
NORTHEASTERN UNIVERSITY

DOCTORAL THESIS

On the Robustness of Machine Learning
Training in Security Sensitive Environments

Author:
Giorgio Severi

Supervisor:
Alina Oprea

Committee:
Alina Oprea

Cristina Nita-Rotaru
William Robertson

Scott Coull

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Khoury College of Computer Sciences

https://www.northeastern.edu
https://www.khoury.northeastern.edu

7/24/2024

iii

Abstract

Modern machine learning underpins a large variety of commercial software products,
including many cybersecurity solutions. Widely different models, from large transform-
ers trained for auto-regressive natural language modeling to gradient boosting forests
designed to recognize malicious software, all share a common element: they are trained
on an ever increasing quantity of data to achieve impressive performance levels in their
tasks. Consequently, the training phase of modern machine learning systems holds dual
significance: it is pivotal in achieving the expected high-performance levels of these
models, and concurrently, it presents a prime attack surface for adversaries striving
to manipulate the behavior of the final trained system. This dissertation explores the
complexities and hidden dangers of training supervised machine learning models in an
adversarial setting, with a particular focus on models designed for cybersecurity tasks.

Guided by the belief that an accurate understanding of the offensive capabilities of the
adversary is the cornerstone on which to found any successful defensive strategy, the
bulk of this thesis is composed by the introduction of novel training-time attacks. We
start by proposing training-time attack strategies that operate in a clean-label regime,
requiring minimal adversarial control over the training process, allowing the attacker
to subvert the victim model’s prediction through simple poisoned data dissemination.
Leveraging the characteristics of the data domain and model explanation techniques,
we craft training data perturbations that stealthily subvert malicious software classi-
fiers. We then shift the focus of our analysis on the long-standing problem of network
flow traffic classification. In this context we develop new poisoning strategies that work
around the constraints of the data domain through different strategies, including gen-
erative modeling. Finally, we examine unusual attack vectors, when the adversary is
capable of tampering with different elements of the training process, such as the net-
work connections during a federated learning protocol. We show that such an attacker
can induce targeted performance degradation through strategic network interference,
while maintaining stable the performance of the victim model on other data instances.
We conclude by investigating mitigation techniques designed to target these insidious
clean-label backdoor attacks in the cybersecurity domain.

v

Acknowledgements
This dissertation would not have been possible without the support and guidance of
many great researchers.

I am deeply grateful to my advisor, Alina Oprea, for her invaluable mentorship, feed-
back, and encouragement throughout this journey. I extend my sincere gratitude to the
members of my dissertation committee: Cristina Nita-Rotaru, William Robertson, and
Scott Coull. Their thoughtful comments have significantly enriched this research.

I would also like to thank all of my collaborators both within the NDS2 Lab, and beyond.
Their expertise and diligent efforts were crucial in realizing this work. Without their
valuable contributions, insights, and support, this research would not have achieved its
current depth and breadth.

Finally, I want to sincerely thank my family and all the friends I have made in these six
years at ISEC and 177. Our daily interactions were instrumental in helping me persevere
through challenging times.

vii

Contents

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xv

List of Abbreviations xix

1 Introduction 1
1.1 Thesis Contributions . 2
1.2 Thesis Organization . 4

2 Background 5
2.1 Machine Learning for Cybersecurity Applications 5

2.1.1 Malware Detection Systems . 5
2.1.2 Network Threats Detection . 6

2.2 Adversarial Machine Learning . 6
2.2.1 Inference-time Attacks . 6
2.2.2 Training-time Attacks . 7

Backdoor Attacks . 8
2.3 Interpretable Machine Learning . 9

3 Poisoning Static Malware Classification 11
3.1 Problem Definition . 12
3.2 Threat Model . 14

3.2.1 Adversary’s Goals and Capabilities 15
3.3 Explanation-Guided Backdoor Attacks . 16

3.3.1 Building Blocks . 17
Feature Selection . 17
Value Selection . 18

3.3.2 Attack Strategies . 19

viii

3.4 Experimental Attack Evaluation . 22
3.4.1 Attack Performance . 24
3.4.2 Limiting the Attacker . 27

3.5 Problem-Space Considerations . 28
3.5.1 Windows PEs . 28
3.5.2 Attack Efficacy . 30
3.5.3 Behavior Preservation . 32
3.5.4 Other Datasets . 33

3.6 Mitigation . 36
3.6.1 Considered Defensive Approaches 37
3.6.2 Results of Mitigation Strategies . 38

3.7 Related Literature . 38
3.8 Discussion and Conclusion . 39

4 Poisoning Network Flow Classifiers 41
4.1 Problem Definition . 42
4.2 Threat Model . 44

4.2.1 Adversary’s Goals and Capabilities 44
4.2.2 Data Format . 45

4.3 Attack Strategy . 46
4.3.1 Crafting the Poisoning Data . 47
4.3.2 Increasing Attack Stealthiness . 49

Trigger size reduction . 49
Trigger generation using Bayesian networks 50

4.4 Experimental Results . 54
4.4.1 Experimental Setup . 54

Datasets . 54
Performance Metrics . 55

4.4.2 Impact of Feature Selection . 57
4.4.3 Attack Stealthiness . 58
4.4.4 Impact of Feature Representation . 62
4.4.5 Other datasets . 63

4.5 Related Work . 63
4.6 Discussion and Conclusion . 66

4.6.1 Limitations . 66
4.6.2 Conclusion . 67

5 Mitigating Backdoor Attacks in Cybersecurity Domains 69
5.1 Problem Definition . 70
5.2 Protecting Cybersecurity Models . 71

ix

5.2.1 Setting . 72
5.3 Threat Model . 73

5.3.1 Adversary’s Goals and Capabilities 73
5.3.2 Defender’s Goals and Capabilities 73

5.4 Challenges of existing defenses . 74
5.4.1 Limitations of Selective Amnesia . 74

5.5 Defense strategy . 76
5.5.1 Dimensionality reduction . 78
5.5.2 Clustering . 78
5.5.3 Cluster loss analysis . 79
5.5.4 Iterative cluster scoring . 79
5.5.5 Sanitization of high-loss clusters . 81

5.6 Evaluation . 83
5.6.1 Experimental setup . 83

Feature representation . 83
Attacks . 84
Evaluation metrics . 85

5.6.2 Evaluation on network traffic classification 85
Fixed threshold filtering . 85
Patching. 89
Loss analysis and sanitization . 90

5.6.3 Evaluation on malware classification 90
Fixed threshold filtering . 92
Patching. 94
Loss analysis and sanitization . 95

5.7 Related work . 95
5.7.1 Mitigations against backdoor attacks 95

5.8 Discussion and Conclusion . 96
5.8.1 Limitations . 97
5.8.2 Conclusions . 97

6 Network-Level Interference in Federated Learning 99
6.1 Problem Definition . 100
6.2 Notes on Federated Learning . 103
6.3 Threat Model . 104

6.3.1 Adversary’s Goals and Capabilities 104
6.4 Network-Level Attacks on Federated Learning 106

6.4.1 Dropping Attack with Random Client Selection 106
6.4.2 Identification of Highest-Contributing Clients 107

x

6.4.3 Dropping Attack with Identification of Highest-Contributing Clients109
6.4.4 Analysis of the attack . 109

How many clients to drop? . 109
How many rounds are needed to identify the clients? 110

6.4.5 Amplifying Dropping Attack with Model Poisoning 112
6.5 Defenses Against Network-Level Adversaries 112
6.6 Experiemental Evaluation . 114

6.6.1 Experiment Setup . 115
Datasets and Models . 115

6.6.2 Baselines: Perfect Knowledge and Random Dropping 116
6.6.3 Client Identification Evaluation . 117
6.6.4 Targeted Dropping Evaluation . 118
6.6.5 Impact of Model Poisoning and Targeted Dropping 118
6.6.6 Impact of Adversarial Visibility . 120
6.6.7 Defense Evaluation . 122

6.7 Related Work . 127
6.8 Discussion and Conclusion . 129

7 Conclusion and Future Directions 131
7.1 Future Directions . 132

7.1.1 Offensive Research . 132
7.1.2 Defensive Research . 133

Bibliography 135

xi

List of Figures

3.1 Overview of the attack on the training pipeline for ML-based malware
classifiers. 12

3.2 Force plot showing SHAP values for a benign sample. 16
3.3 Accuracy of the backdoor model over backdoored malicious samples for

unrestricted attacker. Lower Acc(Fb, Xb) is the result of stronger attacks.
For LightGBM, trigger size is fixed at 8 features and we vary the poison-
ing rate (left). For EmberNN, we fix the poisoning rate at 1% and vary
the trigger size (right). 23

3.4 transfer Acc(Fb, Xb) for both models (other model used as surrogate), as
function of poisoned data percentage. 27

3.5 Accuracy of the backdoor model over watermarked malicious samples.
Lower Acc(Fb, Xb) is the result of stronger attacks. The watermark uses
the subset of 17 features of EMBER, modifiable by the constrained adversary. 29

3.6 50 attack runs for Contagio and 10 for Drebin, using the Combined strat-
egy, with a 30-features trigger. 34

4.1 Pipeline for poisoning network flow classifiers. 48
4.2 Directed Acyclic Graph (DAG) representing the inter-dependencies be-

tween log connection fields. 51
4.3 Mutual information comparison on clean and poisoned data. Showing

associations between relevant fields of the conn.log file for CTU-13. 52
4.4 Modeling the bytes distribution for responder (left side) and originator

(right side): From top to bottom, the figures show: distribution of byte
counts per packet, learned KDEs, and sampled data from the learned dis-
tributions. 53

4.5 Attack success rate (ASR) for the CTU-13 Neris Botnet scenario with dif-
ferent models and feature selection strategies. 56

4.6 Analysis of trigger selection strategy. CTU-13 Neris Botnet scenario, with
the Entropy feature selection strategy. 59

xii

4.7 Jensen-Shannon distance between the poisoned and clean training dataset,
averaged over all considered conn.log fields. For reference, the average JS
distance value between the original training data and test data is 0.24.
CTU-13 Neris Botnet experiments, at 1% poisoning rate. 61

4.8 Attack success rate (ASR) on the CIC IDS 2018 Botnet and the CIC ISCX
2016 dataset, full trigger. 64

5.1 Selective Amnesia defense applied to the attack against the CTU-13 Neris
botnet classifier. The plots compare in attack success rates before and
after recovery, and the F1 score on test data, for different sizes of the clean
dataset. Attack run with Entropy feature selection. 75

5.2 Pipeline of our defense strategy. 76
5.3 Row 0: Log-loss of model trained on C0

⋃
Dy=1 and evaluated on clusters

Cj. Rows 1-20: Log-loss of model trained on C0
⋃

Ci
⋃

Dy=1 and evalu-
ated on clusters Cj. Note that cluster 11 consists of poisoned data and
the remainder contain only clean data. Experiment on CTU-13, gradient
boosting classifier, attack run with entropy feature selection. 80

5.4 Iterative scoring on the CTU-13 botnet classification task for the gradient
boosting model. The plot shows average metrics for a set of experiments:
SHAP and Entropy attacker feature selection, for the Full trigger attack,
at 5 different poisoning rates. 86

5.5 Iterative scoring on the CTU-13 botnet classification task for the neural
network model. The plot shows average metrics for a set of experiments:
SHAP and Entropy attacker feature selection, for the Full trigger attack,
at 5 different poisoning rates. 87

5.6 Iterative scoring on the CTU-13 botnet classification task for the gradient
boosting model. The attack was conducted with the generated trigger strat-
egy. The plot shows average metrics for the SHAP and Entropy attacker
feature selection, at 5 different poisoning rates. 88

5.7 Iterative scoring on the EMBER malware classification task for the Light-
GBM model. The plot shows average metrics for a set of experiments:
MinPopulation and CountAbsSHAP attack strategies, at 4 different poi-
soning rates. 91

5.8 Iterative scoring on the EMBER malware classification task for the Light-
GBM model. The plot shows average metrics for the set of experiments
on the Combined SHAP attack strategy at 4 different poisoning rates. 93

xiii

6.1 Accuracy on target class 0 on EMNIST, for k = 15, T = 100, and vary-
ing number of dropped and poisoned clients under 3 scenarios: Perfect
Knowledge, COMM_PLAIN, and COMM_ENC. Left results are without
Clipping, and right results use a Clipping norm of 1. When no Clipping
is used, model poisoning attack is devastating at small number of poi-
soned clients. With Clipping, model poisoning has lower impact, but the
combination of targeted dropping and model poisoning results in signif-
icant degradation under all 3 scenarios. 119

6.2 Accuracy on target class 0 on EMNIST, for k = 15, T = 50, and vary-
ing number of dropped and poisoned clients under 3 scenarios: perfect
knowledge, COMM_PLAIN, and COMM_ENC. Left results are without
clipping, and right results use a clipping norm of 1. When no clipping is
used, model poisoning attack is devastating at small number of poisoned
clients. With clipping, model poisoning. Results are similar with those in
Figure 6.1. 121

6.3 Accuracy on target class 0 on FashionMNIST, for k = 15, T = 200, kN =

10, a poison count of 10, varying number of visible clients and α, under
the COMM_ENC_LIMITED scenario. 122

xv

List of Tables

3.1 Summary of attacker scenarios. Fullness of the circle indicates relative
level of knowledge or control. 14

3.2 Performance metrics for the clean models. 22
3.3 LargeAbsSHAP x CountAbsSHAP - All features. Average percentage

over 5 runs. 25
3.4 LargeAbsSHAP x MinPopulation - All features. Average percentage over

5 runs. 25
3.5 Greedy Combined Feature and Value Selector - All features. Average per-

centage over 5 runs. 26
3.6 Watermarks for LightGBM and EmberNN used during feasibility testing. 31
3.7 Summary of results analyzing a random sample of 100 watermarked good-

ware and malware samples in the dynamic analysis environment. 32
3.8 Mitigation results for both LightGBM and EmberNN. All attacks were

targeted towards the 17 controllable features (see Section 3.5), with a 1%
poison set size, 6000 backdoored benign samples. We show Acc(Fb, Xb)

for the backdoored model, and after the defense is applied. We also in-
clude number of poisoned and goodware points filtered out by the de-
fensive approaches. 36

4.1 Network data format. Our data is represented by connection logs (“conn.log”
files) extracted with the Zeek monitoring tool from publicly-available
packet-level PCAP files. 45

4.2 Statistical features aggregated over connection logs within each data point
grouping. The grouping is comprised of connections within 30-sec time
windows, aggregated separately for each internal IP and destination port
within the time window. Note that the internal IP versus external IP
distinction pertains to the subnet, not to the two ends of the connection
(source/destination). 46

xvi

4.3 Sampling method for each dependency described in the DAG from Fig-
ure 4.2. In this example, we assume that the most important features cor-
respond to protocol and port; their values (TCP protocol on port 80) have
been determined in Phase II of our strategy. Here, our generative method
samples the rest of the log field values. Da represents the attacker’s dataset. 54

4.4 Base performance of the classifiers, avg. over 5 runs. 56
4.5 Area under the Precision-Recall Curve and F1 score obtained by per-

forming anomaly detection on the poisoned data with an Isolation Forest
model trained on a clean subset of the training data. CTU-13 Neris, at 1%
poisoning rate. 60

4.6 Results on the CTU-13 Neris Botnet scenario, where the victim model
uses an auto-encoder to learn the feature representation. Entropy strategy. 62

5.1 Statistical features for network data. 83
5.2 Statistical features for binary files. 84
5.3 Average model utility metrics on CTU-13. Results reported for different

victim architectures, at different poisoning percentages. All results are
averages of 10 runs, with two attack strategies and 5 random seeds. 89

5.4 Comparison of patching and filtering sanitization approaches at fixed
threshold = 80%. Gradient boosting model on the CTU-13 dataset. Also
showing the Base ASR value for the undefended attack. Results are av-
erages of 5 runs on different random seeds, for two attack strategies En-
tropy and SHAP. 90

5.5 Comparison of patching and filtering sanitization approaches after loss
analysis, using zt = 2σ. Gradient boosting model on the CTU-13 dataset.
Results are averages of 5 runs on different random seeds, with two feature
selection approaches, for different trigger refinement strategies. 92

5.6 Comparison of patching and filtering sanitization approaches at fixed
threshold = 80%. LightGBM model on the EMBER dataset. Also show-
ing the Base ASR value for the undefended attack. Results are averages
of two runs on different random seeds, for the two Independent attack
strategies. 94

5.7 Comparison of patching and filtering sanitization approaches after loss
analysis, using zt = 2σ. LightGBM model on the EMBER dataset. Also
showing the Base ASR value for the undefended attack. Results are aver-
ages of two runs on different random seeds, for different strategies. 94

6.1 The parameters used in our experiments. 114

xvii

6.2 Perfect knowledge dropping. Accuracy on target population at rounds
T/2 and T. T = 100 for EMNIST, T = 200 for FashionMNIST and DB-
Pedia. Targeted dropping is more effective for larger number of dropped
clients kN and reaches 0 when no clients are available for the target class
(kN = k). For harder classification tasks such as DBPedia, accuracy on
target class gets to 6% for 5 out of 15 clients dropped, and 0 when 10 out
of 15 clients are dropped. 116

6.3 Target client identification. Average number of clients correctly identified
by Algorithm 5 at different rounds under COMM_PLAIN and COMM_ENC,
kN = k. On FashionMNIST and DBPedia all 15 target clients are identified
at 50 and 20 rounds, respectively, for COMM_PLAIN, while the maximum
number of clients identified under COMM_ENC is 11.75 at 70 rounds for
DBPedia. 117

6.4 Targeted dropping attack, under COMM_PLAIN and COMM_ENC. Accu-
racy on target population at rounds T/2 and T, for T = 100 for EMNIST,
T = 200 for FashionMNIST and DBPedia. The attack under COMM_PLAIN

gets results close to perfect knowledge adversary, while under COMM_ENC

the attack still improves upon random dropping. 120
6.5 Accuracy on target class presented at rounds T/2 and T, under COMM_PLAIN

setting. T = 100 for EMNIST, T = 300 for FashionMNIST and DBPedia.
We consider both Targeted Dropping and Dropping + Poisoning scenarios. 123

6.6 Accuracy on full test set presented at rounds T/2 and T, under COMM_PLAIN

setting. T = 100 for EMNIST, T = 300 for FashionMNIST and DBPedia.
We consider both Targeted Dropping and Dropping + Poisoning scenarios. 124

6.7 Accuracy on target class presented at rounds T/2 and T, under COMM_ENC

setting. T = 100 for EMNIST, T = 300 for FashionMNIST and DBPedia.
We consider both Targeted Dropping and Dropping + Poisoning scenarios. 125

6.8 Accuracy on full test set presented at rounds T/2 and T, under COMM_ENC

setting. T = 100 for EMNIST, T = 300 for FashionMNIST and DBPedia.
We consider both Targeted Dropping and Dropping + Poisoning scenarios. 126

6.9 Accuracy on target class presented at rounds T/2 and T, under the MPC
scenario. T = 100 for EMNIST, T = 300 for FashionMNIST and DBPedia.
We consider both Targeted Dropping and Dropping + Poisoning scenarios. 127

6.10 Accuracy on full test set presented at rounds T/2 and T, under the MPC
scenario. T = 100 for EMNIST, T = 300 for FashionMNIST and DBPedia.
We consider both Targeted Dropping and Dropping + Poisoning scenarios. 128

xix

List of Abbreviations

AS Autonomous System
AV Anti Virus
CV Computer Vision
FL Federated Learning
FPR False Positive Rate
FNR False Negative Rate
LLM Large Language Model
ML Machine Learning
NLP Natural Language Processing
PCA Principal Component Analysis
PDF Portable Document Format
SGD Stochastic Gradient Descent
SVD Singular Value Decomposition
TCP Transmission Control Protocol
UDP User Datagram Protocol
XAI Explainable Artificial Intelligence

1

Chapter 1

Introduction

The past decade has witnessed a tremendous growth in the research, development, and
practical application of machine learning (ML) models across an astonishing array of
domains. The breadth and depth of capabilities demonstrated by contemporary ML
systems are nothing short of surprising: from vision transformers obtaining excellent
results in image classification [61], to gradient boosting trees employed for malware
identification at low false positive rates [5, 83], from diffusion models generating amaz-
ing digital art [177] to massive auto-regressive natural language models producing co-
herent prose and executable code [162] — the list is long and ever-growing. Inevitably,
this trend has extended to a variety of cybersecurity applications, where ML models
are used to quickly and accurately perform critical tasks such as malware execution
prevention and network monitoring.

Most of these models, and the systems they underpin, share a common characteristic:
their performance metrics tends to improve significantly with larger volumes of training
data and computation employed during training [88, 107]. This realization led model
developers to acquire increasingly large volumes of raw data from potentially untrusted
sources, such as Internet scrapes and crowd-sourcing platforms. Not only data, but
computation too is often outsourced completely, or performed on hardware (potentially
with its own software stack) that is under control of third parties.

Outsourcing computation and data, however, opens the door to adversaries, who may
wish to subvert the correct behavior of the learned models for economic or criminal
purposes1. Such an adversary can, in fact, exploit the access to the training process
granted by the reliance on untrusted third parties, and inject a desired behavior into
the learned model. Literature on the subject [164, 48] generally refers to this typology

1In this thesis, we will focus on scenarios where the "adversary" is motivated by criminal or otherwise
malicious intents. Therefore we use the terms adversary, attacker, and malicious actor interchangeably. How-
ever, this may not be the case in general, as there may be uses of adversarial machine learning for activism,
political disobedience, or even to protect users privacy. A rigorous discussion of this topic is a complex
endeavor, and out of the scope of this work. We refer the reader to the work of Albert et al. [1] for an
introduction on the subject.

2 Chapter 1. Introduction

of adversarial interference as poisoning attacks. Poisoning attacks can be orchestrated to
achieve a variety of adversarial objectives, such as inducing misclassificationevents on
specific data instances, or even improve the effectiveness of privacy attacks.

As computational tasks are increasingly delegated and datasets expand in scale, the
potential risk escalates significantly for all ML applications. However, we argue that
this issue is even worse when we consider the security domain. In this context, not
only there is a clear, natural, incentive for malicious actors to attempt to corrupt the
learned model, but sanitizing the training becomes much more difficult and expensive.
As the reader can imagine, the task of verifying the correctness of large volumes of
images or textual data – potentially through labor crowd-sourcing platforms – tends
to be significantly less expensive, than that of vetting training datasets composed of
executable binaries, which requires expert analysts.

The training phase, therefore, constitutes a critical juncture in the overall pipeline of
modern machine learning: it is quintessential to achieve the best performance on the
desired tasks, while at the same time representing a deeply sensitive point that a ma-
licious actor may wish to exploit. Defending the training phase of machine learning
models from poisoning attacks is thus imperative if we wish to rely on these systems
for security and safety sensitive applications.

1.1 Thesis Contributions

With this thesis we wish to investigate the effectiveness of training-time attacks, their
applicability to realistic pipelines, and potential mitigation strategies. We are motivated
by the perspective that understanding offensive capabilities is crucial for developing
robust defenses. Our belief is guided by seminal works in software [194, 63] and hard-
ware [128, 113] security which shaped the defensive mechanisms currently employed
in modern computation systems. Our final goal is to advance an evidence-based ap-
proach for hardening machine learning training, paralleling the evolution of defenses
in traditional computer security.

To realize this aim, this thesis puts forth the following principal contributions:

• Explanation-guided poisoning: We design a new type of backdoor poisoning at-
tacks centered around the use of AI model explanation techniques (XAI). These
attacks allow the adversary to associate a pre-defined trigger pattern to a target
class, which can be used to control the classifier’s output. We use XAI to guide the
generation of the trigger pattern to obtain effective attacks with minimal side ef-
fects on the normal behavior of the victim model. We demonstrate these attacks in
diverse security-critical settings, including malware detection [193] and network

1.1. Thesis Contributions 3

intrusion detection [190], by tailoring the trigger generation process for different
modalities like binaries and network flows.

• Backdoor attacks with limited adversarial control: We demonstrate how effective
backdoor attacks can be carried out in extremely constrained environments, mir-
roring real world deployment conditions. The attacks we propose do not require
any control over the training labels, make no assumptions on the victim model’s
architecture, and respect the semantic constrains of complex data modalities such
as executable binaries [193] and aggregated network flows [190]. We smuggle
stealthy triggers by adversarially perturbing only a small fraction of benign sam-
ples to convey our backdoor trigger and we ensure that the altered samples blend
in with the natural distribution.

• Mitigation strategies for backdoor attacks in cybersecurity: We propose new
techniques that leverage the insights in cybersecurity threat models gained from
the research presented in this thesis to mitigate clean-label backdoor attacks, while
preserving the model utility. Our method [189] performs density-based cluster-
ing on a carefully chosen feature subspace, and progressively isolates suspicious
clusters through a novel iterative scoring procedure. With this approach, our de-
fensive mechanism can mitigate the attacks without requiring many of common
assumptions in the backdoor defense literature which would be difficult to realize
in the security domain.

• Targeted network-level interference: We show how to launch network-level at-
tacks against Federated Learning protocols that achieve the same effect of targeted
poisoning. To obtain these results, we propose a methodology to strategically in-
terfere with the exchange of selected model updates [191]. Simultaneously, we also
present a mitigation approach geared towards this setup, which helps preventing
targeted disruptions against vulnerable data populations.

Collectively, these results showcase the sophistication of possible attacks against mod-
ern machine learning systems, while also pointing towards promising directions for
increasing training robustness. Hardening machine learning pipelines remains an open
research direction with profound importance for the safe and ethical deployment of ar-
tificial intelligence systems, especially in security and safety-critical domains.

4 Chapter 1. Introduction

1.2 Thesis Organization

This thesis will start by presenting some relevant background information in Chapter 2,
which provide the reader with the necessary context to delve into the techniques pro-
posed in the subsequent chapters. In Chapter 3 we introduce explanation-guided poi-
soning attacks against malicious software detectors, showing how to leverage model
interpretation tools to launch stealthy backdoor attacks. This chapter is followed by
an in depth exploration of the applicability of backdoor attacks against network traf-
fic classifiers operating on aggregated flows, in Chapter 4. After presenting our novel
backdoor attacks, Chapter 5 presents possible approaches to mitigate this threat, based
on iterative re-training and cluster analysis. Chapter 6 then shows how different types
of training-time interference operations can be carried out by the adversary to achieve
results similar to targeted poisoning in decentralized learning systems. We conclude
in Chapter 7 with a summary of the contributions of this thesis, and an overview of
possible directions for future research.

5

Chapter 2

Background

In this chapter, we will cover some relevant background information that will help con-
textualize the work presented in this thesis. Starting with some notes on the use of
machine learning models in cybersecurity applications, we will then provide an intro-
duction to adversarial machine learning, and conclude with a quick overview on model
interpretation methods.

2.1 Machine Learning for Cybersecurity Applications

2.1.1 Malware Detection Systems

We can roughly distinguish the numerous solutions to the problem of automated ma-
licious software detection into two main classes based on their use of static or dynamic
analysis. Dynamic analysis systems execute binary files in a virtualized environment,
and record the behavior of the sample looking for indicators of malicious activities [137,
216, 4, 110, 192]. Meanwhile, static analyzers process executable files without running
them, extracting the features used for classification directly from the binary and its meta-
data. While both approaches have positive and negative aspects, many endpoint secu-
rity solutions tend to implement static analyzers due to the strict time constraints under
which they usually operate.

With the shift towards ML based classifiers, this second class can be further divided
into two additional subcategories: handcrafted feature-based detectors [186, 138, 196,
188, 5], and raw-binary analyzers [175, 47, 117]. We generally focus our attention, and
the attacks we develop in Chapter 3, on classifiers based on static features due to their
prevalence in providing pre-execution detection and prevention for many commercial
endpoint protection solutions [58, 54, 136].

6 Chapter 2. Background

2.1.2 Network Threats Detection

Machine learning methods have been successfully used to detect several cyber security
threats related to network traffic, including: malicious domains [8, 176, 9, 163, 159],
command-and-control communication between attackers and compromised hosts [151,
163], or malicious binaries used by adversaries for distributing exploit code and bot-
net commands [98, 217]. Several endpoint protection products [144, 96, 97] are now
integrating ML tools to proactively detect the rapidly increasing number of threats.

2.2 Adversarial Machine Learning

Adversarial Machine Learning is an extremely active research area, composed by a
number of sub-fields touching on different aspects of machine learning, from privacy
to integrity and from safety to fairness. For a detailed taxonomy of adversarial ML tech-
niques and objectives we refer the reader to a recent standardization effort by Oprea
and Vassilev [164].

This thesis will focus almost exclusively on the security aspects of adversarial ML per-
taining to integrity violations. Which means that the adversaries we consider have as
primary goal the ability to take control of the output of the victim model. While there are
multiple potential reasons why an adversary would want to gain control over a model’s
output, in the context of cybersecurity applications one of the most common motiva-
tion is to ensure that their malicious activities (software execution, network traffic, file
system activity, etc...) are not identified as suspicious by the targeted models.

Integrity attacks against ML models are generally grouped into two major categories
based on the stage of the ML pipeline at which they occur: inference-time attacks and
training-time attacks.

2.2.1 Inference-time Attacks

The first category is also commonly referred to as test-time or evasion attacks [215] (or
more commonly and less precisely adversarial examples). Generally evasion attacks are
aimed towards classifiers learned through supervised or semi-supervised training, and
their objective is to induce a mis-classification of the selected data point [21, 215] either
towards a randomly chosen class (untargeted) or towards a specific class chosen by the
adversary (targeted).

This class of attacks proceeds by altering a testing sample by adding a small perturba-
tion so that it is misclassified by the victim model. Here, the key term is "small". Using
large perturbations that semantically impact the nature of the test point, e.g. changing
a dog’s snout to that of a cat in an image classification task, would render any attack

2.2. Adversarial Machine Learning 7

trivial. Instead, the adversarial perturbations are designed to be either imperceptible to
human observers, in the case of vision, NLP, and audio classification tasks, or difficult
to identify with automated outlier detection tools for cybersecurity applications.

Evasion attacks have been extensively explored in the context of computer vision, nat-
ural language processing and, to a lesser extent, audio processing. They are the most
well known typology of attacks against ML, and likely the first line of attack against
modern models. Due to the sheer volume of research in this area, it would be impracti-
cal to provide here a detailed breakdown of all the studies on the subject, thus we point
the interested reader towards some resources that list the most relevant works in the
field [32, 39, 164].

Due to their immediate relevance in adversarial contexts, in the security space, previ-
ous research efforts have investigated the applicability of such techniques to malware
classification [21, 75, 249, 115, 209] and network traffic classification [82, 31, 15, 166, 45].

2.2.2 Training-time Attacks

More recently, however, poisoning attacks against ML, which manipulate the training
set (or other training parameters), have emerged as a top concern in industry [202].
This category, the main focus of this thesis, is itself a collection of different adversarial
processes against a victim learner aimed at different objectives.

The earliest approaches to training-time attacks consisted in introducing adversarially
modified data points in the victim’s training set [22] —from which derives the name
poisoning attacks—, and were generally targeted towards increasing the target model’s
error rate on the test set (often referred to as an availability objective [102]). Over time,
however, researchers developed different types of poisoning attacks aimed at a variety
of objectives.

While availability attacks are extremely impactful, they are also obvious to detect, and
their footprint can be quite large. To address these shortcomings, targeted poisoning
attacks were designed to induce a degradation in the performance of the victim classifier
only on specific points [210, 195], or entire data sub-populations [103], pre-determined
by the adversary. The work presented in Chapter 6 presents a technique to achieve
similar effects to targeted poisoning in a federated learning setup through network-level
adversarial interference.

Poisoning-augmented privacy attacks [220, 41] are another important training-time threat
against ML models. While not directly aimed at violating the victim’s model integrity
properties, these adversarial processes leverage integrity attacks during training to fa-
cilitate privacy attacks such as membership inference [35] at test time.

8 Chapter 2. Background

Backdoor attacks, introduced in the context of modern ML models by Gu et al. [78],
pursue a similar yet distinct goal: triggering a mis-classification towards a target class
whenever a specific pattern is inserted in the test sample without damaging the accu-
racy of the victim model on normal points.

Backdoor Attacks

In most of the work presented in Chapter 3 and Chapter 4 we focus on backdoor poison-
ing attacks, a notably dangerous technique that does not affect the model’s predictions
on clean test data. This behavior is obtained by introducing a trigger pattern in the
training data, and swapping the correct label for the target one so that the victim model
learns the association between pattern and target class. In this context, a backdoor trig-
ger is a specific combination of features and selected values1 that the victim model is
induced, during training, to associate with a target class. Once the model relies on the
backdoor pattern to distinguish the target, the adversary can inject the same watermark
in any data point to arbitrarily trigger the desired outcome during inference. In their
seminal work, Gu et al. [78] used a small pixel-based trigger pattern to misclassify im-
ages of handwritten digit and street sign classifiers.

The same objective as backdoor poisoning, was also achieved by Liu et al. [132], through
direct alteration of the model weights (model poisoning, also often referred to as trojan-
ing2).

Successive work by Turner et al. [223, 222] and Shafahi et al. [195] improved on these
attacks by proposing variants of both targeted and backdoor poisoning in computer
vision tasks that did not require any adversarial control of the training labels. These
variants are commonly known as clean-label poisoning attacks.

In the cybersecurity domain, the literature on backdoor attacks is more scarce, with
only a few methods designed via packet-level poisoning [92, 156], feature-space poison-
ing [11, 124], and label flipping [166]. Chapter 3 and Chapter 4 expand the knowledge in
this area by introducing backdoor attacks guided by insights gathered through model
interpretability tools, and applied to malware classification and aggregated network
traffic analysis.

1In the computer vision domain this usually corresponds to a selected pixel mask with associated pixel
values. [78], for instance, used a fixed trigger corresponding to a small yellow square, similar to a post-it
note. In a more general sense, any combination of features and values can act as a trigger pattern.

2Due to their common objective, the adversarial machine learning literature often uses the two terms,
backdoor and trojan, interchangeably. Given the difference in the methodology used by the authors of the
original papers, we will keep the two terms distinct.

2.3. Interpretable Machine Learning 9

2.3 Interpretable Machine Learning

Recent years have seen a remarkable expansion of the use cases of Machine Learning
systems in a variety of contexts. The progressive adoption of larger and more complex
models, however, is often seen as problematic due to the difficulty for human over-
seers to understand the causes of model predictions. Thus, the need to provide human-
interpretable explanations of model behaviors led to a surge of research in the area of
Interpretable ML (also referred to as explainable AI, or XAI).

A large variety of interpretation methods have been proposed that can be categorized
according to different criteria. A comprehensive examination of the subject can be found
in [147]. In the work presented here, the focus will be on post-hoc, model agnostic,
local attribution methods: techniques that explain a single prediction of any trained
classifier by assigning weights to each feature based on their contribution to the final
outcome. The rationale for this approach stems from how the explanation values would
be leveraged by an attacker: as sources of insight into which features drive particular
classification results, and how to perturb them to accomplish the adversarial objective.

One of the most well-known local model-agnostic explanation methods is SHAP (SHap-
ley Additive exPlanations) by Lundberg et al. [133, 134], based on the cooperative game
theory concept of Shapley values3. Its main objective is to explain the output logits of
a model on a given test point by assigning a value to each feature composing the data
point that reflects the contribution of the feature to the final output.

To this end, the framework trains a surrogate linear explanation model of the form:

g(x→) = ε0 +
M

∑
j=1

εjx→j (2.1)

Where x→j is the jth feature of transformed sample x→, and εj is its contribution to the
model’s decision. SHAP values satisfy three key properties: (i) local accuracy, which
requires the explanation model g to match the output of the target f model on the input
f (x) = g(x→); (ii) missingness, requiring missing features in the original input to have no
attributed inpact; (iii) consistency, which states that if the target model changes so that
the marginal contribution of a feature value increases or stays equal, then the relative
SHAP value will also increase or stay equal.

Importantly, the SHAP framework requires only query access to the target classifier,
which is of particular importance in an adversarial setting. Moreover SHAP has been

3The objective of Shapley values is to fairly assign payoffs to participants in repeated cooperative games.
In the context of ML, the features representing each data point act as the participants of the game, and
the outcome of the game corresponds to the output of the classifier. https://en.wikipedia.org/wiki/

Shapley_value

https://en.wikipedia.org/wiki/Shapley_value
https://en.wikipedia.org/wiki/Shapley_value

10 Chapter 2. Background

shown to improve over earlier model interpretation approaches, including LIME [180]
Integrated Gradients [213], DeepLIFT [201] and Layer-Wise Relevance Propagation [24].
Linardatos et al. [127] provide a comprehensive taxonomy of these methods, and con-
clude that, among the black-box techniques explored, SHAP is the most complete, pro-
viding explanations for any model and data type both at a global and local scale.

In our studies, we also experiment with estimating feature importance through Gini in-
dex [71] and information gain [114, 120] – two of the most popular splitting algorithms
in decision trees. A decision tree is built recursively, by choosing at each step the fea-
ture that provides the best split. Thus, the tree offers a natural interpretability, and a
straightforward way to compute the importance of each feature towards the model’s
predictions.

11

Chapter 3

Poisoning Static Malware
Classification

Malware classification is a typical security scenario where the objectives of the parties
involved induce a clear incentive for poisoning attacks. Any successful malware cam-
paign, in fact, relies on the malicious software not being identified before it can ac-
complish its mission. Thus, the ability to arbitrarily alter the decision of a classifier
represents a great asset in the adversary’s arsenal. In this chapter we will explore new
strategies, introduced in [193], to perform backdoor poisoning attacks on malware clas-
sifiers with limited access to the training process.

Chapter Summary

Training pipelines for machine learning (ML) based malware classification often rely
on crowdsourced threat feeds, exposing a natural attack injection point. In this work,
we study the susceptibility of feature-based ML malware classifiers to backdoor poi-
soning attacks, specifically focusing on challenging “clean label” attacks where at-
tackers do not control the sample labeling process. We propose the use of techniques
from explainable machine learning to guide the selection of relevant features and val-
ues to create effective backdoor triggers in a model-agnostic fashion. Using multiple
reference datasets for malware classification, including Windows PE files, PDFs, and
Android applications, we demonstrate effective attacks against a diverse set of ma-
chine learning models and evaluate the effect of various constraints imposed on the
attacker. To demonstrate the feasibility of our backdoor attacks in practice, we create
a watermarking utility for Windows PE files that preserves the binary’s functionality,
and we leverage similar behavior-preserving alteration methodologies for Android
and PDF files. Finally, we experiment with potential defensive strategies and show
the difficulties of completely defending against these attacks, especially when the
attacks blend in with the legitimate sample distribution.

12 Chapter 3. Poisoning Static Malware Classification

Users submit binaries to
crowdsourced threat intelligence

platforms for evaluation.
Attacker submits poisoned

benign files.

The platforms collect data
and assign labels.

The company obtains the outsourced data and
uses it in the training of a ML malware classifier.

Attacker can now submit malware
containing the same backdoor. The

model will be fooled into recognizing it
as benign.

Gathering
& Labeling

Outsourced data Proprietary data

Preprocessing &
Feature Extraction

Model training

ML malware
classifier

FIGURE 3.1: Overview of the attack on the training pipeline for ML-based
malware classifiers.

3.1 Problem Definition

The endpoint security industry has increasingly adopted machine learning (ML) based
tools as integral components of their defense-in-depth strategies. In particular, classi-
fiers using features derived from static analysis of binaries are commonly used to per-
form fast, pre-execution detection and prevention on the endpoint, and often act as the
first line of defense for end users [58, 54, 136]. Concurrently, we are witnessing a cor-
responding increase in the attention dedicated to adversarial attacks against malicious
software (malware) detection models. The primary focus in this area has been the de-
velopment of evasion attacks [215, 73, 21], where the adversary’s goal is to alter the data
point at inference time in order to induce a misclassification.

However, in this work, we focus on the insidious problem of poisoning attacks [22],
which attempt to influence the ML training process, and in particular backdoor [78] poi-
soning attacks, where the adversary places a carefully chosen pattern into the feature
space such that the victim model learns to associate its presence with a class of the at-
tacker’s choice. While evasion attacks have previously been demonstrated against both
open-source [135] and commercial malware classifiers [203], backdoor poisoning offers
attackers an attractive alternative that requires more computational effort at the outset,
but which can result in a generic evasion capability for a variety of malware samples
and target classifiers. These backdoor attacks have been shown to be extremely effec-
tive when applied to computer vision models [44, 132] without requiring a large number
of poisoned examples, but their applicability to the malware classification domain, and
feature-based models in general, has not yet been investigated.

Poisoning attacks are a danger in any situation where a possibly malicious third party
has the ability to tamper with a subset of the training data. For this reason, they have
come to be considered as one of the most relevant threats to production deployed ML
models [202]. We argue that the current training pipeline of many security vendors pro-
vides a natural injection point for such attacks. Security companies, in fact, often rely

3.1. Problem Definition 13

on crowd-sourced threat feeds [2, 140, 228, 229] to provide them with a large, diverse
stream of user-submitted binaries to train their classifiers. This is chiefly due to the sheer
quantity of labeled binaries needed to achieve satisfactory detection performance (tens
to hundreds of millions of samples), and specifically the difficulty in adequately cov-
ering the diverse set of goodware observed in practice (e.g., custom binaries, multiple
versions of popular software, software compiled with different compilers, etc.).

One complication in this scenario, however, is that the labels for these crowd-sourced
samples are often generated by applying several independent malware detection en-
gines [106], which would be impossible for an attacker to control. Therefore, in this
work, we study clean-label backdoor attacks [195, 223] against ML-based malware clas-
sifiers by developing a new, model-agnostic backdoor1 methodology. Our attack injects
backdoored benign samples in the training set of a malware detector, with the goal of
changing the prediction of malicious software samples watermarked with the same pat-
tern at inference time.

