
of fruit production to the right of the blue vertical line. Most Mouriri 
myrtilloides but few large, fleshy Guatteria dumetorum flowers 
develop into fruit. Dipteryx oleifera has the largest fruit production of 
any species (181 kg ha−1 yr−1). The 44 species were captured as both 
flowers and fruit 300 or more times in 36 years at Poacher’s Penin-
sula. (B) Mean flower production (±1 SE) for 128 species and 35 years 
combining 50-ha and Poacher’s Peninsula data. Production increased 
from 1987 to 2003 (p < 0.001, green line) but the increase did not per-
sist. The red line is Friedman’s super smoother. Units for production 
are standard normal deviates to place the 128 species on a common 
scale (see Wright and Calderon, 2006). Each species was present in 
500 or more trap-census combinations. (C) Weekly flower produc-
tion for D. oleifera at the 50-ha plot. Colored lines represent 35 years. 
The heavy blue and red lines represent the year of earliest (1991) and 
latest (2015) mean flowering dates, respectively. Units for production 
are the number of traps with D. oleifera flowers each week.
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and April, when ample sunlight favors productivity, and bot-
toming out between October and December after many months 
of cloudy, low-light conditions (Fig. 3A; Wright and van Schaik, 
1994; Detto et al., 2018). One keystone species, D. oleifera, con-
tributes 69% of community-wide fruit production in January 
and February. When D. oleifera has a poor year, five consecutive 
months of food scarcity can precipitate famine among frugivo-
res and granivores (Fig. 3A; Foster, 1982, Wright et al., 1999). 
Interannual variation in seed production is high both within spe-
cies (Wright et al., 2005) and at the community level (Wright 
and Calderón, 2006). Overall, seed production is higher in sunny 
El Niño years and lower in cloudy La Niña years (Wright and 
Calderón, 2006; Detto et al., 2019). 

Community-wide seed production averaged 887 seeds 
m−2 yr−1 on the 50-ha plot for seeds larger than 95 µg between 
January 1986 and December 2021. This astonishing number 
is consistent with a 300-fold increase in seed production from 
boreal to humid tropical forests (Journé et al., 2022). Six spe-
cies with tiny seeds (<0.01 g) account for 53% of the seeds cap-
tured (Fig. 3C, right axis). The trade-o! between seed size and 
seed number (Muller-Landau et al., 2008; Qiu et al., 2022), 
combined with the highly skewed species abundance distribu-
tions of woody plants, means that many species are rare in the 
seed rain. This sets the stage for seed limitation in many species, 
where seed limitation is defined as the failure of seeds to arrive 
in suitable regeneration sites (e.g., the 78 red traps in Fig. 1; 
Muller-Landau et al., 2002). 

Seed limitation will reduce the potential for species to coex-
ist through habitat specialization when species fail to arrive in 
optimal habitats (Hurtt and Pacala, 1995). Hubbell et al. (1999) 
used the first 10 years of seed captures to evaluate potential 
seed limitation for free-standing woody species. Figures 3B,C 
extend figure 4 of Hubbell et al. (1999) to 35 years and by add-
ing climbers. Just eight species reached all 200 traps in 35 years, 
including six wind-dispersed species with tiny seeds (<0.01 g) 
and two animal-dispersed species with much larger seeds that 
happen to be the most abundant canopy and understory tree 
species (Trichilia tuberculata and Faramea occidentale, respec-
tively). The number of species arriving at individual traps aver-
aged 13 for the first year and rose steadily to 96 after 35 years 
(Fig. 3B). In contrast, 50-ha plot censuses have recorded 489 
climbing and free-standing woody species (Condit et al., 2019; 
Schnitzer et al., 2021). Seed limitation is widespread even after 
35 years. Seed addition experiments demonstrate that the failure 
of seeds to arrive limits seedling recruitment at BCI (Svenning 
and Wright, 2005). Muller-Landau et al. (2002, 2008) and Dal-
ling et al. (2002) provide additional insight into the causes and 
consequences of seed limitation at BCI.