To decouple the attack strategy from the specifics of the ML model, our main insight
is to leverage tools from ML explainability, namely SHapley Additive exPlanations
(SHAP) [133], to select a small set of highly effective features and their values for creat-
ing the watermark. We evaluate our attack against a variety of machine learning models
trained on widely-used malware datasets, including EMBER (Windows executables) [5],
Contagio (PDFs) [204], and Drebin (Android executables) [12]. Additionally, we explore
the impact of various real-world constraints on the adversary’s success, and the viability
of defensive mechanisms to detect the attack.

Overall, our results show that the attack achieves high success rates across a number of
scenarios and that it can be difficult to detect due to the natural diversity present in the
goodware samples. The contributions of this work can be summarized as follows:

(i) We highlight a natural attack point which, if left unguarded, may be used to com-
promise the training of commercial, feature-based malware classifiers.

(ii) We propose the first general, model-agnostic methodology for generating back-
doors for feature-based classifiers using explainable machine learning techniques.

(iii) We demonstrate that explanation-guided backdoor attacks are feasible in prac-
tice by developing a backdooring utility for Windows PE files, and using similar
functionality-preserving methods for Android and PDF files. We show that these
methods can satisfy multiple, realistic adversarial constraints.

1We will refer to the combination of features and values used to induce the misclassification, as trigger,
watermark, or simply backdoor.

14 Chapter 3. Poisoning Static Malware Classification

TABLE 3.1: Summary of attacker scenarios. Fullness of the circle indicates
relative level of knowledge or control.

Attacker Knowledge Control
Feature Set Model Architecture Model Parameters Training Data Features Labels

unrestricted
data_limited

transfer
black_box

constrained

(iv) Finally, we evaluate mitigation techniques and demonstrate the challenges of fully
defending against stealthy poisoning attacks.

3.2 Threat Model

A typical training pipeline for a ML-based malware classifier, summarized in Figure 3.1,
commonly starts with the acquisition of large volumes of labeled binaries from third-
party threat intelligence platforms. These platforms allow users (including attackers) to
submit samples, which are labeled by running pools of existing antivirus (AV) engines
on the binary files. Companies can then acquire the labeled data from the platforms.
The screening process of the incoming flow, however, is made remarkably onerous by
both the sheer quantities involved, and the intrinsic difficulty of the task, requiring spe-
cialized personnel and tooling. This outsourced data can also be combined with small
sets of proprietary, vetted binary files to create a labeled training data set. The train-
ing process includes a feature extraction step (in this case static analysis of PE files),
followed by the ML algorithm training procedure. The trained malware classifiers are
then deployed in the wild, and applied to new binary files to generate a label, malicious
(malware) or benign (goodware).

Threat intelligence data comes with a set of labels determined by third-party AV analyz-
ers, that are not under direct control of the attacker. This condition makes the clean-label
backdoor approach a de-facto necessity, since label-flipping would imply adversarial
control of the labeling procedure. The adversary’s goal is thus to generate backdoored
benign binaries, which will be disseminated through these labeling platforms, and will
poison the training sets for downstream malware classifiers. Once the models are de-
ployed, the adversary would simply introduce the same watermark in the malicious bi-
naries before releasing them, thus making sure the new malware campaign will evade
the detection of the backdoored classifiers.

3.2. Threat Model 15

3.2.1 Adversary’s Goals and Capabilities

A large fraction of the backdoor attack literature adopts the BadNets threat model [78],
which defined: (i) an “Outsourced Training Attack”, where the adversary has full con-
trol over the training procedure, and the end user is only allowed to check the training
using a held-out validation dataset; and (ii) a “Transfer Learning Attack”, in which the
user downloads a pre-trained model and fine-tunes it. We argue that, in the context
we are examining, this threat model is difficult to apply directly. Security companies are
generally risk-averse and prefer to either perform the training in-house, or outsource the
hardware while maintaining full control over the software stack used during training.
Similarly, we do not believe the threat model from Liu et al. [132], where the attacker
partially retrains the model, applies in this scenario.

Adversary’s Goals. Similarly to most backdoor poisoning settings, the attacker goal is
to alter the training procedure, such that the resulting backdoored classifier, Fb, differs
from a cleanly trained classifier F, where F, Fb : X ↑ Rn ↓ {0, 1}. An ideal Fb has the
exact same response to a clean set of inputs X as F, whereas it generates an adversarially-
chosen prediction, yb, when applied to backdoored inputs, Xb. These goals can be sum-
marized as:

Fb(X) = F(X); F(Xb) = y; Fb(Xb) = yb ↔= y (3.1)

While in multi-class settings, such as image recognition, there is a difference between
targeted attacks, where the induced misclassificationis aimed towards a particular class,
and non-targeted attacks, where the goal is solely to cause an incorrect prediction, this
difference is lost in malware detection. Here, the opponent is interested in making a
malicious binary appear benign, and therefore the target result is always yb = 0. We
use class 0 for benign software, and class 1 for malicious software 2. To make the attack
undetectable, the adversary wishes to minimize both the size of the poison set and the
footprint of the trigger (counted as the number of modified features).

Adversary’s Capabilities. We can characterize the adversary by the degree of knowl-
edge and control they have on the components of the training pipeline, as shown in
Table 3.1. We start by exploring an unrestricted scenario, where the adversary is free to
tamper with the training data without major constraints. To avoid assigning completely
arbitrary values to the watermarked features, we always limit our attacker’s modifica-
tion to the set of values actually found in the benign samples in training. This scenario

2A multi-class setting, where the attacker disguises a malware binary of one family as another family
could be constructed, but such a scenario is of lesser practical impact, and thus we will not consider it here.

16 Chapter 3. Poisoning Static Malware Classification

FIGURE 3.2: Force plot showing SHAP values for a benign sample.

allows us to study the attack and expose its main characteristics under worst-case con-
ditions from the defender’s point of view.

We also examine various constraints on the attacker, such as restricted access to the
training set (data_limited), limited access to the target model (transfer), and limited knowl-
edge of the model architecture (black_box). Finally, it is relevant to consider a scenario,
constrained, where the adversary is strictly constrained in both the features they are al-
lowed to alter and the range of values to employ. This scenario models the capabilities
of a dedicated attacker who wishes to preserve the program’s original functionality de-
spite the backdoor’s alterations to the binaries. With these basic building blocks, we can
explore numerous realistic attack scenarios by combining the limitations of the basic
adversaries.

3.3 Explanation-Guided Backdoor Attacks

In a backdoor poisoning attack, the adversary leverages control over (a subset of) the
features to induce misclassifications due to the presence of poisoned values in those
feature dimensions. Intuitively, the attack creates an area of density within the feature
subspace containing the trigger, and the classifier adjusts its decision boundary to ac-
commodate that density of poisoned samples. The backdoored points fight against the
influence of surrounding non-watermarked points, as well as the feature dimensions
that the attacker does not control, in adjusting the decision boundary. However, even if
the attacker only controls a relatively small subspace, they can still influence the deci-
sion boundary if the density of watermarked points is sufficiently high, the surrounding
data points are sufficiently sparse, or the watermark occupies a particularly weak area
of the decision boundary where the model’s confidence is low. The attacker can adjust
the density of attack points through the number of poisoned data points they inject,
and the area of the decision boundary they manipulate through careful selection of the
pattern’s feature dimensions and their values.

Therefore, there are two natural strategies for developing successful backdoors: (1)
search for areas of weak confidence near the decision boundary, where the watermark
can overwhelm existing weak evidence; or (2) subvert areas that are already heavily ori-
ented toward goodware so that the density of the backdoored subspace overwhelms the

3.3. Explanation-Guided Backdoor Attacks 17

signal from other nearby samples. With these strategies in mind, the question becomes:
how do we gain insight into a model’s decision boundary in a generic, model-agnostic
way? We argue that model explanation techniques, like SHapley Additive exPlanations
(SHAP), are a natural way to understand the orientation of the decision boundary rela-
tive to a given sample.

In our task positive SHAP values indicate features that are pushing the model toward a
decision of malware, while negative SHAP values indicate features pushing the model
toward a goodware decision. As a practical example, Figure 3.2 shows a force plot of the
SHAP values ‘pushing’ against each other to arrive at an output score of -0.15 (↗ 46%),
with major_linker_version contributing significantly to the classification as goodware,
while num_read_and_execute_sections contributes significantly toward classification as
malware. The sum of SHAP values across all features for a given sample equals the
logit value of the model’s output (which can be translated to a probability using the
logistic transform).

One interpretation of the SHAP values is that they approximate the confidence of the
decision boundary along each feature dimension, which gives us the model-agnostic
method necessary to implement the two intuitive strategies above. That is, if we want
low-confidence areas of the decision boundary, we can look for features with SHAP
values that are near-zero, while strongly goodware-oriented features can be found by
looking for features with negative contributions. Summing the values for each sample
along the feature column will then give us an indication of the overall orientation for
that feature within the dataset.

3.3.1 Building Blocks

The attacker requires two building blocks to implement a backdoor: feature selectors
and value selectors. Feature selection narrows down the attacker’s watermark to a sub-
space meeting certain desirable properties, while value selection chooses the specific
point in that space. Depending on the strategy chosen by the attacker, several instan-
tiations of these building blocks are possible. Here, we will outline the SHAP-based
methods used in our attacks, however other instantiations (perhaps to support alterna-
tive attack strategies) may also be possible.

Feature Selection

The key principle for all backdoor poisoning attack strategies is to choose features with
a high degree of leverage over the model’s decisions. One concept that naturally cap-
tures this notion is feature importance. For instance, in a tree-based model, feature
importance is calculated from the number of times a feature is used to split the data and

18 Chapter 3. Poisoning Static Malware Classification

how good those splits are at separating the data into pure classes, as measured by Gini
impurity. Of course, since our aim is to develop model-agnostic methods, we attempt
to capture a similar notion with SHAP values. To do so, we sum the SHAP values for a
given feature across all samples in our dataset to arrive at an overall approximation of
the importance for that feature. Since SHAP values encode both directionality (i.e., class
preference) and magnitude (i.e., importance), we can use these values in two unique
ways.

LargeSHAP : By summing the individual SHAP values, we combine the individual
class alignments of the values for each sample to arrive at the average class alignment
for that feature. Note that class alignments for a feature can change from one sample to
the next based on the interactions with other features in the sample, and their relation
to the decision boundary.

Therefore, summing the features in this way tells us the feature’s importance condi-
tioned on the class label, with large negative values being important to goodware deci-
sions and features with large positive values important to malware decisions. Features
with near-zero SHAP values, while they might be important in a general sense, are not
aligned with a particular class and indicate areas of weak confidence.

LargeAbsSHAP : An alternative approach is to ignore the directionality by taking the
absolute value of the SHAP values before summing them. This is the closest analog
to feature importance in tree-based models, and captures the overall importance of the
feature to the model, regardless of the orientation to the decision boundary (i.e., which
class is chosen).

Value Selection

Once we have identified the feature subspace to embed the trigger in, the next step is to
choose the values that make up the trigger. However, due to the strong semantic restric-
tions of the binaries, we cannot simply choose any arbitrary value for our backdoors.
Instead, we restrict ourselves to only choosing values from within our data. Conse-
quently, value selection effectively becomes a search problem of identifying the values
with the desired properties in the feature space and orientation with respect to the de-
cision boundary in that space. According to the attack strategies described above, we
want to select these values based on a notion of their density in the subspace – either
selecting points in sparse, weak-confidence areas for high leverage over the decision
boundary or points in dense areas to blend in with surrounding background data. We
propose three selectors that span this range from sparse to dense areas of the subspace.

3.3. Explanation-Guided Backdoor Attacks 19

MinPopulation : To select values from sparse regions of the subspace, we can simply
look for those values that occur with the least frequency in our dataset. The MinPopu-

lation selector ensures both that the value is valid with respect to the semantics of the
binary and that, by definition, there is only one or a small number of background data
points in the chosen region, which provides strong leverage over the decision boundary.

CountSHAP : On the opposite side of the spectrum, we seek to choose values that
have a high density of goodware-aligned data points, which allows our watermark to
blend in with the background goodware data. Intuitively, we want to choose values
that occur often in the data (i.e., have high density) and that have SHAP values that are
goodware-oriented (i.e., large negative values). We combine these two components in
the following formula:

arg min
v

α

(
1
cv

)
+ ϱ(∑

xv↑X
Sxv) (3.2)

where α, ϱ are parameters that can be used to control the influence of each component of
the scoring metric, cv is the frequency of value v across the feature composing the trigger,
and ∑xv↑X Sxv sums the SHAP values assigned to each component of the data vectors
in the training set X, having the value xv. In our experiments, we found that setting
α = ϱ = 1.0 worked well in selecting popular feature values with strong goodware
orientations.

CountAbsSHAP : One challenge with the CountSHAP approach is that while the trig-
ger might blend in well with surrounding goodware, it will have to fight against the
natural background data for control over the decision boundary. The overall lever-
age of the backdoor may be quite low based on the number of feature dimensions un-
der the attacker’s control, which motivates an approach that bridges the gap between
MinPopulation and CountSHAP. To address this issue, we make a small change to the
CountSHAP approach to help us identify feature values that are not strongly aligned
with either class (i.e., it has low confidence in determining class). As with the LargeAb-

sSHAP feature selector, we can accomplish this by simply summing the absolute value
of the SHAP values, and looking for values whose sum is closest to zero:

arg min
v

α

(
1
cv

)
+ ϱ(∑

xv↑X
|Sxv |) (3.3)

3.3.2 Attack Strategies

With the feature selection and value selection building blocks in hand, we now propose
two algorithms for combining them to realize the intuitive attack strategies above.

20 Chapter 3. Poisoning Static Malware Classification

Algorithm 1: Independent selection.
Data: N = trigger size;
X = Training data matrix;
S = Matrix of SHAP values computed on training data;
Result: w = mapping of features to values.
begin

w ↘≃ map();
f eats ↘≃ X. f eatures;

// Get set of features to attack
F ↘≃ FeatureSelector(S, f eats, N);

// Get list of values to assign
V ↘≃ ValueSelector(S, X, F);

w[f] = v;

Independent Selection. Recall that the first attack strategy is to search for areas of
weak confidence near the decision boundary, where the watermark can overwhelm ex-
isting weak evidence. The best way of achieving this objective across multiple feature
dimensions is through Independent selection of the backdoor, thereby allowing the ad-
versary to maximize the effect of the attack campaign by decoupling the two selection
phases and individually picking the best combinations. Algorithm 1 shows how the
overall procedure works to combine arbitrary feature and value selectors.

For our purposes, the best approach using our building blocks is to select the most
important features using LargeAbsSHAP and then select values using either MinPop-

ulation or CountAbsSHAP. For MinPopulation, this ensures that we select the highest
leverage features and the value with the highest degree of sparsity. Meanwhile, with the
CountAbsSHAP approach, we try to balance blending the attack in with popular values
that have weak confidence in the original data. While we find that this attack strongly
affects the decision boundary, it is also relatively easy to mitigate against because of
how unique the watermarked data points are, as we will show in Section 3.6.

Greedy Combined Selection. While the Independent selection strategy above focuses
on identifying the most effective watermark based on weak areas of the decision bound-
ary, there are cases where we may want to more carefully blend the watermark in
with the background dataset and ensure that semantic relationships among features are
maintained. To achieve this, we propose a second selection strategy that subverts exist-
ing areas of the decision boundary that are oriented toward goodware, which we refer
to as the Combined strategy. In the Combined strategy, we use a greedy algorithm to
conditionally select new feature dimensions and their values such that those values are

3.3. Explanation-Guided Backdoor Attacks 21

Algorithm 2: Greedy combined selection.
Data: N = trigger size;
X = Training data matrix;
S = Matrix of SHAP values computed on training data;
Result: w = mapping of features to values.
begin

w ↘≃ map();
selectedFeats ↘≃ ∅;
Slocal ↘≃ S;
feats ↘≃ X.features;
Xlocal ↘≃ X;

while len(selectedFeats) < N do
feats = feats \ selectedFeats;

// Pick most benign oriented (negative) feature
f ↘≃ LargeSHAP (Slocal , feats, 1, goodware);

// Pick most benign oriented (negative) value of f
v ↘≃ CountSHAP (Slocal , Xlocal , f, goodware);

selectedFeats.append(f);
w[f] = v;

// Remove vectors without selected (f , v) tuples
mask ↘≃ Xlocal [:, f] == v;
Xlocal = Xlocal[mask];
Slocal = Slocal[mask];

consistent with existing goodware-oriented points in the attacker’s dataset, as shown in
Algorithm 2.

We start by selecting the most goodware-oriented feature dimension using the Large-

SHAP selector and the highest density, goodware-oriented value in that dimension us-
ing the CountSHAP selector. Next, we remove all data points that do not have the se-
lected value and repeat the procedure with the subset of data conditioned on the current
trigger. Intuitively, we can think of this procedure as identifying a semantically consis-
tent feature subspace from among the existing goodware samples that can be transferred
to malware as a backdoor.

Since we are forcing the algorithm to select a pattern from among the observed good-
ware samples, that trigger is more likely to naturally blend in with the original data
distribution, as opposed to the Independent strategy, which may produce backdoors
that are not ‘near’ any natural feature subspace. Indeed, we have found that this Com-

bined process results in hundreds or thousands of background points with trigger sizes
of up to 32 features in the case of Windows PE files. By comparison, the Independent

22 Chapter 3. Poisoning Static Malware Classification

TABLE 3.2: Performance metrics for the clean models.

Model F1 Score FP rate FN rate Dataset
LightGBM 0.9861 0.0112 0.0167 EMBER
EmberNN 0.9911 0.0067 0.0111 EMBER

Random Forest 0.9977 0.0025 0.0020 Contagio
Linear SVM 0.9942 0.0026 0.07575 Drebin

algorithm quickly separates the watermark from all existing background points after
just three or four feature dimensions.

Moreover, since the selected backdoor pattern occupies a subspace with support from
real goodware samples, we can be assured that the combination of values selected in
that subspace are consistent with one another and with the semantics of the original
problem space. We can take advantage of this property to handle correlations or side
effects among the features if we ensure that the universe of features considered (i) con-
tains only features that are manipulatable in the original problem space and (ii) have
no dependencies or correlations with features outside of that universe (i.e., semantic
relationships are contained within the subspace). This is an assumption also found in
previous work on adversarial evasion attacks against malware classifiers [76, 75].

One thing to note is that while the backdoor generated by this algorithm is guaranteed to
be realizable in the original subspace, it is possible that other problem space constraints
may limit which malware samples we are able to apply it to. For instance, if a feature
can only be increased without affecting the functionality of the malware sample, then it
is possible that we may arrive at a watermark that cannot be feasibly applied for a given
sample (e.g., file size can only be increased). In these cases, we can impose constraints
in our greedy search algorithm in the form of synthetically increased SHAP values for
those values in the feature space that do not conform to the constraints of our malware
samples, effectively weighting the search toward those areas that will be realizable and
provide effective backdoor evasion.

3.4 Experimental Attack Evaluation

EMBER [5] is a representative public dataset of malware and goodware samples used
for malware classification, released together with a LightGBM gradient boosting model,
that achieves good binary classification performance. The EMBER3 dataset consists of
2,351-dimensional feature vectors extracted from 1.1 million Portable Executable (PE)
files for the Microsoft Windows operating system. The training set contains 600,000 la-
beled samples equally split between benign and malicious, while the test set consists of

3In this work we use EMBER 1.0

3.4. Experimental Attack Evaluation 23

(A) LightGBM target

(B) EmberNN target
FIGURE 3.3: Accuracy of the backdoor model over backdoored mali-
cious samples for unrestricted attacker. Lower Acc(Fb, Xb) is the result
of stronger attacks. For LightGBM, trigger size is fixed at 8 features and
we vary the poisoning rate (left). For EmberNN, we fix the poisoning rate

at 1% and vary the trigger size (right).

24 Chapter 3. Poisoning Static Malware Classification

200,000 samples, with the same class balance. All the binaries categorized as malicious
were reported as such by at least 40 antivirus engines on VirusTotal [229].

Following Anderson et al. [5], we used default parameters for training LightGBM (100
trees and 31 leaves per tree). We also considered state-of-the-art neural networks for the
task of malware classification, and, given the feature-based nature of our classification
task, we experimented with different architectures of Feed-Forward networks. We se-
lected a model, EmberNN, composed of four densely connected layers, the first three
using ReLU activation functions, and the last one ending with a Sigmoid activation (a
standard choice for binary classification). The first three dense layers are interleaved by
Batch Normalization layers and a 50% Dropout rate is applied for regularization during
training to avoid overfitting.

Performance metrics for both clean models (before the attacks are performed) on the
EMBER test set (Table 3.2) are comparable, with EmberNN performing slightly better
than the publicly released LightGBM model. In our experiments4, we are especially
interested in the following indicators for the backdoored model:

Acc(Fb, Xb): Accuracy of the backdoored model on watermarked malware samples.
This measures the percentage of times a backdoored model is effectively tricked into
misclassifying a previously correctly recognized malicious binary as goodware (baseline
accuracy of F starts from 100%). Therefore, the primary goal of the attacker is to reduce
this value.

Acc(Fb, X): Accuracy of the backdoored model on the clean test set. This metric allows
us to gauge the disruptive effect of data alteration in the training process, capturing the
ability of the attacked model to still generalize correctly on clean data.

FPb: False positives (FP) of the backdoored model. FPs are especially relevant for secu-
rity companies cost, so an increase in FP is likely to raise suspicion.

3.4.1 Attack Performance

Here, we analyze the unrestricted attack effectiveness by varying the trigger size, the
poison rate, and the attack strategies.

Targeting LightGBM. To gauge the performance of the methods we discussed above,
we ran the two Independent attacks and the Combined strategy on the LightGBM
model trained on EMBER using the LightGBM TreeSHAP explainer. Plotting attack
success rates for an 8-feature trigger, Figure 3.3a clearly highlights the correlation be-
tween increasing poison pool sizes and lower Acc(Fb, Xb). We see a similar trend of

4Code for these experiments is available at: https://github.com/ClonedOne/MalwareBackdoors

https://github.com/ClonedOne/MalwareBackdoors

3.4. Experimental Attack Evaluation 25

TABLE 3.3: LargeAbsSHAP x CountAbsSHAP - All features. Average
percentage over 5 runs.

Trigger
Size

Poisoned
Points

Acc(Fb, Xb) Acc(Fb, X) FPb

4 1500 65.8713 98.6069 0.0114
4 3000 55.8789 98.5995 0.0116
4 6000 40.3358 98.6081 0.0116
4 12000 20.1088 98.6060 0.0118
8 1500 30.8596 98.6335 0.0114
8 3000 10.1038 98.6212 0.0115
8 6000 2.8231 98.6185 0.0116
8 12000 0.0439 98.5975 0.0121
16 1500 2.4942 98.6379 0.0114
16 3000 0.9899 98.6185 0.0114
16 6000 0.0205 98.5948 0.0116
16 12000 0.0138 98.6323 0.0117

LightGBM

Trigger
Size

Poisoned
Points

Acc(Fb, Xb) Acc(Fb, X) FPb

16 3000 21.0122 99.0832 0.0073
16 6000 36.7591 99.0499 0.0082
16 12000 53.8470 99.0729 0.0079
32 3000 13.2336 99.0608 0.0078
32 6000 20.3952 99.1152 0.0070
32 12000 28.3413 99.0856 0.0074
64 3000 5.8046 99.0723 0.0084
64 6000 11.1986 99.0959 0.0078
64 12000 11.5547 99.0998 0.0070
128 3000 2.4067 99.0810 0.0075
128 6000 1.6841 99.0688 0.0075
128 12000 2.8298 99.1088 0.0074

EmberNN

TABLE 3.4: LargeAbsSHAP x MinPopulation - All features. Average per-
centage over 5 runs.

Trigger
Size

Poisoned
Points

Acc(Fb, Xb) Acc(Fb, X) FPb

4 1500 62.3211 98.5985 0.0115
4 3000 52.5933 98.6144 0.0114
4 6000 30.8696 98.6044 0.0116
4 12000 20.3445 98.5836 0.0118
8 1500 32.0446 98.6128 0.0114
8 3000 20.5850 98.6159 0.0115
8 6000 14.9360 98.6087 0.0115
8 12000 1.9214 98.6037 0.0117
16 1500 4.3328 98.6347 0.0114
16 3000 1.4490 98.6073 0.0115
16 6000 0.1670 98.6301 0.0115
16 12000 0.0026 98.6169 0.0118

LightGBM

Trigger
Size

Poisoned
Points

Acc(Fb, Xb) Acc(Fb, X) FPb

16 3000 18.8691 99.1219 0.0074
16 6000 33.5211 99.0958 0.0079
16 12000 50.6499 99.0942 0.0080
32 3000 9.1183 99.1189 0.0075
32 6000 12.1103 99.0827 0.0078
32 12000 14.6766 99.1127 0.0071
64 3000 3.4980 99.1170 0.0075
64 6000 6.2418 99.1234 0.0072
64 12000 6.8627 99.0941 0.0075
128 3000 0.9514 99.0675 0.0082
128 6000 1.6012 99.0824 0.0082
128 12000 1.6200 99.0816 0.0074

EmberNN

higher attack success rate when increasing the poison data set for different watermark
sizes (4, 8, and 16 features).

Table 3.3, Table 3.4, and Table 3.5 report additional detailed experimental results for the
multiple runs of the attack with the three different proposed strategies. All the attacks
were repeated for 5 times and the tables report average results.

Interestingly, the SHAP feature selection allows the adversary to use a relatively small
trigger, 8 features out of 2,351 in Figure 3.3a, and still obtain powerful attacks. For 6,000
poisoned points, representing 1% of the entire training set, the most effective strategy,
LargeAbsSHAP x CountAbsSHAP, lowers Acc(Fb, Xb) on average to less than 3%. Even
at much lower poisoning rates (0.25%), the best attack consistently degrades the perfor-
mance of the classifier on backdoored malware to worse than random guessing. All
the strategies induce small overall changes in the FPb under 0.001, with marginally
larger increases correlated to larger poison sizes. We also observe minimal changes in

26 Chapter 3. Poisoning Static Malware Classification

TABLE 3.5: Greedy Combined Feature and Value Selector - All features.
Average percentage over 5 runs.

Trigger
Size

Poisoned
Points

Acc(Fb, Xb) Acc(Fb, X) FPb

4 1500 63.3370 98.5976 0.0113
4 3000 60.6706 98.6320 0.0114
4 6000 54.3283 98.6211 0.0114
4 12000 40.2437 98.6099 0.0118
8 1500 49.5246 98.6290 0.0113
8 3000 37.3295 98.6153 0.0113
8 6000 23.6785 98.6147 0.0117
8 12000 17.7914 98.6282 0.0117
16 1500 0.8105 98.6195 0.0113
16 3000 0.6968 98.6170 0.0115
16 6000 0.0565 98.6241 0.0116
16 12000 0.0329 98.6173 0.0118

LightGBM

Trigger
Size

Poisoned
Points

Acc(Fb, Xb) Acc(Fb, X) FPb

16 3000 11.6613 99.1014 0.0082
16 6000 11.0876 99.1105 0.0078
16 12000 10.5981 99.0958 0.0079
32 3000 4.8025 99.0747 0.0087
32 6000 5.0524 99.1167 0.0082
32 12000 4.4665 99.1335 0.0072
64 3000 1.9074 99.1012 0.0076
64 6000 1.8246 99.0989 0.0077
64 12000 1.8364 99.1117 0.0071
128 3000 0.7356 99.0926 0.0082
128 6000 0.7596 99.1219 0.0080
128 12000 0.7586 99.1014 0.0072

EmberNN

Acc(Fb, X), on average below 0.1%.

Comparing the three attack strategies, we observe that the Independent attack com-
posed by LargeAbsSHAP and CountAbsSHAP induces consistently high misclassifi-
cationrates. It is also important to mention here that the Combined strategy is, as ex-
pected, remarkably stealthier. We compared the accuracy of the clean model on the clean
benign samples, against its accuracy of their respective backdoored counterparts, and
observed very small differences across all attack runs. In conclusion, we observe that the
attack is extremely successful at inducing targeted mis-classification in the LightGBM
model, while maintaining good generalization on clean data, and low false positive
rates.

Targeting EmberNN. Running the same series of attacks against EmberNN using the
GradientSHAP explainer, we immediately notice that the Neural Network is generally
more resilient to our attacks. Moreover, here the effect of trigger size is critical. Fig-
ure 3.3b shows the progression of accuracy loss over the watermarked malicious sam-
ples with the increase in trigger size, at a fixed 1% poisoning rate. For example, under
the most effective strategy, with a trigger size of 128 features, Acc(Fb, Xb) becomes on
average 0.75%, while Acc(Fb, Xb) averages 5.05% at 32 features.

A critical element that distinguishes the three strategies on EmberNN, is the difference
between the accuracy of the clean model over the clean and backdoored benign samples.
While, the other tracked metrics show a behavior similar to the case of LightGBM, good
generalization on clean data, with Acc(Fb, X) close to the original 99.11% in most cases,
and low false positives increase (⇐ 0.1 ≃ 0.2% average increase in FPb), a clean Em-
berNN model often fails almost completely in recognizing backdoored benign points as
goodware. Here, the Combined strategy emerges as a clear “winner,” being both very

3.4. Experimental Attack Evaluation 27

FIGURE 3.4: transfer Acc(Fb, Xb) for both models (other model used as
surrogate), as function of poisoned data percentage.

effective in inducing misclassification, and, simultaneously, minimizing the aforemen-
tioned difference, with an average absolute value of ⇐ 0.3%.

Interestingly, we also observed that the attack performance on the NN model is more
strongly correlated with the size of the backdoor trigger than with the poison pool size,
resulting in small (0.5%) injection volumes inducing appreciable misclassificationrates.

3.4.2 Limiting the Attacker

We consider here a transfer attacker without access to the model. This threat model pre-
vents the attacker from being able to compute the SHAP values for the victim model,
therefore, the backdoor has to be generated using a surrogate (or proxy) model sharing
the same feature space. We simulated this scenario by attempting a backdoor transfer-
ability experiment between our target models.

Fixing the trigger size to 16 features we attacked LightGBM with a backdoor generated
by the Combined strategy using the SHAP values extracted from an EmberNN surro-
gate model. Then we repeated a similar procedure by creating a backdoor using the
Independent strategy, with the combination of LargeAbsSHAP and CountAbsSHAP

for feature and value selection respectively, computed on a LightGBM proxy, and used
it to poison EmberNN’s training set. The Acc(Fb, Xb) loss for both scenarios is shown in
Figure 3.4.

28 Chapter 3. Poisoning Static Malware Classification

The empirical evidence observed supports the conclusion that our attacks are transfer-
able both ways. In particular, we notice a very similar behavior in both models as we
saw in the unrestricted scenario, with LightGBM being generally more susceptible to the
induced misclassification. In that case, the trigger generated using the surrogate model
produced a ⇐ 82.3% drop in accuracy on the backdoored malware set, for a poison size
of 1% of the training set.

Lastly, we evaluate the scenario in which the attacker has access to only a small subset of
clean training data and uses the same model architecture as the victim (i.e., data_limited).
We perform this experiment by training a LightGBM model with 20% of the training
data and using it to generate the trigger, which we then used to attack the LightGBM
model trained over the entire dataset. Using the Independent strategy with LargeAb-

sSHAP and CountAbsSHAP over 16 features and a 1% poison set size, we noticed very
little difference compared to the same attack where the SHAP values are computed over
the entire training set (⇐ 4% ∆ Acc(Fb, Xb)).

3.5 Problem-Space Considerations

In the previous section, we explored model-agnostic attack strategies when the attacker
has full control of the features and can change their values at will. A constrained attacker
has to expend non-trivial effort to ensure that the backdoor generated in feature-space
does not break the semantics or otherwise compromise the functionality of binaries in
the problem-space [173]; that is backdoored goodware must maintain the original label
and watermarked malware retain its malicious functionality.

3.5.1 Windows PEs

We implemented a backdooring utility using the pefile [37] library to create a generic tool
that attempts to apply a given watermark to arbitrary Windows binaries. Creating this
utility in a sufficiently general way required specialized knowledge of the file structure
for Windows Portable Executable (PE) files, in particular when adding sections to the
binaries. Doing so required extending the section table with the appropriate sections,
names, and characteristics, which in turn meant relocating structures that follow the
section table, such as data directories and the sections themselves, to allow for arbitrary
increases in the number of sections added.

We also encountered several challenges that required us to drop certain features and
consider dependencies among features that restrict the values they can take on. First, we
realized that the vast majority of the features in EMBER are based on feature hashing,
which is often used to vectorize arbitrarily large spaces into a fixed-length vector. For
example, strings uncovered in the binary may be hashed into a small number of buckets

3.5. Problem-Space Considerations 29

(A) LightGBM target

(B) EmberNN target
FIGURE 3.5: Accuracy of the backdoor model over watermarked mali-
cious samples. Lower Acc(Fb, Xb) is the result of stronger attacks. The
watermark uses the subset of 17 features of EMBER, modifiable by the

constrained adversary.

30 Chapter 3. Poisoning Static Malware Classification

to create a fixed-number of counts. Given the preimage resistance of the hash function,
directly manipulating these features by tampering with the binary would be extremely
difficult, and consequently we discard all hash-based features, leaving us with just 35
directly-editable, non-hashed features.

Next, we considered dependencies among the non-hashed features. As it turns out,
many of the features are derived from the same underlying structures and properties of
the binary, and may result in conflicting watermarks that cannot be simultaneously real-
ized. For example, the num_sections and num_write_sections features are related because
each time we add a writeable section, we necessarily increase the total number of sec-
tions. To handle these dependencies, we remove any features whose value is impacted
by more than one other feature (e.g., num_sections). This allows us to keep the maximal
number of features without solving complex constraint optimization problems.

The last challenge arose from the question of how to handle natural constraints of the
problem space, such as cases where the watermark might require us to remove URLs or
reduce the file size. Here, the attacker has two choices: reduce the set of files that can
be successfully watermarked or reduce the effectiveness of the watermark by adding
constraints to the search algorithm that ensure maximal applicability, as shown in Sec-
tion 3.3. Due to the large number of available Windows PE samples, we decided it was
best for the attacker to sacrifice the samples, rather than lose attack effectiveness. Later,
we will show the opposite case for Android malware, where imposing constraints on
the watermark was the preferable solution.

After reducing our set of features based on the above criteria, we are left with 17 fea-
tures that our generic watermarking utility can successfully manipulate on arbitrary
Windows binaries. Examples of backdoor patterns can be found in Table 3.6. As we will
see, despite the significant reduction in the space of available features, our proposed
attack strategies still show significant effectiveness. While developing the watermark-
ing utility was challenging, we believe it is well within the capabilities of a determined
attacker, and can subsequently be reused for a variety of attack campaigns.

3.5.2 Attack Efficacy

As shown in Figure 3.5, the effectiveness of the attack is slightly decreased when the
backdoor trigger is generated using only the 17 manipulable features supported by our
watermarking utility. Such a constrained adversary, is, as expected, strictly less powerful
than the unrestricted attacker we explored in Section 3.4. On the other hand, despite
the strong limitations introduced to ease practical implementation, we argue that the
average accuracy loss is still extremely relevant given the security critical application.

3.5. Problem-Space Considerations 31

TABLE 3.6: Watermarks for LightGBM and EmberNN used during feasi-
bility testing.

Feature LightGBM EmberNN

major_image_version 1704 14
major_linker_version 15 13
major_operating_system_version 38078 8
minor_image_version 1506 12
minor_linker_version 15 6
minor_operating_system_version 5 4
minor_subsystem_version 5 20
MZ_count 626 384
num_read_and_execute_sections 20 66
num_unnamed_sections 11 6
num_write_sections 41 66
num_zero_size_sections 17 17
paths_count 229 18
registry_count 0 33
size 1202385 817664
timestamp 1315281300 1479206400
urls_count 279 141

Moreover, if we allow the poison size to grow to 2% of the overall training set, we obtain
Acc(Fb, Xb) levels comparable with the unrestricted at 1% poison size on LightGBM.

To explore additional realistic scenarios, we combined the limitation over features con-
trol with lack of access to the original model, constrained - transfer. As in Section 3.4.2,
we generated the watermark using a surrogate model, with the most effective transfer
strategy we identified before, but this time restricted to the controllable features. We
observed an average Acc(Fb, Xb) of 54.53% and 56.76% for LightGBM and EmberNN
respectively.

An even weaker and stealthier attacker could be obtained combining the characteristics
of the previous adversary with a limited knowledge of the training data and the use of
the Combined strategy. We evaluate the effect of this constrained - transfer- data_limited
adversary, with a backdoor computed using an EmberNN surrogate, with access to only
20% of the training set and applied to a LightGBM victim. Despite the extreme limita-
tions imposed on the attacker, the effect on the model is still significant, with decreases
in accuracy on points containing the trigger ranging from ⇐ 10.8% at 1% poisoning, up
to ⇐ 40% for a 4% poisoning rate.

Lastly, we looked at the constrained - black_box scenario, where we produced the SHAP

32 Chapter 3. Poisoning Static Malware Classification

TABLE 3.7: Summary of results analyzing a random sample of 100 wa-
termarked goodware and malware samples in the dynamic analysis en-

vironment.

Dataset Label Result Count

Original
Goodware Dynamic Benign 100

Dynamic Malicious 0

Malware Dynamic Benign 7
Dynamic Malicious 93

LightGBM

Goodware
Failed 25

Dynamic Benign 75
Dynamic Malicious 0

Malware
Failed 23

Dynamic Benign 30
Dynamic Malicious 47

EmberNN

Goodware
Failed 33

Dynamic Benign 67
Dynamic Malicious 0

Malware
Failed 33

Dynamic Benign 23
Dynamic Malicious 44

values for only the manipulable features using the SHAP KernelExplainer, which oper-
ates purely by querying the model as a black-box. We target LightGBM, with the Large-

AbsSHAP x CountAbsSHAP strategy, poisoning 1% of the training set. The resulting
model exhibits an average Acc(Fb, Xb) of 44.62%, which makes this attacker slightly
weaker than one having access to model-specific SHAP explainers. It is relevant to note
here, that the adversary has to spend a significant amount of computation time to use
the SHAP KernelExplainer.

3.5.3 Behavior Preservation

We randomly selected the 100 goodware and 100 malware binaries from our dataset
and poisoned each of them with the backdoor for the LightGBM and EmberNN mod-
els, resulting in a total of 200 watermarked binaries for each model. To determine the
watermark effects on the binaries’ functionality, we run each sample in a dynamic anal-
ysis sandbox, which uses a variety of static, dynamic, and behavioral analysis methods
to determine whether a binary is malicious. This experiment helps evaluate three im-
portant aspects of our attack when applied in the real world: (i) the ability to keep
the original labels on watermarked goodware, (ii) the ability to maintain the original
malicious functionality of the watermarked malware, and (iii) the impact of semantic
restrictions on the features the adversary can use to carry out the poisoning.

3.5. Problem-Space Considerations 33

The original and backdoored binaries were submitted to a dynamic analysis environ-
ment with an execution timeout of 120 seconds. Table 3.7 shows the results of our ex-
periments. In the case of the LightGBM and EmberNN watermarks, both goodware
and malware have similar numbers of failed watermarking attempts due to the phys-
ical constraints on the binaries, with the most prevalent reason (>90%) being binaries
that were too large for the selected size watermark. For those files that were success-
fully watermarked, we observed that goodware always maintained its original benign
label, while malware retained its malicious functionality in 61-66% of the cases. We also
scanned our watermarked binaries with ESET and Norton AntiVirus signature-based
antivirus engines, similar to those used by crowdsourced threat intelligence feeds, and
found that none of the goodware changed labels due to the presence of our backdoor.

Overall, this indicates that an attacker could use up to 75% of the observed goodware
and 47% of the observed malware in these threat intelligence feeds to launch their back-
door poisoning attack. This is sufficient in real-world attacks as the adversary needs a
small percentage of poisoned binaries to execute the attack. Finally, it is important to
point out that our evaluation here focused on an adversary using commodity goodware
and malware. However, an advanced attacker may produce their own software to better
align with the chosen watermark values and maximize the attack impact.

3.5.4 Other Datasets

PDF files and Android applications have been the object of a large body of research
on malware classification and classifier evasion. Therefore, we focused on these two
domains as examples for the adaptability of our explanation-based attack.

PDF Files. We worked with the Contagio5 PDF data, consisting of 10,000 samples
evenly distributed between benign and malicious, with 135-dimensional feature vec-
tors extracted according to PDFRate [204] specification. To ensure our modifications
were behavior-preserving, we developed a Python 3 port of the feature editor released6

with Mimicus [205]. This tool allowed us to parse the PDF files, apply the desired back-
door pattern, and read back a new feature vector after the poisoning to account for
possible side effects, such as alterations in various size-based features.

Unfortunately, during our experimentation we ran into several bugs in the Mimicus
feature editor that lead to inconsistent application of our otherwise valid watermark to
the PDFs. In particular, these issues forced us to reduce our trigger pattern to only 30 of
the 35 features reported as modifiable in the paper, and to restrict our poisoning pool to
only those files that were correctly backdoored. Fixing these issues is beyond the scope

5
http://contagiodump.blogspot.com/

6
https://github.com/srndic/mimicus

http://contagiodump.blogspot.com/
https://github.com/srndic/mimicus

34 Chapter 3. Poisoning Static Malware Classification

(A) Random Forest classifier on Contagio data.

(B) Linear SVM classifier on Drebin data.
FIGURE 3.6: 50 attack runs for Contagio and 10 for Drebin, using the

Combined strategy, with a 30-features trigger.

3.5. Problem-Space Considerations 35

of this work, but despite these limitations we were still able to poison enough samples
to mount successful attacks.

Android Applications. In the Android domain, we used the well-studied Drebin [12]
dataset containing 5,560 malicious and 123,453 benign apps, represented by Boolean
vectors indicating which of the over 545,000 statically extracted features are present in
the application. Such a large space of features is divided into 8 logical subsets, S1 ≃ S4

being characteristics of the Android manifest file, and S5 ≃ S8 being extracted from the
disassembled code.

To ensure no loss of functionality was inadvertently sustained as side effect of the trigger
application, we borrowed the technique specified by Grosse et al. [76, 75]. First, we re-
stricted ourselves to only altering features belonging to subsets S1 and S2, representing
the list of hardware components and the list of permissions requested by the application,
respectively. Both these subsets belong to the manifest class of features and can be mod-
ified by changing a single line in the manifest file. Second, we forced our backdoor to
be exclusively additive, meaning that no feature could be removed from an application
as result of the poisoning.

Other advanced (and computationally expensive) techniques may also be used to in-
crease the number of manipulable features available to our attack strategy while still
ensuring behavior preservation, such as organ harvesting [173] for adversarial Android
malware or behavioral oracles [242] for PDF files. We believe that the improvement of
feature-space to problem-space mapping methods, will greatly improve the effective-
ness of explanation-guided poisoning attacks.

Attack Efficacy. Having observed how our Combined strategy is both stealthy (more
on this in Section 3.6), and especially adept at generating behavior preserving back-
doors, we employed it for our experiments on the Contagio and Drebin datasets. In
both cases, we use the original model architecture proposed in the literature, therefore,
we test our attack on a Random Forest classifier for the PDF files, and a Linear Support
Vector Machine (SVM) classifier for the Android applications.

Figure 3.6a shows the reduction in accuracy of the poisoned Random Forest induced by
our constrained adversary. It is interesting to observe that, probably due to the small size
of the dataset combined with the necessity of limiting the poisoning pool to only the
PDF files correctly modified by the editor utility, there appears to be a large amount of
variance in the attack effectiveness at lower poison percentages. These effects fade away
with larger poisoning pools. Overall, the attack is generally very successful, inducing,
for instance, an average 21.09% Acc(Fb, Xb), at 1.5% poisoning rate.

36 Chapter 3. Poisoning Static Malware Classification

TABLE 3.8: Mitigation results for both LightGBM and EmberNN. All at-
tacks were targeted towards the 17 controllable features (see Section 3.5),
with a 1% poison set size, 6000 backdoored benign samples. We show
Acc(Fb, Xb) for the backdoored model, and after the defense is applied.
We also include number of poisoned and goodware points filtered out by

the defensive approaches.

Target Strategy Acc(Fb, Xb) Mitigation New Acc(Fb, Xb) Poisons Goodware
(after attack) (after defense) Removed Removed

LightGBM

LargeAbsSHAP x
MinPopulation 0.5935

HDBSCAN 0.7422 3825 102251
Spectral Signature 0.7119 962 45000

Isolation Forest 0.9917 6000 11184

LargeAbsSHAP x
CountAbsSHAP 0.5580

HDBSCAN 0.7055 3372 93430
Spectral Signature 0.6677 961 44999

Isolation Forest 0.9921 6000 11480

Combined Feature
Value Selector 0.8320

HDBSCAN 0.8427 1607 115282
Spectral Signature 0.7931 328 45000

Isolation Forest 0.8368 204 8927

EmberNN

LargeAbsSHAP x
MinPopulation 0.4099

HDBSCAN 0.3508 3075 137597
Spectral Signature 0.6408 906 45000

Isolation Forest 0.9999 6000 14512

LargeAbsSHAP x
CountAbsSHAP 0.8340

HDBSCAN 0.5854 2499 125460
Spectral Signature 0.8631 906 45000

Isolation Forest 0.9999 6000 15362

Combined Feature
Value Selector 0.8457

HDBSCAN 0.8950 1610 120401
Spectral Signature 0.9689 904 45000

Isolation Forest 0.8030 175 13289

Applying the explanation attack to the Android data proved somewhat more challeng-
ing due to the sparsity of the feature space. To handle the dimensionality issue, we
first used L1 regularized logistic regression to select a subset of 991 features, then we
trained a surrogate LightGBM mode and used the surrogate to compute the SHAP val-
ues. This corresponds to a transfer-constrained adversary. A 30-feature backdoor thus
computed was then applied to the original 545K-dimensional vectors used to train the
Linear SVM. Figure 3.6b shows the effect of the poisoning on the accuracy of the model
on backdoored malware. For instance, at 2% poisoning rate, the attack lowers the model
accuracy on backdoored samples to 42.9% on average We also observed minimal loss of
Acc(Fb, X) within 0.03%, and change in FPb, less than 0.08%, on average.

3.6 Mitigation

Recently, researchers started tackling the problem of defending against backdoor at-
tacks [42, 221, 130, 232]. Nearly all existing defensive approaches, however, are specifi-
cally targeted at computer vision Deep Neural Networks, and assume adversaries that
actively tamper with the training labels. These limitations make them hard to adapt to
the class of model-agnostic, clean-label attacks we are interested in. We discuss here
representative related work.

3.6. Mitigation 37

Tran et al. [221] propose a defensive method based on spectral signatures, which re-
lies on detecting two ε-spectrally separable subpopulations based on SVD decompo-
sition. Chen et al. [42] rely on the representation learned by the CNN and perform
k-means clustering on the activations of the last convolutional layer. The defense of Liu
et al. [130] is based on combining network fine tuning and neuron pruning, making it
specific to neural networks. Finally, NeuralCleanse [232] is based on the intuition that in
a backdoored model, the perturbation necessary to induce a misclassification towards
the targeted class should be smaller than that required to obtain different labels. This
approach was designed considering multi-class classification problem, as encountered
in image recognition, and the suggested filtering and pruning mitigation are neural-
network specific.

3.6.1 Considered Defensive Approaches

According to our threat model, the defender is assumed to: (i) have access to the (poi-
soned) training data; (ii) have access to a small set of clean labeled data. This common
assumption in adversarial ML fits nicely with the context since security companies of-
ten have access to internal, trusted, data sources; and (iii) know that the adversary will
target the most relevant features.

We evaluate three mitigation strategies over a reduced feature space obtained by select-
ing a fixed number (32) of the most important features. First, a state-of-the-art defensive
strategy, spectral signatures [221], which we adapt by computing the singular value de-
composition of the benign samples over the new feature space. Then, as in the original
paper, we compute the outlier score by multiplying the top right singular vector and we
filter out the samples with the highest 15% scores.

Second, hierarchical density-based clustering, (HDBSCAN) [29], inspired by Chen et
al’s [42] use of k-means for defensive clustering over neuron activations. We borrow
the idea, using HDBSCAN instead, with the intuition that watermarked samples form
a subspace of high density in the reduced feature space, and generate a tight cluster.
Additionally, HDBSCAN does not require a fixed number of clusters, but has two other
parameters that control the cluster density (minimum size of a cluster, set at 1% of the
training benign data, 3000 points, and minimum number of samples to form a dense
region, set at 0.5%, 600 points). As in [42], we compute Silhouette scores on the resulting
clusters, to obtain an estimate of the intra-cluster similarity of a sample compared to
points from its nearest neighboring cluster, and filter out samples from each cluster
with a probability related to the cluster silhouette score.

Third, isolation forest [129], an algorithm for unsupervised anomaly detection based

38 Chapter 3. Poisoning Static Malware Classification

on identifying rare and different points instead of building a model of a normal sam-
ple. The intuition here is that such an anomaly detection approach might identify the
watermarked samples as outliers due to their similarity compared to the very diverse
background points. We experiment with default parameters of Isolation Forest.

3.6.2 Results of Mitigation Strategies

Table 3.8 shows the effect of these three mitigation strategies over the different models
and attack strategies. Two main takeaways emerge from these empirical results. First,
the Isolation Forest, trained on the reduced feature space, is often capable of correctly
isolating all the backdoored points with relatively low false positives. Note that this
happens exclusively when an Isolation Forest is trained on the transformed dataset (re-
duced to most important features). The same algorithm applied in the original feature
space detects only a tiny fraction of the backdoored points (⇐ 1%), with similar results
obtained also on Drebin (0%) and Contagio (12.5%), thus reinforcing the observation
in [221] that the subpopulations are not sufficiently separable in the original feature
space. Second, none of the mitigation approaches was able to isolate the points attacked
with watermarks produced with the Combined strategy on PE files. This confirms that
the Combined attack strategy is much more stealthy compared to both Independent

strategies.

We note that the proposed mitigation strategies are only a first practical step in de-
fending against clean-label backdoor attacks in a model-agnostic setting. Protecting ML
systems from adversarial attacks is an intrinsically hard problem [34]. We argue that
defending against our backdoor attacks is extremely challenging due to the combined
effect of the small subpopulation separability induced by clean-label attacks, and the
difficulty of distinguishing dense regions generated by the attack from other dense re-
gions naturally occurring in diverse sets of benign binaries. We delve into the details of
potential mitigation strategies for this set of attacks in Chapter 5.

3.7 Related Literature

An early line of research introduced by Perdisci et al. [171] and Newsome et al. [155]
demonstrated methods for polluting automated polymorphic worm detectors such as
Polygraph [154]. The first [171] introduced purposely crafted noise in the traces used
for signature generation to prevent the generation of useful signatures; the second [155]
proposed red herring attacks, where the goal of the adversary is to force the generated
system to rely on spurious features for classification, which will then be excluded from
the evading sample. Red herring attacks are particularly interesting for us, being the
first to suggest that an adversary does not necessarily need control over data labels

3.8. Discussion and Conclusion 39

in order to cause failures in the downstream classifier, thus foreshadowing clean-label
poisoning.

Successive work by Venkataraman et al. [225] generalizes these results by providing
lower bounds on the number of mistakes made by a signature generation algorithm
based on conjunctions of boolean features. Theoretical bounds on poisoning attacks
against an online centroid anomaly detection method have subsequently been analyzed
by Kloft and Laskov [112] in the context of network intrusion detection. Concurrently,
researchers started to analyze possible countermeasures to poisoning attempts against
anomaly detection systems deployed to discover abnormal patterns in network traces.
Cretu et al. [52] developed a methodology to sanitize training data based on the out-
put of an ensemble of micro models, trained on small portions of the data, combined
through simple voting schemes. Rubinstein et al. [184] later proposed to leverage meth-
ods from robust statistics to minimize the effect of small poison quantities on network
traffic anomaly detectors based on Principal Component Analysis.

More recent research by Biggio et al. [22] brought to light the problem of poisoning
attacks against modern machine learning models by proposing an availability attack
based on gradient ascent against support vector machines. Successive work [23], demon-
strated the relevance of ML poisoning in the domain of malware classification by tar-
geting Malheur [182], a malware behavioral clustering tool. Later research by Xiao et
al. [238] showed that feature selection methods, like LASSO, ridge regression, and elas-
tic net, were susceptible to small poison sizes. Gradient-based poisoning availability
attacks have been shown against regression [102] and neural networks [150], and the
transferability of these attacks has been demonstrated [57]. Recently, Suciu et al. [210]
proposed a framework for defining attacker models in the poisoning space, and devel-
oped StingRay, a multi-model target poisoning attack methodology.

Backdoor attacks were introduced by Gu et al. in BadNets [78], identifying a supply
chain vulnerability in modern machine learning as-a-service pipelines. Liu et al. [132]
explored introducing trojan triggers in image recognition Neural Networks, without
requiring access to the original training data, by partially re-training the models. Later
works by Turner et al. [223] and Shafahi et al. [195] further improved over the existing
attacks by devising clean-label strategies.

3.8 Discussion and Conclusion

With this work we begin shedding light on new ways of implementing clean-label back-
door attacks, a threat vector that we believe will only grow in relevance in the coming
years. We showed how to conduct backdoor poisoning attacks that are model-agnostic,
do not assume control over the labeling process, and can be adapted to very restrictive

40 Chapter 3. Poisoning Static Malware Classification

adversarial models. For instance, an attacker with the sole knowledge of the feature
space can mount a realistic attack by injecting a relatively small pool of poisoned sam-
ples (1% of training set) and induce high misclassification rates in backdoored malware
samples.

Additionally, we designed the Combined strategy that creates backdoored points in
high-density regions of the legitimate samples, making it very difficult to detect with
common defenses. Based on our exploration of these attacks, we believe explanation-
guided attack strategies could also be applicable to other feature-based models, outside
of the security domain.

Finally, there are some limitations of this work that we would like to expose. First, the
attacks we explored rely on the attacker knowing the feature space used by the victim
model. While this assumption is partially justified by the presence of natural features
in the structure of executable files, we consider the development of more generic attack
methodologies, which do not rely on any knowledge from the adversary’s side, as an
interesting future research direction. Second, designing a general mitigation method,
particularly against our stealthy Combined attack strategy, is a challenging problem,
which we tackle in Chapter 5. Lastly, adaptation of these attacks to other malware clas-
sification problems that might rely on combining static and dynamic analysis is also a
topic of future investigation.

41

Chapter 4

Poisoning Network Flow Classifiers

Similarly to the case of malicious software identification, the longstanding problem of
network traffic classification serves as another perfect example of a critical security op-
eration where ML models are employed. Here too there is a natural incentive for a
malicious actor to invest resources in implanting a backdoor in the learned model in
order to mask illegitimate activities over the network.

Differently from malware classification, however, network monitoring systems often
work on aggregated network flows, such as groups of connection events, and the ad-
versary has to take into account the temporal element while designing the backdoor
trigger. In this chapter, we will present specific approaches to carry out backdoor poi-
soning attacks against network flow classifiers, as introduced in [190].

Chapter Summary

As machine learning classifiers increasingly oversee the automated monitoring of
network traffic, studying their resilience against adversarial attacks becomes critical.
This work focuses on poisoning attacks, specifically backdoor attacks, against net-
work traffic flow classifiers. We investigate the challenging scenario of clean-label
poisoning where the adversary’s capabilities are constrained to tampering only with
the training data — without the ability to arbitrarily modify the training labels or any
other component of the training process. We describe a trigger crafting strategy that
leverages model interpretability techniques to generate trigger patterns that are effec-
tive even at very low poisoning rates. Finally, we design novel strategies to generate
stealthy triggers, including an approach based on generative Bayesian network mod-
els, with the goal of minimizing the conspicuousness of the trigger, and thus making
detection of an ongoing poisoning campaign more challenging. Our findings provide
significant insights into the feasibility of poisoning attacks on network traffic classi-
fiers used in multiple scenarios, including detecting malicious communication and
application classification.

42 Chapter 4. Poisoning Network Flow Classifiers

4.1 Problem Definition

Automated monitoring of network traffic plays a critical role in the security posture of
many companies and institutions. The large volumes of data involved, and the neces-
sity for rapid decision-making, have led to solutions that increasingly rely on machine
learning (ML) classifiers to provide timely warnings of potentially malicious behaviors
on the network. Given the relevance of this task, undiminished despite being studied
for quite a long time [149], a number of machine learning based systems have been
proposed in recent years [145, 160, 161, 246, 90] to classify network traffic.

The same conditions that spurred the development of new automated network traffic
analysis systems, have also led researchers to develop adversarial machine learning at-
tacks against them, targeting both deployed models [82, 31, 15, 166, 45] (evasion attacks)
and, albeit to a lesser extent, their training process [11, 124, 156, 92] (poisoning attacks).
We believe this second category is particularly interesting, both from an academic per-
spective as well as a practical one.

Recent research on perceived security risks of companies deploying machine learning
models repeatedly highlighted poisoning attacks as a critical threat to operational ML
systems [202, 74]. Yet, much of the prior research on poisoning attacks in this domain
tends to adopt threat models primarily formulated in the sphere of image classifica-
tion, such as assuming that the victim would accept a pre-trained model from a third
party [156], thus allowing adversarial control over the entire training phase, or granting
the adversary the ability to tamper with the training labels [11]. As awareness of poi-
soning attacks permeates more extensively, it is reasonable to assume that companies
developing this type of systems will exhibit an increased wariness to trust third parties
providing pre-trained classifiers, and will likely spend resources and effort to control or
vet both code and infrastructure used during training.

For this reason, we believe it is particularly interesting to focus on the less studied sce-
nario of an adversary who is restricted to tampering only with the training data (data-
only attack) by disseminating a small quantity of maliciously crafted points, and with-
out the ability to modify the labels assigned to training data (clean-label) or any other
component of the training process.

Our aim is to investigate the feasibility and effects of poisoning attacks, and in partic-
ular backdoor attacks —where an association is induced between a trigger pattern and
an adversarially chosen output of the model—, on network traffic flow classifiers. Our
approach focuses on the manipulation of aggregated traffic flow features rather than
packet-level content, as they are common in traffic classification applications [148, 246,

4.1. Problem Definition 43

161]. We will focus on systems that compute aggregated features starting from the out-
puts of the network monitoring tool Zeek1, because of its large user base.

It is important to note that, despite the perceived relevance of poisoning attacks, it is
often remarkably difficult for an adversary to successfully run a poisoning campaign
against classifiers operating on constraint-heavy tabular data, such as cybersecurity data
— like network flows or malware samples [193]. This is a well known issue in adversar-
ial ML, illustrated in detail by [173] and often referred to as problem-space mapping. It
stems from the complexity of crafting perturbations of the data points (in feature space)
that induce the desired behavior in the victim model without damaging the structure of
the underlying data object (problem space) necessary for it to be generated, parsed, or
executed correctly. When dealing with aggregated network flow data, these difficulties
compound with the inherent complexity of handling multivariate tabular data consist-
ing of heterogeneous fields. To address these challenges, we design a novel methodol-
ogy based on ML explanation methods to determine important features for backdoor
creation, and map them back into the problem space. Our methods handle complex de-
pendencies in feature space, generalize to different models and feature representations,
are effective at low poisoning rates (as low as 0.1%), and generate stealthy poisoning
attacks.

In summary, we make the following contributions:

(i) We develop a new strategy to craft clean-label, data-only, backdoor poisoning at-
tacks against network traffic classifiers that are effective at low poisoning rates.

(ii) We show that our poisoning attacks work across different model types, classifi-
cation tasks, and feature representations, and we comprehensively evaluate the
techniques on several network traffic datasets used for malware detection and ap-
plication classification.

(iii) We propose different strategies, including generative approaches based on Bayesian
networks, to make the attacks inconspicuous and blend the poisoned data with the
underlying training set.

To ensure reproducible results, we evaluate our techniques on publicly available datasets,
and release all the code used to run the experiments presented here2.

1
https://zeek.org/ Previously known as Bro.

2
https://github.com/ClonedOne/poisoning_network_flow_classifiers

https://zeek.org/
https://github.com/ClonedOne/poisoning_network_flow_classifiers

44 Chapter 4. Poisoning Network Flow Classifiers

4.2 Threat Model

4.2.1 Adversary’s Goals and Capabilities

Adversary’s Objective. The main objective of the adversary is to acquire the ability to
consistently trigger desired behavior, or output, from the victim model, after the latter
has been trained on the poisoned data. In this study, we focus on the binary class sce-
nario (0/1), where the goal is reified into having points of a chosen victim class being
mis-labeled as belonging to the target class, when carrying a backdoor pattern that does
not violate the constraints of the data domain. For instance, in the benign/malicious
case, the adversary attempts to have malicious data points mis-classified as benign,
where “benign” represents the target class.

Adversary’s Capabilities. Recent work analysing the training time robustness of mal-
ware classifiers [193, 247] pointed out that the use of ever larger quantities of data to
train effective security classifiers inherently opens up the doors to data-only poisoning
attacks, especially in their more stealthy clean-label [223, 195] variants where the adver-
sary does not control the label of the poisoned samples. Thus, in this work, we constrain
the adversary to clean-label data-only attacks.

This type of setup moves beyond the classic threat model proposed by Gu et al. [78]
and adopted by other research [156, 132, 44], where the adversary was able to tamper
with not only the content of the training points but also the corresponding ground-truth
labels. Here, instead, by disseminating innocuous looking —but adversarially crafted—
data, the adversary is able to indirectly tamper with a small, yet effective, percentage
of the training set and induce the desired behavior in the learned model. To design the
trigger, the adversary requires access to a small amount of clean labeled data, Da, from
a similar distribution as the victim’s training data. In our experiments, we partition the
test set in two disjoint sets of 85% and 15% of the points respectively, and supply the
adversary with the smaller one.

Several previous studies on training time attacks [156, 132] relax the model access con-
straints, assuming an adversary can train a ML classifier and provide it to the victim
through third-party platforms such as Machine Learning as a Service (MLaaS) [181].
However, we believe that this threat model is rapidly becoming obsolete, at least in the
cybersecurity domain, due to the push for stricter cyber hygiene practices from secu-
rity vendors, including the reluctance to trust third-party model providers and MLaaS
platforms [6, 172].

We consider an adversary who has query-only access to the machine learning classi-
fier. This allows the attacker to use the SHAP explanation technique to compute feature

4.2. Threat Model 45

TABLE 4.1: Network data format. Our data is represented by connec-
tion logs (“conn.log” files) extracted with the Zeek monitoring tool from

publicly-available packet-level PCAP files.

Name Description
orig_ip, resp_ip Source and destination IP address
orig_p, resp_p Source and destination port
proto Transport Protocol (e.g., TCP, UDP, or ICMP)
service Application protocol (e.g., ssh, dns, etc.)
ts Timestamp – the connection start time
duration Duration of connection
orig_pkts, resp_pkts Number of transmitted packets
orig_bytes, resp_bytes Number of payload bytes
conn_state Connection state, assessing whether the

connection was established and terminated
normally (13 different states)

importance coefficients, but it prevents any form of inspection of model weights or hid-
den states. This scenario is very common for deployed models, as they often undergo
periodical re-training but are only accessible behind controlled APIs. Interacting with
a victim system, however, always imposes a cost on the attacker, whether in terms of
actual monetary expenses for API quotas, or by increasing the risk of being discovered.
Motivated by this observation, we also explore the use of model interpretation methods
that do not require any access to the classifier, but instead leverage proxy models on
local data (i.e., information gain and Gini coefficients), and can be used even when the
model is not subject to re-training cycles.

Adversary’s Target. We select two representative ML classifier models as target for our
attacks: Gradient Boosting decision trees, and Feed-forward Neural Networks. Both of
these models have been widely-used in intrusion detection for classifying malicious net-
work traffic, with decision trees often preferred in security contexts due to their easier
interpretation [100]. We study two use cases of network traffic classifiers: (1) detection
of malicious activities, and (2) application classification.

4.2.2 Data Format

In our threat model, network traffic consists of connection logs (“conn.log” files), which
are extracted from packet-level PCAP files using the Zeek monitoring tool. The Zeek
log fields used in our study are described in Table 4.1, and include port, IP address,
protocol, service, timestamp, duration, packets, payload bytes and connection state.
Thus, the input data is tabular and multivariate, consisting of multiple log fields in
either numeric format (e.g., bytes, packets, etc.) or categorical format (e.g., connection
state, protocol, etc.). A data point in this domain is represented by a sequence of raw log
records grouped together. This problem-space data point is mapped into a corresponding

46 Chapter 4. Poisoning Network Flow Classifiers

TABLE 4.2: Statistical features aggregated over connection logs within
each data point grouping. The grouping is comprised of connections
within 30-sec time windows, aggregated separately for each internal IP
and destination port within the time window. Note that the internal IP
versus external IP distinction pertains to the subnet, not to the two ends

of the connection (source/destination).

Field Description
Aggregation Key: time window, internal IP, destination port

proto Count of connections per transport protocol
conn_state Count of connections for each conn_state
orig_pkts, resp_pkts Sum, min, max over packets
orig_bytes, resp_bytes Sum, min, max over bytes
duration Sum, min, max over duration

Aggregation Key: (time window, internal IP)
ip Count of distinct external IPs
resp_p Count of distinct destination ports

feature-space data point through various aggregation techniques applied over the log
field values.

Feature Representation. We study two standard and widely adopted feature mapping
techniques: (1) aggregation, to produce statistical features, and (2) embeddings— using
auto-encoders to automatically generate feature vectors. Traffic statistics have multiple
applications in network monitoring and security [148, 246], which require dealing with
large volumes of data. For instance, distinct count metrics are used to identify scanning
attacks, while volume metrics or traffic distributions over port numbers and IP address
ranges are utilized in anomaly detection [28]. We use similar aggregation methods with
previous works [28, 161], to derive statistics of connections. The statistical features used
in our study are described in Table 4.2, and include traffic volume by internal IP (in bytes
and packets) within a 30-sec time window, connection counts by transport protocol,
connection counts by state, etc.

Recent literature also features a variety of approaches for network traffic classification
based on auto-encoders [145, 246, 85, 55]. Auto-encoders are unsupervised models that
learn to reconstruct the training data. They are often used either for anomaly detection
or to learn high level features to use in downstream classifiers.

4.3 Attack Strategy

The formulation of an appropriate trigger pattern is a fundamental aspect of backdoor
poisoning attacks The inherent intricacies of network traffic —feature dependencies,
multiple data modalities— makes it particularly challenging to ensure that the trigger is
mapped correctly to realizable actions in problem space [173]. This is a stark difference

4.3. Attack Strategy 47

with the image domain, where the backdoor trigger can be extremely simplistic, such as
a bright colored square [78].

There are three key requirements that characterize a feasible poisoning attack: (i) To be
effective, the trigger should be easy to associate to the target class by the victim model.
(ii) The injected pattern should appear inconspicuous, so as to avoid detection by poten-
tial human or automated observers. (iii) The perturbations induced by the injection of
the trigger pattern should not affect data validity. While the first two requirements are
generic to any backdoor attack, the third one translates to additional constraints on ad-
versarial actions in the network domain, specifically: (i) The adversary can only insert
traffic, but not modify or remove existing traffic. (ii) Data semantics and dependencies
need to be preserved, such as value restrictions on specific fields (e.g., upper/lower
bounds on packet length), feature correlations (e.g., protocols use specific ports), etc.
(iii) The injected pattern needs to handle multiple data types, i.e., numeric and categor-
ical.

4.3.1 Crafting the Poisoning Data

To address the above challenges, we design a novel methodology that leverages insights
from explanation-based methods to determine important features in feature space, then
map them back to constraint-aware triggers in problem space. The mapping can be done
via: (i) poisoning attacks using connections directly extracted from malicious traffic; (ii)
poisoning attacks with reduced footprint; (iii) generative Bayesian models to increase
attack stealthiness.

Our attack strategy, illustrated in Figure 4.1, consists of five main phases:

(I) Select a subset of features that are most important for the class that the adversary
wishes to misclassify using model explanation techniques;

(II) Find an ideal trigger in feature space — we call this an assignment;

(III) Find a data point that best approximate the ideal trigger values — this will be our
prototype trigger;

(IV) Identify a set of real connections that induce the values observed in the prototype
— this set of connections will be our actual trigger;

(V) Inject the trigger in points of the target class, potentially trying to minimize its
conspicuousness.

Phase I. We first identify the most relevant features for the class to be misclassified.
Our goal is to leverage highly informative features to coerce the model into associating
the trigger pattern with the target class. There are a variety of techniques from the

48 Chapter 4. Poisoning Network Flow Classifiers

Methods based on
model interpretability:
• SHAP
• Gini coefficients
• Inf. Gain (Entropy)

Feature
Selection

Assignment
(ideal)

Trigger
(actual traffic)

Prototype
(realistic)

Trigger
Injection

Feature space Problem space

Methods to increase
stealthiness:
• Trigger reduction
• Trigger generation using

Bayesian Networks

FIGURE 4.1: Pipeline for poisoning network flow classifiers.

field of model interpretability used to estimate the effect of specific features towards the
classifier’s decision.

We start by adapting the SHAP-based technique from [193] to the network domain.
Here, SHAP values are computed for a subset of points to which the adversary has ac-
cess to, and their contributions summed per-feature, to identify the ones most contribut-
ing to each class. This approach has the advantage of being model agnostic, allowing
us to estimate feature importance coefficients for any possible victim model. Unfor-
tunately, it also assumes the adversary is able to perform a possibly large number of
queries against the victim model. To address this potential limitation, we also evaluate
the effect of selecting the important features through more indirect ways. In particular
we can leverage the information gain and Gini coefficient metrics used in training decision
trees, to estimate the global contributions of each feature.

The attentive reader will notice here that the approaches we mentioned to estimate fea-
ture importance are quite different. This is intentional, and it highlights the modularity
of this component. As long as the adversary is capable of obtaining global estimates
of feature importance scores, they can use them to guide the attack. Moreover, with
potential future discoveries in the, extremely active, field of model interpretation, novel
methods could be used to improve the effectiveness of this attack.

Phase II. Once the subset of important features is selected, we can proceed to find
a suitable assignment of values. To be consistent with real traffic constraints, we need
to ensure that the values that we select represent information that can be easily added
to data points of the non-target class, by injecting new connections, without having
to remove existing connections. Thus, we select values that correspond to the top tth

percentile of the corresponding features for non-target class points; in practice, setting
this parameter to 95th percentile performed well in our experiments. Note that the non-
target class points are generated by software under the control of the adversary, and

4.3. Attack Strategy 49

therefore we assume they have access to a collection of log rows that represent those
connections.

Phase III. Armed with the desired assignment for the selected features, we can proceed
to identify an existing data point that approximates these ideal trigger values. To find it,
in our first attack we leverage a mimicry method to scan the non-target (e.g., malicious)
class samples and isolate the one with the lowest Euclidean distance from the assign-
ment, in the subspace of the selected features. We call this point in feature space the
trigger prototype.

Phase IV. Up until this point, the process was working completely in feature space.
Our explicit goal, however, is to run the attack in problem space. So the next step in the
attack chain is to identify, in the attacker’s dataset, a contiguous subset of log connec-
tions that best approximate the prototype. Enforcing that the selected subset is contigu-
ous ensures that temporal dependencies across log records are preserved. This subset
of connections represents the actual trigger that we will use to poison the target-class
training data.

Phase V. Finally, it is time to inject the trigger in the training data. This step is quite
straightforward, as it only requires the software under control of the adversary, to ex-
ecute the trigger connections in the specified order. We next describe two strategies for
increasing trigger stealthiness before injection.

4.3.2 Increasing Attack Stealthiness

Beyond the basic objective of maximizing attack success, the adversary may have the
additional goal of minimizing the chance of being detected. To achieve this secondary
goal, the adversary may wish to slightly alter the trigger before injecting it in the training
data. In particular, we study two strategies: (1) trigger size reduction and (2) trigger
generation using Bayesian models.

Trigger size reduction

The first strategy consists of minimizing the trigger footprint, by removing all the con-
nections that are not strictly necessary to achieve the values specified in the prototype
for the subset of important features (such as connections on other ports). We then select
the smallest subset of contiguous connections that would produce the desired values
for the selected features.

50 Chapter 4. Poisoning Network Flow Classifiers

Trigger generation using Bayesian networks

The second strategy aims at reducing the conspicuousness of the trigger by blending
it with the set of connections underlying the data point where it is embedded. To this
end, we generate the values of the log fields corresponding to non-selected features in the
backdoor to make them appear closer to values common in the target-class natural data
↑ Da. Note that fields influencing the selected (important) features will not be modified,
because they carry the backdoor pattern associated with the target class.

Our generative approach leverages Bayesian networks, a widely-used probabilistic graph-
ical model for encoding conditional dependencies among a set of variables, and deriv-
ing realistic samples of data [56, 179, 86]. Bayesian networks consist of two parts: (1)
structure – a directed acyclic graph (DAG) that expresses dependencies among the ran-
dom variables associated with the nodes, and (2) parameters – represented by condi-
tional probability distributions associated with each node.

Structure. Given our objective to synthesize realistic log connections (in problem space)
that lead to the feature-space prototype, we construct a directed acyclic graph G =

(V, E) where the nodes xi ↑ V correspond to fields of interest in the connection log and
the edges eij ↑ E model the inter-dependencies between them. We explore field-level
correlations in connection logs using two statistical methods that have been previously
used to study the degree of association between variables [111]: the correlation matrix
and the pairwise normalized mutual information. In our experiments, both methods
discover similar relationships in Da, with the mutual information approach bringing
out additional inter-dependencies.

Note that we are not interested in the actual coefficients, rather, in the associational
relationships between variables. Thus, we extract the strongest pairwise associations,
and use them in addition to domain expertise to guide the design of the DAG structure.
For instance, there is a strong relationship between the number of response packets and
source packets (resp_pkts ⇒ orig_pkts); between the protocol and the response port
(proto ⇒ resp_p); between the connection state and protocol (conn_state ⇒ proto), etc.

There is a large body of literature on learning the DAG structure directly from data. We
point the interested reader to a recent survey by Kitson et al. [111]. However, computing
the graphical structure remains a major challenge, as this is an NP-hard problem, where
the solution space grows super-exponentially with the number of variables. Resorting to
a hybrid approach [111] that incorporates expert knowledge is a common practice that
alleviates this issue. The survey also highlights the additional complexity in modeling
the DAG when continuous variables are parents of discrete ones, and when there are
more than two dependency levels in the graph.

4.3. Attack Strategy 51

resp_p

orig_pservice proto

conn_state

orig_pkts

resp_pkts orig_bytes

resp_bytes

FIGURE 4.2: Directed Acyclic Graph (DAG) representing the inter-
dependencies between log connection fields.

Based on the above considerations, we design the direct acyclic graph presented in Fig-
ure 4.2. For practical reasons, we filter out some associations that incur a high complex-
ity when modeling the conditional probability distributions. To ensure that the gener-
ated traffic still reflects the inter-dependency patterns seen in the data, we inspect the
poisoned training dataset using the same statistical techniques (correlation matrix and
mutual information). We include the mutual information matrix on the clean adversar-
ial dataset (Figure 4.3a) and on the training dataset poisoned with the Generated trigger
method (Figure 4.3b), to show that the associational relationships between variables are
preserved after poisoning (though the actual coefficients may vary).

Parameters. Bayesian networks follow the local Markov property, where the proba-
bility distribution of each node, modeled as a random variable xi, depends only on
the probability distributions of its parents. Thus, the joint probability distribution of a
Bayesian network consisting of n nodes is represented as:

p(x1, x2, · · · , xn) =
n

∏
i=1

p(xi|xPi) (4.1)

where Pi is the set of parents for node i, and the conditional probability of node i is
expressed as p(xi|xPi).

Sampling. The DAG is traversed in a hierarchical manner, one step at a time, as a se-
quential decision problem based on probabilities derived from the data, with the goal of
generating a realistic set of field-value assignments. The value assignments for nodes at
the top of the hierarchy are sampled independently, from the corresponding probability
distribution, while the nodes on lower levels are conditioned on parent values during
sampling.

We compute the conditional probabilities of categorical fields (e.g., ports, service, pro-
tocol, connection state), and model numerical fields (e.g., originator/responder packets
and bytes) through Gaussian kernel density estimation (KDE). An example of the KDE

52 Chapter 4. Poisoning Network Flow Classifiers

(A) Mutual information on clean data, computed on the adversary’s dataset.

(B) Mutual information on the poisoned training dataset
FIGURE 4.3: Mutual information comparison on clean and poisoned data.
Showing associations between relevant fields of the conn.log file for CTU-

13.

4.3. Attack Strategy 53

FIGURE 4.4: Modeling the bytes distribution for responder (left side) and
originator (right side): From top to bottom, the figures show: distribu-
tion of byte counts per packet, learned KDEs, and sampled data from the

learned distributions.

learned from the data, and used to estimate the number of exchanged bytes between a
source (originator) and a destination (responder), given the number of packets, is pre-
sented in Figure 4.4.

Given the complexity of sampling from hybrid Bayesian networks, we approximate the
conditional sampling process with a heuristic, described in Table 4.3. We consider an
example where the log fields corresponding to the most important features have been
set to the TCP protocol and responder port 80. Our generative method synthesizes
values for the rest of the fields, in an attempt to make the trigger blend in with the
target class.

We show in our evaluation that the synthesized poisoning traffic is a good approxima-
tion of clean network traffic, both in terms of Jensen-Shannon distance between distri-
butions (Section 4.4.3) and preservation of field-level dependencies.

54 Chapter 4. Poisoning Network Flow Classifiers

TABLE 4.3: Sampling method for each dependency described in the DAG
from Figure 4.2. In this example, we assume that the most important fea-
tures correspond to protocol and port; their values (TCP protocol on port
80) have been determined in Phase II of our strategy. Here, our gener-
ative method samples the rest of the log field values. Da represents the

attacker’s dataset.

Dependency Sampling method
1. resp_p ↓ service Select subset from attacker’s data, Da, with resp_p = 80.

Sample a value for service (S) according to the observed
probabilities.

2. service ↓ conn_state Subset Da with proto = TCP and service = S. Sample
conn_state according to the observed probabilities.

3. resp_p ↓ orig_p Subset Da with resp_p = 80. Sample orig_p according to the
observed probabilities.

4. orig_pkts Sample a value for orig_pkts from the KDE learned on Da.
5. orig_pkts ↓ resp_pkts Subset Da based on orig_pkts. Learn the KDE for resp_pkts

from the subset. Sample resp_pkts from the KDE.
6. orig_pkts ↓ orig_bytes Learn the KDE distribution DO of originator bytes-per-

packet from Da. Given previously sampled value for num-
ber of packets, orig_pkts = m, sample and sum up 1, · · · , m
values from the distribution DO.

7. resp_pkts ↓ resp_bytes Learn the KDE distribution DR of responder bytes-per-
packet from Da. Given previously sampled value for num-
ber of packets, resp_pkts = n, sample and sum up 1, · · · , n
values from the distribution DR.

4.4 Experimental Results

4.4.1 Experimental Setup

In this section, we describe the datasets and performance metrics used in our evaluation.
We also present the baseline performance of the target classifiers (without poisoning).

Datasets

We used three public datasets commonly used in cybersecurity research for intrusion
detection and application classification.

CTU-13 Neris Botnet: We started our experimentation with the Neris botnet scenario
of the well-known CTU-13 dataset [70]. This dataset offers a window into the world of
botnet traffic, captured within a university network and featuring a blend of both ma-
licious and benign traffic. Despite the sizeable number of connections (⇐ 9 ⇑ 106), the
classes are extremely imbalanced, with a significantly larger number of benign than ma-
licious data points. Note that the class imbalance is a common characteristic of security
applications. The Neris botnet scenario unfolds over three capture periods. We use two
of these periods for training our models, and we partition the last one in two subsets,
keeping 85% of the connections for the test set, and 15% for the adversarial set, Da.

4.4. Experimental Results 55

CIC IDS 2018 Botnet: From CTU-13, we moved to a recent dataset for intrusion detec-
tion systcheems, the Canadian Institute for Cybersecurity (CIC) IDS 2018 dataset [198].
We experimented with the botnet scenario, in which the adversary uses the Zeus and
Ares malware packages to infect victim machines and perform exfiltration actions. This
dataset includes a mixture of malicious and benign samples and is also heavily imbal-
anced.

CIC ISCX 2016 dataset: This dataset contains several application traffic categories,
such as chat, video, file transfer. We leverage the CIC ISCX 2016 dataset [62] to explore
another scenario where an adversary may affect the outcome via poisoning: detection
of banned applications. For instance, to comply with company policies, an organization
monitors its internal network to identify usage of prohibited applications. An adversary
may attempt to disguise traffic originating from a banned application as another type
of traffic. We study two examples of classification tasks on the non-vpn traffic of this
dataset: (1) File vs Video, where we induce the learner to mistake video traffic flows as
file transfer, and (2) Chat vs Video, where the classifier mis-labels video traffic as chat
communication.

Performance Metrics

Similar to previous work in this area [193, 156], we are interested in the following indi-
cators of performance for the backdoored model:

• Attack Success Rate (ASR). This is the fraction of test data points which are mis-
classified as belonging to the target class. We evaluate this metric on a subset of
points that have been previously correctly classified by a clean model trained with
the same original training data and random seed.

• Performance degradation on clean data. This metric captures the side effects of poi-
soning, by evaluating the ability of the backdoored model to maintain its predic-
tive performance on clean samples. Let Fp

1 be the F1 score of the poisoned model
on the clean test set, and Fc

1 the test score of a non-poisoned model trained equally,
the performance degradation on clean data at runtime is: ∆F1 = |Fp

1 ≃ Fc
1 |.

Unless otherwise noted, all the results shown in the following sections are averages
of five experiments with different random seeds, reported with their relative standard
deviations.

Parameters. We define p% as the percentage of feature-space points of the training
dataset that have been compromised by an adversary. Since the amount of poisoned
points is generally a critical parameter of any poisoning attack, we measure the attack

56 Chapter 4. Poisoning Network Flow Classifiers

TABLE 4.4: Base performance of the classifiers, avg. over 5 runs.

Model Accuracy F1 score Precision Recall
CTU-13 Neris Botnet

GB 0.999 0.959 0.996 0.925
FFNN 0.999 0.927 0.971 0.887

CIC-IDS 2018 Botnet
GB 0.999 0.994 0.993 0.995
FFNN 0.999 0.995 0.999 0.991

ISCX 2016 File/Video
GB 0.962 0.800 0.799 0.802
FFNN 0.941 0.719 0.666 0.780

ISCX 2016 Chat/Video
GB 0.936 0.901 0.928 0.875
FFNN 0.947 0.919 0.939 0.900

(A) Gradient Boosting model (B) Feed-forward Neural Network model
FIGURE 4.5: Attack success rate (ASR) for the CTU-13 Neris Botnet sce-

nario with different models and feature selection strategies.

performance across multiple poison percentage values p% . At runtime, we randomly
select a subset of test points to inject the trigger. Specifically, we select 200 points for
the CTU-13 and CIC IDS 2018 datasets, and 80 for the CIC ISCX 2016 dataset (due its
smaller size).

Baseline Model Performance. As mentioned in our threat model, we consider two
representative classifiers: a Gradient Boosting Decision Tree (GB), and a Feed Forward
Neural Network (FFNN). Note that we are not interested in finding the most effec-
tive possible learner for the classification task at hand, instead our focus is on select-
ing generic and widely adopted classifiers to showcase the adaptability of our attack
strategy. Baseline values for accuracy, F1 score, precision and recall of the classifiers are
reported in Table 4.4.

4.4. Experimental Results 57

4.4.2 Impact of Feature Selection

Similar to the procedure reported in [193], our initial feature selection strategy revolved
around computing local feature importance scores with SHAP and then aggregating
them to obtain global indicators for each feature of the magnitude and direction of im-
pact for each feature. As mentioned in Section 4.3.1, however, this approach has an im-
portant drawback: it requires to perform a potentially large number of queries against
the victim classifier.

To obviate this issue, we also considered ways in which the adversary can extract feature
importance estimates directly from their data subset, Da. In practice, we experimented
with fitting a Decision Tree on Da, following either the Gini impurity (Gini) or the infor-
mation gain (Entropy) criteria, and using the importance estimate given by the reduction
of the criterion induced by the feature3.