Contagious seed dispersal refers to the tendency for some 
sites to receive many dispersed seeds, while other sites receive 
few. Heterogeneity in canopy height contributes to contagious 
dispersal with 72% fewer seeds arriving in newly formed canopy 
gaps than in nongap sites (Puerto-Piñera et al., 2013). Canopy 
gaps also a!ect the species composition of arriving seeds. Few 

record to 2021 when atmospheric CO2 reached 416 ppm. The 
17-year increase (1987–2003) is clear but is followed by 12 years 
of variable but consistently high production (2004–2015), and 
after 2016, is followed by lower production not seen since the 
1980s. The relationship between flower production and atmo-
spheric CO2 has not withstood the test of time. Is the stress of 
increasing temperatures prevailing over the benefits of increasing 
CO2? Future research will explore other factors that might limit 
flower production. 

Weekly flower production combined with daily meteorology 
provides an opportunity to explore the proximate cues that ini-
tiate flower production. With few exceptions, lowland tropical 
flowers live a single day (Primack, 1985), so flower captures rep-
resent the timing of flowering well. Hypothesized proximate cues 
include daylength, cool temperatures, and increases in moisture 
or light availability (reviewed by Van Schaik et al., 1993). Strong 
seasonal correlations among these cues (Yang et al., 2021) make 
it di"cult to distinguish among the possibilities. In addition, 
hypotheses are vague (e.g., increasing moisture availability cues 
flowering) and do not specify durations or thresholds, whether 
rates of change or absolute levels are important, and whether 
preconditioning (akin to winter vernalization at higher latitudes) 
is necessary. 

We systematically recast these vague hypotheses as models 
whose parameters capture duration, thresholds, lags, and pre-
conditioning to predict the probability of flowering for each day 
of the year. We then evaluated predicted probabilities against 
observed flowering times (Zimmerman et al., 2007; Chen et al., 
2018; Wright and Calderón, 2018; Wright et al., 2019). As an 
example, Figure 2C presents weekly flower captures for 35 years 
for the canopy tree Dipteryx oleifera, with the year of earliest 
(1991) and latest (2015) flowering highlighted. The sudden onset 
of flowering is typical of most species and occurred 41 days ear-
lier in 1991 than in 2015 for D. oleifera. This interannual varia-
tion in flowering times combined with interannual variation in 
hypothesized environmental cures enables discrimination among 
the hypothesized proximate cues. Attributes of the dry-season 
insolation peak had the greatest support to be the phenological 
cues for flowering in D. oleifera and many other BCI species 
(Wright and Calderón, 2018). A new analysis integrates precon-
ditioning (e.g., by drought before increasing moisture availability 
becomes an e!ective cue) and successfully identified thresholds, 
durations, and lags previously determined experimentally for 
two BCI species (Wright et al., 2019). This new analysis prom-
ises further insights into flower phenology.

SEED PRODUCTION AND DISPERSAL

Mature fruit production measured by litter traps averages 
895 kg ha−1 yr−1 on BCI. Frugivores have been estimated to 
consume another 114 to 136 kg of fruit ha−1 yr−1 (Leigh, 1999; 
Muller-Landau and Hardesty, 2005), and immature fruit con-
tributes another 121 kg ha−1 yr−1 (Jackson et al., 2022). Mature 
fruit production is highly seasonal, peaking between January 



FIGURE 3. Fruit production and seed arrival. (A) Community-wide 
monthly fruit production (mean dry mass ± 1 SE) over 
36 years at Poacher’s Peninsula. The red line excludes 
D. oleifera, which accounts for 69% of fruit dry mass 
production in January and February. Intact fruit, seeds, 
capsules, and fruit damaged by animals are included. 
Immature fruit are excluded. (B) Histograms of the number 
of traps that captured seeds of different numbers of species 
over one (red), 10 (green), 20 (blue), and 35 (purple) years. 
The legend in panel b also applies to panel c. Panels b and c 
are for the 50-ha plot. (C) Species ranked by the number of 
traps where their seeds arrived over one (red), 10 (green), 
20 (blue), and 35 (purple) years and ranked inversely by 
the number of seeds captured in all 200 traps over 35 years 
(black symbols and right axis). The red symbols represent 
eight species that reached all 200 traps in 35 years. The 
horizontal axis excludes another 85 species recorded in 
stem censuses of the 50-ha plot but not as seeds.
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large-seeded species arrive in gaps, presumably because frugivo-
res lack perches. In contrast, wind-dispersed species dominate 
seed arrival in gaps even though the number of wind-dispersed 
seeds arriving in gaps is reduced relative to undisturbed under-
story. Statistically significant interspecific associations in seed 
arrival characterize 10.8% of species pairs, are more likely for 
species with similar fruiting times and for animal- than wind-dis-
persed species, and persist through seedling recruitment (Wright 
et al., 2016).

Mapped trees and traps enable estimation of seed disper-
sal distances (Fig. 1). Inverse models specify functional relation-
ships between seed numbers (fecundity) and tree size (dbh) and 
between seed arrival probability and tree-to-trap distances and 
compare observed numbers of seeds to summed probabilities 
that seeds arrive from each potential mother for each trap (Rib-
bens et al., 1994). Jones and Muller-Landau (2008) validated 
dispersal distances estimated using inverse models by genotyping 
mothers and trapped seeds to obtain known dispersal distances. 
Numbers of seeds estimated to arrive in tree-fall gaps explain 
the relative abundances of seedling recruits, demonstrating seed 
limitation across 14 light-demanding tree species (Dalling et al., 
2002). Seed mass alone explained 45% of interspecific varia-
tion in fecundity across 41 species, and seed mass, dispersal 
syndrome, and maximum height explained 28% of interspecific 
variation in dispersal distances, providing hope for trait-based 
generalization and modeling of seed dispersal (Muller-Landau 
et al., 2008). Increasingly sophisticated mechanistic models of 
seed dispersal have also advanced our understanding of seed 
arrival patterns, especially for seeds dispersed by wind (Wright et 
al., 2008; Augspurger, 2024) and for seeds dispersed by animals 
(Beckman et al., 2024).  
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SEEDLING RECRUITMENT AND DYNAMICS

Hundreds of shade-tolerant species have recalcitrant seeds 
that germinate quickly, lack a seed bank, and must regenerate 
from a persistent seedling bank in humid tropical forests (Gar-
wood, 1989, 2024). Seedling bank dynamics a!ect plant diversity 
and species composition (e.g., Green et al., 2014). Nonetheless, 
few tropical forest studies track seedlings from initial recruit-
ment (e.g., Metz et al., 2008; Norden et al., 2009; Xu et al., 
2019; Martini et al., 2022) and just one has incorporated seed-
ling age into analyses of dynamics (Record et al., 2016). 

With 25 years of annual seedling censuses and contempo-
raneous seed production, we can answer fundamental questions 
about the seedling bank for the first time. There is 10,000-fold 
variation among species in the number of seeds required to pro-
duce one first-year recruit, with values ranging up to 81,000:1 
and 65,000:1 for Hieronyma alchorneoides and Alseis blacki-
ana, respectively (Fig. 4A; also see Terborgh et al., 2014). This 
establishment limitation will exacerbate widespread seed limi-
tation (Fig. 3B,C; Muller-Landau et al., 2002). After establish-
ment, the seedling bank remains a risky place. Community-wide 
mortality is 54% yr−1 in the first year and still averages 8% yr−1 
for 20- to 24-year-old seedlings (Fig. 4B). Growth is slow with 
frequent setbacks, and median heights first reach 20 and 50 cm 
when seedlings are 8 and 22 years old, respectively (Fig. 4C). 

Three trade-o!s are evident in the seedling bank. The famil-
iar survival-growth trade-o! is particularly strong among seed-
lings, with species tending to have high survival and slow growth 
rates or vice versa. Surprisingly, lianas and trees fall along the 
same survival-growth trade-o! relationship, with seedlings of 
several liana species (e.g., Abuta racemosa and Maripa pana-
mensis) having survival and height growth rates characteristic 
of the most shade-tolerant tree species (Gilbert et al., 2006). In 
a second shade-drought trade-o!, shade-tolerant species tend to 
be drought sensitive and vice versa (Kupers et al., 2019b). In a 

FIGURE 4. Seedling recruitment and dynamics in the 50-ha plot.  
(A) Species ranked by the number of seeds required to produce one 
seedling recruit. Species in the descending tail above rank 200 are 
mostly small shrubs shorter than the traps whose seeds are therefore 
underrepresented. Each species had seeds captured in 10 or more of 
the 200 traps. (B) The community-wide seedling mortality rate 
declines with seedling age. Rapid deaths of light-demanding species 
contribute to the rapid initial decline. A consistent, gradual decline 
with age characterizes shade-tolerant species. (C) Bar-and-whisker 
plot of seedling height versus seedling age. Black horizontal bars rep-
resent medians, boxes represent the interquartile range (IQR, 25th 
to 75th percentile), whiskers extend 1.5 IQRs beyond boxes, and 
points represent seedlings outside the whiskers. Seedlings that grew 
to be more than 5 m tall are not shown but contributed to medians 
and IQRs. 