The three feature selection strategies implemented (Entropy, Gini, SHAP) use the top
eight most important features to design the trigger pattern, and are compared against
Random, a baseline strategy that chooses the same number of features uniformly at ran-
dom. Looking at the features selected by the different strategies, we generally observe
that Entropy and Gini tend to assign scores that are strongly positive only for a very
small number of features (typically 1-3), while SHAP scores are distributed more evenly.
This observation, together with the desire to minimize the trigger footprint, informed
our decision to select eight most relevant features. We also experimented with different
values of this parameter, halving and doubling the number of selected features, but we
found that eight were sufficient to achieve satisfying success rates.

Attack Success Rate: We show the results of these experiments in Figure 4.5. On aver-
age, we found the Entropy strategy to be the most successful against both classifiers on
this dataset. The Random strategy leads to inconsistent results: occasionally, it stumbles
upon useful features, but overall attacks relying on Random selection perform worse
than attacks guided by the other feature selection methods.

Figure 4.5 also illustrates a major finding – our attacks perform well even at very small
poisoning rates such as 0.1%, where they reach an attack success rate of up to 0.7 against
the Gradient Boosting classifier. As expected, increasing the poisoning percentage leads
to an increase in attack success rate; for instance, an ASR of 0.95 is obtained with En-
tropy at 1.0% poisoning. This is interesting considering that previous works only con-
sidered larger poisoning rates (e.g, 2% to 20% in [124], 20% samples from nine (out of
ten) non-target classes in [156]). We also notice that some of the variance in the ASR

3Using the implementation in Scikit-Learn https://scikit-learn.org/stable/modules/generated/

sklearn.tree.DecisionTreeClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

58 Chapter 4. Poisoning Network Flow Classifiers

results can be attributed to a somewhat bimodal distribution. This can be partially ex-
plained with differences in the resulting trigger sizes, with Figure 4.6b highlighting the
correlation between larger triggers and higher ASR. We leave a more detailed analysis
of the distribution of the ASR scores for future work.

The second interesting observation we can make, is that the SHAP strategy, while work-
ing well in some scenarios (especially for the application classification tasks in Sec-
tion 4.4.5) does not, on average, lead to better results than estimating feature importance
through proxy models (Entropy and Gini). This makes the attack quite easier to run in
practice, as it circumvents the necessity to run multiple, potentially expensive, queries
to the victim model.

Performance degradation on clean data: While these results show that the poisoned
model is able to successfully misclassify poisoned data, we also want make sure that the
performance on clean data is maintained. The average ∆F1 across poisoning rates and
feature selection strategies in our experiments was below 0.037, demonstrating that the
side effects of the attack are minimal. The neural network model exhibits on average a
slightly larger decrease when compared against the Gradient Boosting classifier, espe-
cially when the Entropy and Gini feature selection strategies are used.

4.4.3 Attack Stealthiness

Remaining undetected is an important factor in running a successful poisoning cam-
paign. Here, we study the impact of our two approaches for increasing attack stealth-
iness described in Section 4.3.2: reducing the trigger size (Reduced trigger) and gener-
ating the trigger connections using Bayesian networks (Generated trigger). We start by
analyzing the attack success with the different types of triggers, followed by a quanti-
tative comparison of their stealthiness in feature space (via anomaly detection), and in
problem space (via the Jensen-Shannon distance).

Evaluation of attack success. Figure 4.6a shows the attack success rate as a function
of the poisoning percentage for the three different types of triggers: Full, Reduced, and
Generated. We observe that all triggers are able to mount effective attacks against the
Gradient Boosting classifier, with attack success rates over 0.8 when 0.5% or more of
the training data is poisoned. The Feed-forward Neural Network, is generally more
resilient to our attacks: the Full trigger and Reduced trigger deliver an attack success
rate of about 0.7 and 0.4, respectively, while the Generative trigger is able to synthesize
more effective triggers, which lead to attack success rates over 0.7.

Figure 4.6b studies the correlation between trigger size (measured in number of con-
nections) and attack success rate for each type of trigger. Each data point represented in

4.4. Experimental Results 59

(A) Comparison of attack success rates (ASR) as a function of poisoning percentage.

(B) Correlation between the number of connections composing the trigger and the attack success rate (ASR).
Each point represents a separate experiment. Curve fitting illustrating the trend is performed using linear

regression.
FIGURE 4.6: Analysis of trigger selection strategy. CTU-13 Neris Botnet

scenario, with the Entropy feature selection strategy.

60 Chapter 4. Poisoning Network Flow Classifiers

TABLE 4.5: Area under the Precision-Recall Curve and F1 score obtained
by performing anomaly detection on the poisoned data with an Isolation
Forest model trained on a clean subset of the training data. CTU-13 Neris,

at 1% poisoning rate.

Strategy Model Trigger PR AUC F1 score

Entropy Any
Full 0.056 0.013
Reduced 0.045 0.012
Generated 0.078 0.018

SHAP

Gradient Boosting
Full 0.099 0.015
Reduced 0.070 0.013
Generated 0.099 0.019

Feed-forward NN
Full 0.061 0.015
Reduced 0.047 0.014
Generated 0.052 0.012

the figure constitutes a separate experiment, while the regression lines capture the trend
(how ASR changes as the trigger size changes). These figures show that the generative
method leads to consistently smaller triggers than the other two methods, without sac-
rificing attack success. This result is indicative of the power of generative models in
knowledge discovery, and, in our case, their ability to synthesize a small set of realistic
log connections that lead to the feature-space prototype. Figure 4.6b also shows that the
size reduction strategy is able to create triggers (Reduced trigger) that are smaller than
the Full trigger, but at the expense of the attack success rate.

Evaluation of attack stealthiness in feature space. Next, we evaluate the attack stealth-
iness in feature space, using the Isolation Forest [129] algorithm for anomaly detection.
The objective of this experiment is to see whether a standard technique for anomaly de-
tection can identify and flag the poisoned samples as anomalies. The anomaly detector
is trained on a clean subset of data, which is completely disjoint from the poisoned data
points and consists of 10% of the entire training dataset.

Table 4.5 presents the anomaly detection results on the poisoned data obtained with
each trigger type (Full, Reduced, and Generated). For comparison, we evaluate both the
entropy-based and the SHAP-based feature selection strategies used to craft the injected
pattern. Since SHAP queries the model to compute feature relevance scores, we present
the anomaly detection results separately for a SHAP-guided attack against a Gradient
Boosting classifier and against a Feed-forward Neural Network. Across the board, we
observe very low Precision-Recall area under the curve (AUC) scores (in the 0.045 –
0.099 range), as well as very low F1 scores (in the 0.012 – 0.019 range). These results
demonstrate the difficulty of differentiating the poisoned data points from the clean
data points, and indicate that the poisoning attacks are highly inconspicuous in feature
space.

4.4. Experimental Results 61

FIGURE 4.7: Jensen-Shannon distance between the poisoned and clean
training dataset, averaged over all considered conn.log fields. For refer-
ence, the average JS distance value between the original training data
and test data is 0.24. CTU-13 Neris Botnet experiments, at 1% poisoning

rate.

Evaluation of attack stealthiness in problem space. We also evaluate attack stealthi-
ness in problem space, in terms of how close the poisoned data is to the target class, here
represented by the benign class (normal traffic). We leverage the Jensen-Shannon diver-
gence [126], a normalized and symmetrical scoring method for measuring the similarity
between two probability distributions, and in particular we use the distance formulation
defined as the square root of the divergence, which assumes value of zero for identical
distributions.

We compute the distance for each field in the connection logs (e.g., bytes, port, con-
nection state, etc.), and report the average across all fields. As a baseline, we compute
the average Jensen-Shannon distance between the target class points (benign log con-
nections only) of the training and test datasets, capturing the distribution shift between
train and test data. For the CTU-13 Neris Botnet dataset, we evaluated this reference
distance as being D_REF = JS(TRAIN, TEST) = 0.24.

Figure 4.7 shows the Jensen-Shannon distance between the poisoned and clean train-
ing dataset for each of the trigger types. The figure illustrates that all three strategies
produce stealthy attacks, characterized by average Jensen-Shannon distances that are
comfortably lower than D_REF. Furthermore, the generative method (Generated trig-
ger) constructs the most inconspicuous triggers, followed by the trigger size reduction
method (Reduced trigger).

62 Chapter 4. Poisoning Network Flow Classifiers

TABLE 4.6: Results on the CTU-13 Neris Botnet scenario, where the victim
model uses an auto-encoder to learn the feature representation. Entropy

strategy.

Poison budget 0.5% 1% 2% 4% 5% 10%
ASR 0.013 0.066 0.166 0.362 0.406 0.634
Stand. dev. 0.009 0.045 0.134 0.100 0.140 0.109
∆F1 Test 0.002 0.003 0.005 0.009 0.011 0.007

4.4.4 Impact of Feature Representation

The feature representation used by the learning task can strongly influence the attack
success. In the next set of experiments, we study feature encodings, which are auto-
matically learned with an auto-encoder architecture. Together with statistical features,
encoded features are representative in network traffic classification, and auto-encoder
models have been widely adopted for this task by previous works [145, 246, 85, 55]. To
generate these features, we first train an auto-encoder model in an unsupervised man-
ner, with the goal of minimizing the reconstruction error. Then the encoder portion of
the model is run on the same training data to extract the high-level features used to train
the feed-forward neural network architecture considered in previous experiments.

Since the auto-encoder requires its inputs to be of a consistent shape, instead of features
extracted from 30-second time windows, here the model is provided with an input rep-
resentation consisting of contiguous blocks of 100 connections. Given that features are
extracted from connection blocks of a fixed size, we also fix the trigger size to be 50 con-
nections long. We found this value empirically by experimenting with different trigger
sizes, and noticed that smaller ones would lead to unsatisfying attack results. While the
trigger is relatively large compared to the unit block size, it is worth noting that the total
number of connections introduced by the attack is still very limited when compared to
the size of the the training set.

Table 4.6 reports the results of the Entropy strategy when applied in this setup, at differ-
ent poison percentages, together with its standard deviation across 5 experiments and
the average degradation in performance of the victim model on clean data. Since the
auto-encoder was trained in an unsupervised fashion to minimize the reconstruction
loss, we expect this training loss to impact negatively the overall success of the attack.
In fact, we do observe a general reduction of the success rate compared to the simple
neural network model, especially for limited poisoning budgets (⇓ 1%). However, if
the adversary is allowed to increase the poisoning rate beyond 1%, we observe that the
attack scales nicely with larger poisoning budgets. At the same time, the ∆F1 values
remain generally low even at larger poison percentages.

4.5. Related Work 63

4.4.5 Other datasets

In the previous sections, we carried out an in-depth evaluation of various attack char-
acteristics and their impact on the attack success. In this section, we investigate how
generalizable this poisoning approach is by testing it on different datasets and other
classification tasks. We evaluate here a second cybersecurity task on the CIC IDS 2018
dataset, and two application classification scenarios on CIC ISCX 2016. For all of these
case studies, we use the statistical features (see Table 4.2) and the full trigger strategy.

We report the attack success rate at different poisoning percentages in Figure 4.8. Due to
the much smaller size of the ISCX dataset, we test up to slightly larger poison percent-
age values — for instance in the Chat/Video scenario, 0.1% of the training set would
amount to a single poisoning point. In general, we observe similar trends as in previous
experiments, with the SHAP and Entropy strategies performing similarly, and achiev-
ing significant attack success rates even with very limited poison budgets.

We also evaluated the poisoned model on clean test data, to verify whether the poisoned
model is still able to classify clean test data correctly. We obtained very limited reduc-
tions in F1 scores: ∆F1 is between 0.002 and 0.046, with the SHAP strategy resulting in
slightly larger shifts than the other feature selection methods.

4.5 Related Work

Adversarial Machine Learning. We can identify two major categories of integrity at-
tacks against ML classifiers: (1) evasion attacks, which occur at test time and consist in
applying an imperceptible perturbation to test samples in order to have them misclas-
sified, and (2) poisoning attacks, which influence the training process (either through
tampering with the training dataset or by modifying other components of the training
procedure) to induce wrong predictions during inference. For details on other adversar-
ial ML techniques, we direct the reader to the standardized taxonomy presented in [164].

In this study, we are focusing on backdoor poisoning attacks, a particularly insidious
technique in which the attacker forces the learner to associate a specific pattern to a de-
sired target objective — usually the benign class in cybersecurity applications. While
backdoor poisoning does not impact the model’s performance on typical test data, it
leads to misclassification of test samples that present the adversarial pattern. Backdoor
poisoning attacks against modern ML models were introduced by Gu et al. [78] in Bad-
Nets, where a small patch of bright pixels (the trigger pattern) was added to a subset
of images at training time together with an altered label, to induce the prediction of a
target class. Subsequently, Turner et al. [222] and Shafahi et al. [195] devised clean-label
backdoor attacks which require more poisoning data samples to be effective, but relax

64 Chapter 4. Poisoning Network Flow Classifiers

FIGURE 4.8: Attack success rate (ASR) on the CIC IDS 2018 Botnet and
the CIC ISCX 2016 dataset, full trigger.

4.5. Related Work 65

some strong assumptions of previous threat models, making them significantly more
applicable in security scenarios.

In cybersecurity, the earliest poisoning attacks were designed against worm signature
generation [171, 155] and spam detectors [152]. More recently, a few studies have looked
at packet-level poisoning via padding [92, 156], feature-space poisoning in intrusion
detection [11, 124], and label flipping attacks for IoT [166]. Severi et al. [193] proposed
to use model interpretation techniques to generate clean-label poisoning attacks against
malware classifiers. Their strategies are applicable to security datasets whose records
are independent such as individual files or Android applications, which present a direct
mapping from feature space to problem space. In contrast, our study explores attacks
trained on network traffic, where multiple sequential connections are translated into
one single feature-space data point; in this setting, inverting triggers from feature to
problem space becomes particularly difficult due to data dependencies.

Preserving Domain Constraints. Functionality-preserving attacks on network traffic
have mostly looked at evasion during test time, rather than poisoning. For instance,
Wu et al. [236] proposed a packet-level evasion attack against botnet detection, using
reinforcement learning to guide updates to adversarial samples in a way that maintains
the original functionality. Sheatsley et al. [199] study the challenges associated with the
generation of valid adversarial examples that abide domain constraints and develop
techniques to learn these constraints from data. Chernikova et al. [45] design evasion
attacks against neural networks in constrained environments, using an iterative opti-
mization method based on gradient descent to ensure valid numerical domain values.
With our constraint-aware problem-space mapping, which also takes into account de-
pendencies in network traffic, we delve one step further into the challenging issue of
designing functionality-preserving attacks.

Significant advances have been made recently with respect to generating multivariate
data. Modern tabular data synthesizers of mixed data types leverage the power of gen-
erative adversarial networks [241, 64, 67, 252, 43] and diffusion models [116] to create
realistic content from the same distribution as the original data. Among the different
frameworks, FakeTables [43] is the only attempt at preserving functional dependencies
in relational tables. However, its evaluation is limited to Census and Air Carrier Statis-
tics datasets, and its ability to capture more complex relationships between variables is
unclear.

In this work, we model conditional dependencies in the traffic using Bayesian networks
– a common choice for generating synthetic relational tables [56, 179, 86, 108, 251].
Bayesian networks offer increased transparency and computational efficiency over more
complex generative models like generative adversarial networks [108]. We believe this

66 Chapter 4. Poisoning Network Flow Classifiers

is an important advantage is our setting, which deals with large volumes of network
traffic featuring multiple variables (e.g., log fields). In cybersecurity, Bayesian networks
have also been used to learn traffic patterns and flag potentially malicious attempts in
intrusion detection systems [224, 240, 59, 99].

4.6 Discussion and Conclusion

Despite our efforts towards the practical feasibility of the attack we propose, poisoning
complex data is still a challenging task, and there are some elements that could increase
the difficulty of deploying this attack on an arbitrary victim network.

4.6.1 Limitations

Regarding the problem-space mapping of the triggers, the adversary may experience
a situation where two connection events are inter-dependent, due to the internal state
of Zeek, but the trigger does not include both of them simultaneously — this could
occur if the connections happen across the border of two time windows. For instance,
inter-dependent connection events may take place in the case of hosts running the FTP
protocol. Documentation on this type of connections for Zeek is quite scarce, but a
dedicated attacker could allocate time and resources to enumerate all possible corner
cases and explicitly avoid them during the trigger creation phase.

Another potential source of issues could arise when using the generated trigger ap-
proach. This method leads to a generally good attack success with a small footprint,
however, it could in principle generate connections that are not feasible in practice for
stateful protocols (TCP). There are two possible ways to address this potential issue.
First, given the relentless pace of improvements in generative models, including those
targeting tabular data [241, 27], we expect that the ability of generative models to infer
the inter-features constraints that characterize this data modality will increase signif-
icantly in the very short term. In parallel, the adversary could attempt to verify the
correctness of the generated connections using a model checker and a formal model of
the TCP protocol, and simply reject the non-conforming ones. Both approaches are ex-
citing avenues for future research, and we leave their in-depth analysis to future work.

Finally, we designed methods to hide the poisoning campaign, and showed that our
poisoning points are difficult to identify both in feature space, by using anomaly de-
tection techniques, and in problem space, by analysing the distributional distance of
poisoned data. Defending ML models from backdoor attacks is an open, and extremely
complex, research problem. Many of the current proposed solutions are designed to op-
erate in the computer vision domain [42], or on specific model architectures [130, 221].

4.6. Discussion and Conclusion 67

In contrast, our attack method generalizes to different model typologies. Moreover, ini-
tial research on defending classifiers from backdoor attacks in the security domain [89]
highlighted potential trade-offs between robustness and utility (e.g., defenses that rely
on data sanitization may mistakenly remove a high number of benign samples in an
attempt to prune out potentially poisoned samples). in Chapter 5 we investigate further
strategies to mitigate the type of attacks described in this chapter.

4.6.2 Conclusion

With this work we investigated the possibility of carrying out data-only, clean-label,
poisoning attacks against network flow classifiers. We believe this threat model holds
substantial significance for the security community, due to its closer alignment with
the capabilities exhibited by sophisticated adversaries observed in the wild, and the
current best practices in secure ML deployments, in contrast to other prevailing models
frequently employed.

The attack strategy we introduce can effectively forge consistent associations between
the trigger pattern and the target class even at extremely low poisoning rates (0.1-0.5% of
the training set size). This results in notable attack success rates, despite the constrained
nature of the attacker. While the attack is effective, it has minimal impacts on the victim
model’s generalization abilities when dealing with clean test data. Additionally, the
detectability of the trigger can be lessened through different strategies to decrease the
likelihood of a defender discovering an ongoing poisoning campaign.

Furthermore, we demonstrated that this form of poisoning has a relatively wide appli-
cability for various objectives across different types of classification tasks. The implica-
tions of these findings extend our understanding of ML security in practical contexts,
and prompt further investigation into effective defense strategies against these refined
attack methodologies.

69

Chapter 5

Mitigating Backdoor Attacks in
Cybersecurity Domains

In the previous two chapters, Chapter 3 and Chapter 4, we explored in depth new ap-
proaches to launch clean-label backdoor attacks against models designed to operate on
tabular cybersecurity data. With this chapter we shift our perspective to the defender,
the security company developing the model. The following sections will describe a new
mitigation technique, introduced in [189], aimed at contrasting the attacks presented in
the previous chapters. Crucially, this mitigation strategy leverages the peculiarities of
the domain and relies on fewer assumptions than other works in literature.

Chapter Summary

The training phase of machine learning models is a delicate step, especially in cy-
bersecurity contexts. Recent research has surfaced a series of insidious training-time
attacks that inject backdoors in models designed for security classification tasks with-
out altering the training labels. With this work, we propose new techniques that
leverage insights in cybersecurity threat models to effectively mitigate these clean-
label poisoning attacks, while preserving the model utility. By performing density-
based clustering on a carefully chosen feature subspace, and progressively isolating
the suspicious clusters through a novel iterative scoring procedure, our defensive
mechanism can mitigate the attacks without requiring many of the common assump-
tions in the existing backdoor defense literature. To show the generality of our pro-
posed mitigation, we evaluate it on two clean-label model-agnostic attacks on two
different classic cybersecurity data modalities: network flows classification and mal-
ware classification, using gradient boosting and neural network models.

70 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

5.1 Problem Definition

Machine learning (ML) models power an ever growing variety of software systems, in-
cluding cybersecurity solutions intended to stop active adversaries [9, 163, 145, 98, 217,
144, 96, 136, 97]. The deployment of models in security-sensitive contexts increases the
relevance of adversarial machine learning risks, both during inference, evasion attacks,
and during the training phase of the model, poisoning attacks. Recent trends in ML prac-
tices, especially concerning the growing size of datasets and increased reliance on data
crowd-sourcing [36], and the widespread adoption of models as core components in cy-
bersecurity products have increased the public awareness [202, 13] of risks associated
with training time adversarial interference.

Existing research in this area of adversarial ML has primarily focused on the computer
vision domain. Seminal works such as [22, 78], demonstrated different adversarial poi-
soning procedures designed for various model architectures and targeted at achieving
different adversarial objectives. However, recent efforts by researchers have started ex-
ploring possible strategies an adversary can use to compromise the integrity of models
developed for cybersecurity tasks through training process manipulation [193, 247, 190].

We focus on mitigating backdoor attacks [78] in cybersecurity settings. This type of
attack aims to induce a victim model to memorize the association between a predeter-
mined data pattern – also called a trigger or backdoor – selected by the adversary, and
a target class of the attacker’s choice. If successful, the same pattern can then be pre-
sented to the model during inference within any arbitrary data sample, triggering the
target class output.

We select backdoor attacks as our objective because we argue they pose a particularly
relevant threat to cybersecurity applications. These systems rely on large datasets of
labeled samples, often gathered through network monitoring or crowdsourced feeds,
providing opportunities for training data manipulation. Moreover, backdoor attacks are
inherently stealthy. The adversary’s objective is not to simply disrupt the performance
of a victim model, which would lead to prompt discovery and potential remediation by
the model owners. Instead, the goal is to embed an arbitrary behavior – the ability to
trigger a desired output – in the learned model without altering its normal behaviors on
standard data points. This makes it particularly difficult for a defender to realize that
the victim model has been compromised.

In this work, we consider two particularly insidious backdoor attacks developed specif-
ically to target ML models designed for cybersecurity tasks: one aimed at subverting
static malware classifiers [193], and one geared towards automated traffic analysis sys-
tems [190]. Both attacks operate in a clean-label fashion, injecting the trigger pattern

5.2. Protecting Cybersecurity Models 71

only in a small amount of training points corresponding to benign data, without requir-
ing control over the training set labels. In addition, these types of attacks are agnostic to
the victim’s model type, and are applicable to a variety of model architectures and data
modalities used for security classification tasks.

Our defensive approach leverages the information asymmetry between attacker and
defender in these scenarios to isolate the poisoned points while maximizing the amount
of clean data retained for model training. Our method revolves around an iterative
scoring process on clustered data points in a selected feature subspace, and we propose
different analysis procedures to remediate the effect of the poisoned clusters, able to
reduce attack success by up to 90% while preserving high utility, even at large poisoning
rates up to 5%. In contrast with most existing backdoor mitigation approaches, we do
not make specific assumptions on the victim model’s architecture, and our approach is
applicable to any classifier (not just neural networks). Moreover, our defense removes
another standard assumption often found in the literature: requiring the defender to
have access to a set of clean data points sampled from the same distribution as the
training data [130, 87, 174].

To summarize, we make the following contributions:

• We propose a novel defense mechanism against clean-label backdoor attacks in
cybersecurity domains. Our technique does not require access to clean trusted
data or knowledge of the victim’s model architecture, thus removing some strong
assumptions from previous works.

• We demonstrate that our defense is generally applicable across various data modal-
ities (network flow traffic and binary files), and multiple model types, such as
neural networks, gradient boosting trees, and LightGBM classifiers.

• We comprehensively evaluate our techniques against existing backdoor attacks
from previous literature. We show that our methods are able to reliably identify
and remove backdoor examples while preserving a high model utility (F1 score)
and low false positive rates.

• For reproducibility, we evaluate our defense strategies on publicly available datasets
and open source attack implementations, and release all the code used to run the
experiments in this study.

5.2 Protecting Cybersecurity Models

The goal of this work is to study effective methods for defending against backdoor at-
tacks in cybersecurity environments. We are focusing on feasible clean-label poisoning

72 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

strategies that are not tailored to a specific model; instead, they are applicable to a vari-
ety of model architectures and data modalities used in security.

5.2.1 Setting

Compared to the task of protecting ML models designed for image classification or nat-
ural language processing (NLP) tasks, operating in a security sensitive environment
presents both unique challenges and opportunities. To start with, in this domain, an
effective defensive approach has to be applicable to a wide variety of models, such as
decision-tree based ensembles, including Random Forests and Gradient Boosting Trees,
and neural network architectures. These models are state-of-the-art in many security
applications, such as malicious domain classifiers [163] and malware classification [5].

Moreover, the availability of a set of clean reference data points, a common assumption
in backdoor defense research [254, 174], is not to be taken for granted. It may indeed
be relatively simple for an organization to obtain clean samples of images or natural
language text, by scraping the Internet or leveraging large scale crowd-sourcing sys-
tems such as Amazon Mechanical Turk to gather annotations or filter out potentially
anomalous data points. However, ensuring that cybersecurity data has not been tam-
pered with requires potentially complex analyses by domain experts, which is typically
a significantly more expensive process.

Conversely, the intrinsic constraints of cybersecurity data modalities also limit the at-
tacker party. Thus, defensive measures designed for these models can rely on differ-
ent assumptions, which are unlikely to hold in other domains. For instance, existing
attacks [193, 190] surfaced feature importance estimation as a key component in the
design of an effective backdoor trigger. Triggers that do not leverage relevant features
are usually not effective to induce the mis-classification at deployment time, as demon-
strated by prior work [190]. This intuition can, in turn, be used by a defensive mecha-
nism to reduce the scope of the detection task in feature space.

Additionally, stealthy backdoor attacks on security classifiers tend to rely on clean-label
attack formulations, where the poison is injected in benign data points, as the adversary
often lacks the ability to interfere with the labeling mechanism. This practice also has
the added side effect of allowing the poisoning points to blend in among the usually
large variety of benign points. While the variance in benign data can be problematic
from a defensive standpoint, this trend also implies that a defender can assume that the
poisoned samples are a subset of the benign training data.

5.3. Threat Model 73

5.3 Threat Model

Our work focuses on defending binary classification models designed for security appli-
cations, in particular tabular data classification on hand-crafted feature representations.
Therefore, the assumed adversarial objective is to ensure the ability to arbitrarily trigger
the output of benign for an actually malicious data point chosen by the adversary. In
a practical setting this would correspond to the ability to evade the victim classifier,
and allow an undesired action on the system, such as the execution of malware or the
propagation of the malicious network flows.

Similarly, the defender objective is to minimize, and potentially completely disrupt, the
success rate of the attacker. Parallel to this primary goal, the defender also strives to
minimize the side effects of their defensive strategy on the performance of the model.
Of high concern is the false positive rate (FPR) — the fraction of benign points classified
as malicious — of the model. False positives are particularly expensive for security
vendors, as they result in direct interference with the normal operations of their clients,
and usually require a prompt investigation leading to overheads. Therefore, an effective
defensive mechanism should have minimal impact on the FPR of the defended model.

5.3.1 Adversary’s Goals and Capabilities

We consider different adversaries with the range of capabilities studied in [193, 190].
In particular, the attacks assume the adversary to be knowledgeable of the feature rep-
resentation used by the victim model. Moreover, the attacker is able to either query a
version of the victim model, or use a surrogate to estimate feature importance values. In
all cases, the attackers are also characterized by the ability to introduce a small amount
of poisoned samples in the training set, and a complete lack of control over the labeling
step of the training pipeline.

5.3.2 Defender’s Goals and Capabilities

In contrast to previous work, we do not assume that the adversary is in possession of
a clean dataset distributed as the training set. While this assumption can be true in
some contexts (it is often rather easy to acquire, or verify, clean data for image classifica-
tion tasks), we argue that it introduces large costs in the security domain, since manual
analysis of the data points is a task that requires domain experts. We do, however, as-
sume the defender has the computational resources required to perform clustering on
the training data and to train multiple models. Differently from computer vision or
natural language processing models, which are often billions of parameters large, secu-
rity models tend to be smaller, often based on ensembles of decision trees and gradient
boosting, making them relatively inexpensive to re-train.

74 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

5.4 Challenges of existing defenses

Most backdoor defenses proposed in the literature are not immediately applicable to
cybersecurity. Security applications considered in this work have unique characteristics,
threat models, and assumptions that make applying existing defenses difficult:

Different data modalities and model architectures. The majority of proposed mitiga-
tions have been specifically designed for the computer vision domain where CNNs are
state-of-the-art architectures [42, 221, 84, 146]. Representative approaches for computer
vision backdoor defenses are activation clustering [42], spectral signatures [221], and
SPECTRE [84] that perform outlier detection in the CNN representation space via clus-
tering, SVD decomposition, or robust statistics. Prior work [193] tried to adapt these
methods over the feature space for defending against poisoning in malware classifica-
tion, but they showed that these defenses are not effective when they do not operate in
the model’s representation space.

Coarse-grained binary labels. The typical cybersecurity task is to distinguish mali-
cious and benign samples, resulting in a binary classification problem. Techniques that
look for shortcuts between classes in latent space and aim to identify a target attack la-
bel, such as Neural Cleanse [232] and ABS [131], require finer-grained labeling of the
training data and thus cannot be readily adapted to our setting.

Hard constraints on false positives. Models trained for cybersecurity tasks have hard
constraints on false positives to be deployed in production [163]. This requirement rules
out the application of certified defenses [207, 231, 122, 234] which largely degrade model
utility.

Applicable defenses. Among the defenses surveyed in Section 5.7.1, the only cate-
gory that can be applied in cybersecurity settings is the pruning or fine-tuning methods
aimed at unlearning the backdoor pattern [130, 125, 87, 174]. As discussed, all these
approaches require the availability of a clean dataset, an assumption not easily satisfied
in our setting. Nevertheless, we select a recent representative technique in this category,
Selective Amnesia [87], and show its limitations when applied in this domain.

5.4.1 Limitations of Selective Amnesia

We adapt the Selective Amnesia (SEAM) defense [254] on one of our security scenarios,
the CTU-13 Botnet detection task. Conceptually, SEAM works by forcing the model to
forget the association with the trigger by inducing catastrophic forgetting through fine-
tuning on randomly assigned labels different from the ground truth. Once the model

5.4. Challenges of existing defenses 75

FIGURE 5.1: Selective Amnesia defense applied to the attack against the
CTU-13 Neris botnet classifier. The plots compare in attack success rates
before and after recovery, and the F1 score on test data, for different sizes

of the clean dataset. Attack run with Entropy feature selection.

76 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

Dimensionality
reduction

Density-based
clustering

Iterative cluster
scoring Sanitization

o Clusters are ranked using
model loss information

o Low-loss clusters are
iteratively added to clean set

OPTICS algorithmEntropy-based selection of
most important features

o Threshold-based pruning of
high-loss clusters

o Patching high-loss clusters to
overwrite trigger

FIGURE 5.2: Pipeline of our defense strategy.

has forgotten both the primary classification task, and the backdoor association, SEAM
proceeds to fine-tune the model on a held out clean dataset until the accuracy of the
model is restored.

Selective amnesia was designed for multi-class classification in vision tasks, therefore
we had to re-implement the method adapting it for our binary classification task on
security data. Moreover, SEAM requires the ability to fine-tune a model on both mis-
labeled points during the forgetting phase, and on clean data during the recovery phase.
Thus, we only tested it on our neural network classifier, as the process of fine tuning
different types of classifiers (e.g., Random Forests, Gradient Boosting Trees) is not well
defined.

Figure 5.1 reports the results of SEAM applied to clean-label backdoor attacks on se-
curity data, for different sizes — expressed as percentage of the training set — of the
held-out clean dataset. We observe that SEAM’s success as a mitigation technique is
strongly dependent on the size of the clean dataset: 1% recover set size is insufficient
to prevent the attack, while 5% clean dataset size decreases the attack success rate from
approximately 0.65 to 0.30. The defense becomes more effective, but still does not com-
pletely thwart the attack, as the clean dataset size reaches 10%. Since, for cybersecurity
tasks, acquiring and validating large volumes of data is markedly more expensive than
in other domains such as NLP or computer vision, we believe that there is a need for a
mitigation approach that doesn’t directly rely on access to clean data.

5.5 Defense strategy

Guided by the considerations presented in Section 5.2, we develop a defensive strategy
aimed at protecting models designed for security classification tasks against stealthy
clean-label poisoning attacks. Our procedure for sanitizing the training dataset pro-
ceeds in several stages, outlined in Figure 5.2. A more detailed pseudo-code of our
strategy is presented in Algorithm 3. Before detailing each stage in the defense pipeline,
we provide some key insights that enable us to address the limitations of prior methods.

5.5. Defense strategy 77

Dimensionality reduction: First, motivated by the observation that most clean-label
poisoning attacks in cybersecurity leverage important features [193, 190], we perform
dimensionality reduction by selecting the most relevant features for classification. For
this stage, we use an entropy metric computed on a decision tree model fitted to a subset
of the data for identifying the top contributing features, and perform our subsequent
analysis in this reduced space.

Density-based clustering: In the second stage, we perform clustering of samples with
the benign label in the reduced space, to identity the clean-label poisoned samples. Our
main insight is that poisoned samples lay in a different subspace of the benignly labeled
samples and they will cluster together as they have similar values in the trigger. We
leverage density-based clustering to partition the training data based on similarity in
feature space. In contrast to centroid-based methods, density-based clustering deter-
mines the number of clusters dynamically, can detect irregularly-shaped clusters, and
can handle both dense and sparse regions.

Iterative cluster scoring: Due to the stealthy nature of poisoning attacks, poisoned
clusters will be small in size. We can thus assume that the largest cluster (usually in-
cluding at least 50% of the training set) consists of clean benign samples, an assumption
we will validate and confirm experimentally. Hence, we select the largest cluster to ini-
tialize the clean set and conduct an iterative process where we gradually select clean
clusters and re-train the model. The main challenge is identifying the poisoned clusters
during this iterative process, so that we can exclude them from model training. After
adding a set of clean clusters to the model in a particular iteration, we evaluate the
model loss on the remaining clusters. Intuitively, clusters with lowest loss are closer to
the (clean) training set. With this insight, we progressively grow the clean set by adding
the lowest-loss clusters at each iteration.

Sanitization of high-loss clusters: Lastly, we employ a data sanitization step to either
filter or patch the high-loss clusters to protect the model against poisoning. For the
filtering strategy, we either stop the iterative process after including a fixed percentage
(e.g., 80%) of clusters in the training set, or select a subset of clusters to exclude via loss
analysis. For the patching strategy, we include all clusters in training, but apply a patch
to the most relevant features in the highest loss clusters.

We now describe in details each stage of the defense pipeline.

78 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

5.5.1 Dimensionality reduction

Clustering high-dimensional data is affected by the curse of dimensionality – as dimen-
sionality increases, data points become more dissimilar or farther from each other [206].
Therefore, before running a clustering technique, we first reduce the dimensionality of
the data points to a feature subset F . Here we leverage the following insight about the
attack process: strong backdoor attacks choose features with high impact over a model’s
decisions [193, 190]. Hence, we reduce the data set to the top |F | most important fea-
tures.

We would like to compute feature importance in a model-agnostic fashion. In tree-based
models, entropy is used to decide which feature to split on at each step in building the
tree. The lower the entropy, the more beneficial the chosen feature is. We employ a sim-
ilar technique by mapping a surrogate decision-tree model on our data and computing
entropy-based feature importance to rank the features and select the top most relevant
ones. Specifically, in our experiments, we reduce the network traffic and binary files
datasets from approximately 1100 and 2300 features, respectively, to top 4 and 16 most
important features.

5.5.2 Clustering

Our defense relies on a clustering procedure to isolate the compromised training points.
While previous work such as Chen et al. [42] is tailored to deep neural network models
— they apply clustering on the last hidden layer representation of the neural network
model to distinguish between poisonous and legitimate data — we design a model-
agnostic strategy.

We perform density-based clustering operating in the reduced feature space F , ensur-
ing a broader applicability to multiple classification models. We use OPTICS (Ordering
Points To Identify the Clustering Structure) [7] to find high-density cores and then ex-
pand clusters from them. OPTICS automatically identifies the number of clusters, k,
present in the data and works better than the commonly used density-based method
DBSCAN [65] on clusters with different densities, a characteristic that is particularly
useful for our defense.

This approach reliably isolates the poisoned points into a few clusters. However, the
defender still does not know which clusters are corrupted. Therefore, the next step of
our defense consists of designing scoring and filtering systems that can leverage the
information advantage gained through clustering.

5.5. Defense strategy 79

5.5.3 Cluster loss analysis

Prior to discussing our cluster scoring methodology, we provide some intuition as to
how model loss behaves on the clustered dataset. Our strategy takes into account two
defining characteristics of stealthy backdoor attacks. First, the adversary strives to min-
imize the attack footprint, i.e., the number of attack points introduced in the training
data. Therefore, we can conclude that poisoned data points generally reside in rela-
tively small clusters, while larger clusters are mostly clean. Second, in an attempt to
camouflage the poisons as benign, the adversary inserts the backdoor into data points
belonging to the benign class. Based on this insight, we compute the clusters only over
Dy=0 – target-class (benign) data, while the non-target (malicious) training points Dy=1

can be assumed clean (i.e., not containing the backdoor), and used to train surrogate
models.

We anticipate that models trained on clean data will exhibit very high loss on clusters
containing poisoned data and models trained on poisoned data will exhibit very low
loss on clusters containing poisoned data. Assuming that the largest cluster (which we
denote as C0) is likely to be clean, we consider comparing the loss of a model on cluster
j, when the models is trained on C0

⋃
Dy=1 versus when it is trained on C0

⋃
Ci

⋃
Dy=1,

for each cluster i. If cluster j contains poisons, we anticipate that the change in loss
will be small, apart from those few clusters i that also contain poisons. An example
of carrying out this procedure on a poisoned dataset that the defender has clustered is
shown in Figure 5.3, where cluster 11 consists of poisoned data and the remaining clus-
ters consist of clean data. The twenty clusters shown (out of about 700) are those with
the highest loss for a model trained on C0

⋃
Dy=1. Note that the model has high loss on

cluster eleven when trained on C0
⋃

Dy=1 and exhibits almost no improvement except
when the model is trained on C11. We observed that this method was often effective
at identifying clusters in our experiments, but it carries a high computational cost as a
model must be trained for each cluster. In some of our experiments, we observed more
than 1000 clusters, which motivated us to search for a more efficient method to identify
the poisoned clusters.

5.5.4 Iterative cluster scoring

We develop an iterative scoring procedure where clean clusters are progressively iden-
tified and added to the clean data set.

Our cluster scoring procedure is presented in Algorithm 3, lines 9-27. We start by se-
lecting the largest cluster C0 out of the entire set of clusters C identified by OPTICS, and
merging it with the malicious points, to generate a temporary (small) clean training set,
Dclean ↘ C0

⋃
Dy=1. Next, we train a clean model f on Dclean, and evaluate f ’s average

80 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

FIGURE 5.3: Row 0: Log-loss of model trained on C0
⋃

Dy=1 and
evaluated on clusters Cj. Rows 1-20: Log-loss of model trained on
C0

⋃
Ci

⋃
Dy=1 and evaluated on clusters Cj. Note that cluster 11 consists

of poisoned data and the remainder contain only clean data. Experiment
on CTU-13, gradient boosting classifier, attack run with entropy feature

selection.

loss on each remaining cluster Ci ↑ C \ C0. We rank the clusters Ci by loss, bearing in
mind that, typically, the lower the loss, the closer the cluster is to the training data Dclean.

Having defined a fixed window size w – we use w = 5% of the clusters – we construct
an iterative filtering process as follows. We take the w of the clusters with the lowest
average loss score on the clean model, and add their data to the clean training set Dtrain.
Then we re-train the surrogate model f on this new dataset and score the remaining
clusters. This process iteratively pushes the clusters that are less similar to the data
assumed to be clean to the bottom of the list, therefore isolating the clusters containing
poisoned data points.

At this point the defender could opt for a fixed threshold filtering strategy, by stopping
the iterative training and scoring process after a fixed percentage of clusters has been
added to Dclean. In our experiment, we set this fixed threshold to 80% of the clusters, as
we empirically find it to be quite effective. However, based on the intuition developed
in Section 5.5.3, we expect the poisoned clusters to affect the loss of the model in a very
specific way when added to the training set. Therefore, we can proceed to look for
those clusters for which we observe significant changes between the loss of the model
computed on the cluster before it being introduced in Dclean and after the model trained
on it. By measuring these deltas in the loss for each cluster, we can look for anomalous

5.5. Defense strategy 81

clusters using a standard statistical approach, the Z-score1.

In practice, we accumulate the loss deltas, ∆i = loss(fcurrent, Ci)≃ loss(fprevious, Ci), for
each cluster i when it is included in Dclean up to the 80% threshold. Then we use the
recorded values of ∆ to compute mean µ and standard deviation σ. Then we compute
z = x≃µ

σ for all the clusters, define a threshold zt = 2σ, and apply our sanitization
procedure to those clusters with score z <= zt.

5.5.5 Sanitization of high-loss clusters

The iterative process described above effectively isolates the poisoned points. The final
step of our defense consists in dealing with the isolated clusters. We identify two main
remediation procedures: (i) discarding clusters that have not been considered clean;
(ii) patching the data points belonging to clusters that that have not been considered
clean. In Section 5.6 below, we show the effects of applying both strategies to the sus-
picious clusters identified by each of the two methods, i.e., (a) clusters are considered
suspicious after a fixed number of iterations, and (b) the pre-clustering loss deltas are
analyzed to surface suspicious clusters.

The first strategy simply removes clusters that are considered suspicious from the train-
ing set of the final model, thus preventing the poisoned points from corrupting the
model. This procedure has the advantage of being easy to implement, but, depending
on the number of clusters removed, may damage the utility of the model, especially on
uncommon test points.

The second approach aims at preserving as much utility of the model as possible by
still extracting information from points belonging to suspicious clusters, while at the
same time minimizing the effect of the attack. It consists in applying a patch over the
subspace of the P most important features to each data point in the suspect clusters,
while maintaining unaltered the rest of the vector. Note that in general |P| ⇔ |F |, as
the defender can be conservative and patch a larger portion of the feature space than
the one used for clustering.

In our implementation, we randomly sample values for the patched features from the
set of points in Dclean, when Dclean includes 80% of the clusters. With the continuous
evolution of generative modeling for tabular data – for instance with applications of
diffusion models to tabular modalities –, however, the defender could design patching
mechanisms that could potentially lead to even larger gains in model utility. We leave
the exploration of this interesting research thread for future work.

1
https://en.wikipedia.org/wiki/Standard_score

https://en.wikipedia.org/wiki/Standard_score

82 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

Algorithm 3: Mitigation Procedure
Data: D: training data set in feature space;

Dy=0: the subset of D labeled benign (examples may include trigger);
Dy=1: the subset of D labeled malicious

Procedure Defense(D):
// reduce the data set to the most important features
F ↘ DIMENSIONALITY_REDUCTION(Dy=0)
// partition the data set into clusters
C ↘ DENSITY_BASED_CLUSTERING(F)
// initialize the clean set with the largest cluster
C0 ↘ max(C)
// use model loss to isolate clusters that contain poisons
do

// current clean data (both benign and malicious)
Dclean ↘ C0

⋃
Dy=1

// train a new clean model f on Dclean
f ↘ TRAIN(Dclean)
// remaining clusters to be scored and filtered
Cr ↘ C \ C0
// dictionary of loss per cluster
L = {}
//evaluate loss for each remaining cluster
for i ↑ range(|Cr|) do

// evaluate the average loss over all data points
// in cluster Ci using the current clean model f
L[i] = COMPUTE_LOSS(f , Ci)

// add cluster(s) with lowest loss to C0 and repeat
Cl ↘ lowest loss cluster(s) fromL
C0 ↘ C0

⋃
Cl

while C0 ↔= D||stop_condition;
// consider remaining clusters as suspicious
Cr ↘ C \ C0
Cr ↘ PATCH_OR_DISCARD(Cr)
// train the final purified model
Dclean ↘ C0

⋃
Cr

⋃
Dy=1

f ↘ TRAIN(Dclean)
return f

5.6. Evaluation 83

TABLE 5.1: Statistical features for network data.

Feature types
Counts of connections per transport protocol
Counts of connections for each conn_state
Sum, min, max over packets sent and received
Sum, min, max over payload bytes sent and received
Sum, min, max over duration of connection event
Counts of distinct external IPs
Count of distinct destination ports

5.6 Evaluation

In this section we report the results obtained in our experimental evaluation. We start
with describing the experimental setup, and then we explore the settings of network
flows and binary files classification.

5.6.1 Experimental setup

We report here the results of evaluating our defensive approach on the attacks proposed
in Chapter 3 and Chapter 4. We use the experimental conditions reported in the previ-
ous chapters, and we test our defense on different model types, such as neural networks,
gradient boosting trees, and LightGBM classifiers.

For generality, we apply our defense to two types of data: network flow traffic and
binary files. In particular, we run the network data poisoning attack on the CTU-13
dataset for the Neris botnet detection task [70], and the executable poisoning on the
EMBER malicious Windows Portable Executable file dataset [5]. Due to the large num-
ber of experiments we run, to speed up the experimental phase, we subset the EMBER
dataset selecting randomly 10% of the original 600,000 labeled data points, preserving
the 50% class split.

Feature representation

The network traffic datasets consist of NetFlow data, i.e., connection events that have
been extracted from packet-level PCAP files using the Zeek monitoring tool [169]. The
classifier uses a subset of the Zeek log fields, which can be more effectively associated
with intrusion, such as: IP address, port, number of packets and payload bytes (for
both originator and responder), as well as protocol, service, timestamp, duration, and
connection state.

A sequence of this network log data (e.g., 30s time window) is mapped to a feature-
space data point using statistic-based aggregation techniques. Statistical features are

84 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

TABLE 5.2: Statistical features for binary files.

Feature types
Major and minor image version
Major and minor linker version
Major and minor operating system version
Minor subsystem version
Binary size and timestamp
MZ signature
Number of read and execute sections
Number of write sections
Number of unnamed sections
Number of zero-size sections
Counts of distinct file system paths
Counts of distinct registries
Counts of distinct URLs

commonly used to analyse large volumes of traffic and detect suspicious network activ-
ity [148, 246, 28]. In line with previous work [161, 190], the statistical features we use
are aggregated by time window, internal IP and destination port and include several
count-based metrics such as: counts of connections per transport protocol and connec-
tion state, counts of distinct external IPs communicating with each internal IP (as either
originator or responder). Sum, min, and max statistics of traffic volume (packets/bytes)
are also included. The list of features is summarized in Table 5.1, with a final feature
count for this data representation of 1152.

For malware binary files, the classifier operates in the feature space provided by the
EMBER dataset [5]. A feature-space data point contains information regarding both
metadata (e.g., image, linker and operating system version), as well as statistical infor-
mation (e.g., number of URLs and file system paths, and number of read, write and
execute sections). The features used are summarized in Table 5.2, with the resulting
vectors containing 2351 features.

Attacks

We evaluate our defense on the backdoor attacks explored in Chapter 4, originally pro-
posed in [190], against network flow classifiers. The attacks explore both the entropy-
based feature selection – through a surrogate decision tree – method, and SHAP [133], a
game-theory inspired explanation technique that queries the model to compute feature
relevance coefficients. Two types of triggers are considered: 1) full trigger, a contigu-
ous subset of log connections where the backdoor pattern is embedded in the most
important features, and 2) generated trigger, a stealthier variant where poisons resem-
ble benign data. The generative trigger is constructed using Bayesian network models

5.6. Evaluation 85

with the goal of preserving data dependencies in the network traffic, while attempting
to blend the poisoned data with the underlying training distribution.

In addition, we evaluate our defense against backdoor attacks that target malware clas-
sifiers on Windows PE (Portable Executable) files. These attacks are presented in Chap-
ter 3, and originally published in [193]. They leverage SHAP-based model interpreta-
tion methods to guide the attacker towards the most informative features used in the
classification process.

Evaluation metrics

In our experiments we are interested in a few key metrics. First we keep track of the
attack success rate (ASR), that is defined in [193, 190] as the percentage of backdoored
test points, which would otherwise be correctly classified as malicious by a clean model,
which are misclassified as benign by the poisoned model. We are also interested in
recording the fraction of poisoning points that manages to slip through our defenses, so
we report the fraction of poisoning points that ends up being included in Dclean.

In addition to these metrics oriented at measuring the effect of the mitigation on the at-
tack, we also want to measure the side effects of our mitigation on model utility. There-
fore, we report the measured F1 score and false positive rate (FPR) of the defended model
on clean test data.

5.6.2 Evaluation on network traffic classification

Figure 5.4 and Figure 5.5 show the dynamics of the metrics we tracked across the it-
erations, assuming a window size of 5% of the clusters. The reported metrics are ag-
gregated through averaging over multiple experiments, with two different attack fea-
ture selection strategies (Entropy and SHAP), for the Full trigger attack. The results are
shown at 5 different poisoning percentages, and each experiment is repeated 5 times
with different random seeds.

Fixed threshold filtering

We start by considering the fixed threshold sanitization baseline. From the figures we
can observe that in the case of the full trigger attack, for both gradient boosting model
and neural network, interrupting the training when 80% of the clusters has been added
to the training set represents a good baseline heuristic that filters out the vast majority
of poisoning points. We also note that the poisoning fraction used by the attacker has
little influence on the effectiveness of this procedure.

86 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

FIGURE 5.4: Iterative scoring on the CTU-13 botnet classification task for
the gradient boosting model. The plot shows average metrics for a set of
experiments: SHAP and Entropy attacker feature selection, for the Full

trigger attack, at 5 different poisoning rates.

5.6. Evaluation 87

FIGURE 5.5: Iterative scoring on the CTU-13 botnet classification task for
the neural network model. The plot shows average metrics for a set of
experiments: SHAP and Entropy attacker feature selection, for the Full

trigger attack, at 5 different poisoning rates.

88 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

FIGURE 5.6: Iterative scoring on the CTU-13 botnet classification task for
the gradient boosting model. The attack was conducted with the gener-
ated trigger strategy. The plot shows average metrics for the SHAP and

Entropy attacker feature selection, at 5 different poisoning rates.

5.6. Evaluation 89

TABLE 5.3: Average model utility metrics on CTU-13. Results reported
for different victim architectures, at different poisoning percentages. All
results are averages of 10 runs, with two attack strategies and 5 random

seeds.

Trigger type Model type Poisoning % F1 at 80.0% FPR at 80.0% Poisons in Dclean at 80.0%

Full

Neural Network

0.1% 48.19% 1.45% 10.99%
0.5% 45.97% 1.62% 31.71%
1% 52.31% 1.30% 13.89%
2% 49.33% 1.36% 12.03%
5% 64.55% 0.83% 20.51%

Gradient Boosting

0.1% 85.93% 0.21% 0.00%
0.5% 94.84% 0.04% 2.72%
1% 95.43% 0.04% 0.62%
2% 87.13% 0.18% 0.01%
5% 96.50% 0.02% 0.03%

Generated Gradient Boosting

0.1% 93.26% 0.07% 30.99%
0.5% 88.51% 0.18% 49.64%
1% 93.16% 0.08% 48.59%
2% 89.12% 0.17% 38.49%
5% 90.10% 0.14% 65.36%

The generated trigger, on the other hand, is much stealthier, and a larger fraction of
poisoning points manages to pass through the filtering process at these pre-defined
thresholds, as highlighted in Figure 5.6. However, given that this attack is designed for
stealthiness rather than effectiveness, the attack success rate is limited even if a fraction
of the contaminants ends up in the training data. Finally, we note here that, as initially
observed in [190], the generated trigger for the neural network model has a strong ad-
versarial example effect at inference time. That is, the trigger pattern itself induces the
classifier to misclassify the point, even if no poisoning attack took place. Therefore, this
case falls outside the scope of our defense, which is targeted at countering backdoor
poisoning attacks.

While effective at removing the poisons (ASR is ranging from 0.0% to 6.45%), this base-
line remediation strategy may reduce the utility of the models as a side-effect of dis-
carding the entire clusters below the threshold (including their clean data). The F1 and
FPR utility metrics reported in Table 5.3 average from 0.02% to 0.21% for FPR, and 86%
to 97% for F1.

Patching.

The patching-based sanitization strategy addresses the degradation in utility metrics.
Considering the same threshold at 80%, we can directly compare the effects of patching
to filtering for the experiment with the gradient boosting model on CTU-13. Table 5.4
shows that using patching generally leads to higher average values of the F1 score on
test data (91% - 95%), and a lower false positive rate (0% - 0.08%). On the other hand, as
expected, patching is slightly less effective than complete filtering in reducing the attack

90 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

TABLE 5.4: Comparison of patching and filtering sanitization approaches
at fixed threshold = 80%. Gradient boosting model on the CTU-13
dataset. Also showing the Base ASR value for the undefended attack.
Results are averages of 5 runs on different random seeds, for two attack

strategies Entropy and SHAP.

Sanitization Poisoning Base ASR ASR Test FPR Test F1

Filtering

0.1% 50.70% 0.00% 0.21% 85.93%
0.5% 85.80% 6.45% 0.04% 94.84%
1% 88.45% 0.15% 0.04% 95.43%
2% 85.75% 0.00% 0.18% 87.13%
5% 79.90% 0.00% 0.02% 96.50%

Patching

0.1% 50.70% 0.00% 0.08% 90.61%
0.5% 85.80% 10.95% 0.05% 93.19%
1% 88.45% 9.75% 0.03% 93.37%
2% 85.75% 9.30% 0.05% 92.64%
5% 79.90% 10.95% 0.00% 95.27%

success (0% - 11% ASR). Therefore, the defender can adopt the patching approach if they
want to trade-off some defensive effectiveness for reduced degradation in model utility.

Loss analysis and sanitization

We performed the loss deltas analysis outlined in Section 5.5.4 applying it to the experi-
ments on the CTU-13 dataset with the gradient boosting model. For this experiment we
use a threshold Z-score of 2, that is, we mark as suspicious any cluster whose loss delta
is lower than 2 times the standard deviation of the observed loss deltas during the ini-
tial training iterations, up to 80%. The results of both filtering and patching sanitization
strategies are reported in Table 5.5.

This approach leads to a significant improvement of the F1 and FPR scores, especially
for the filtering sanitization. In this case, we observe up to a 0.2% (95% relative improve-
ment) decrement in FPR and up to 11% increase (12.5% relative improvement) in the F1
score on the test set. However, the attack success remains relatively high, and therefore
fixed threshold filtering may be preferable in this scenario. We note here that the de-
fender can always trade off smaller improvements in F1 and FPR scores for a stronger
protection from the attack, by increasing the value of the threshold, for instance using
zt = 1σ.

5.6.3 Evaluation on malware classification

We observe similar trends in our experiments on the malware classification task, as sum-
marized in Figure 5.7. These experiments were run attacking the LightGBM classifier,
proposed with the EMBER dataset, using the two strongest attack strategies, based on
independent feature and value selection: CountAbsSHAP and MinPopulation. Each

5.6. Evaluation 91

FIGURE 5.7: Iterative scoring on the EMBER malware classification task
for the LightGBM model. The plot shows average metrics for a set of
experiments: MinPopulation and CountAbsSHAP attack strategies, at 4

different poisoning rates.

92 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

TABLE 5.5: Comparison of patching and filtering sanitization approaches
after loss analysis, using zt = 2σ. Gradient boosting model on the CTU-
13 dataset. Results are averages of 5 runs on different random seeds,
with two feature selection approaches, for different trigger refinement

strategies.

Sanitization Attack - Poisoning Base ASR ASR Test FPR Test F1

Filtering

Full

0.1% 50.70% 0.00% 0.01% 96.94%
0.5% 85.80% 30.15% 0.00% 97.07%
1% 88.45% 45.80% 0.00% 96.54%
2% 85.75% 53.00% 0.00% 96.85%
5% 79.90% 43.15% 0.00% 96.75%

Generated

0.1% 29.75% 35.80% 0.01% 96.80%
0.5% 42.05% 40.95% 0.01% 96.62%
1% 51.65% 39.40% 0.01% 96.97%
2% 51.25% 46.20% 0.01% 96.82%
5% 62.05% 42.95% 0.01% 96.46%

Patching

Full

0.1% 50.70% 3.05% 0.00% 95.46%
0.5% 85.80% 38.05% 0.00% 96.09%
1% 88.45% 44.20% 0.00% 95.52%
2% 85.75% 51.70% 0.00% 96.60%
5% 79.90% 33.85% 0.00% 95.38%

Generated

0.1% 29.75% 30.25% 0.00% 96.63%
0.5% 42.05% 44.10% 0.00% 96.32%
1% 51.65% 48.50% 0.00% 96.91%
2% 51.25% 49.50% 0.00% 96.85%
5% 62.05% 60.65% 0.00% 96.51%

experiment was run twice with different random seeds, and we tested 4 different poi-
soning rates from 0.5% to 4%.

Fixed threshold filtering

In this scenario we observe a quicker rise in the fraction of poisoning points included in
Dclean after the 80% threshold. Notwithstanding, in general the fixed threshold heuris-
tic is still quite effective in thwarting the attack. Compared to the experiments on the
network classification task, the changes in both F1 and FPR scores are sharper at higher
percentages of included clusters, even if the absolute values of the decrements is gener-
ally smaller. We report 2% FPR and 98% F1 on average, across various poisoning rates,
while the ASR has been reduced to 6%-21%.

In this scenario too, the stealthiest version of the attack, using the Combined SHAP
strategy, leads to a larger fraction of poisoning points included in Dclean before the fixed
threshold. However, as shown in Figure 5.8, the attack success rate remains relatively
low unless high poisoning percentages are used.

5.6. Evaluation 93

FIGURE 5.8: Iterative scoring on the EMBER malware classification task
for the LightGBM model. The plot shows average metrics for the set of
experiments on the Combined SHAP attack strategy at 4 different poison-

ing rates.

94 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

TABLE 5.6: Comparison of patching and filtering sanitization approaches
at fixed threshold = 80%. LightGBM model on the EMBER dataset. Also
showing the Base ASR value for the undefended attack. Results are av-
erages of two runs on different random seeds, for the two Independent

attack strategies.

Sanitization Poisoning Base ASR ASR Test FPR Test F1

Filtering

0.5% 24.53% 6.19% 2.03% 98.21%
1% 34.27% 7.04% 2.08% 98.20%
2% 59.42% 20.98% 2.13% 98.16%
4% 98.67% 6.22% 2.05% 98.20%

Patching

0.5% 24.53% 25.66% 1.65% 98.31%
1% 34.27% 25.13% 1.64% 98.29%
2% 59.42% 68.18% 1.64% 98.34%

TABLE 5.7: Comparison of patching and filtering sanitization approaches
after loss analysis, using zt = 2σ. LightGBM model on the EMBER
dataset. Also showing the Base ASR value for the undefended attack.
Results are averages of two runs on different random seeds, for different

strategies.

Sanitization Attack - Poisoning Base ASR ASR Test FPR Test F1

Filtering

Independent

0.5% 24.53% 5.60% 2.01% 98.22%
1% 34.27% 6.51% 2.08% 98.18%
2% 59.42% 6.38% 2.12% 98.15%
4% 98.67% 7.03% 2.04% 98.21%

Combined

0.5% 3.89% 1.37% 2.08% 98.24%
1% 9.09% 1.84% 2.29% 98.15%
2% 19.20% 1.49% 2.22% 98.16%
4% 49.04% 1.45% 2.43% 98.11%

Patching

Independent

0.5% 24.53% 19.46% 1.68% 98.33%
1% 34.27% 36.11% 1.68% 98.31%
2% 59.42% 47.22% 1.67% 98.33%

Combined

0.5% 3.89% 19.86% 1.65% 98.29%
1% 9.09% 36.04% 1.76% 98.32%
2% 19.20% 36.41% 1.84% 98.27%

Patching.

The patching strategy performs relatively poorly at preventing the attack in this sce-
nario, especially at higher poisoning rates. Conversely, as in the experiments on net-
work data, it outperforms the pure filtering approach for what concerns preserving
model utility. In particular, the FPR obtained through patching are consistently bet-
ter, with an average gain of about 0.5%, than those obtained with filtering at different
poisoning rates, as shown in Table 5.6.

5.7. Related work 95

Loss analysis and sanitization

Table 5.7 shows the results of applying our loss analysis to identify the clusters to sani-
tize. The results are reported for a threshold Z-score of 2 standard deviations. This ap-
proach reflects the general trends observed before, but improves on the fixed threshold
method discussed above when applied with both the filtering and patching sanitization
approaches.

5.7 Related work

In this section, we provide related work on backdoor mitigation strategies, with a par-
ticular focus in the cybersecurity domain. For a more detailed treatment of backdoor
attacks we refer the reader to Chapter 2.

5.7.1 Mitigations against backdoor attacks

Three main directions have emerged in the study of backdoor defenses. One approach
has focused on developing techniques to obtain certifiable robustness guarantees to poi-
soning attacks, the second has looked at detecting and filtering out poisoned samples
before training the model, while the third aims at directly purifying the poisoned model
by unlearning the backdoor association.

Certified defenses to poisoning attacks aim to provide rigorous mathematical guaran-
tees on model quality in the presence of poisons. In some of the first work on certified
defenses, Steinhardt et al. [207] construct approximate upper bounds on the loss using a
defense based on outlier removal followed by empirical risk minimization. They show
that an oracle defender who knows the true class mean is very powerful. However, a
data-dependent defender that uses the empirical means performs poorly at filtering out
attacks. Deep Partition Aggregation (DPA) [122] splits the training dataset into k parti-
tions, which limits the number of poisons that any one member of the ensemble can see.
Unfortunately, the number of partitions that are necessary can be high compared to the
number of poisons considered. To illustrate, using 250 partitions on CIFAR-10, DPA is
able to certify 50% of the dataset to just nine insertions/deletions applied to the training
set.

A related technique known as Deterministic Finite Aggregation [234] provides modest
improvements over DPA. In addition to the limited guarantees, a large number of par-
titions may not be practical in many security applications, as the number of malicious
samples available is often small. Randomized smoothing is a technique in which noise is
added to the training data to attempt “smooth-out” any adversarial perturbations intro-
duced by an attacker. However, the guarantees that are enabled are fairly small. Wang

96 Chapter 5. Mitigating Backdoor Attacks in Cybersecurity Domains

et al. [231] are only able to certify 36% of MNIST against an adversary that perturbs up
to 2 pixels per image.

In the second category, a common detection strategy utilizes deep clustering, which con-
sists in partitioning on the learned representation of the neural network. Chen et al. [42]
propose activation clustering, a defense method that runs 2-means clustering on the ac-
tivations of the last hidden layer, then discards the smallest of the two clusters. Tran et
al. [221] propose a defense based on spectral signatures. This method computes outlier
scores using singular value decomposition of the hidden layers, then removes the sam-
ples with top scores and re-trains. An extension of this idea is used by the SPECTRE
method [84], which introduces the idea of estimating the mean and covariance matrices
of the clean data, using robust statistics, and using these to whiten the data, prior to
computing the singular value decomposition.

The third category includes various pruning and fine-tuning methods aimed at unlearn-
ing the backdoor pattern. Liu et al. [130] propose fine-pruning, a strategy that attempts to
disable backdoor behavior by eliminating less informative neurons prior to fine-tuning
the model on a small subset of clean data. Li et al. [125] introduce neural attention dis-
tillation, a purifying method that utilizes a teacher network to guide the fine-tuning of
a backdoored student network on a small subset of clean training data. In a recent
study, Heng et al. [87] employ selective amnesia (SEAM), where catastrophic forgetting
is induced by retraining the neural network on randomly labeled clean data; after both
primary and backdoor tasks are forgotten, the randomized model is retrained on cor-
rectly labeled clean data to recover the primary task. In Section 5.4 below, we evaluate
a direct application of SEAM to the attacks we study, and show the drawbacks of that
defensive approach in our scenario. We note also that a similar approach, based on
randomized unlearning and detection is proposed by Qi et al. [174].

Other approaches in the literature involve detecting if a model is backdoored (ABS [131],
MNTD [245]), detecting if a particular label has been under attack (Neural Cleanse [232]),
or performing topological analysis of activations at multiple layers in a neural network
model (TED [146]). In cybersecurity settings, the only defense we are aware of is Nested
Training [227, 226], a data sanitization method that relies on an ensemble of multiple
models, each based on different subsets of the training set. Nested Training has been
applied to poisoning availability and backdoor attacks in network traffic and malware
classifiers, but it incurs high cost and degradation in model performance.

5.8 Discussion and Conclusion

Defensive mechanisms are always subject to limitations and the general problem of de-
fending from arbitrary poisoning attacks is far from being solved. With this work we

5.8. Discussion and Conclusion 97

address clean-label backdoor attacks, and propose an effective mitigation approach for
existing threats.

5.8.1 Limitations

Differently from provable defenses, our method is heuristic in nature, trading off pro-
tection guarantees for large improvements in retained model utility. In contrast to
other heuristic mitigation approaches introduced in the context of computer vision sys-
tems, our method relaxes some strong assumptions on clean data availability and victim
model architectures that are difficult to satisfy in the cybersecurity domain.

While we defend against the attack formulations proposed in literature, adaptive attacks
against our defense are possible. For instance, an adversary could change the feature
selection process in the attacks to choose a fraction of relevant features and a fraction
of non-relevant ones. While this would likely reduce the attack success rate, it may
also reduce the likelihood of poisoning points clustering together in the relevant feature
subspace. Therefore, this would allow the attacker to arbitrarily trade-off attack success
to reduce the likelihood of being discovered.

5.8.2 Conclusions

In this work we introduce a mitigation mechanism against clean-label backdoor poi-
soning attacks targeted at cybersecurity classifiers. Our method eliminates many of
the most common assumptions used in other defensive techniques against backdoor at-
tacks. Namely, we remove the need for separate clean datasets, which can be difficult
to obtain for cybersecurity tasks, and any assumptions on the architecture of the mod-
els used. Our defense effectively reduces the attack success rate in multiple scenarios,
while also preserving a high model utility and a low false positives rate.

99

Chapter 6

Network-Level Interference in
Federated Learning

The previous chapters dealt with the robustness of models trained by a single central-
ized entity. Recent developments in Collaborative Learning, and Federated Learning in
particular, showed the potential utility of these systems to train models in a distributed
fashion leveraging local, non independent and identically distributed (i.i.d.), data.

In this chapter we will see that this setting too is susceptible to training-time attacks. The
work presented in [191] shows that interfering with the network traffic, an adversary
can vastly reduce the global model accuracy on a target population.

Chapter Summary

Federated learning is a popular strategy for training models on distributed, sensitive
data, while preserving data privacy. Prior work identified a range of security threats
on federated learning protocols. We observe that the communication between clients
and server is critical for the learning task performance, and highlight how communi-
cation introduces another vulnerability surface in federated learning. We consider the
impact network-level adversaries might have on training federated learning models.
We show that attackers orchestrating dropping of network traffic of carefully selected
clients can significantly decrease model accuracy on a target population. Moreover,
we show that a coordinated poisoning campaign from a few clients can amplify the
dropping attacks. Finally, we develop a server-side defense which mitigates the im-
pact of our attacks by identifying and up-sampling clients likely to positively con-
tribute towards target accuracy. We comprehensively evaluate our attacks and de-
fenses on three datasets, under both plain and encrypted communication channels.

100 Chapter 6. Network-Level Interference in Federated Learning

6.1 Problem Definition

Federated Learning (FL) or collaborative learning, introduced by McMahan et al. [139],
has become a popular method for training machine learning (ML) models in a dis-
tributed fashion. In FL, a set of clients perform local training on their private datasets
and contribute their model parameters to a centralized server. The server aggregates
the local model parameters into a global model, which is then disseminated back to the
clients, and the process continues iteratively until convergence is established.

Training ML models using a federated approach allows the server to take advantage of a
large amount of training data and each client to retain the privacy of their data. Popular
applications include natural language processing (NLP) to learn from user activities on
mobile phones [248], smart healthcare [183], and customized retail services. FL can be
deployed in either a cross-silo setting with a small number of participants available in all
rounds of the protocol, or in the cross-device setting with a large number of participants,
which are sampled by the server and participate infrequently in the protocol.

Recent work studying the security of FL protocols has highlighted the risk of attacks by
compromised clients through data poisoning [218] and model poisoning [20, 16] under
different objectives such as availability, targeted, and backdoor attacks. While availabil-
ity objectives aim at compromising the accuracy of the entire model indiscriminately [68,
200], targeted and backdoor attacks only affect a specific subset of samples [16, 212, 233]
and are harder to detect.

Among the defensive approaches that the security community proposed, availability
attacks can be mitigated by various gradient filtering methods [68, 200, 239], while tar-
geted and backdoor poisoning attacks could be addressed by clipping gradient norms
at the server, during model updates, to limit the individual contributions of clients to
the global model [212, 16].

We observe that, for federated learning, communication between server and clients
plays a critical role as the global model is learned in rounds with contributions from
multiple clients. Thus, the communication represents another point of vulnerability
that an attacker can exploit to influence the global model learned by the system. In this
case, an attacker does not need to compromise the clients, but rather leverage network-
level information and attack capabilities to prevent the ML algorithm from receiving the
information needed to learn an accurate good model.

An attacker can exploit the specific communication channels for different FL architec-
tures to perturb messages sent between server and clients. For example, cross-device FL
is usually deployed for mobile and edge devices, connected through wireless commu-
nication channels which typically experience higher packet loss and are vulnerable to

6.1. Problem Definition 101

physical-layer attacks, such as jamming [244, 18]. For architectures relying on overlay
networks, network-level adversaries might interfere with the data delivery by conduct-
ing BGP hijacking attacks [46], compromising routers [49, 185] or hosts[230], or exploit-
ing vulnerability on transport-level protocols [104] to perform packet dropping, packet
delay, or traffic rerouting.

Such network-level attacks have been shown to impact other systems such as Bitcoin [10],
payment-channel networks [235], and connected cars [101]. These adversaries are espe-
cially relevant when political or economic incentives result in an adversarial autonomous
system (AS), for which sub-populations are geographically localized. A government
may run this attack to censor a word prediction model (especially targeting a country’s
minority language). A corporate AS may attempt to modify words associated with their
competitors or unfavorable political movements.

In this study, we are interested in understanding the impact network-level adversaries
can have on machine learning models trained with federated learning. We are less inter-
ested in how an attacker will position themselves in the network to conduct the attacks,
but rather in the ways the attacker can exploit information sent over the network to
maximally damage the learning algorithm. We analyze for the first time the impact of
network-level adversaries on federated learning and show that attackers who can care-
fully orchestrate dropping of network traffic of selected clients (either by controlling
parts of the network or compromising the clients) can significantly decrease model ac-
curacy on a target population. Specifically, we design an algorithm that identifies a set
of clients who contribute heavily to a selected learning task.

We show that by identifying highly contributing clients and dropping their traffic, an
attacker is more successful than by dropping randomly selected clients. We consider
scenarios where communication between server and clients is sent either in the clear
or encrypted. Moreover, we show that model poisoning attacks from a small set of
clients can further amplify the impact of the targeted dropping attacks we consider. As
an example, on a text classification problem, selectively dropping updates from only 5
clients from the target population can lead to a decrease in accuracy from 87% to 17%,
on a particular target class. Furthermore, by adding a poisoning attack of equal size, the
model accuracy decreases to 0% on the same target class.

Existing network-level defenses against packet dropping might mitigate the attacks un-
der some circumstances, such as when the amount of traffic dropped for particular
clients is observable with respect to the normal network loss. However, in cross-device
FL settings considered here, a small set of clients are selected at random by the server,
and therefore clients participation in the protocol is usually infrequent. Dropping a few
packets at large intervals of time would be difficult to detect and mitigate at the network

102 Chapter 6. Network-Level Interference in Federated Learning

level. Additionally, FL system owners do not usually control the underlying network
and might not be able to implement network-level mitigations to make communication
more resilient. Complementary to such network-level defenses, we propose a server-
level defense that is agnostic to how the dropping attack is performed.

Our defense modifies client sampling in each round of FL training to increase the like-
lihood of selecting clients who sent useful updates in previous rounds of the protocol,
while decreasing the probability of selecting less relevant clients. Interestingly, client se-
lection for sampling in the defense leverages the same procedure for client identification
employed by the network-level adversary. The defense is extremely effective against a
targeted dropping attack. For instance, in the same text classification task mentioned
above, while an unmitigated attack would completely disrupt the model accuracy on
the target task (from 87% to 17%), the defense achieves an accuracy of 96%, which ex-
ceeds that of the original model before an attack is mounted.

Moreover, our defense can be combined with a standard poisoning defense based on
gradient clipping to withstand both targeted dropping and model poisoning attacks. On
the same task, the combined dropping and poisoning attack brings the target accuracy
to 0, and the combination of our defense with clipping results in 94% accuracy on the
target population. The defense is even more effective under encrypted communication,
the most common deployment model for FL, in which the improvements compared to
the original accuracy can be as high as 34%.

To summarize, the contributions of this work are:

(i) We consider for the first time the impact of network-level adversaries in federated
learning protocols, perform an evaluation of a targeted packet dropping attack,
and show that its impact can be further amplified by model poisoning attacks;

(ii) We design a client identification procedure that is a building block in our attack
and defense strategies, and that can be configured with different levels of access
to the network traffic sent between clients and server;

(iii) We show that a defensive strategy based on up-sampling highly contributing clients
to the learning task is promising in training more resilient models. The defense
can be combined with gradient clipping to mitigate both targeted dropping and
poisoning attacks, and in some cases results in higher accuracy than the original
model before the attack.

(iv) We evaluate the proposed attacks and defenses and show that they obtain inter-
esting results across multiple model architectures, datasets, and data modalities
(image and text).

6.2. Notes on Federated Learning 103

For reproducibility, all code is released publicly1.

6.2 Notes on Federated Learning

Federated learning (FL) considers a setting with a set of n clients, each with a local
dataset Di, and a server S. FL is a distributed machine learning methodology in which
clients train locally on their own datasets and the server requests model updates, rather
than data, from users, building an aggregated global model iteratively over time [139].

There are two main deployments models for FL: cross-silo with a small set of clients par-
ticipating in every round, and cross-device models with a large number of clients which
are sampled by the server per round [105]. We consider here the Federated Averaging
training algorithm designed for cross-device settings [139], shown in Algorithm 4. In
each round 1 ⇓ t ⇓ T, the server randomly selects a subset of m ⇓ n clients to partici-
pate in training, and sends them the current global model ft≃1 (initialized f0 with Glorot
Uniform initializer [72]). Each selected client i trains locally using dataset Di, for a fixed
number of TL epochs. The server updates the global model ft by mean aggregation of
local updates Ui:

ft = ft≃1 + η
∑m

i=1 Ui
m

. (6.1)

FL has been designed for protecting client’s local data privacy, but data privacy can
be further enhanced by secure aggregation performed via Multi-Party Computation
(MPC) [26, 69].

Algorithm 4: Federated Averaging Protocol
Data: Clients C = {Di}n

i=1, Federated Learning Server S, rounds T, clients per
round m, aggregation learning rate η

Function FedLearn(S, C):
// Function run by server
f0 = INITIALIZEMODEL()
for t ↑ [1, T] do

// Get updates from m participants in round i
Mt = SELECTPARTICIPANTS(C, m)
REQUESTUPDATE(ft≃1, Mt)
Ut = RECEIVEUPDATE(Mt)
// Update and send out new model
fi = UPDATEMODEL(ft≃1, Ut, η)
BROADCASTMODEL(ft, C)

1
https://github.com/ClonedOne/Network-Level-Adversaries-in-Federated-Learning

https://github.com/ClonedOne/Network-Level-Adversaries-in-Federated-Learning

104 Chapter 6. Network-Level Interference in Federated Learning

6.3 Threat Model

The most studied attacks against federated learning are poisoning attacks. In data poi-
soning attacks, an adversary injects maliciously crafted data points to poison the local
model [218]. Model poisoning attacks (POISON_MODEL) where the adversary com-
promises a set of clients and sends malicious updates to the protocol with the goal of
achieving a certain objective in changing model’s prediction [16, 212, 233] have also
been studied. Both these attacks are conducted by manipulating directly the inputs to
the machine learning algorithm.

For federated learning, communication between server and clients represents another
attack surface that an attacker can exploit to influence the global model learned by the
system without necessarily needing to compromise the clients. Instead, based on their
network-level capabilities, the adversary can observe communication sent over the net-
work and prevent the machine learning algorithm from receiving the information needed
to learn a good model. We refer to such an adversary as a network-level adversary.

6.3.1 Adversary’s Goals and Capabilities

FL protocols such as Federated Averaging [139] usually abstract the communication
protocol between the server and clients. In practice, clients will communicate with the
server either directly through a TCP connection, or through a multi-hop overlay net-
work of hop-by-hop TCP or customized transport services. Finally, the last hop connect-
ing the client to the Internet is often in the form of wireless communication. Network
infrastructure and routing protocols facilitate all this communication through physical
or logical connectivity. By exploiting the underlying routing protocols and network
topology an attacker can position themselves to observe and interfere with data of in-
terest; they can then further impact the accuracy of the global model and create an effect
similar to that created through a data or model poisoning attack.

Model Dropping Attacks: The most basic attack that can be conducted by a network-
level adversary is to drop packets. In the FL setting, this means dropping local models
that could have contributed to the accuracy of the global model. In order to conduct
such an attack the adversary will need to know who are the clients that are part of the
federated learning system and specifically what clients are requested by the server to
participate in the protocol in each round. Such knowledge can be acquired by mon-
itoring the network, by leveraging network topology and ISP connectivity, by attack
placement near the server, and more. While this assumption about the attacker is rela-
tively strong, it allows us to answer questions such as “are network-level attacks against
federated learning meaningful”.

6.3. Threat Model 105

Packet dropping attacks can be achieved in multiple ways, and have been studied for
network-level adversaries who perform physical-layer attacks in wireless networks [244,
18], router compromise [49, 185], or transport-level attacks [104]. Each of these meth-
ods will require different attacker capabilities. For example for physical layers attacks
for wireless clients, the attacker needs to be in their proximity - this is both a powerful
attack since jamming is usually difficult to defend against, and limiting since it will be
difficult for the attacker to attack geographically distributed clients without significant
resources. In the case of routing, while a router might be more difficult to compromise,
in practice the impact can be bigger as it might have control over the traffic of multiple
clients. Last, but not least, if customized overlays are used for communication, compro-
mising nodes in the overlay is slightly easier as they are typically hosts, and the number
of clients that can be impacted depends on the scalability of the service.

We note that we model packet dropping agnostic to the exact method used by the at-
tacker for dropping network packets, since the server cannot distinguish between a
network-level adversary, client compromise, or simply client unavailability when not
receiving client updates.

Adversarial goal: We consider that the attacker targets the accuracy for a particular
population. We define a population to be one of the classes in the learning task, but
this notion could be extended to sub-classes as well. Ideally, the attacker would like
the model to retain its test accuracy for all data points outside of the victim population
to avoid trivial detection. We therefore do not consider poisoning availability attacks
which are detectable and can be addressed with existing defenses [68, 200, 239].

Attack strategies: The attacker has several decisions to make when conducting the
attack: (1) what clients to select to drop their contributions, (2) when to start the at-
tack given that federated learning is an iterative protocol, and (3) how many packets
(i.e., local models) to drop. Ideally, an attacker wants to maximize the strength of the
attack while minimizing detection. We focus on a targeted dropping attack in which
the attacker selects a set of clients contributing highly to the target class for dropping
their contributions. We compare that with an attack strategy which drops the traffic of
a subset of randomly chosen clients.

Adversarial network-level knowledge: We distinguish between different representa-
tive adversarial scenarios for the communication in the FL protocol:

1. COMM_PLAIN. All communication between clients and server is unencrypted.
This is the scenario where a network-level adversary obtains maximum informa-
tion, as they can observe all the transmitted data. Even though this might not

106 Chapter 6. Network-Level Interference in Federated Learning

correspond to a practical scenario, we study this model to determine the impact
of the worst-case, most powerful adversaries.

2. COMM_ENC. All communication between clients and server is encrypted. This is
a realistic scenario, which can be implemented using IPSec, HTTPS or application-
level encryption. In this case, the network-level adversary could infer the set of
clients participating in each round, but not the exact model updates they send.

3. COMM_ENC_LIMITED. A special case of COMM_ENC where communication is
encrypted, and the adversary is limited to only observe a fixed subset of the clients
participating in the protocol.

Adversarial global model knowledge: Since cross-device FL is an open system, the
adversary can always participate in the FL protocol as one of the clients. We assume
that the adversary obtains the global model updates ft at each round t.

To summarize, in the rest of the study we consider an adversary that has either the
COMM_PLAIN, COMM_ENC or COMM_ENC_LIMITED network capability, has knowl-
edge of the global model at each round, and targets a particular victim population of
interest. We also consider an adversary that additionally will have POISON_MODEL poi-
soning capabilities.

6.4 Network-Level Attacks on Federated Learning

In this section we describe in detail our targeted dropping attacks against a population
in FL. We assume the FL model described in Section 6.2 and an attacker that has ei-
ther the COMM_PLAIN or COMM_ENC network capability. We start by discussing that
randomly selecting clients for dropping is not an effective strategy. We then describe
a procedure to identify clients that will make the attack more effective and analyze the
different parameters that control the attack. Finally, we show how our attack can be
significantly amplified if in addition to the network level capabilities, the attacker also
has POISON_MODEL poisoning capability.

6.4.1 Dropping Attack with Random Client Selection

The most basic strategy a network-level adversary might employ is to randomly select
a subset of clients and drop their local model updates. Usually, such a strategy is not
effective in achieving the degradation of model accuracy on a class of interest, which
is the adversarial objective we are interested in. Later, in Table 6.2 in Section 6.6.2 we
present detailed results for such a random dropping strategy evaluated for different
number of clients whose traffic is dropped. Our finding is that the model accuracy on

6.4. Network-Level Attacks on Federated Learning 107

the target class is decreased by an average of 5%, even in cases where the number of
clients selected for dropping matches the number of clients holding samples from the
target class. These findings motivate us to develop new methods for client selection that
will help the adversary identify the most relevant clients for degrading the accuracy on
the target class.

6.4.2 Identification of Highest-Contributing Clients

The cornerstone of our targeted packet dropping attack is an algorithm in which the ad-
versary first determines the set of clients contributing the most to the target population
of interest and then selectively drops their traffic. We design a Client Identification pro-
cedure aimed at determining the set of clients whose model updates lead to the largest
improvements in target population accuracy. Our Client Identification algorithm, de-
scribed in Algorithm 5, supports both plain and encrypted network communication,
and is applicable to a range of FL system implementations. We demonstrate in Sec-
tion 6.6 that if the adversary has high success at identifying the clients contributing to
the task of interest, then the targeted dropping attack impact is much higher compared
to random dropping.

The main intuition is that the network-level adversary will observe all communications
– including global model updates and local model updates if possible – in the FL proto-
col for a number of, at least, TN rounds. In each of these rounds, the adversary computes
the loss of the model before and after the updates on the target class. Rounds in which
the loss decreases correspond to an increase in accuracy on the target class. The adver-
sary tracks all the clients participating in those rounds, and computes a loss difference
metric per client. In the plain communication case, the adversary will determine exactly
which clients decrease the loss, while in the encrypted communication case the adver-
sary only observes the aggregated updates and considers all clients participating in the
round to be collectively responsible for the loss variation.