third stature-fecundity trade-o!, large-statured tree species tend 
to produce few seeds and recruits per unit basal area and vice 
versa (Rüger et al., 2018). These trade-o!s contribute to species 
coexistence by stabilizing niche di!erences (Detto et al., 2021) as 
well as by reducing fitness di!erences (Chesson, 2018).

Conspecific negative density dependence (CNDD) is partic-
ularly strong among seedlings. The negative e!ect of neighbors 
for survival of focal seedlings is 10 times stronger (per standard 
deviation of density) for conspecific seedling neighbors than for 
larger conspecific and all heterospecific neighbors (Lebrija-Trejos 
et al., 2014). Seedling root systems and canopies rarely come into 
contact on BCI (Svenning et al., 2008). Thus, the negative e!ects 
of conspecific seedlings cannot be explained by resource competi-
tion but, instead, are most likely due to pathogens (e.g., Mangan 
et al., 2010). Seedling–seedling CNDD is stronger in species with 
smaller seeds, in years with lower seed production, and in wetter 
years (Wright et al., 2005; Lebrija-Trejos et al., 2016, 2023). Seed-
ling–seedling CNDD is statistically significant but not as strong in 
other tropical forests perhaps because sample sizes are smaller in 
other studies and analytical methods di!er (e.g., Metz et al., 2010; 
Martini et al., 2022). CNDD contributes to species coexistence 
by stabilizing populations (Chesson, 2018), CNDD is stronger in 
early than later life stages (Green et al., 2014; Zhu et al., 2015), 
and strong CNDD early in life a!ects the diversity and abundance 
of tropical trees (e.g., Comita et al., 2010; Mangan et al., 2010; 
Bagchi et al., 2014). Future cross-site studies using a common 
analysis and studies of pathogen–seedling interactions will eluci-
date the generality and mechanism of seedling–seedling CNDD.

Seedlings have small, shallow root systems, and we pre-
dicted survival and growth would track temporal and spatial 
variation in dry-season severity and soil moisture availability. 
This prediction was not realized. Just 1 of 63 seedling species 
had significantly slower growth and just 4 had significantly 
lower survival at lower soil moisture availability across spatial 
and temporal variation spanning our 200 stations and 20 years, 
respectively (Kupers et al., 2019a). During a severe dry season, 
seedlings maintained low rates of stomatal conductance (11 to 
26 mmol m−2 s−1) and photosynthesis (0.8 to 1.1 µmol m−2 s−1) 
even as mean predawn and midday leaf water potentials fell to 
−2.0 and −3.0 MPa, respectively (Engelbrecht et al., 2002). Seed-
lings of many BCI species are surprisingly well bu!ered against 
seasonal drought even during exceptionally dry years.

Interannual variation can contribute to stabilizing species 
coexistence through the storage e!ect. The storage e!ect requires 
a long-lived life stage so that generations overlap and asynchro-
nous variation in recruitment across species so that conspecific 
recruits interact more frequently than heterospecific recruits. Trees 
fulfill both requirements. Interannual variation in recruitment is 
large (Metz et al., 2008) and asynchronous across species, which 
increases conspecific relative to heterospecific interactions among 
recruits (Usinowicz et al., 2012). At higher latitudes, shorter grow-
ing seasons constrain the seasonal timing of reproduction impos-
ing greater recruitment synchrony across species. This increases 
the ratio of conspecific-to-heterospecific interactions among 

recruits at higher latitudes and decreases the potential contribu-
tion of the storage e!ect by 0.25% for each degree of latitude 
that a forest is located further from the equator (Usinowicz et al., 
2017). The storage e!ect combined with strong CNDD among 
recruits (see previous two paragraphs; Milici and Comita, 2024) 
contributes to stabilizing coexistence of tropical tree species. 