In more detail, to measure each client’s contribution to the target population, the ad-
versary computes the loss difference between successive model updates on the target
population (using a representative dataset D⇑ from the population):

Lj
t = ω(ft≃1, D⇑)≃ ω(f j

t , D⇑) (6.2)

Note that the second term ω(f j
t , D⇑) is the loss of the local update of client j in round t for

COMM_PLAIN, but becomes the loss of the global model ω(ft, D⇑) when the adversary
only has access to aggregated updates in COMM_ENC. The value Lj

t measures the de-
crease in the target class loss before and after a given round t. For clients who contribute
heavily to the accuracy on target data, this value will be large, so that dropping these

108 Chapter 6. Network-Level Interference in Federated Learning

Algorithm 5: Loss Difference Client Identification
Data: Target Population Dataset D⇑, loss function ω, rounds TN , count of clients to

drop kN , visibility parameter v.
Function ClientIdentification(D⇑, ω, TN , kN):

f0 = GETGLOBALMODEL(0)
∆ = []
for t ↑ [1, TN] do

Mt = GETPARTICIPANTS(v)
ft = GETGLOBALMODEL(t)
if COMM_ENC then

// Get loss differences for this round
Lt = ω(ft≃1, D⇑)≃ ω(ft, D⇑)
for j ↑ Mt do

// Associate Lt with update members
∆[j] = CONCATENATE(∆[j], [Lt])

if COMM_PLAIN then
for j ↑ Mt do

// Get participant j model
f j
t = GETLOCALMODEL(j)

// Get participant’s loss difference
Lj

t = ω(ft≃1, D⇑)≃ ω(f j
t , D⇑)

// Associate Lj
t with this participant

∆[j] = CONCATENATE(∆[j], [Lj
t])

// Compute the average loss change for each client
for j ↑ ∆ do

∆[j] = 1
|∆[j]| ∑ ∆[j]

// Identify largest loss decreases
Z = GETLARGESTVALUES(∆, kN)
return Z

clients will heavily compromise the performance of the model on the target. However,
when only the aggregated update is seen, all clients participating in a round will have
the same value for Lj

t. This makes it difficult to identify which specific clients contribute
to the target population.

To more reliably estimate client contributions, especially with aggregation of model up-
dates, the values of Lj

t are accumulated over time. The adversary maintains a list for
each client j of the values Lj

t for rounds t in which it participated. This allows the adver-
sary to update the list of clients most relevant to the target class accuracy at every round.
Empirically, computing the mean of Lj

t for each client j across all rounds it participates
in works well at identifying the clients contributing most to the target class.

6.4. Network-Level Attacks on Federated Learning 109

6.4.3 Dropping Attack with Identification of Highest-Contributing Clients

The targeted dropping attack starts by the adversary performing the Client Identifi-
cation procedure, by running Algorithm 5 during the first TN rounds of the protocol.
During this time period, the FL training happens as usual and the global model is ag-
gregated from local updates. Using the parameter analysis in Section 6.4.4, the adver-
sary selects TN rounds and identifies in expectation kN clients contributing updates for
the target class. After Client Identification is performed, the network adversary drops
contributions from the kN clients in every round in which they participate after round
TN .

As the adversary can expect an increase in identification accuracy by monitoring more
rounds of the protocol, they can repeat the Client Identification procedure in each sub-
sequent round, and, if necessary, update the list of selected clients for dropping. We
assume that the adversary is able to drop the identified clients’ updates, and the server
simply updates the model using all received updates. If the Client Identification pro-
tocol is not completely accurate, the attacker might drop traffic from clients who do
not contribute to the target population, but we found this has a minimal impact on the
trained FL model.

The selection of kN , the number of victim clients in every round, and TN , the number of
rounds after which the attack starts, are critical for the success of the attack. Particularly,
selection of TN is very important: a small TN will not allow the Client Identification pro-
cedure to determine relevant clients, while a large TN can render the attack ineffective
because the model might have converged before the attack started.

6.4.4 Analysis of the attack

Algorithm 5 uses several parameters: the number of clients to identify kN and the num-
ber of rounds to wait before identification is successful TN , which we analyze here. The
remaining arguments will typically be governed by the training algorithm, protocol,
and the fixed adversarial goal.

How many clients to drop?

In the FL protocol, we assume a set of n clients, out of which m are selected at random
in each round. Setting the number of dropping clients kN is mainly a tradeoff between
maximally damaging accuracy on the target data and remaining stealthy by not sig-
nificantly compromising the overall model performance. If kN is too large, significant
benign updates may be removed, preventing the model from being good enough to
use in practice, and potentially allowing the server to identify that an active adversary,
rather than standard packet loss, is to blame for the dropped updates. If kN is too small,

110 Chapter 6. Network-Level Interference in Federated Learning

however, not enough clients will be dropped to have a significant impact on the model.
We consider a range of values kN ⇓ k, where k is the number of clients holding examples
from the targeted class, and show the attack effectiveness for each.

How many rounds are needed to identify the clients?

Here, we discuss how to set the number of rounds TN for client identification for both
plain and encrypted communication. When setting TN , if the value is set too small,
then the adversary will not have enough observations to reliably identify the heavily
contributing clients. However, if set too large, the adversary will allow benign training
too much time, resulting in high accuracy on the target population, making it more
difficult to mount the attack later.

Suppose the adversary wants to wait until all n clients have participated in the protocol
at least once. This is a well-studied problem, known as the coupon collector’s [51] (our
setting additionally considers batched arrivals). In this variation of the problem, the
adversary must observe an expected number of cn log(n)/m batches before observing
each client, for a small constant c. With values of n = 100, m = 10, roughly 46 rounds
are necessary [243]. Having established a connection to the coupon collector’s problem,
we will extend it to model the adversary in each setting:

Plain communication (COMM_PLAIN). In the case where the network adversary re-
ceives every client’s updates, we carry out a modification of the coupon collector anal-
ysis to identify the setting of TN where a batch of m out of n distinct clients participate
in each round, and the goal is to identify a set of kN of k target clients. We analyze
the case where batches are sampled with replacement (i.e., clients in each round may
be repeated) due to ease of analysis, but this incurs a small constant overhead in the
analysis [19].

We analyze the expected number of batches ti before finding each of the first kN target
clients, using standard coupon collector analysis. The number of batches to wait for
the i-th client from the k target clients is ti =

n
m(k≃i+1) in expectation, as the probability

that any target client which has been unobserved appears is m(k≃i+1)
n . By summing this

expected batch count over i from 1 to kN (using the linearity of expectation), we find
that the expected number of batches to wait for the first kN clients is n

m (Hk ≃ Hk≃kN),
where Hi is the i-th harmonic number (and using H0 = 0 if kN = k). As k increases, this
value tends towards ⇐ n

m (ln(k)≃ ln(k ≃ kN)) rounds (when k = kN , we replace ln(0)
with 0).

6.4. Network-Level Attacks on Federated Learning 111

To use a setting that is common in our experiments, where n = 60, m = 10, k = 15, and
kN = 15, we expect to wait roughly n

m ln(k) = 6 ln(15) rounds, or roughly 16 rounds.
Note that waiting for fewer clients kN requires fewer rounds.

Encrypted communication (COMM_ENC). In the more challenging setting of encrypted
communication, the adversary only has access to mean updates and cannot localize an
improved target accuracy to a particular client, as is possible when all the clients up-
dates are available. However, clients who repeatedly participate in rounds where the
target accuracy improves, can be considered as more likely targets. Moreover, clients
who participate in any round where the target accuracy does not improve can be iden-
tified as not targets.

Here, we analyze only rounds where no target clients appear, as they provide certainty
that no target clients are participating. We analyze the number of rounds required to
identify enough non-target clients that a fixed precision level α is obtained at identifica-
tion. This precision level can be reached by removing n ≃ k/α clients which are known
non-target clients. To analyze how many rounds it takes to collect n ≃ k/α non-target
clients, we compute the probability that a batch will contain non-target clients, and then
compute how many non-target batches are required to collect n ≃ k/α clients.

To compute the probability that a batch contains non-target clients, we notice that there
are (n≃k

m) possible batches which have non-target clients, and there are a total of (n
m)

batches which are selected uniformly at random. Then the probability a batch has non-
target clients is:

(
n ≃ k

m

)
/
(

n
m

)
⇐

(
1 ≃ k

n

)m
(6.3)

To compute the number of non-target batches required to accumulate n≃ k/α non-target
clients, we can use comparable coupon collector analysis as before, making the observa-
tion that each non-target batch is guaranteed to have m non-target clients. On average,
an upper bound of n

b (Hn≃k ≃ Hk/α≃k) batches is sufficient. As an example, in a setting
we use in our experiments, n = 60, k = 15, and m = 10, the probability that a batch
contains non-target clients is roughly 5.6%. To reach a precision of α = 0.3, we obtained
a total of 26 batches on average. In practice, it is likely that precision can be even higher
than this value due to overestimation from our analysis.

We note that our analysis is similar to analysis for the group testing problem [77], intro-
duced by [60], used for pool testing. However, a key difference is that our algorithm
must be capable of identifying members from noisy aggregate information, rather than
the clean signal which is typically provided during group testing. It is possible that

112 Chapter 6. Network-Level Interference in Federated Learning

more sophisticated group testing algorithms can be used to improve Algorithm 5 fur-
ther by overcoming this constraint.

6.4.5 Amplifying Dropping Attack with Model Poisoning

In order to amplify the effectiveness of the targeted dropping attack, the network ad-
versary may also collude with, or inject, malicious clients, whose presence in training is
designed to further compromise the performance on the target distribution. Following
Bagdasaryan et al. [16] and Sun et al. [212], we use a targeted model poisoning attack
known as model replacement. Writing θt for the parameter of the global model ft, in
this attack, the adversary seeks to replace θt with a selected target θ⇑t (as is done in [16,
212], we use the θ⇑t resulting from a data poisoning attack on a compromised client’s
local training procedure).

The poisoned clients’ local training sets are sampled identically to clients with access
to the target class, with the difference of changing the labels of target class samples to
another, fixed class. Writing the initial model parameters sent in the round as θt≃1, the
update that the adversary sends is θ⇑t ≃ θt≃1. The server aggregation then weights this
update with an η/m factor. In a model replacement attack, a boosting factor ϱ is applied
to the update, so the update which is sent is ϱ(θ⇑t ≃ θt≃1), increasing the contribution to
overcome the η/m factor decrease.

We will show that model poisoning attacks mounted from a small set of clients con-
trolled by the attacker can significantly amplify the impact of targeted dropping attacks
and achieve close to zero accuracy on the target class.

6.5 Defenses Against Network-Level Adversaries

Several defenses against network-level attacks have been considered in previous work.
For instance, defenders could monitor and detect faulty paths in the network [14], create
resilient overlays [38, 157], or secure the routing protocols [91]. These defenses might
increase robustness under observable packet loss (relative to the normal packet loss),
but are generally not effective against stealthy attacks, such as our targeted dropping
attacks, or edge-level attacks, such as model poisoning attacks mounted from attacker-
controlled devices. Here, we address the question of how to design FL-specific defenses
against the attacks introduced in Section 6.4. Often, the FL owner might not control
the network, so we will consider server-level defenses that could complement existing
network-level defenses.

Model Poisoning Countermeasures After data and model poisoning attacks against FL
have been demonstrated (e.g., [20, 212, 16]), multiple systems have been proposed to

6.5. Defenses Against Network-Level Adversaries 113

Algorithm 6: Server Defensive UpSampling Strategy
Data: Target Dataset D⇑

S, rounds TS, loss function ω, client count n, count of clients
to upsample kS, up-sample factor λ

Function UpSampling(D⇑
S, ω, kS, TS, n):

// Identify highly contributing clients
Z = ClientIdentification(D⇑

S, ω, TS, kS)
// Reduce sampling probability for most clients
p = [n≃kSλ

n2≃kSn for c ↑ [n]]
for i ↑ Z do

// Increase sampling probability for highly contributing clients
p[i] = λ/n

return p

withstand these attacks. A popular defense is to replace the Federated Averaging pro-
tocol with a secure aggregation scheme [25, 143, 250, 3]. It turns out that an adversary
with knowledge of the secure aggregation scheme can adaptively evade the defense in
some cases [16, 68, 200], and finding an aggregation method secure against adaptive
attacks remains an open problem.

The only resilient technique we are aware of to protect against targeted model poisoning
attacks is gradient clipping. Sun et al. [212] made the observation that model poisoning
attacks with larger gradient norm are more effective, and therefore a natural defense is
to reduce the norm of the local updates via clipping. With this method, an update ∆ sent
from a client is clipped to a maximum norm C, such that the update used for aggregation
becomes min

(
1, C

||∆||

)
∆. This method works particularly well against model poisoning

attacks in which the local client update is boosted by the attacker [16]. For this method
to be effective, the clipping norm must be carefully calibrated: it should be large enough
to allow learning less well-represented classes and populations, while also small enough
to prevent poisoning from changing the global model.

UpSampling Defense Strategy While gradient clipping reduces the impact of model
poisoning attack, we still need to defend against the targeted dropping attack. When
a targeted dropping attack is performed, the number of clients contributing legitimate
updates to the target class is reduced, and the impact of dropping attack is larger on
under-represented classes (i.e., classes with examples available in a small set of clients).
Therefore, it is essential for the server to identify clients contributing to the target class
and leverage them to improve accuracy on the target population.

Our main insights to help the server improve the accuracy on the target population
are to: first, identify the legitimate clients contributing updates to the target class, and,
second, modify the sampling strategy in the FL protocol to sample these clients at a

114 Chapter 6. Network-Level Interference in Federated Learning

TABLE 6.1: The parameters used in our experiments.

Party Param Definition Setting
Dataset n Total Clients {100, 60}
Dataset k Clients with Target Class {9, 12, 15}
Dataset αD Dirichlet Distribution Param 1.0
Dataset αT Target Class Dataset Fraction {0.5, 0.6}
Client TL Local Training Epochs 2
Client ηL Local Learning Rate { 0.1, 0.001 }
Server η Aggregation Learning Rate 0.25
Server m Clients per Round 10
Server T Total Training Rounds Varied
Server TS Rounds before up-sampling Varied
Server kS Up-sampled Client Count Varied
Server λ Up-sampling factor 2
Server C Aggregation Clipping Norm 1

Adversary TN Rounds before Dropping Varied
Adversary kN Number of Dropped Clients Varied
Adversary kP Number of Poisoning Clients Varied
Adversary ϱ Poisoning Boost Factor 10

higher rate. For the first component, we can leverage directly Algorithm 5 for Client
Identification, using the model update knowledge available to the server. In standard
FL implementations, servers receive individual model updates from the clients, while
in privacy-preserving FL implementations based on MPC [26, 69] servers only receive
aggregated updates. The server will determine its own parameters kS (how many clients
to identify) and TS (how many rounds to monitor), and use its own target dataset D⇑

S to
estimate contributions. As in the case of the attacker, the server will repeat the Client
Identification process at each successive round to refine its list of clients to up-sample.
After identifying the target clients, the server can proceed to run Algorithm 6 to increase
the probability with which identified clients are sampled by a factor λ and decrease the
sampling probability for all other clients. We call this method presented in Algorithm 6
the UpSampling defense.

Interestingly, the UpSampling strategy can also help even if there is no dropping attack,
but there are simply too few clients from some target population on which the model
accuracy is low. We will show that in our evaluation in Section 6.6.7.

6.6 Experiemental Evaluation

Here we evaluate our network-level FL attacks, starting with an ideal setting, when the
attacker has perfect knowledge on the set of clients contributing to the target population.
We then show the effectiveness of our Client Identification algorithm, and examine the

6.6. Experiemental Evaluation 115

targeted dropping attack after Client Identification, showcasing the performance of our
entire attack pipeline. Finally, we show the amplification of targeting dropping attacks
achieved by model poisoning.

6.6.1 Experiment Setup

We use three well known datasets (EMNIST, FashionMNIST, and DBPedia-14), which
we adapt to the non i.i.d. setting by controlling the data distribution across clients. In
all cases, the target population is represented by samples of a class arbitrarily selected
from the dataset. Our datasets have balanced classes, and we use classes 0, 1, 9 for our
evaluation. All reported results are averages of 4 trials, with different random generator
seeds. The list of parameters used in our FL protocol is shown in Table 6.1.

Datasets and Models

EMNIST [50] is a handwritten digits recognition dataset with 344K samples. We use ap-
proximately 100K images of numbers between 0 and 9, partitioned equally, and without
overlap, among 100 clients, so that each client has 1000 images. To enforce heterogeneity,
we allocate samples from the target victim class to k fixed clients and vary k. For those
k clients, we allocate αT = 50% of the local dataset to be target class points, while the
other 50% is sampled from the remaining classes according to a Dirichlet distribution
with parameter αD = 1.0. For clients without the target class, we sample 100% of the
local training set from a Dirichlet distribution with parameter αD = 1.0, following [94].
We train a convolutional model, consisting of two 2D convolution layers and two linear
layers, optimized using learning rate ηL = 0.1. Training consists of 100 rounds, select-
ing 10 clients at each round, using mean aggregation with a learning rate η = 0.25 to
combine clients’ updates.

FashionMNIST [237] is an image classification dataset, consisting of 70K gray-scale im-
ages of 10 types of clothing articles. This dataset is more complex than EMNIST, and
has less data. Therefore, we increase the number of training rounds to T ↑ {200, 300},
reduce the number of clients n to 60, and set αT to 0.6. We also set the local dataset size
to 400. We use a convolutional model similar to the one used before, and fix all other
parameters.

DBPedia-14 [121] is an NLP text classification dataset, which we selected to vary the
data modality. DBPedia-14 consists of 560K articles from 14 ontological categories, such
as "Company", "Animal", "Film". DBPedia-14 is also a relatively complex dataset, so we
use the same k, T, and αT as in FashionMNIST. We use a local dataset size of 1000, and
train a model starting from pre-trained GloVe embeddings [170], followed by two 1D

116 Chapter 6. Network-Level Interference in Federated Learning

TABLE 6.2: Perfect knowledge dropping. Accuracy on target population
at rounds T/2 and T. T = 100 for EMNIST, T = 200 for FashionMNIST
and DBPedia. Targeted dropping is more effective for larger number of
dropped clients kN and reaches 0 when no clients are available for the
target class (kN = k). For harder classification tasks such as DBPedia,
accuracy on target class gets to 6% for 5 out of 15 clients dropped, and 0

when 10 out of 15 clients are dropped.

Dataset k Number of Clients Dropped kN
0 k/3 2k/3 k

Perfect Knowledge

EMNIST
9 0.47/0.66 0.21/0.50 0.01/0.23 0.0/0.0
12 0.58/0.78 0.36/0.61 0.06/0.31 0.0/0.0
15 0.65/0.80 0.48/0.66 0.15/0.40 0.0/0.0

FashionMNIST 15 0.40/0.55 0.17/0.32 0.02/0.09 0.0/0.0
DBPedia 15 0.36/0.53 0.03/0.06 0.00/0.00 0.0/0.0

Random Drop

EMNIST
9 0.47/0.66 0.40/0.68 0.39/0.68 0.35/0.64
12 0.58/0.78 0.58/0.78 0.57/0.77 0.53/0.76
15 0.65/0.80 0.66/0.82 0.64/0.81 0.65/0.82

FashionMNIST 15 0.40/0.55 0.39/0.53 0.38/0.53 0.35/0.50
DBPedia 15 0.36/0.53 0.39/0.54 0.31/0.47 0.34/0.45

convolution layers and then two linear layers, and train with Adam using learning rate
ηL = 0.001.

6.6.2 Baselines: Perfect Knowledge and Random Dropping

To demonstrate the potential severity of a dropping attack, we first evaluate the best
possible attack, where the adversary has perfect knowledge of a subset of kN target
clients from the beginning of the protocol, and drops every update originating from
that subset throughout training. We show the results in Table 6.2. This demonstrates the
power of a dropping attack, and provides a baseline to compare our full attack pipeline
against. We also evaluate the effect of an adversary that selects uniformly random vic-
tim clients in Table 6.2. Table 6.2 allow us to make the following key observations:
(i) When no dropping attack is underway, having more target clients improves accu-
racy. (ii) Even when fixing the fraction of dropped clients, smaller client counts are more
vulnerable to attack. For example, on EMNIST, when 2/3 of target clients are dropped,
and k = 9, the accuracy drops to 23%, while it is 40% at k = 15. (iii) Dropping random
clients does not lead to significant accuracy degradation on the target class: targeting
clients is essential. (iv) When all target clients are successfully identified and dropped
(that is, there is no data at all from the population), the accuracy on the population is
0, as expected. (v) On more difficult classification tasks, such as FashionMNIST and
DBPedia, removing target clients results in a higher performance degradation than for
EMNIST.

6.6. Experiemental Evaluation 117

TABLE 6.3: Target client identification. Average number of clients cor-
rectly identified by Algorithm 5 at different rounds under COMM_PLAIN
and COMM_ENC, kN = k. On FashionMNIST and DBPedia all 15 target
clients are identified at 50 and 20 rounds, respectively, for COMM_PLAIN,
while the maximum number of clients identified under COMM_ENC is

11.75 at 70 rounds for DBPedia.

Dataset Communication k Round Number TN
5 10 15 20 30 40 50 70

EMNIST

COMM_PLAIN
9 1.75 5 7.50 7.75 8.50 8.75 8.75 8.50
12 5 8.25 9.75 10.25 10.75 10.75 11.25 11.25
15 4.25 9.50 11.50 12 14.25 14.25 14 14

COMM_ENC
9 0.50 2.25 3.25 2.75 3.25 3.75 4 5.25
12 2 2.75 3.25 3 3 4 5 5.25
15 3 4 4 3.75 4.75 5.75 6.25 7

FashionMNIST COMM_PLAIN 15 9 12 14 14.75 14.75 14.75 15 15
COMM_ENC 5.5 6.50 8.0 8.50 9 10 10.50 11

DBPedia COMM_PLAIN 15 8 13.25 13.75 15 15 15 15 15
COMM_ENC 5.25 7 8 9 10 11.25 11.25 11.75

6.6.3 Client Identification Evaluation

Table 6.3 shows the average number of targeted clients correctly identified by Algo-
rithm 5 under plain and encrypted communication. For the purpose of evaluating
the identification accuracy we set kN = k in these experiments. The most immedi-
ate observation is that identification performs better under COMM_PLAIN than under
COMM_ENC. This is expected as the adversary in COMM_PLAIN has access to all local
model updates sent by clients and can keep track of the exact loss difference per client.
Still, in the challenging scenario where the adversary only sees aggregated updates (un-
der COMM_ENC), Client Identification performs reasonably well. For instance, on DB-
Pedia an average of 11.75 out of 15 clients are identified at 70 rounds under COMM_ENC.
Interestingly, for FashionMNIST and DBPedia, it is easier to identify target clients than
on EMNIST (where Algorithm 5 identifies an average of 7 out of 15 clients at 70 rounds).
One hypothesis for this phenomenon is that the class samples are more different in com-
plex datasets, leading the global model to forget the target class in rounds with no par-
ticipating target clients, resulting in significant loss increases for those rounds.

We also use Table 6.3 to select parameters for the targeted dropping attack and validate
our analysis from Section 6.4.4. In COMM_PLAIN we need to wait approximately 15
rounds for all datasets to drop 2k/3 clients, which roughly matches our analysis. In
the COMM_ENC scenario, on the other hand, we see that more rounds are necessary for
successful identification, as expected from Section 6.4.4. To identify between k/3 and
2k/3 of the target clients, we need to wait between 30 and 50 rounds. Moreover, in many
cases the identification accuracy tends to plateau in successive rounds. Therefore, we
select round 30 as the starting point for the dropping attack in our experiments under
COMM_ENC.

118 Chapter 6. Network-Level Interference in Federated Learning

6.6.4 Targeted Dropping Evaluation

We now test the effectiveness of the full pipeline, where we begin by identifying clients
most positively contributing towards target class accuracy, and then drop all the model
updates coming from them. We measure our attacks’ performance in Table 6.4. First,
notice that attacks under COMM_PLAIN significantly compromise target population ac-
curacy, closely approximating the perfect knowledge adversary for increasing values of
kN . For instance, on EMNIST, when k = 12 and kN = 8, after 100 rounds the accuracy
on the target class is on average 0.33, which is only 0.02 higher than the value obtained
under the perfect knowledge attack. Moreover, if the adversary can interfere with a rel-
atively large number of clients, k = kN , the disruption is complete, as was in Table 6.2.
We also observe that our attack in the COMM_PLAIN scenario vastly outperforms the
strategy of randomly dropping the same number of clients (shown in Table 6.2), in all
situations.

Our attacks’ performance decreases in the COMM_ENCscenario, when the adversary’s
knowledge is limited, which is expected from the reduced Client Identification perfor-
mance. We still observe a significant advantage in using our identification pipeline, over
the random selection baseline. Moreover, these results highlight the trend mentioned in
Section 6.6.3: on more complex tasks, such as FashionMNIST and DBPedia, the high
identification accuracy leads to noticeably larger attack performance, than in EMNIST.

Given the targeted nature of our attack, in all the scenarios we consider, dropping the
victim clients generally leads to very little degradation of the overall model perfor-
mance. The overall accuracy degradation of the global model is on average 3.88% for
COMM_PLAIN and 1% for COMM_ENC.

Tables 6.6, 6.8, 6.10, show the accuracy of the global model on the full test set under the
same settings as the other experiments we run.

6.6.5 Impact of Model Poisoning and Targeted Dropping

When unmitigated, poisoning campaigns are known to be very effective at disrupting
the accuracy of the model on the target class. We compared the effects of the model
poisoning strategy and targeted dropping on the EMNIST dataset for the cases of perfect
knowledge, COMM_PLAIN, and COMM_ENC in Figures 6.1a, 6.1c, and 6.1e respectively.
These heatmaps show that, for different levels of kN (number of dropped clients) and
kP (number of poisoned clients), the model replacement attack is more effective than
targeted dropping, even when the adversary has perfect knowledge.

The results, however, are significantly different when Clipping, a standard poisoning
defense [212, 81, 93], is applied to local model updates. Figures 6.1b, 6.1d, and 6.1f

6.6. Experiemental Evaluation 119

(A) Perfect knowledge (B) Perfect knowledge, clipping

(C) COMM_PLAIN (D) COMM_PLAIN, clipping

(E) COMM_ENC (F) COMM_ENC, clipping
FIGURE 6.1: Accuracy on target class 0 on EMNIST, for k = 15, T = 100,
and varying number of dropped and poisoned clients under 3 scenar-
ios: Perfect Knowledge, COMM_PLAIN, and COMM_ENC. Left results are
without Clipping, and right results use a Clipping norm of 1. When no
Clipping is used, model poisoning attack is devastating at small number
of poisoned clients. With Clipping, model poisoning has lower impact,
but the combination of targeted dropping and model poisoning results in

significant degradation under all 3 scenarios.

120 Chapter 6. Network-Level Interference in Federated Learning

TABLE 6.4: Targeted dropping attack, under COMM_PLAIN and
COMM_ENC. Accuracy on target population at rounds T/2 and T, for
T = 100 for EMNIST, T = 200 for FashionMNIST and DBPedia. The
attack under COMM_PLAIN gets results close to perfect knowledge ad-
versary, while under COMM_ENC the attack still improves upon random

dropping.

COMM_PLAIN

Dataset k Number of Clients Dropped kN
0 k/3 2k/3 k

EMNIST
9 0.47/0.66 0.25/0.49 0.09/0.18 0.00/0.00
12 0.58/0.78 0.39/0.65 0.19/0.33 0.00/0.00
15 0.65/0.80 0.50/0.74 0.26/0.50 0.02/0.02

FashionMNIST 15 0.40/0.55 0.24/0.23 0.02/0.03 0.00/0.00
DBPedia 15 0.36/0.53 0.10/0.01 0.00/0.00 0.00/0.00

COMM_ENC

EMNIST
9 0.47/0.66 0.35/0.58 0.32/0.52 0.32/0.52
12 0.58/0.78 0.50/0.72 0.48/0.69 0.45/0.67
15 0.65/0.80 0.63/0.78 0.60/0.76 0.56/0.71

FashionMNIST 15 0.40/0.55 0.34/0.38 0.14/0.13 0.03/0.01
DBPedia 15 0.36/0.53 0.19/0.06 0.06/0.00 0.00/0.00

show the same set of experiments repeated with a clipping norm of 1. These heatmaps
highlight that, while clipping lowers the impact of model poisoning, the combination of
targeted dropping and model poisoning results in very noticeable targeted performance
degradation even when clipping is used. For instance, under perfect knowledge, the
original model accuracy on class 0 is 0.8. This becomes 0.53 when dropping 7 clients out
of 15 and 0.57 when poisoning 7 additional clients, while the combination of dropping
7 and poisoning 7 clients results in 0.37 accuracy.

By repeating the experiments with T = 50, we can observe that it appears that targeted
dropping is more effective than poisoning at low round counts, as shown in Fig. 6.2
When the model is in its early phase of learning, it needs to see some examples of the
target class to begin learning it, and dropping significantly delays the arrival of these
examples. Later in training, however, the difference between poisoning and dropping
decreases.

6.6.6 Impact of Adversarial Visibility

Adversarial resources and capabilities may vary widely depending on the specific cir-
cumstances (nation states will have significantly larger capabilities than smaller play-
ers), so the adversary may not always be able to keep track of which clients can partici-
pate in each round, having to focus their resources on observing only a relatively small
subset of the total client pool. In this section, we show that, assuming the adversary has

6.6. Experiemental Evaluation 121

(A) Perfect knowledge (B) Perfect knowledge, clipping

(C) COMM_PLAIN (D) COMM_PLAIN, clipping

(E) COMM_ENC (F) COMM_ENC, clipping
FIGURE 6.2: Accuracy on target class 0 on EMNIST, for k = 15, T = 50,
and varying number of dropped and poisoned clients under 3 scenar-
ios: perfect knowledge, COMM_PLAIN, and COMM_ENC. Left results are
without clipping, and right results use a clipping norm of 1. When no
clipping is used, model poisoning attack is devastating at small number
of poisoned clients. With clipping, model poisoning. Results are similar

with those in Figure 6.1.

122 Chapter 6. Network-Level Interference in Federated Learning

(A) Drop (B) Drop + Poison
FIGURE 6.3: Accuracy on target class 0 on FashionMNIST, for k = 15,
T = 200, kN = 10, a poison count of 10, varying number of visible clients

and α, under the COMM_ENC_LIMITED scenario.

visibility on a non-trivial fraction of the clients, our interference can still affect the target
accuracy very significantly.

We model a targeted, resource-limited, adversary (COMM_ENC_LIMITED) by restricting
their ability to observe the clients participating to the protocol to a fixed-size subset of
the clients, chosen before the attack starts, sampled from a Dirichlet distribution with
concentration parameter α. α will control how likely it is for the sampled visible list to
include clients containing data of the target population, with larger αs leading to higher
likelihood. We run the attack on FashionMNIST with a similar setup as in Table 6.4
under the COMM_ENC conditions. The results reported in Figure 6.3a show that, as
expected, higher visibility fractions, and larger α lead to smaller target accuracy values.
The network adversary is also still quite effective even when observing a small fraction
of the clients, for instance achieving a ⇐ 43.6% relative target accuracy decrease when
observing 20 clients with α = 2. Similarly, Figure 6.3b shows that adding poisoning
always leads to better targeted accuracy degradation.

6.6.7 Defense Evaluation

In Tables 6.5, 6.7, we evaluate the defense strategies under the COMM_PLAIN and
COMM_ENCscenarios, using targeted dropping and poisoning attacks. We set the num-
ber of dropped and poisoned clients (kN and kP) to 2k/3 for EMNIST, and k/3 for Fash-
ionMNIST and DBPedia. This parameter setting results in strong attacks, as the target
accuracy is below 4% under targeted dropping and poisoning, when no mitigation is
used.

Our UpSampling defense is extremely effective at protecting against targeted dropping,

6.6. Experiemental Evaluation 123

TABLE 6.5: Accuracy on target class presented at rounds T/2 and T, un-
der COMM_PLAIN setting. T = 100 for EMNIST, T = 300 for FashionM-
NIST and DBPedia. We consider both Targeted Dropping and Dropping

+ Poisoning scenarios.

k Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.47/ 0.66 0.09/ 0.18 0.18/ 0.44 0.00/ 0.00 0.00/ 0.06 0.01/ 0.00 0.03/ 0.31
1 0.75/ 0.92 0.09/ 0.25 0.39/ 0.76 0.00/ 0.00 0.00/ 0.04 0.01/ 0.00 0.04/ 0.30
9 0.43/ 0.56 0.01/ 0.17 0.09/ 0.40 0.00/ 0.00 0.00/ 0.01 0.01/ 0.00 0.00/ 0.23

12
0 0.58/ 0.78 0.19/ 0.33 0.40/ 0.66 0.00/ 0.00 0.04/ 0.09 0.00/ 0.01 0.12/ 0.40
1 0.86/ 0.95 0.25/ 0.55 0.49/ 0.85 0.00/ 0.00 0.01/ 0.04 0.04/ 0.01 0.17/ 0.60
9 0.53/ 0.67 0.06/ 0.31 0.28/ 0.52 0.00/ 0.00 0.00/ 0.02 0.02/ 0.01 0.07/ 0.29

15
0 0.65/ 0.80 0.26/ 0.50 0.47/ 0.71 0.00/ 0.00 0.04/ 0.06 0.00/ 0.03 0.22/ 0.35
1 0.91/ 0.96 0.47/ 0.79 0.83/ 0.94 0.00/ 0.00 0.06/ 0.18 0.05/ 0.04 0.53/ 0.51
9 0.65/ 0.75 0.15/ 0.39 0.39/ 0.59 0.00/ 0.00 0.02/ 0.03 0.02/ 0.07 0.19/ 0.40

FashionMNIST

15
0 0.44/ 0.47 0.30/ 0.36 0.60/ 0.62 0.09/ 0.03 0.29/ 0.38 0.13/ 0.19 0.58/ 0.58
1 0.93/ 0.95 0.89/ 0.93 0.95/ 0.96 0.12/ 0.02 0.77/ 0.77 0.16/ 0.28 0.92/ 0.93
9 0.88/ 0.87 0.81/ 0.81 0.92/ 0.93 0.13/ 0.04 0.70/ 0.62 0.09/ 0.19 0.90/ 0.89

DBPedia

15
0 0.45/ 0.54 0.11/ 0.10 0.75/ 0.82 0.00/ 0.00 0.00/ 0.00 0.02/ 0.01 0.65/ 0.77
1 0.77/ 0.87 0.37/ 0.17 0.93/ 0.96 0.00/ 0.00 0.08/ 0.00 0.02/ 0.03 0.89/ 0.94
9 0.52/ 0.60 0.24/ 0.17 0.84/ 0.91 0.00/ 0.00 0.00/ 0.00 0.02/ 0.02 0.64/ 0.62

and, when combined with Clipping, achieves high accuracy against the powerful tar-
geted dropping and poisoning attack. For instance, on EMNIST with k = 9, the tar-
geted dropping attack causes accuracy to change from 92% to 25% on class 1 under
COMM_PLAIN, and the UpSampling defense restores the targeted accuracy to 76% on
the same class. On the other hand, on DBPedia, targeted dropping reduces accuracy
on class 1 from 87% to 17%, under COMM_PLAIN for k = 15. When the UpSampling
defense is applied, the target accuracy exceeds the original one (96%) because clients
contributing to that class are selected more frequently. Moreover, for the same setting,
the combined targeted dropping and poisoning attack brings the target accuracy to 0,
and neither Clipping nor UpSampling are sufficient to mitigate the attack. Using both
defense strategies simultaneously, however, leads to a target accuracy of 94%.

The UpSampling defense is even more effective under the COMM_ENC setting, the most
common deployment scenario for FL. Here, the attacker has access only to aggregated
updates, resulting in slightly lower accuracy at Client Identification, while the server re-
ceives all local model updates and can reliably identify highly contributing clients. Due
to the asymmetry in knowledge between attacker and defender, UpSampling improves
target model accuracy against targeted dropping by an average (over the 3 classes) of
6.33% on EMNIST, 10.66% on FashionMNIST, and 24.66% on DBPedia for k = 15 com-
pared to the original accuracy. Even under the targeted dropping and model poisoning
attacks, the combined UpSampling defense and Clipping results in an average decrease

124 Chapter 6. Network-Level Interference in Federated Learning

TABLE 6.6: Accuracy on full test set presented at rounds T/2 and T, un-
der COMM_PLAIN setting. T = 100 for EMNIST, T = 300 for FashionM-
NIST and DBPedia. We consider both Targeted Dropping and Dropping

+ Poisoning scenarios.

k Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.92/ 0.95 0.88/ 0.90 0.89/ 0.93 0.86/ 0.87 0.85/ 0.88 0.86/ 0.87 0.86/ 0.91
1 0.94/ 0.96 0.87/ 0.90 0.90/ 0.95 0.85/ 0.85 0.84/ 0.86 0.85/ 0.86 0.85/ 0.89
9 0.91/ 0.93 0.87/ 0.89 0.88/ 0.92 0.86/ 0.87 0.86/ 0.87 0.86/ 0.87 0.86/ 0.90

12
0 0.93/ 0.96 0.89/ 0.92 0.91/ 0.95 0.86/ 0.87 0.86/ 0.89 0.86/ 0.87 0.87/ 0.92
1 0.95/ 0.97 0.89/ 0.93 0.91/ 0.96 0.85/ 0.86 0.84/ 0.86 0.85/ 0.86 0.86/ 0.92
9 0.92/ 0.95 0.87/ 0.91 0.90/ 0.93 0.86/ 0.87 0.86/ 0.87 0.68/ 0.68 0.87/ 0.90

15
0 0.94/ 0.96 0.90/ 0.93 0.92/ 0.95 0.86/ 0.87 0.86/ 0.88 0.86/ 0.88 0.89/ 0.91
1 0.95/ 0.97 0.91/ 0.95 0.94/ 0.96 0.85/ 0.86 0.85/ 0.88 0.85/ 0.86 0.90/ 0.91
9 0.94/ 0.95 0.88/ 0.92 0.91/ 0.94 0.86/ 0.87 0.86/ 0.87 0.87/ 0.88 0.88/ 0.92

FashionMNIST

15
0 0.81/ 0.83 0.79/ 0.82 0.81/ 0.84 0.76/ 0.78 0.79/ 0.82 0.76/ 0.79 0.81/ 0.84
1 0.83/ 0.85 0.82/ 0.85 0.82/ 0.85 0.74/ 0.76 0.81/ 0.83 0.75/ 0.78 0.82/ 0.84
9 0.82/ 0.85 0.82/ 0.84 0.83/ 0.85 0.74/ 0.76 0.80/ 0.82 0.74/ 0.77 0.82/ 0.84

DBPedia

15
0 0.93/ 0.94 0.91/ 0.91 0.95/ 0.96 0.89/ 0.90 0.90/ 0.90 0.89/ 0.90 0.94/ 0.96
1 0.95/ 0.96 0.92/ 0.91 0.96/ 0.97 0.88/ 0.89 0.90/ 0.90 0.89/ 0.89 0.95/ 0.96
9 0.93/ 0.94 0.91/ 0.91 0.95/ 0.96 0.89/ 0.90 0.89/ 0.90 0.89/ 0.90 0.93/ 0.94

of 5% on EMNIST and average increase of 9% on FashionMNIST and 16.66% on DBPe-
dia over the 3 classes compared to the original accuracy.

Interestingly, classes with lower original accuracy benefit more from the UpSampling
strategy, with improvements as high as 34% (on DBPedia for class 9, original accuracy
is increased from 60% to 94% with UpSampling under targeted dropping). We also
observe that as more clients hold examples from the target class (k increases in EMNIST),
the UpSampling defense will have more clients to sample from, and achieves higher
target accuracy.

Privacy-preserving FL So far, we have discussed settings in which the server receives
local model updates in all rounds of the FL protocol. However, to protect client privacy,
it is common to deploy privacy-preserving FL protocols, based on Multi-Party Com-
putation (MPC), such as [26, 69]. In MPC implementations, multiple parties will be
involved in aggregation and the server only receives the global model at the end of each
iteration. The server has therefore the same knowledge as the network-level adversary
under encrypted communication when running the client identification protocol from
Algorithm 5.

In Table 6.9, we present attack and defense results for this challenging setting. Simi-
larly to the previous tables, we set the parameters to kN = kP = 2k/3 for EMNIST, and
kN = kP = k/3 for both FashionMNIST and DBPedia. While under this setting there

6.6. Experiemental Evaluation 125

TABLE 6.7: Accuracy on target class presented at rounds T/2 and T, un-
der COMM_ENC setting. T = 100 for EMNIST, T = 300 for FashionM-
NIST and DBPedia. We consider both Targeted Dropping and Dropping

+ Poisoning scenarios.

k Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.47/ 0.66 0.32/ 0.52 0.59/ 0.76 0.01/ 0.00 0.14/ 0.40 0.10/ 0.04 0.46/ 0.68
1 0.75/ 0.92 0.58/ 0.76 0.88/ 0.96 0.04/ 0.00 0.24/ 0.52 0.16/ 0.04 0.67/ 0.88
9 0.43/ 0.56 0.31/ 0.46 0.54/ 0.70 0.01/ 0.00 0.03/ 0.25 0.06/ 0.05 0.37/ 0.57

12
0 0.58/ 0.78 0.48/ 0.69 0.75/ 0.85 0.00/ 0.00 0.29/ 0.36 0.02/ 0.06 0.60/ 0.77
1 0.86/ 0.95 0.77/ 0.91 0.94/ 0.97 0.00/ 0.00 0.47/ 0.43 0.20/ 0.12 0.82/ 0.92
9 0.53/ 0.67 0.41/ 0.56 0.68/ 0.78 0.00/ 0.01 0.18/ 0.27 0.15/ 0.07 0.50/ 0.67

15
0 0.65/ 0.80 0.60/ 0.76 0.81/ 0.89 0.01/ 0.00 0.37/ 0.44 0.01/ 0.05 0.62/ 0.71
1 0.91/ 0.96 0.88/ 0.94 0.96/ 0.97 0.04/ 0.00 0.60/ 0.48 0.12/ 0.06 0.90/ 0.94
9 0.65/ 0.75 0.50/ 0.58 0.76/ 0.85 0.03/ 0.01 0.30/ 0.35 0.10/ 0.07 0.53/ 0.71

FashionMNIST

15
0 0.44/ 0.47 0.40/ 0.39 0.69/ 0.71 0.13/ 0.02 0.38/ 0.36 0.25/ 0.17 0.64/ 0.69
1 0.93/ 0.95 0.92/ 0.94 0.95/ 0.96 0.14/ 0.03 0.86/ 0.81 0.26/ 0.24 0.94/ 0.95
9 0.88/ 0.87 0.85/ 0.82 0.93/ 0.94 0.20/ 0.05 0.77/ 0.59 0.19/ 0.23 0.91/ 0.92

DBPedia

15
0 0.45/ 0.54 0.16/ 0.12 0.79/ 0.84 0.00/ 0.00 0.00/ 0.00 0.03/ 0.01 0.73/ 0.79
1 0.77/ 0.87 0.39/ 0.22 0.95/ 0.97 0.00/ 0.00 0.07/ 0.00 0.10/ 0.05 0.92/ 0.95
9 0.52/ 0.60 0.31/ 0.12 0.88/ 0.94 0.00/ 0.00 0.00/ 0.00 0.02/ 0.01 0.75/ 0.76

is essentially no difference in the effectiveness of the attacker models we consider, the
defensive performance varies due to the limited knowledge. The results we observe for
the UpSample and Clip + UpSample defensive mechanisms are, as we would expect,
somewhere in between the COMM_ENC and COMM_PLAIN scenarios. For instance for
EMNIST, with k = 15 on class 1 we obtain an average accuracy level of 0.84, consid-
erably higher than the 0.51 obtained under COMM_PLAIN, but also not as high as the
average of 0.94 obtained with COMM_ENC, which is essentially the same result obtained
without any attack.

We have also evaluated the attacks and defenses against FL protocols using secure ag-
gregation [26, 69]. Here, both the network-level adversary and the server only observe
aggregated model updates. Even in this challenging setting, the server can identify
clients contributing mostly to the target class, making UpSampling combined with Clip-
ping quite effective. Results are omitted for space limitation.

Discussion Our evaluation shows that the proposed UpSampling defense is extremely
effective at protecting against targeted dropping attacks. Combined with Clipping of
model updates, the defense achieves high accuracy against powerful targeted dropping
and poisoning attacks. The impact of the defense is stronger under COMM_ENC, when
communication between clients and server is encrypted, and the network adversary

126 Chapter 6. Network-Level Interference in Federated Learning

TABLE 6.8: Accuracy on full test set presented at rounds T/2 and T, un-
der COMM_ENC setting. T = 100 for EMNIST, T = 300 for FashionM-
NIST and DBPedia. We consider both Targeted Dropping and Dropping

+ Poisoning scenarios.

k Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.92/ 0.95 0.91/ 0.94 0.93/ 0.95 0.86/ 0.87 0.88/ 0.92 0.87/ 0.87 0.91/ 0.94
1 0.94/ 0.96 0.92/ 0.95 0.95/ 0.97 0.85/ 0.86 0.88/ 0.91 0.86/ 0.86 0.92/ 0.95
9 0.91/ 0.93 0.90/ 0.92 0.93/ 0.95 0.86/ 0.87 0.86/ 0.90 0.87/ 0.88 0.90/ 0.93

12
0 0.93/ 0.96 0.92/ 0.95 0.94/ 0.96 0.86/ 0.87 0.90/ 0.92 0.87/ 0.88 0.92/ 0.95
1 0.95/ 0.97 0.94/ 0.96 0.95/ 0.97 0.85/ 0.86 0.90/ 0.90 0.87/ 0.87 0.93/ 0.95
9 0.92/ 0.95 0.91/ 0.94 0.94/ 0.96 0.86/ 0.87 0.88/ 0.90 0.88/ 0.88 0.91/ 0.94

15
0 0.94/ 0.96 0.93/ 0.95 0.95/ 0.96 0.86/ 0.87 0.90/ 0.92 0.87/ 0.88 0.92/ 0.95
1 0.95/ 0.97 0.95/ 0.96 0.95/ 0.97 0.85/ 0.86 0.91/ 0.90 0.86/ 0.86 0.94/ 0.96
9 0.94/ 0.95 0.92/ 0.94 0.94/ 0.96 0.87/ 0.87 0.89/ 0.91 0.88/ 0.88 0.92/ 0.95

FashionMNIST

15
0 0.81/ 0.83 0.80/ 0.83 0.82/ 0.85 0.76/ 0.78 0.80/ 0.82 0.77/ 0.78 0.81/ 0.84
1 0.83/ 0.85 0.83/ 0.85 0.82/ 0.85 0.75/ 0.76 0.82/ 0.83 0.76/ 0.78 0.82/ 0.85
9 0.82/ 0.85 0.82/ 0.84 0.83/ 0.85 0.74/ 0.76 0.80/ 0.82 0.75/ 0.78 0.82/ 0.85

DBPedia

15
0 0.93/ 0.94 0.91/ 0.91 0.95/ 0.96 0.89/ 0.90 0.90/ 0.90 0.90/ 0.90 0.95/ 0.96
1 0.95/ 0.96 0.92/ 0.92 0.96/ 0.97 0.88/ 0.89 0.89/ 0.90 0.89/ 0.89 0.95/ 0.97
9 0.93/ 0.94 0.92/ 0.91 0.95/ 0.96 0.89/ 0.90 0.89/ 0.90 0.89/ 0.89 0.93/ 0.95

only observes aggregate model updates. Encrypted communication in FL is the stan-
dard deployment method, but we would like to emphasize that encrypted communica-
tion is very important to reduce network adversaries’ knowledge and should always be
enabled.

To implement the defense and identify highly contributing clients, the server needs ac-
cess to a trusted dataset from the population. While our server had knowledge of the
attack population when running UpSampling, it is possible to collect data from sev-
eral sensitive populations to identify poorly performing populations and improve their
performance. Alternatively, the UpSampling strategy could also be implemented by up-
sampling clients from a trusted set of users. Other methods to establish trust in users
include using Trusted Execution Environments (TEEs) to obtain attestation of software
on client devices, or creating client reputation metrics [30].

We observed that under-represented classes (in terms of number of clients holding sam-
ples from those classes) are impacted more by our attacks. To alleviate this problem,
the server could identify new clients with data from the populations of interest, and
add them to the set of clients participating in the FL protocol. In cross-device FL set-
tings, servers typically have access to a large number of clients, and can make decisions
on expanding the set of participating clients to improve accuracy on under-represented
populations.

6.7. Related Work 127

TABLE 6.9: Accuracy on target class presented at rounds T/2 and T, un-
der the MPC scenario. T = 100 for EMNIST, T = 300 for FashionMNIST
and DBPedia. We consider both Targeted Dropping and Dropping + Poi-

soning scenarios.

k Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.47/ 0.66 0.32/ 0.52 0.39/ 0.67 0.01/ 0.00 0.14/ 0.40 0.02/ 0.00 0.25/ 0.55
1 0.75/ 0.92 0.58/ 0.76 0.72/ 0.93 0.04/ 0.00 0.24/ 0.52 0.01/ 0.02 0.49/ 0.73
9 0.43/ 0.56 0.31/ 0.46 0.38/ 0.60 0.01/ 0.00 0.03/ 0.25 0.03/ 0.00 0.14/ 0.50

12
0 0.58/ 0.78 0.48/ 0.69 0.50/ 0.75 0.00/ 0.00 0.29/ 0.36 0.02/ 0.02 0.40/ 0.62
1 0.86/ 0.95 0.77/ 0.91 0.85/ 0.96 0.00/ 0.00 0.47/ 0.43 0.00/ 0.03 0.63/ 0.78
9 0.53/ 0.67 0.41/ 0.56 0.54/ 0.72 0.00/ 0.01 0.18/ 0.27 0.02/ 0.00 0.27/ 0.51

15
0 0.65/ 0.80 0.60/ 0.76 0.69/ 0.84 0.01/ 0.00 0.37/ 0.44 0.01/ 0.04 0.43/ 0.63
1 0.91/ 0.96 0.87/ 0.93 0.92/ 0.96 0.04/ 0.00 0.60/ 0.48 0.01/ 0.00 0.73/ 0.84
9 0.64/ 0.75 0.50/ 0.58 0.59/ 0.80 0.03/ 0.01 0.30/ 0.35 0.02/ 0.00 0.38/ 0.61

FashionMNIST

15
0 0.44/ 0.46 0.40/ 0.41 0.61/ 0.70 0.12/ 0.04 0.39/ 0.35 0.04/ 0.05 0.60/ 0.65
1 0.93/ 0.95 0.92/ 0.94 0.95/ 0.96 0.11/ 0.03 0.86/ 0.81 0.14/ 0.06 0.93/ 0.95
9 0.88/ 0.87 0.85/ 0.82 0.93/ 0.93 0.19/ 0.05 0.75/ 0.60 0.08/ 0.04 0.86/ 0.85

DBPedia

15
0 0.45/ 0.54 0.14/ 0.12 0.70/ 0.81 0.00/ 0.00 0.00/ 0.00 0.00/ 0.00 0.61/ 0.77
1 0.77/ 0.87 0.48/ 0.32 0.92/ 0.96 0.00/ 0.00 0.07/ 0.00 0.00/ 0.03 0.87/ 0.93
9 0.52/ 0.60 0.30/ 0.13 0.82/ 0.91 0.00/ 0.00 0.00/ 0.00 0.00/ 0.00 0.53/ 0.70

6.7 Related Work

Attacks and defenses in federated learning Given the distributed nature of the train-
ing process in FL, poisoning attacks represent an even larger threat than in traditional
Machine Learning systems. For instance, poisoning availability attacks have been shown
effective in Federated Learning in recent work [68, 200]. Targeted model poisoning at-
tacks impact a small population, or introduce a backdoor in the trained models to mis-
classify instances including the backdoor [20, 16, 212, 233]. Privacy attacks in FL are also
a concern: [118] demonstrates property inference and data reconstruction attacks by dis-
aggregating updates aggregated from users, assuming a malicious server; others have
shown data reconstruction [253] and property inference attacks [165] from gradients.

Simultaneously, methods to defend FL protocols from adversaries have been proposed,
such as Byzantine-resilient or trust-based aggregation rules [25, 143, 250, 3, 80, 211, 30,
141, 142]. However, [68] and [200] performed a systematic analysis of Byzantine-robust
aggregation schemes, and showed that an adversary controlling compromised clients
can launch poisoning availability attacks that bypass these defenses. Also, targeted poi-
soning attacks can bypass Byzantine-resilient aggregation, such as Krum [16]. Methods
that can prevent model poisoning attacks include filtering of malicious gradients for
availability attacks [68, 200, 239] and gradient clipping for targeted attacks [212, 16].

128 Chapter 6. Network-Level Interference in Federated Learning

TABLE 6.10: Accuracy on full test set presented at rounds T/2 and T, un-
der the MPC scenario. T = 100 for EMNIST, T = 300 for FashionMNIST
and DBPedia. We consider both Targeted Dropping and Dropping + Poi-

soning scenarios.

k Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.92/ 0.95 0.91/ 0.94 0.91/ 0.95 0.86/ 0.87 0.88/ 0.92 0.87/ 0.87 0.89/ 0.93
1 0.94/ 0.96 0.92/ 0.95 0.93/ 0.96 0.85/ 0.86 0.88/ 0.91 0.85/ 0.86 0.90/ 0.93
9 0.91/ 0.93 0.90/ 0.92 0.91/ 0.94 0.86/ 0.87 0.86/ 0.90 0.87/ 0.87 0.88/ 0.93

12
0 0.93/ 0.96 0.92/ 0.95 0.92/ 0.95 0.86/ 0.87 0.90/ 0.92 0.86/ 0.87 0.91/ 0.94
1 0.95/ 0.97 0.94/ 0.96 0.95/ 0.97 0.85/ 0.86 0.90/ 0.90 0.85/ 0.86 0.91/ 0.94
9 0.92/ 0.95 0.91/ 0.94 0.93/ 0.95 0.86/ 0.87 0.88/ 0.90 0.87/ 0.68 0.89/ 0.93

15
0 0.94/ 0.96 0.93/ 0.95 0.94/ 0.96 0.86/ 0.87 0.90/ 0.92 0.87/ 0.88 0.91/ 0.94
1 0.95/ 0.97 0.95/ 0.96 0.95/ 0.97 0.85/ 0.86 0.91/ 0.90 0.85/ 0.86 0.92/ 0.95
9 0.94/ 0.95 0.92/ 0.94 0.93/ 0.96 0.87/ 0.87 0.89/ 0.91 0.87/ 0.87 0.90/ 0.94

FashionMNIST

15
0 0.81/ 0.83 0.80/ 0.83 0.82/ 0.85 0.76/ 0.78 0.80/ 0.82 0.75/ 0.77 0.81/ 0.84
1 0.83/ 0.85 0.83/ 0.85 0.82/ 0.85 0.74/ 0.76 0.82/ 0.83 0.75/ 0.76 0.82/ 0.85
9 0.82/ 0.85 0.82/ 0.84 0.83/ 0.85 0.74/ 0.76 0.80/ 0.82 0.74/ 0.76 0.81/ 0.84

DBPedia

15
0 0.93/ 0.94 0.91/ 0.91 0.95/ 0.96 0.89/ 0.89 0.90/ 0.90 0.89/ 0.90 0.94/ 0.96
1 0.95/ 0.96 0.93/ 0.92 0.96/ 0.97 0.88/ 0.89 0.89/ 0.90 0.88/ 0.89 0.95/ 0.96
9 0.93/ 0.94 0.92/ 0.91 0.95/ 0.96 0.89/ 0.90 0.89/ 0.90 0.89/ 0.89 0.92/ 0.95

Network-level attacks and defenses. Packet dropping attacks have been studied for
network-level adversaries who can manipulate traffic in multiple ways. Some examples
include physical-layer jamming attacks in wireless networks [244, 18], router compro-
mise [49, 185], transport-level attacks [104], and BGP hijacking attacks [46]. Multiple ap-
plications in various domains are seriously impacted by network-level adversaries, such
as: cryptocurrenices [10], payment-channel networks [235], and connected cars [101].

Defenses against these attacks at the network layer have been proposed. Among these,
monitoring and detecting faulty paths in the network [14] can prevent against Byzan-
tine attacks in wireless networks; creating resilient overlays [38, 157] enforces correct
packet delivery to prevent against routing attacks and compromise of the nodes in the
overlay. Our FL-specific UpSampling defense modifies the client sampling procedure
at the server with the goal of selecting a set of clients that increases the accuracy on the
target learning tasks.

We believe that our server-side defense can complement these existing network-level
defenses, whose effectiveness still needs to be evaluated in FL protocols. The challenges
of federated learning on best-effort networks have also been addressed, by reapplying
old gradients from high latency clients [79, 167] and by improving processing time in
networks [187, 119]. While techniques for handling high latency clients may help when

6.8. Discussion and Conclusion 129

clients are dropped, dropping prevents clients from ever participating again, and re-
peating their updates will perform worse over the course of training.

6.8 Discussion and Conclusion

In this study, we consider the effects that a network-level adversary, capable of prevent-
ing model updates from distributed clients reach the server, can have on the final model
accuracy on a target population, in cross-device FL. Our work proposes a new attack,
based on a new procedure of identifying the set of clients mostly contributing towards
a target task of interest to the adversary, and performing targeted disruptions of their
communications. We evaluate the attack on multiple scenarios, considering classifica-
tion tasks across different data modalities and machine learning models, and assuming
different levels of visibility that the adversary has on the system. Under all settings,
we show that the targeted dropping attack is quite effective in preventing learning on
specific tasks, and that its effect can be augmented by concurrent poisoning campaigns.

We also explore defensive approaches, and find that our UpSampling mechanism, cen-
tered around the same Client Identification scheme, can be extremely successful, when
paired with encrypted communications and model updates Clipping, in boosting the
performance of a FL system on a target task, even when under heavy attack.

131

Chapter 7

Conclusion and Future Directions

This thesis introduced a variety of offensive security techniques to highlight the vulner-
abilities of the training phase of modern machine learning models in security sensitive
contexts. In this work, we focused on the vulnerabilities introduced by the increasing
reliance on large-scale, potentially untrusted data sources and outsourced computation
for model training. Our work has demonstrated the feasibility and effectiveness of so-
phisticated poisoning attacks against machine learning models in security-critical ap-
plications, while also proposing initial steps towards robust defenses.

The primary contributions presented in this thesis can be summarized as follows:

• We introduced explanation-guided poisoning, a novel approach to backdoor at-
tacks that leverages AI model explanation techniques (XAI) to generate effective
triggers with minimal impact on the model’s normal behavior. This general ap-
proach was successfully specialized and applied to both malware detection and
network intrusion detection systems, demonstrating its versatility across different
security domains and data modalities.

• We showed that backdoor attacks can be executed under highly constrained con-
ditions that mirror real-world deployment scenarios. These attacks operate with-
out control over training labels, make no assumptions about the victim model’s
architecture, and respect the semantic constraints of complex data types such as
executable binaries and aggregated network flows.

• We developed mitigation strategies that leverage the peculiarities of the cyber-
security domain to remove costly and impractical assumptions. We showed the
effectiveness of this defensive approach on the attacks we designed, and

• We developed techniques for targeted network-level interference in Federated
Learning protocols, achieving effects similar to targeted poisoning by strategically
manipulating the exchange of model updates.

132 Chapter 7. Conclusion and Future Directions

7.1 Future Directions

The dynamism of the machine learning landscape ensures a variety of possible future
avenues for research on training-time integrity violations, poisoning attacks, and the
overall viability of ML models in cybersecurity contexts.

7.1.1 Offensive Research

Attacking different learning paradigms. As an instance of these dynamic trends, a
topic that deserves the attention of researchers in the near future is training-time attacks
against learning paradigms different from supervised learning, such as reinforcement
learning [214] and semi-supervised learning [158].

In this work we explored integrity violations against supervised learning systems be-
cause of their large utilization in security contexts. However, the progressive scaling up
of training data requirements foreshadows an environment where more and more mod-
els are trained with methods that can leverage cheap and abundant unlabeled data.
Recent research has started exploring the issue of poisoning attacks in reinforcement
learning [109, 53, 178] and semi-supervised learning [33], however the literature on ap-
plications of these methods to cybersecurity tasks and their pitfalls is very limited.

Poisoning local (and remote) knowledge bases. Another example is the recent trend
towards the use of large language models (LLMs) augmented with retrieval or search
capabilities, also known as retrieval augmented generation (RAG) [123]. These systems are
designed to address inherent limitations in auto-regressive language modeling such as
hallucinations, distribution shift of information, and prohibitive costs associated with
domain-specific fine-tuning and re-training. In RAG systems, a retriever component
(usually composed of pre-trained encoders) is tasked with searching for relevant textual
passages in a database and providing them as context to the generator component.

Allowing RAG systems to operate on untrusted on-device documents, or even on web
search results, opens up a complete new avenue for poisoning attacks. Initial research
exploring this threat vector [255, 168, 40, 153] surfaced the possibility for the adversary
to achieve results similar to training-time data poisoning attacks without the need to
actually tamper with the training phase of the models, by performing indirect prompt
injection on the LLM.

This threat is particularly impactful, as an increasing number of language model assis-
tants are provided with the ability to perform API calls (also known as tool usage) to
enact actual changes on external applications and systems. Therefore, an attacker able
to control the output of a RAG system, may be able to achieve even broader effects than

7.1. Future Directions 133

the straightforward spread of misinformation. Thus, additional research on these at-
tacks, and possible counter measures, would surely be beneficial, especially when RAG
systems will start being used for cybersecurity applications such as log monitoring.

7.1.2 Defensive Research

Layered defenses. Protecting modern training pipelines is quite challenging: whether
because of the large volumes of training data involved, or because of the inherent com-
plexity of these pipelines, such as those used in modern (giant) language and multi-
modal models, or because of the adversarial nature of the cybersecurity environment.
Therefore, it is unlikely that solutions based on a single mitigation approach will be
successful in the long run. A likely candidate strategy for defending critical training
pipelines will therefore be to layer multiple mitigation techniques at different levels of
the training and deployment phases – a technique also known as defense in depth.

Different types of defenses approaches can be categorized in macro areas. Data prove-
nance tracking and sanitization is performed before the training process, and then pro-
gressively on the data used by the models during their normal activity, and is critical to
minimize the probability of successful data poisoning attacks. Similarly, tight vetting of
the code dependencies and potentially any pre-trained models used – through model
signatures and verification primitives implemented in common libraries – are necessary
to mitigate supply-chain attacks.

During the training phase itself, adversarial training and alignment training, while not
designed to prevent poisoning directly, are effective techniques to reduce the intrinsic
vulnerabilities of the models at deployment time. Alongside robust training schemes,
practices such as data provenance tracking and input/output filtering for generative
models are starting to become standard in the industry. Finally, infrastructure should
be in place to perform trace-back and forensics analyses [197], in case a poisoning attack
is suspected. Future research should focus on additional mitigation strategies that can
be easily combined with the existing methods while prioritizing the preservation of the
system’s utility.

Defending modern language models. Regarding specifically the defense of LLM-
based systems, recent years have witnessed a concentrated research effort to enhance
the trustworthiness of deployed models through alignment training [208, 66, 17]. This
approach has been implemented for most currently used LLMs and aims to ensure that
model outputs align with human values and intentions. While this type of training aug-
mentations surely improve the trustworthiness of the models for typical users, the at-
tacks mentioned in the paragraph above, together with other classical poisoning threats

134 Chapter 7. Conclusion and Future Directions

applied to the reinforcement learning with human feedback process [219], highlight the
need for additional security measures in adversarial settings [95].

One example of these mitigation strategies would be the use of well-trained language
models to perform perplexity analysis – measuring the likelihood that a textual sam-
ple comes from the same distribution used for training the language model – to isolate
outliers in fine-tuning data and knowledge bases accessed by RAG systems. The effec-
tiveness of this approach lies in its ability to be implemented in parallel with existing
defenses, minimizing adverse effects on the utility of the defended models.

Another open problem in this area is the defense of agentic systems, where one (or mul-
tiple models) are allowed to freely plan a course of action and interact with external
systems (and each other) in response to some query, or to achieve some objective, spec-
ified by the user. The study of the security properties of these systems, both from an
offensive and defensive perspective, is still in its infancy. Consequently, it is interesting
to investigate the applicability and effectiveness of existing techniques in this context, as
well as to identify potential new security concerns inherent to the peculiarities of agen-
tic design. Examples of these objectives include developing novel anomaly detection
methods tailored to multi-agent interactions, and investigating the potential of formal
verification approaches to guarantee certain security properties in complex agentic en-
vironments.

135

Bibliography

[1] Kendra Albert, Jon Penney, Bruce Schneier, and Ram Shankar Siva Kumar. Pol-
itics of Adversarial Machine Learning. SSRN Scholarly Paper. Rochester, NY, 2020.
DOI: 10.2139/ssrn.3547322.

[2] AlienVault - Open Threat Exchange. https://otx.alienvault.com/.
[3] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. “Byzantine Stochastic Gradient

Descent”. In: Advances in Neural Information Processing Systems. Vol. 31. Curran
Associates, Inc., 2018.

[4] Brandon Amos, Hamilton Turner, and Jules White. “Applying Machine Learn-
ing Classifiers to Dynamic Android Malware Detection at Scale”. In: 2013 9th
International Wireless Communications and Mobile Computing Conference (IWCMC).
July 2013, pp. 1666–1671. DOI: 10.1109/IWCMC.2013.6583806.

[5] Hyrum S. Anderson and Phil Roth. “EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models”. In: arXiv:1804.04637 [cs] (Apr.
2018). arXiv: 1804.04637 [cs].

[6] Emre Kiciman Andrew Marshall Jugal Parikh and Ram Shankar Siva Kumar.
Threat Modeling AI/ML Systems and Dependencies. https://learn.microsoft.
com/en-us/security/engineering/threat-modeling-aiml. 2022.

[7] Mihael Ankerst, Markus M. Breunig, Hans peter Kriegel, and Jörg Sander. “OP-
TICS: Ordering Points To Identify the Clustering Structure”. In: ACM Press, 1999,
pp. 49–60.

[8] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feam-
ster. “Building a Dynamic Reputation System for DNS”. In: Proceedings of the 19th
USENIX Conference on Security. USENIX Security’10. Washington, DC: USENIX
Association, 2010, p. 18. ISBN: 8887666655554.

[9] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou, and David
Dagon. “Detecting Malware Domains at the Upper DNS Hierarchy”. In: Pro-
ceedings of the 20th USENIX Conference on Security. SEC’11. San Francisco, CA:
USENIX Association, 2011, p. 27.

[10] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. “Hijacking Bitcoin: Rout-
ing Attacks on Cryptocurrencies”. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP). 2017, pp. 375–392. DOI: 10.1109/SP.2017.29.

https://doi.org/10.2139/ssrn.3547322
https://doi.org/10.1109/IWCMC.2013.6583806
https://arxiv.org/abs/1804.04637
https://learn.microsoft.com/en-us/security/engineering/threat-modeling-aiml
https://learn.microsoft.com/en-us/security/engineering/threat-modeling-aiml
https://doi.org/10.1109/SP.2017.29

136 Bibliography

[11] Giovanni Apruzzese, Michele Colajanni, Luca Ferretti, and Mirco Marchetti. “Ad-
dressing Adversarial Attacks Against Security Systems Based on Machine Learn-
ing”. In: 2019 11th International Conference on Cyber Conflict (CyCon). Vol. 900. May
2019, pp. 1–18. DOI: 10.23919/CYCON.2019.8756865.

[12] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad
Rieck. “Drebin: Effective and Explainable Detection of Android Malware in Your
Pocket”. In: Proceedings 2014 Network and Distributed System Security Symposium.
San Diego, CA: Internet Society, 2014. ISBN: 978-1-891562-35-8. DOI: 10.14722/
ndss.2014.23247.

[13] MITRE ATLAS. VirusTotal Poisoning 2020. 1999. URL: https://atlas.mitre.
org/studies/AML.CS0002.

[14] Baruch Awerbuch, Reza Curtmola, David Holmer, Cristina Nita-Rotaru, and
Herbert Rubens. “ODSBR: An on-demand secure Byzantine resilient routing pro-
tocol for wireless ad hoc networks”. In: ACM Trans. Inf. Syst. Secur. 10.4 (2008),
6:1–6:35. DOI: 10.1145/1284680.1341892. URL: https://doi.org/10.1145/
1284680.1341892.

[15] Md. Ahsan Ayub, William A. Johnson, Douglas A. Talbert, and Ambareen Siraj.
“Model Evasion Attack on Intrusion Detection Systems using Adversarial Ma-
chine Learning”. In: 2020 54th Annual Conference on Information Sciences and Sys-
tems (CISS). 2020, pp. 1–6. DOI: 10.1109/CISS48834.2020.1570617116.

[16] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov.
“How to backdoor federated learning”. In: International Conference on Artificial In-
telligence and Statistics. PMLR. 2020, pp. 2938–2948.

[17] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain,
Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller,
Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt,
Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova Das-
Sarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom
Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds,
Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and
Jared Kaplan. Constitutional AI: Harmlessness from AI Feedback. Dec. 2022. arXiv:
2212.08073 [cs].

[18] Y. Ozan Basciftci, Fangzhou Chen, Joshua Weston, Ron Burton, and C. Emre
Koksal. “How Vulnerable Is Vehicular Communication to Physical Layer Jam-
ming Attacks?” In: 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-
Fall). 2015, pp. 1–5. DOI: 10.1109/VTCFall.2015.7390968.

https://doi.org/10.23919/CYCON.2019.8756865
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.14722/ndss.2014.23247
https://atlas.mitre.org/studies/AML.CS0002
https://atlas.mitre.org/studies/AML.CS0002
https://doi.org/10.1145/1284680.1341892
https://doi.org/10.1145/1284680.1341892
https://doi.org/10.1145/1284680.1341892
https://doi.org/10.1109/CISS48834.2020.1570617116
https://arxiv.org/abs/2212.08073
https://doi.org/10.1109/VTCFall.2015.7390968

Bibliography 137

[19] Batched Coupon Collector Problem. https://mathoverflow.net/questions/2290
60/batched-coupon-collector-problem. 2016. URL: https://mathoverflow.
net/questions/229060/batched-coupon-collector-problem.

[20] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
“Model Poisoning Attacks in Federated Learning”. In: Neurips Workshop on Secu-
rity in Machine Learning. 2018, p. 8.

[21] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim !rndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. “Evasion Attacks against Ma-
chine Learning at Test Time”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Vol. 7908. Springer, 2013, pp. 387–402. DOI:
10.1007/978-3-642-40994-3_25.

[22] Battista Biggio, Blaine Nelson, and Pavel Laskov. “Poisoning Attacks against
Support Vector Machines”. In: Proceedings of the 29th International Coference on
International Conference on Machine Learning. ICML’12. Edinburgh, Scotland: Om-
nipress, June 2012, pp. 1467–1474. ISBN: 978-1-4503-1285-1.

[23] Battista Biggio, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino Corona,
Giorgio Giacinto, and Fabio Roli. “Poisoning Behavioral Malware Clustering”.
In: Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop
- AISec ’14. Scottsdale, Arizona, USA: ACM Press, 2014, pp. 27–36. ISBN: 978-1-
4503-3153-1. DOI: 10.1145/2666652.2666666.

[24] Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller,
and Wojciech Samek. “Layer-wise relevance propagation for neural networks
with local renormalization layers”. In: Artificial Neural Networks and Machine Learning–
ICANN 2016: 25th International Conference on Artificial Neural Networks, Barcelona,
Spain, September 6-9, 2016, Proceedings, Part II 25. Springer. 2016, pp. 63–71.

[25] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
“Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent”. In:
Neurips 2017. 2017, p. 11.

[26] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. “Practical
Secure Aggregation for Privacy-Preserving Machine Learning”. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
Dallas Texas USA: ACM, Oct. 2017, pp. 1175–1191. ISBN: 978-1-4503-4946-8. DOI:
10.1145/3133956.3133982.

[27] Stavroula Bourou, Andreas El Saer, Terpsichori-Helen Velivassaki, Artemis Voulkidis,
and Theodore Zahariadis. “A Review of Tabular Data Synthesis Using GANs on
an IDS Dataset”. In: Information 12.9 (Sept. 2021), p. 375. ISSN: 2078-2489. DOI:
10.3390/info12090375.

https://mathoverflow.net/questions/229060/batched-coupon-collector-problem
https://mathoverflow.net/questions/229060/batched-coupon-collector-problem
https://mathoverflow.net/questions/229060/batched-coupon-collector-problem
https://mathoverflow.net/questions/229060/batched-coupon-collector-problem
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1145/2666652.2666666
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.3390/info12090375

138 Bibliography

[28] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.
“SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events and
Statistics”. In: 19th USENIX Security Symposium (USENIX Security 10). Washing-
ton, DC: USENIX Association, Aug. 2010. URL: https : / / www . usenix . org /
conference/usenixsecurity10/sepia- privacy- preserving- aggregation-
multi-domain-network-events-and.

[29] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. “Density-Based
Clustering Based on Hierarchical Density Estimates”. In: Advances in Knowledge
Discovery and Data Mining. Vol. 7819. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013, pp. 160–172. ISBN: 978-3-642-37455-5 978-3-642-37456-2. DOI: 10.
1007/978-3-642-37456-2_14.

[30] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. “FLTrust: Byzantine-
robust Federated Learning via Trust Bootstrapping”. In: 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February 21-25,
2021. The Internet Society, 2021. URL: https : / / www . ndss - symposium . org /
ndss-paper/fltrust-byzantine-robust-federated-learning-via-trust-
bootstrapping/.

[31] Xiaoyu Cao and Neil Zhenqiang Gong. “Mitigating Evasion Attacks to Deep
Neural Networks via Region-Based Classification”. In: Proceedings of the 33rd An-
nual Computer Security Applications Conference. ACSAC ’17. Orlando, FL, USA:
Association for Computing Machinery, 2017, pp. 278–287. ISBN: 9781450353458.
DOI: 10.1145/3134600.3134606. URL: https://doi.org/10.1145/3134600.
3134606.

[32] Nicholas Carlini. Adversarial Machine Learning Reading List. https://nicholas.carlini.com/writing/2018/adversarial-
machine-learning-reading-list.html.

[33] Nicholas Carlini. “Poisoning the Unlabeled Dataset of {Semi-Supervised} Learn-
ing”. In: 30th USENIX Security Symposium (USENIX Security 21). 2021, pp. 1577–
1592. ISBN: 978-1-939133-24-3.

[34] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,
Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. “On
Evaluating Adversarial Robustness”. In: arXiv:1902.06705 [cs, stat] (Feb. 2019).
arXiv: 1902.06705 [cs, stat].

[35] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and
Florian Tramèr. “Membership Inference Attacks From First Principles”. In: 2022
IEEE Symposium on Security and Privacy (SP). May 2022, pp. 1897–1914. DOI: 10.
1109/SP46214.2022.9833649.

[36] Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka,
Will Pearce, Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr.

https://www.usenix.org/conference/usenixsecurity10/sepia-privacy-preserving-aggregation-multi-domain-network-events-and
https://www.usenix.org/conference/usenixsecurity10/sepia-privacy-preserving-aggregation-multi-domain-network-events-and
https://www.usenix.org/conference/usenixsecurity10/sepia-privacy-preserving-aggregation-multi-domain-network-events-and
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-642-37456-2_14
https://www.ndss-symposium.org/ndss-paper/fltrust-byzantine-robust-federated-learning-via-trust-bootstrapping/
https://www.ndss-symposium.org/ndss-paper/fltrust-byzantine-robust-federated-learning-via-trust-bootstrapping/
https://www.ndss-symposium.org/ndss-paper/fltrust-byzantine-robust-federated-learning-via-trust-bootstrapping/
https://doi.org/10.1145/3134600.3134606
https://doi.org/10.1145/3134600.3134606
https://doi.org/10.1145/3134600.3134606
https://arxiv.org/abs/1902.06705
https://doi.org/10.1109/SP46214.2022.9833649
https://doi.org/10.1109/SP46214.2022.9833649

Bibliography 139

“Poisoning Web-Scale Training Datasets is Practical”. In: 2024 IEEE Symposium on
Security and Privacy (SP). IEEE Computer Society. 2024, pp. 176–176.

[37] Ero Carrera. Erocarrera/Pefile. https://github.com/erocarrera/pefile.
[38] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan

S. Wallach. “Secure Routing for Structured Peer-to-Peer Overlay Networks”. In:
SIGOPS Oper. Syst. Rev. 36.SI (Dec. 2003), pp. 299–314. ISSN: 0163-5980. DOI: 10.
1145/844128.844156. URL: https://doi.org/10.1145/844128.844156.

[39] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. “A Survey on Adversarial Attacks and Defences”. In:
CAAI Transactions on Intelligence Technology 6.1 (2021), pp. 25–45. ISSN: 2468-2322.
DOI: 10.1049/cit2.12028.

[40] Harsh Chaudhari, Giorgio Severi, John Abascal, Matthew Jagielski, Christopher
A. Choquette-Choo, Milad Nasr, Cristina Nita-Rotaru, and Alina Oprea. Phan-
tom: General Trigger Attacks on Retrieval Augmented Language Generation. May 2024.
arXiv: 2405.20485 [cs].

[41] Harsh Chaudhari, Giorgio Severi, Alina Oprea, and Jonathan Ullman. “Chameleon:
Increasing Label-Only Membership Leakage with Adaptive Poisoning”. In: The
Twelfth International Conference on Learning Representations (ICLR). Jan. 2024.

[42] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Ed-
wards, Taesung Lee, Ian Molloy, and Biplav Srivastava. “Detecting Backdoor
Attacks on Deep Neural Networks by Activation Clustering”. In: Workshop on
Artificial Intelligence Safety. CEUR-WS, Jan. 2019.

[43] Haipeng Chen, Sushil Jajodia, Jing Liu, Noseong Park, Vadim Sokolov, and V. S.
Subrahmanian. “FakeTables: Using GANs to Generate Functional Dependency
Preserving Tables with Bounded Real Data”. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19. Macao China: In-
ternational Joint Conferences on Artificial Intelligence Organization, July 2019,
pp. 2074–2080. DOI: 10.24963/ijcai.2019/287. URL: https://doi.org/10.
24963/ijcai.2019/287.

[44] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. “Targeted Back-
door Attacks on Deep Learning Systems Using Data Poisoning”. In: arXiv:1712.05526
[cs] (Dec. 2017). arXiv: 1712.05526 [cs].

[45] Alesia Chernikova and Alina Oprea. “FENCE: Feasible Evasion Attacks on Neu-
ral Networks in Constrained Environments”. In: ACM Transactions on Privacy and
Security 25.4 (July 2022), 34:1–34:34. ISSN: 2471-2566. DOI: 10.1145/3544746.

[46] Shinyoung Cho, Romain Fontugne, Kenjiro Cho, Alberto Dainotti, and Phillipa
Gill. “BGP hijacking classification”. In: 2019 Network Traffic Measurement and Anal-
ysis Conference (TMA). 2019, pp. 25–32. DOI: 10.23919/TMA.2019.8784511.

https://doi.org/10.1145/844128.844156
https://doi.org/10.1145/844128.844156
https://doi.org/10.1145/844128.844156
https://doi.org/10.1049/cit2.12028
https://arxiv.org/abs/2405.20485
https://doi.org/10.24963/ijcai.2019/287
https://doi.org/10.24963/ijcai.2019/287
https://doi.org/10.24963/ijcai.2019/287
https://arxiv.org/abs/1712.05526
https://doi.org/10.1145/3544746
https://doi.org/10.23919/TMA.2019.8784511

140 Bibliography

[47] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. “Neural
Nets Can Learn Function Type Signatures From Binaries”. In: USENIX Security
Symposium. 2017, p. 19.

[48] Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon,
Werner Zellinger, Bernhard A. Moser, Alina Oprea, Battista Biggio, Marcello
Pelillo, and Fabio Roli. “Wild Patterns Reloaded: A Survey of Machine Learning
Security against Training Data Poisoning”. In: ACM Computing Surveys 55.13s
(Dec. 2023), pp. 1–39. ISSN: 0360-0300, 1557-7341. DOI: 10.1145/3585385.

[49] A Cisco Router Bug Has Massive Global Implications. https://www.wired.com/story/cisco-
router-bug-secure-boot-trust-anchor. 2019.

[50] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. “EM-
NIST: Extending MNIST to Handwritten Letters”. In: 2017 International Joint Con-
ference on Neural Networks (IJCNN). May 2017, pp. 2921–2926. DOI: 10 . 1109 /
IJCNN.2017.7966217.

[51] “Coupon Collector’s Problem”. In: Wikipedia (Nov. 2021).
[52] Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salvatore J. Stolfo, and

Angelos D. Keromytis. “Casting out Demons: Sanitizing Training Data for Anomaly
Sensors”. In: 2008 IEEE Symposium on Security and Privacy (Sp 2008). Oakland,
CA, USA: IEEE, May 2008, pp. 81–95. ISBN: 978-0-7695-3168-7. DOI: 10.1109/SP.
2008.11.

[53] Jing Cui, Yufei Han, Yuzhe Ma, Jianbin Jiao, and Junge Zhang. “BadRL: Sparse
Targeted Backdoor Attack against Reinforcement Learning”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 38. Mar. 2024, pp. 11687–11694. DOI:
10.1609/aaai.v38i10.29052.

[54] CylancePROTECT Malware Execution Control.
[55] Gianni D’Angelo and Francesco Palmieri. “Network Traffic Classification Us-

ing Deep Convolutional Recurrent Autoencoder Neural Networks for Spatial–
Temporal Features Extraction”. In: Journal of Network and Computer Applications
173 (Jan. 2021), p. 102890. ISSN: 1084-8045. DOI: 10.1016/j.jnca.2020.102890.

[56] Tristan Deleu, António Góis, Chris Chinenye Emezue, Mansi Rankawat, Simon
Lacoste-Julien, Stefan Bauer, and Yoshua Bengio. “Bayesian Structure Learning
with Generative Flow Networks”. In: The 38th Conference on Uncertainty in Artifi-
cial Intelligence. 2022.

[57] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Big-
gio, Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. “Why Do Adversarial
Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks”.
In: USENIX Security Symposium. USENIX Security. 2019, pp. 321–338. ISBN: 978-
1-939133-06-9.

https://doi.org/10.1145/3585385
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1109/SP.2008.11
https://doi.org/10.1109/SP.2008.11
https://doi.org/10.1609/aaai.v38i10.29052
https://doi.org/10.1016/j.jnca.2020.102890

Bibliography 141

[58] Detonating a Bad Rabbit: Windows Defender Antivirus and Layered Machine Learning
Defenses. https://www.microsoft.com/security/blog/2017/12/11/detonating-a-
bad-rabbit-windows-defender-antivirus-and-layered-machine-learning-defenses/.
Dec. 2017.

[59] Nagaraju Devarakonda, Srinivasulu Pamidi, V. Valli Kumari, and A. Govard-
han. “Intrusion Detection System using Bayesian Network and Hidden Markov
Model”. In: Procedia Technology 4 (2012). 2nd International Conference on Com-
puter, Communication, Control and Information Technology(C3IT-2012) on Febru-
ary 25 - 26, 2012, pp. 506–514. ISSN: 2212-0173. DOI: https://doi.org/10.1016/
j.protcy.2012.05.081. URL: https://www.sciencedirect.com/science/
article/pii/S221201731200360X.

[60] Robert Dorfman. “The detection of defective members of large populations”. In:
The Annals of Mathematical Statistics 14.4 (1943), pp. 436–440.

[61] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. “An Image Is Worth
16x16 Words: Transformers for Image Recognition at Scale”. In: International Con-
ference on Learning Representations. Oct. 2020.