FULL LIFE CYCLES

We combined seed production, seedling demography, small 
sapling demography (>20-cm tall and <1 cm dbh; Comita et al., 
2024), reproductive size thresholds (Wright et al., 2015), and 
50-ha plot censuses (Condit et al., 2019) to complete tree life 
cycles and address three questions. Functional traits are promis-
ing predictors of life histories. Many studies link traits and demo-
graphic rates; however, analyses have evaluated single life stages 
and predictive power is often low. In a full life-cycle analysis, 
trait-demography relationships at one life stage were often absent 
and sometimes o!set at other life stages (Visser et al., 2016). 
Robust links between traits and life histories will require under-
standing trait-demography relationships across all life stages.

Lianas are structural parasites of trees and reduce tree 
growth, survival, and fecundity. We evaluated the importance 
of these e!ects for host tree fitness, and variation in fitness 
consequences among tree species, using a full life-cycle analy-
sis and integrating additional data on the growth, survival, and 
reproduction of liana-infested trees (Visser et al., 2018b). Lianas 
substantially reduced host tree fitness, with the largest impact 
from reduced survival, and more modest impacts from reduced 
growth and reproduction. Light-demanding hosts su!ered the 
largest decreases in fitness, because of larger reductions in sur-
vival. Previous literature found that light-demanding tree spe-
cies had a lower prevalence of liana infestation and hypothesized 
that light-demanding species were able to avoid liana infestation 
(e.g., Putz, 1984). The new findings demonstrate that survival 
bias explains the lower prevalence of liana infestation observed 
for light-demanding trees (Visser et al., 2018a). 

Dioecy imposes a demographic disadvantage—just half of 
adults produce seeds—that must be o!set by a compensatory 
advantage for dioecious and hermaphroditic species to coexist 
(Bawa, 1980). Increased outcrossing and genetic variation is 
unlikely to provide the advantage because hermaphroditic spe-
cies also have e"cient outbreeding mechanisms (Bawa, 1974). 
In a full life-cycle analysis, increased seed production provided 
the compensatory advantage, resulting in no net costs of dioecy 
(Bruijning et al., 2017). Foregoing the large costs of pollen and 
male flower production (Fig. 2A) enables increased seed produc-
tion by dioecious females. 

CONCLUSIONS

The novel insights presented here (e.g., Figs. 2, 3B,C, 4) are 
enabled by enormous sample sizes accumulated over 36 years of 
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weekly flower, fruit, and seed production censuses and 25 years 
of annual seedling censuses. Nonetheless, sample sizes remain 
small for species that produce small numbers of large seeds and 
for the many rare species. The median height of 24-year-old 
seedlings is still only 50 cm (Fig. 4C), and the e!ective sample 
size is only 25 or 36 years for analyses of interannual variation. 
Although this is the longest continuous record of flower and 
seed production and seedling dynamics for any tropical forest, 
its duration remains short relative to the 60- to 80-year period 
of the Atlantic Multidecadal Oscillation, which plays an impor-
tant role in driving climate variability in this region (Elder et al., 
2014).These are compelling reasons to continue this work. 

As atmospheric CO2 concentrations rise and global cli-
mate change takes hold, responses at these sensitive life stages 
will help determine the species composition, structure, and 
dynamics of future tropical forests. Flower production, seed 
production, and seedling recruitment all vary widely among 
years, variation explained in part by climate. Temporal trends 
observed earlier in the record have not remained consistent to 
the present day (e.g., Wright and Calderón, 2006; Fig. 2B), 
highlighting the dangers of extrapolation from phenomenologi-
cal models. Mechanistic models o!er an alternative pathway 
for prediction, and our data have been used to develop a sub-
stantially improved recruitment scheme for vegetation dynamic 
models that project future tropical forest carbon budgets (Han-
bury-Brown et al., 2022), but these models are no substitute 
for observations. Ongoing, long-term observational studies are 
crucial in a changing world.

Because forests di!er in their climate drivers, dynamics, 
and responses to global change, broader insight requires data 
from multiple sites. Our methods have been adopted at multiple 
additional sites, including 26 sites in the ForestGEO network 
(see table S6 in Anderson-Teixeira et al., 2014). Multisite studies 
have already enabled generalization beyond BCI (e.g., Metz et 
al., 2008; Usinowicz et al., 2017), and we hope to see many more 
multisite long-term studies in the future. 
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