[62] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,
and Ali A. Ghorbani. “Characterization of Encrypted and VPN Traffic Using
Time-related Features:” in: Proceedings of the 2nd International Conference on In-
formation Systems Security and Privacy. Rome, Italy: SCITEPRESS - Science and
and Technology Publications, 2016, pp. 407–414. ISBN: 978-989-758-167-0. DOI:
10.5220/0005740704070414.

[63] Thomas F. Dullien. “Weird Machines, Exploitability, and Provable Unexploitabil-
ity”. In: IEEE Transactions on Emerging Topics in Computing (2018), pp. 1–1. ISSN:
2168-6750, 2376-4562. DOI: 10.1109/TETC.2017.2785299.

[64] Justin Engelmann and Stefan Lessmann. “Conditional Wasserstein GAN-based
Oversampling of Tabular Data for Imbalanced Learning”. In: Expert Systems with
Applications 174 (Jan. 2021), p. 114582. DOI: 10.1016/j.eswa.2021.114582.

[65] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. “A density-based
algorithm for discovering clusters in large spatial databases with noise”. In: Pro-
ceedings of the Second International Conference on Knowledge Discovery and Data Min-
ing. KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 226–231.

[66] Owain Evans, Owen Cotton-Barratt, Lukas Finnveden, Adam Bales, Avital Bal-
wit, Peter Wills, Luca Righetti, and William Saunders. Truthful AI: Developing and
governing AI that does not lie. 2021. arXiv: 2110.06674 [cs.CY].

[67] Ju Fan, Junyou Chen, Tongyu Liu, Yuwei Shen, Guoliang Li, and Xiaoyong Du.
“Relational data synthesis using generative adversarial networks: a design space

https://doi.org/https://doi.org/10.1016/j.protcy.2012.05.081
https://doi.org/https://doi.org/10.1016/j.protcy.2012.05.081
https://www.sciencedirect.com/science/article/pii/S221201731200360X
https://www.sciencedirect.com/science/article/pii/S221201731200360X
https://doi.org/10.5220/0005740704070414
https://doi.org/10.1109/TETC.2017.2785299
https://doi.org/10.1016/j.eswa.2021.114582
https://arxiv.org/abs/2110.06674

142 Bibliography

exploration”. In: Proceedings of the VLDB Endowment 13 (Aug. 2020), pp. 1962–
1975. DOI: 10.14778/3407790.3407802.

[68] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. “Local
Model Poisoning Attacks to Byzantine-Robust Federated Learning”. en. In: USENIX
Security. 2020, p. 18.

[69] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, He-
len Möllering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi, Thomas
Schneider, Hossein Yalame, and Shaza Zeitouni. “SAFELearn: Secure Aggrega-
tion for Private FEderated Learning”. In: 2021 IEEE Security and Privacy Work-
shops (SPW). May 2021, pp. 56–62. DOI: 10.1109/SPW53761.2021.00017.

[70] S. García, M. Grill, J. Stiborek, and A. Zunino. “An Empirical Comparison of
Botnet Detection Methods”. In: Computers and Security 45 (Sept. 2014), pp. 100–
123. ISSN: 0167-4048. DOI: 10.1016/j.cose.2014.05.011.

[71] Joseph Gastwirth. “The Estimation of the Lorenz Curve and Gini Index”. In: The
Review of Economics and Statistics 54 (Feb. 1972), pp. 306–16. DOI: 10.2307/19379
92.

[72] Xavier Glorot and Yoshua Bengio. “Understanding the Difficulty of Training
Deep Feedforward Neural Networks”. In: Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics. JMLR Workshop and Con-
ference Proceedings, Mar. 2010, pp. 249–256.

[73] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Har-
nessing Adversarial Examples”. In: ICLR. 2015. arXiv: 1412.6572.

[74] Kathrin Grosse, Lukas Bieringer, Tarek R. Besold, Battista Biggio, and Katharina
Krombholz. “Machine Learning Security in Industry: A Quantitative Survey”.
In: IEEE Transactions on Information Forensics and Security 18 (2023), pp. 1749–1762.
ISSN: 1556-6021. DOI: 10.1109/TIFS.2023.3251842.

[75] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. “Adversarial Examples for Malware Detection”. In: Computer
Security – ESORICS 2017. Vol. 10493. Cham: Springer International Publishing,
2017, pp. 62–79. ISBN: 978-3-319-66398-2 978-3-319-66399-9. DOI: 10.1007/978-
3-319-66399-9_4.

[76] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. “Adversarial Perturbations Against Deep Neural Networks
for Malware Classification”. In: arXiv:1606.04435 [cs] (June 2016). arXiv: 1606.
04435 [cs].

[77] “Group Testing”. In: Wikipedia (Aug. 2021).
[78] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg. “BadNets: Evaluating Backdoor-

ing Attacks on Deep Neural Networks”. In: IEEE Access. SPECIAL SECTION

https://doi.org/10.14778/3407790.3407802
https://doi.org/10.1109/SPW53761.2021.00017
https://doi.org/10.1016/j.cose.2014.05.011
https://doi.org/10.2307/1937992
https://doi.org/10.2307/1937992
https://arxiv.org/abs/1412.6572
https://doi.org/10.1109/TIFS.2023.3251842
https://doi.org/10.1007/978-3-319-66399-9_4
https://doi.org/10.1007/978-3-319-66399-9_4
https://arxiv.org/abs/1606.04435
https://arxiv.org/abs/1606.04435

Bibliography 143

ON ADVANCED SOFTWARE ANDDATA ENGINEERING FOR SECURE SO-
CIETIES 7 (2019), pp. 47230–47244. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.
2909068.

[79] Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. “Fast Fed-
erated Learning in the Presence of Arbitrary Device Unavailability”. In: Thirty-
Fifth Conference on Neural Information Processing Systems. 2021. URL: https://
openreview.net/forum?id=1_gaHBaRYt.

[80] Rachid Guerraoui, Arsany Guirguis, Jérémy Plassmann, Anton Ragot, and Sébastien
Rouault. “Garfield: System support for byzantine machine learning (regular pa-
per)”. In: 2021 51st Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). IEEE. 2021, pp. 39–51.

[81] Nirupam Gupta, Shuo Liu, and Nitin H Vaidya. “Byzantine fault-tolerant dis-
tributed machine learning using stochastic gradient descent (sgd) and norm-
based comparative gradient elimination (cge)”. In: arXiv preprint arXiv:2008.04699
(2020).

[82] Mark Handley, Vern Paxson, and Christian Kreibich. “Network Intrusion De-
tection: Evasion, Traffic Normalization, and End-to-End Protocol Semantics”.
In: 10th USENIX Security Symposium (USENIX Security 01). Washington, D.C.:
USENIX Association, Aug. 2001. URL: https://www.usenix.org/conference/
10th-usenix-security-symposium/network-intrusion-detection-evasion-
traffic-normalization.

[83] Richard Harang and Ethan M Rudd. “SOREL-20M: A Large Scale Benchmark
Dataset for Malicious PE Detection”. In: Conference on Applied Machine Learning
in Information Security. 2021.

[84] Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. “SPECTRE:
Defending against Backdoor Attacks Using Robust Statistics”. In: Proceedings of
the 38th International Conference on Machine Learning. PMLR, July 2021, pp. 4129–
4139.

[85] Mingshu He, Xiaojuan Wang, Junhua Zhou, Yuanyuan Xi, Lei Jin, and Xinlei
Wang. “Deep-Feature-Based Autoencoder Network for Few-Shot Malicious Traf-
fic Detection”. In: Security and Communication Networks 2021 (Mar. 2021), e6659022.
ISSN: 1939-0114. DOI: 10.1155/2021/6659022.

[86] David Heckerman. “A Tutorial on Learning with Bayesian Networks”. In: Inno-
vations in Bayesian Networks: Theory and Applications. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 33–82. ISBN: 978-3-540-85066-3. DOI: 10.1007/978-
3-540-85066-3_3. URL: https://doi.org/10.1007/978-3-540-85066-3_3.

[87] Alvin Heng and Harold Soh. “Selective Amnesia: A Continual Learning Ap-
proach to Forgetting in Deep Generative Models”. In: NeurIPS. Vol. 36. 2023,
pp. 17170–17194.

https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://openreview.net/forum?id=1_gaHBaRYt
https://openreview.net/forum?id=1_gaHBaRYt
https://www.usenix.org/conference/10th-usenix-security-symposium/network-intrusion-detection-evasion-traffic-normalization
https://www.usenix.org/conference/10th-usenix-security-symposium/network-intrusion-detection-evasion-traffic-normalization
https://www.usenix.org/conference/10th-usenix-security-symposium/network-intrusion-detection-evasion-traffic-normalization
https://doi.org/10.1155/2021/6659022
https://doi.org/10.1007/978-3-540-85066-3_3
https://doi.org/10.1007/978-3-540-85066-3_3
https://doi.org/10.1007/978-3-540-85066-3_3

144 Bibliography

[88] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun,
Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep
Learning Scaling Is Predictable, Empirically. Dec. 2017. arXiv: 1712 . 00409 [cs,
stat].

[89] Samson Ho, Achyut Reddy, Sridhar Venkatesan, Rauf Izmailov, Ritu Chadha,
and Alina Oprea. “Data Sanitization Approach to Mitigate Clean-Label Attacks
Against Malware Detection Systems”. In: MILCOM 2022 - 2022 IEEE Military
Communications Conference (MILCOM). Nov. 2022, pp. 993–998. DOI: 10.1109/
MILCOM55135.2022.10017768.

[90] Jordan Holland, Paul Schmitt, Prateek Mittal, and Nick Feamster. Towards Repro-
ducible Network Traffic Analysis. Mar. 2022. arXiv: 2203.12410 [cs].

[91] Matthias Hollick, Cristina Nita-Rotaru, Panagiotis Papadimitratos, Adrian Per-
rig, and Stefan Schmid. “Toward a Taxonomy and Attacker Model for Secure
Routing Protocols”. In: SIGCOMM Comput. Commun. Rev. 47.1 (Jan. 2017), pp. 43–
48. ISSN: 0146-4833. DOI: 10.1145/3041027.3041033. URL: https://doi.org/
10.1145/3041027.3041033.

[92] John T. Holodnak, Olivia Brown, Jason Matterer, and Andrew Lemke. “Backdoor
Poisoning of Encrypted Traffic Classifiers”. In: 2022 IEEE International Conference
on Data Mining Workshops (ICDMW). Nov. 2022, pp. 577–585. DOI: 10.1109/ICDM
W58026.2022.00080.

[93] Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tudor Dumitraş, and
Nicolas Papernot. “On the effectiveness of mitigating data poisoning attacks
with gradient shaping”. In: arXiv preprint arXiv:2002.11497 (2020).

[94] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. “Measuring the effects
of non-identical data distribution for federated visual classification”. In: arXiv
preprint arXiv:1909.06335 (2019).

[95] Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte
MacDiarmid, Tamera Lanham, Daniel M. Ziegler, Tim Maxwell, Newton Cheng,
Adam Jermyn, Amanda Askell, Ansh Radhakrishnan, Cem Anil, David Duve-
naud, Deep Ganguli, Fazl Barez, Jack Clark, Kamal Ndousse, Kshitij Sachan,
Michael Sellitto, Mrinank Sharma, Nova DasSarma, Roger Grosse, Shauna Kravec,
Yuntao Bai, Zachary Witten, Marina Favaro, Jan Brauner, Holden Karnofsky,
Paul Christiano, Samuel R. Bowman, Logan Graham, Jared Kaplan, Sören Min-
dermann, Ryan Greenblatt, Buck Shlegeris, Nicholas Schiefer, and Ethan Perez.
Sleeper Agents: Training Deceptive LLMs That Persist Through Safety Training. Jan.
2024. arXiv: 2401.05566 [cs].

[96] IBM. IBM Security QRadar XDR. https://www.ibm.com/qradar. 2023.
[97] Sam Ingalls. Top XDR Security Solutions for 2022. https://www.esecurityplanet

.com/products/xdr-security-solutions/. 2021.

https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1712.00409
https://doi.org/10.1109/MILCOM55135.2022.10017768
https://doi.org/10.1109/MILCOM55135.2022.10017768
https://arxiv.org/abs/2203.12410
https://doi.org/10.1145/3041027.3041033
https://doi.org/10.1145/3041027.3041033
https://doi.org/10.1145/3041027.3041033
https://doi.org/10.1109/ICDMW58026.2022.00080
https://doi.org/10.1109/ICDMW58026.2022.00080
https://arxiv.org/abs/2401.05566
https://www.esecurityplanet.com/products/xdr-security-solutions/
https://www.esecurityplanet.com/products/xdr-security-solutions/

Bibliography 145

[98] Luca Invernizzi, Sung-ju Lee, Stanislav Miskovic, Marco Mellia, Ruben Torres,
Christopher Kruegel, Sabyasachi Saha, and Giovanni Vigna. “Nazca: Detecting
Malware Distribution in Large-Scale Networks”. In: NDSS. 2014.

[99] M.A. Jabbar, Rajanikanth Aluvalu, and S. Sai Satyanarayana Reddy. “Intrusion
Detection System Using Bayesian Network and Feature Subset Selection”. In:
2017 IEEE International Conference on Computational Intelligence and Computing Re-
search (ICCIC). 2017, pp. 1–5. DOI: 10.1109/ICCIC.2017.8524381.

[100] Arthur S. Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A. Ferreira, Arpit
Gupta, and Lisandro Z. Granville. “AI/ML for Network Security: The Emperor
Has No Clothes”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’22. Los Angeles, CA, USA: Association for
Computing Machinery, 2022, pp. 1537–1551. ISBN: 9781450394505. DOI: 10.1145/
3548606.3560609. URL: https://doi.org/10.1145/3548606.3560609.

[101] Matthew Jagielski, Nicholas Jones, Chung-Wei Lin, Cristina Nita-Rotaru, and
Shinichi Shiraishi. “Threat Detection for Collaborative Adaptive Cruise Control
in Connected Cars”. In: Proceedings of the 11th ACM Conference on Security and
Privacy in Wireless and Mobile Networks. WiSec ’18. Stockholm, Sweden: Associ-
ation for Computing Machinery, 2018, pp. 184–189. ISBN: 9781450357319. DOI:
10.1145/3212480.3212492. URL: https://doi.org/10.1145/3212480.3212492.

[102] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. “Manipulating Machine Learning: Poisoning Attacks and Counter-
measures for Regression Learning”. In: 2018 IEEE Symposium on Security and Pri-
vacy (SP). May 2018, pp. 19–35. DOI: 10.1109/SP.2018.00057.

[103] Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea.
“Subpopulation Data Poisoning Attacks”. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS). CCS ’21. New York,
NY, USA: Association for Computing Machinery, Nov. 2021, pp. 3104–3122. ISBN:
978-1-4503-8454-4. DOI: 10.1145/3460120.3485368.

[104] Samuel Jero, Endadul Hoque, Dave Choffness, Alan Mislove, and Cristina Nita-
Rotaru. “Automated Attack Discovery in TCP Congestion Control Using a Model-
guided Approach”. In: NDSS. 2018.

[105] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouay-
heb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi,
Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan
Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail
Khodak, Jakub Konecn", Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer

https://doi.org/10.1109/ICCIC.2017.8524381
https://doi.org/10.1145/3548606.3560609
https://doi.org/10.1145/3548606.3560609
https://doi.org/10.1145/3548606.3560609
https://doi.org/10.1145/3212480.3212492
https://doi.org/10.1145/3212480.3212492
https://doi.org/10.1109/SP.2018.00057
https://doi.org/10.1145/3460120.3485368

146 Bibliography

Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova,
Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng
Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. “Advances and Open Prob-
lems in Federated Learning”. In: Foundations and Trends® in Machine Learning
14.1–2 (June 2021), pp. 1–210. ISSN: 1935-8237, 1935-8245. DOI: 10.1561/2200000
083.

[106] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal Shankar,
Rekha Bachwani, Anthony D. Joseph, and J. D. Tygar. “Better Malware Ground
Truth: Techniques for Weighting Anti-Virus Vendor Labels”. In: Proceedings of the
8th ACM Workshop on Artificial Intelligence and Security. AISec ’15. New York, NY,
USA: Association for Computing Machinery, Oct. 2015, pp. 45–56. ISBN: 978-1-
4503-3826-4. DOI: 10.1145/2808769.2808780.

[107] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling
Laws for Neural Language Models. Jan. 2020. arXiv: 2001.08361 [cs, stat].

[108] Dhamanpreet Kaur, Matthew Sobiesk, Shubham Patil, Jin Liu, Puran Bhagat,
Amar Gupta, and Natasha Markuzon. “Application of Bayesian networks to
generate synthetic health data”. In: Journal of the American Medical Informatics As-
sociation 28 (Dec. 2020). DOI: 10.1093/jamia/ocaa303.

[109] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. “TrojDRL: Eval-
uation of Backdoor Attacks on Deep Reinforcement Learning”. In: 2020 57th
ACM/IEEE Design Automation Conference (DAC). San Francisco, CA, USA: IEEE,
July 2020, pp. 1–6. ISBN: 978-1-72811-085-1. DOI: 10 . 1109 / DAC18072 . 2020 .
9218663.

[110] Dhilung Kirat and Giovanni Vigna. “MalGene: Automatic Extraction of Malware
Analysis Evasion Signature”. In: Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security. CCS ’15. New York, NY, USA: ACM,
2015, pp. 769–780. ISBN: 978-1-4503-3832-5. DOI: 10.1145/2810103.2813642.

[111] Neville Kenneth Kitson, Anthony C. Constantinou, Zhigao Guo, Yang Liu, and
Kiattikun Chobtham. “A Survey of Bayesian Network Structure Learning”. In:
Artificial Intelligence Review 56.8 (Aug. 2023), pp. 8721–8814. ISSN: 1573-7462. DOI:
10.1007/s10462-022-10351-w.

[112] Marius Kloft and Pavel Laskov. “Online Anomaly Detection under Adversarial
Impact”. In: Proceedings of the 13thInternational Con-ference on Artificial Intelligence
and Statistics. 2010, p. 8.

[113] Paul Kocher, Jann Horn, Anders Fogh, and Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

https://doi.org/10.1561/2200000083
https://doi.org/10.1561/2200000083
https://doi.org/10.1145/2808769.2808780
https://arxiv.org/abs/2001.08361
https://doi.org/10.1093/jamia/ocaa303
https://doi.org/10.1109/DAC18072.2020.9218663
https://doi.org/10.1109/DAC18072.2020.9218663
https://doi.org/10.1145/2810103.2813642
https://doi.org/10.1007/s10462-022-10351-w

Bibliography 147

Schwarz, and Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”.
In: 40th IEEE Symposium on Security and Privacy (S&P’19). 2019.

[114] Daphne Koller and Mehran Sahami. “Toward Optimal Feature Selection”. In:
Proceedings of the Thirteenth International Conference on International Conference on
Machine Learning. ICML’96. Bari, Italy: Morgan Kaufmann Publishers Inc., 1996,
pp. 284–292. ISBN: 1558604197.

[115] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Gi-
acinto, Claudia Eckert, and Fabio Roli. “Adversarial Malware Binaries: Evading
Deep Learning for Malware Detection in Executables”. In: 2018 26th European
Signal Processing Conference (EUSIPCO). Sept. 2018, pp. 533–537. DOI: 10.23919/
EUSIPCO.2018.8553214.

[116] Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. “Tab-
DDPM: Modelling Tabular Data with Diffusion Models”. In: Proceedings of the
40th International Conference on Machine Learning. PMLR, July 2023, pp. 17564–
17579.

[117] Marek Krčál, Ondřej !vec, Martin Bálek, and Otakar Ja#ek. “Deep Convolutional
Malware Classifiers Can Learn from Raw Executables and Labels Only”. In: In-
ternational Conference on Learning Representations. ICLR. 2018.

[118] Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, and Michael
Mitzenmacher. “Gradient Disaggregation: Breaking Privacy in Federated Learn-
ing by Reconstructing the User Participant Matrix”. In: Proceedings of the 38th
International Conference on Machine Learning. 2021.

[119] ChonLam Lao, Yanfang Le, and Kshiteej Mahajan. “ATP: In-network Aggrega-
tion for Multi-tenant Learning.” In: 18th {USENIX} Symposium on Networked Sys-
tems Design and Implementation ({NSDI} 21). 2021.

[120] Changki Lee and Gary Geunbae Lee. “Information gain and divergence-based
feature selection for machine learning-based text categorization”. In: Information
Processing & Management 42.1 (2006). Formal Methods for Information Retrieval,
pp. 155–165. ISSN: 0306-4573. DOI: https://doi.org/10.1016/j.ipm.2004.
08.006. URL: https://www.sciencedirect.com/science/article/pii/S
0306457304000962.

[121] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. “Dbpedia–a large-scale, multilingual knowledge base extracted
from wikipedia”. In: Semantic web 6.2 (2015), pp. 167–195.

[122] Alexander Levine and Soheil Feizi. “Deep Partition Aggregation: Provable De-
fenses against General Poisoning Attacks”. In: 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL: https://openreview.net/forum?id=YUGG2tFuPM.

https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/https://doi.org/10.1016/j.ipm.2004.08.006
https://doi.org/https://doi.org/10.1016/j.ipm.2004.08.006
https://www.sciencedirect.com/science/article/pii/S0306457304000962
https://www.sciencedirect.com/science/article/pii/S0306457304000962
https://openreview.net/forum?id=YUGG2tFuPM

148 Bibliography

[123] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Se-
bastian Riedel, and Douwe Kiela. “Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks”. In: Advances in Neural Information Processing Systems. Vol. 33.
Curran Associates, Inc., 2020, pp. 9459–9474.

[124] Pan Li, Qiang Liu, Wentao Zhao, Dongxu Wang, and Siqi Wang. “Chronic Poi-
soning against Machine Learning Based IDSs Using Edge Pattern Detection”. In:
2018 IEEE International Conference on Communications (ICC). May 2018, pp. 1–7.
DOI: 10.1109/ICC.2018.8422328.

[125] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma.
“Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural
Networks”. In: 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[126] J. Lin. “Divergence measures based on the Shannon entropy”. In: IEEE Transac-
tions on Information Theory 37.1 (1991), pp. 145–151. DOI: 10.1109/18.61115.

[127] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. “Explain-
able AI: A Review of Machine Learning Interpretability Methods”. In: Entropy
23.1 (2021). ISSN: 1099-4300. DOI: 10.3390/e23010018. URL: https://www.mdpi.
com/1099-4300/23/1/18.

[128] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. “Meltdown: Reading Kernel Memory from User
Space”. In: 27th USENIX Security Symposium (USENIX Security 18). 2018.

[129] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation Forest”. In: 2008
Eighth IEEE International Conference on Data Mining. Dec. 2008, pp. 413–422. DOI:
10.1109/ICDM.2008.17.

[130] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. “Fine-Pruning: Defend-
ing Against Backdooring Attacks on Deep Neural Networks”. In: Research in
Attacks, Intrusions, and Defenses. Ed. by Michael Bailey, Thorsten Holz, Mano-
lis Stamatogiannakis, and Sotiris Ioannidis. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2018, pp. 273–294. ISBN: 978-3-030-
00470-5. DOI: 10.1007/978-3-030-00470-5_13.

[131] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xi-
angyu Zhang. “ABS: Scanning Neural Networks for Back-doors by Artificial
Brain Stimulation”. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’19. London, United Kingdom: Associa-
tion for Computing Machinery, 2019, pp. 1265–1282. ISBN: 9781450367479. DOI:
10.1145/3319535.3363216. URL: https://doi.org/10.1145/3319535.3363216.

https://doi.org/10.1109/ICC.2018.8422328
https://doi.org/10.1109/18.61115
https://doi.org/10.3390/e23010018
https://www.mdpi.com/1099-4300/23/1/18
https://www.mdpi.com/1099-4300/23/1/18
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1145/3319535.3363216
https://doi.org/10.1145/3319535.3363216

Bibliography 149

[132] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. “Trojaning Attack on Neural Networks”. In: Proceedings
2018 Network and Distributed System Security Symposium. San Diego, CA: Inter-
net Society, 2018. ISBN: 978-1-891562-49-5. DOI: 10.14722/ndss.2018.23291.

[133] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”. In: Advances in Neural Information Processing Systems 30. Ed. by I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett. Curran Associates, Inc., 2017, pp. 4765–4774.

[134] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. “From
Local Explanations to Global Understanding with Explainable AI for Trees”. In:
Nature Machine Intelligence 2.1 (Jan. 2020), pp. 56–67. ISSN: 2522-5839. DOI: 10.
1038/s42256-019-0138-9.

[135] Machine Learning Static Evasion Competition. https://www.elastic.co/blog/machine-
learning-static-evasion-competition.

[136] MalwareGuard: FireEye’s Machine Learning Model to Detect and Prevent Malware.
https://www.fireeye.com/blog/products-and-services/2018/07/malwareguard-
fireeye-machine-learning-model-to-detect-and-prevent-malware.html.

[137] Thomas Mandl, Ulrich Bayer, and Florian Nentwich. “ANUBIS ANalyzing Un-
known BInarieS The Automatic Way”. In: Virus Bulletin Conference. Vol. 1. 2009,
p. 02.

[138] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. “MaMaDroid: Detecting Android
Malware by Building Markov Chains of Behavioral Models”. In: Proceedings 2017
Network and Distributed System Security Symposium. San Diego, CA: Internet Soci-
ety, 2017. ISBN: 978-1-891562-46-4. DOI: 10.14722/ndss.2017.23353.

[139] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. “Communication-Efficient Learning of Deep Networks from
Decentralized Data”. In: Proceedings of the 20th International Conference on Arti-
ficial Intelligence and Statistics. PMLR, Apr. 2017, pp. 1273–1282.

[140] MetaDefender Cloud | Homepage. https://metadefender.opswat.com.
[141] El Mahdi El Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis,

Lê-Nguyên Hoang, and Sébastien Rouault. “Collaborative Learning in the Jun-
gle (Decentralized, Byzantine, Heterogeneous, Asynchronous and Nonconvex
Learning)”. In: Thirty-Fifth Conference on Neural Information Processing Systems.
2021. URL: https://openreview.net/forum?id=O8wI1avs4WF.

[142] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. “Distributed
Momentum for Byzantine-resilient Stochastic Gradient Descent”. In: International

https://doi.org/10.14722/ndss.2018.23291
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.14722/ndss.2017.23353
https://openreview.net/forum?id=O8wI1avs4WF

150 Bibliography

Conference on Learning Representations. 2021. URL: https://openreview.net/
forum?id=H8UHdhWG6A3.

[143] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. “The Hidden
Vulnerability of Distributed Learning in Byzantium”. In: International Conference
on Machine Learning. July 2018. arXiv: 1802.07927.

[144] Microsoft. Microsoft Defender for Endpoint | Microsoft Security. 2021. URL: https:
/ / www . microsoft . com / en - us / security / business / threat - protection /
endpoint-defender.

[145] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. “Kitsune:
An Ensemble of Autoencoders for Online Network Intrusion Detection”. In: Pro-
ceedings 2018 Network and Distributed System Security Symposium. San Diego, CA:
Internet Society, 2018. ISBN: 978-1-891562-49-5. DOI: 10.14722/ndss.2018.23204.

[146] Xiaoxing Mo, Yechao Zhang, Leo Yu Zhang, Wei Luo, Nan Sun, Shengshan Hu,
Shang Gao, and Yang Xiang. “Robust Backdoor Detection for Deep Learning via
Topological Evolution Dynamics”. In: 2024 IEEE Symposium on Security and Pri-
vacy (SP). IEEE Computer Society, Mar. 2024, pp. 174–174. ISBN: 9798350331301.
DOI: 10.1109/SP54263.2024.00174.

[147] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black Box
Models Explainable. 2nd ed. 2022. URL: https://christophm.github.io/interp
retable-ml-book.

[148] Andrew Moore, Denis Zuev, and Michael Crogan. Discriminators for Use in Flow-
Based Classification. Tech. rep. Queen Mary and Westfield College, Department of
Computer Science, 2005.

[149] B. Mukherjee, L.T. Heberlein, and K.N. Levitt. “Network Intrusion Detection”.
In: IEEE Network 8.3 (May 1994), pp. 26–41. ISSN: 1558-156X. DOI: 10.1109/65.
283931.

[150] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C. Lupu, and Fabio Roli. “Towards Poisoning of Deep Learn-
ing Algorithms with Back-gradient Optimization”. In: arXiv:1708.08689 [cs] (Aug.
2017). arXiv: 1708.08689 [cs].

[151] Terry Nelms, Roberto Perdisci, and Mustaque Ahamad. “ExecScent: Mining for
New C&C Domains in Live Networks with Adaptive Control Protocol Tem-
plates”. In: Proceedings of the 22nd USENIX Conf. on Security. USA: USENIX As-
sociation, 2013, pp. 589–604.

[152] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Benjamin
I. P. Rubinstein, Udam Saini, Charles Sutton, J. D. Tygar, and Kai Xia. “Exploiting
Machine Learning to Subvert Your Spam Filter”. In: Proceedings of the 1st Usenix
Workshop on Large-Scale Exploits and Emergent Threats. LEET’08. San Francisco,
California: USENIX Association, 2008.

https://openreview.net/forum?id=H8UHdhWG6A3
https://openreview.net/forum?id=H8UHdhWG6A3
https://arxiv.org/abs/1802.07927
https://www.microsoft.com/en-us/security/business/threat-protection/endpoint-defender
https://www.microsoft.com/en-us/security/business/threat-protection/endpoint-defender
https://www.microsoft.com/en-us/security/business/threat-protection/endpoint-defender
https://doi.org/10.14722/ndss.2018.23204
https://doi.org/10.1109/SP54263.2024.00174
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1109/65.283931
https://doi.org/10.1109/65.283931
https://arxiv.org/abs/1708.08689

Bibliography 151

[153] Fredrik Nestaas, Edoardo Debenedetti, and Florian Tramèr. Adversarial Search
Engine Optimization for Large Language Models. June 2024. DOI: 10.48550/arXiv.
2406.18382. arXiv: 2406.18382 [cs].

[154] J. Newsome, B. Karp, and D. Song. “Polygraph: Automatically Generating Signa-
tures for Polymorphic Worms”. In: 2005 IEEE Symposium on Security and Privacy
(S P’05). May 2005, pp. 226–241. DOI: 10.1109/SP.2005.15.

[155] James Newsome, Brad Karp, and Dawn Song. “Paragraph: Thwarting Signa-
ture Learning by Training Maliciously”. In: Recent Advances in Intrusion Detection.
Vol. 4219. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 81–105. ISBN:
978-3-540-39723-6 978-3-540-39725-0. DOI: 10.1007/11856214_5.

[156] Rui Ning, Chunsheng Xin, and Hongyi Wu. “TrojanFlow: A Neural Backdoor
Attack to Deep Learning-based Network Traffic Classifiers”. In: IEEE INFOCOM
2022 - IEEE Conference on Computer Communications. May 2022, pp. 1429–1438.
DOI: 10.1109/INFOCOM48880.2022.9796878.

[157] Daniel Obenshain, Thomas Tantillo, Amy Babay, John Schultz, Andrew Newell,
Md. Edadul Hoque, Yair Amir, and Cristina Nita-Rotaru. “Practical Intrusion-
Tolerant Networks”. In: 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS). 2016, pp. 45–56. DOI: 10.1109/ICDCS.2016.99.

[158] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian
Goodfellow. “Realistic Evaluation of Deep Semi-Supervised Learning Algorithms”.
In: Advances in Neural Information Processing Systems. Vol. 31. Curran Associates,
Inc., 2018.

[159] Talha Ongun, Simona Boboila, Alina Oprea, Tina Eliassi-Rad, Jason Hiser, and
Jack W. Davidson. “CELEST: Federated Learning for Globally Coordinated Threat
Detection”. In: CoRR abs/2205.11459 (2022). DOI: 10.48550/arXiv.2205.11459.
arXiv: 2205.11459. URL: https://doi.org/10.48550/arXiv.2205.11459.

[160] Talha Ongun, Timothy Sakharaov, Simona Boboila, Alina Oprea, and Tina Eliassi-
Rad. On Designing Machine Learning Models for Malicious Network Traffic Classifi-
cation. July 2019. arXiv: 1907.04846 [cs, stat].

[161] Talha Ongun, Oliver Spohngellert, Benjamin Miller, Simona Boboila, Alina Oprea,
Tina Eliassi-Rad, Jason Hiser, Alastair Nottingham, Jack Davidson, and Malathi
Veeraraghavan. “PORTFILER: Port-Level Network Profiling for Self-Propagating
Malware Detection”. In: 2021 IEEE Conference on Communications and Network Se-
curity (CNS). Oct. 2021, pp. 182–190. DOI: 10.1109/CNS53000.2021.9705045.

[162] OpenAI. GPT-4 Technical Report. Mar. 2023. DOI: 10.48550/arXiv.2303.08774.
arXiv: 2303.08774 [cs].

[163] Alina Oprea, Zhou Li, Robin Norris, and Kevin Bowers. “MADE: Security Ana-
lytics for Enterprise Threat Detection”. In: Proceedings of Annual Computer Security
Applications Conference. ACSAC. 2018. DOI: 10.1145/3274694.3274710.

https://doi.org/10.48550/arXiv.2406.18382
https://doi.org/10.48550/arXiv.2406.18382
https://arxiv.org/abs/2406.18382
https://doi.org/10.1109/SP.2005.15
https://doi.org/10.1007/11856214_5
https://doi.org/10.1109/INFOCOM48880.2022.9796878
https://doi.org/10.1109/ICDCS.2016.99
https://doi.org/10.48550/arXiv.2205.11459
https://arxiv.org/abs/2205.11459
https://doi.org/10.48550/arXiv.2205.11459
https://arxiv.org/abs/1907.04846
https://doi.org/10.1109/CNS53000.2021.9705045
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3274694.3274710

152 Bibliography

[164] Alina Oprea and Apostol Vassilev. Adversarial Machine Learning: A Taxonomy and
Terminology of Attacks and Mitigations (Draft). Tech. rep. NIST AI 100-2e2023 ipd.
National Institute of Standards and Technology, Mar. 2023.

[165] Tribhuvanesh Orekondy, Seong Joon Oh, Yang Zhang, Bernt Schiele, and Mario
Fritz. “Gradient-leaks: Understanding and controlling deanonymization in fed-
erated learning”. In: arXiv preprint arXiv:1805.05838 (2018).

[166] Pavlos Papadopoulos, Oliver Thornewill von Essen, Nikolaos Pitropakis, Chris-
tos Chrysoulas, Alexios Mylonas, and William J. Buchanan. “Launching Adver-
sarial Attacks against Network Intrusion Detection Systems for IoT”. In: Journal
of Cybersecurity and Privacy 1.2 (June 2021), pp. 252–273. ISSN: 2624-800X. DOI:
10.3390/jcp1020014.

[167] Jungwuk Park, Dong-Jun Han, Minseok Choi, and Jaekyun Moon. “Sageflow:
Robust Federated Learning against Both Stragglers and Adversaries”. In: Thirty-
Fifth Conference on Neural Information Processing Systems. 2021. URL: https://
openreview.net/forum?id=rA9HFxFT7th.

[168] Dario Pasquini, Martin Strohmeier, and Carmela Troncoso. Neural Exec: Learning
(and Learning from) Execution Triggers for Prompt Injection Attacks. May 2024. DOI:
10.48550/arXiv.2403.03792. arXiv: 2403.03792 [cs].

[169] Vern Paxson. “Bro: a System for Detecting Network Intruders in Real-Time”. In:
Computer Networks 31.23-24 (1999), pp. 2435–2463. URL: http://www.icir.org/
vern/papers/bro-CN99.pdf.

[170] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global
Vectors for Word Representation”. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, 2014, pp. 1532–1543. DOI: 10.3115/v1/D14-1162.

[171] R. Perdisci, D. Dagon, Wenke Lee, P. Fogla, and M. Sharif. “Misleading Worm
Signature Generators Using Deliberate Noise Injection”. In: 2006 IEEE Sympo-
sium on Security and Privacy (S&P’06). Berkeley/Oakland, CA: IEEE, 2006, 15 pp.–
31. ISBN: 978-0-7695-2574-7. DOI: 10.1109/SP.2006.26.

[172] Robert Philipp, Andreas Mladenow, Christine Strauss, and Alexander Völz. “Ma-
chine Learning as a Service: Challenges in Research and Applications”. In: Pro-
ceedings of the 22nd International Conference on Information Integration and Web-
Based Applications & Services. iiWAS ’20. Chiang Mai, Thailand: Association for
Computing Machinery, 2021, pp. 396–406. ISBN: 9781450389228. DOI: 10.1145/
3428757.3429152. URL: https://doi.org/10.1145/3428757.3429152.

[173] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
“Intriguing Properties of Adversarial ML Attacks in the Problem Space”. In: 2020
IEEE Symposium on Security and Privacy (SP). San Francisco, CA, USA: IEEE, May

https://doi.org/10.3390/jcp1020014
https://openreview.net/forum?id=rA9HFxFT7th
https://openreview.net/forum?id=rA9HFxFT7th
https://doi.org/10.48550/arXiv.2403.03792
https://arxiv.org/abs/2403.03792
http://www.icir.org/vern/papers/bro-CN99.pdf
http://www.icir.org/vern/papers/bro-CN99.pdf
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1109/SP.2006.26
https://doi.org/10.1145/3428757.3429152
https://doi.org/10.1145/3428757.3429152
https://doi.org/10.1145/3428757.3429152

Bibliography 153

2020, pp. 1332–1349. ISBN: 978-1-72813-497-0. DOI: 10.1109/SP40000.2020.0007
3.

[174] Xiangyu Qi, Tinghao Xie, Jiachen T. Wang, Tong Wu, Saeed Mahloujifar, and
Prateek Mittal. “Towards A Proactive {ML} Approach for Detecting Backdoor
Poison Samples”. In: 32nd USENIX Security Symposium (USENIX Security 23).
2023, pp. 1685–1702. ISBN: 978-1-939133-37-3.

[175] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles Nicholas. “Malware Detection by Eating a Whole EXE”. In: AAAI Work-
shop on Artificial Intelligence for Cyber Security. AICS. 2018. arXiv: 1710.09435.

[176] Babak Rahbarinia, Roberto Perdisci, and Manos Antonakakis. “Segugio: Efficient
Behavior-Based Tracking of Malware-Control Domains in Large ISP Networks”.
In: 2015 45th Annual IEEE/IFIP Int’l. Conf. on Dependable Systems and Networks.
IEEE, 2015, pp. 403–414.

[177] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
“Hierarchical text-conditional image generation with clip latents”. In: arXiv preprint
arXiv:2204.06125 (2022).

[178] Ethan Rathbun, Christopher Amato, and Alina Oprea. SleeperNets: Universal Back-
door Poisoning Attacks Against Reinforcement Learning Agents. May 2024. arXiv:
2405.20539 [cs].

[179] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic Back-
propagation and Approximate Inference in Deep Generative Models”. In: Pro-
ceedings of the 31st International Conference on International Conference on Machine
Learning - Volume 32. ICML’14. Beijing, China: JMLR.org, 2014, II–1278–II–1286.

[180] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust
You?": Explaining the Predictions of Any Classifier”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -
KDD ’16. San Francisco, California, USA: ACM Press, 2016, pp. 1135–1144. ISBN:
978-1-4503-4232-2. DOI: 10.1145/2939672.2939778.

[181] Mauro Ribeiro, Katarina Grolinger, and Miriam A.M. Capretz. “MLaaS: Machine
Learning as a Service”. In: 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA). 2015, pp. 896–902. DOI: 10.1109/ICMLA.2015.
152.

[182] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. “Automatic
Analysis of Malware Behavior Using Machine Learning”. In: Journal of Computer
Security 19.4 (2011), pp. 639–668.

[183] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi
Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus
Maier-Hein, Sébastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew
Trask, Daguang Xu, Maximilian Baust, and M. Jorge Cardoso. “The Future of

https://doi.org/10.1109/SP40000.2020.00073
https://doi.org/10.1109/SP40000.2020.00073
https://arxiv.org/abs/1710.09435
https://arxiv.org/abs/2405.20539
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1109/ICMLA.2015.152

154 Bibliography

Digital Health with Federated Learning”. In: npj Digital Medicine 3.1 (Dec. 2020),
p. 119. ISSN: 2398-6352. DOI: 10.1038/s41746-020-00323-1.

[184] Benjamin I.P. Rubinstein, Blaine Nelson, Ling Huang, Anthony D. Joseph, Shing-
hon Lau, Satish Rao, Nina Taft, and J. D. Tygar. “ANTIDOTE: Understanding
and Defending against Poisoning of Anomaly Detectors”. In: Proceedings of the
9th ACM SIGCOMM Conference on Internet Measurement Conference - IMC ’09.
Chicago, Illinois, USA: ACM Press, 2009, p. 1. ISBN: 978-1-60558-771-4. DOI: 10.
1145/1644893.1644895.

[185] Russia compromised core router in US energy attacks. https://www.computerweekly.com/news/252437089/Russia-
compromised-core-router-in-US-energy-attacks. 2018.

[186] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G. Bringas. “Opcode
Sequences as Representation of Executables for Data-Mining-Based Unknown
Malware Detection”. In: Information Sciences 231 (May 2013), pp. 64–82. ISSN:
00200255. DOI: 10.1016/j.ins.2011.08.020.

[187] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon
Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter Richtarik.
“Scaling Distributed Machine Learning with In-Network Aggregation”. In: 18th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
21). 2021, pp. 785–808.

[188] Joshua Saxe and Konstantin Berlin. “Deep Neural Network Based Malware De-
tection Using Two Dimensional Binary Program Features”. In: 2015 10th Inter-
national Conference on Malicious and Unwanted Software (MALWARE). Oct. 2015,
pp. 11–20. DOI: 10.1109/MALWARE.2015.7413680.

[189] Giorgio Severi, Simona Boboila, John Holodnak, Kendra Kratkiewicz, Rauf Iz-
mailov, and Alina Oprea. Model-Agnostic Clean-Label Backdoor Mitigation in Cy-
bersecurity Environments. July 2024. arXiv: 2407.08159 [cs].

[190] Giorgio Severi, Simona Boboila, Alina Oprea, John Holodnak, Kendra Kratkiewicz,
and Jason Matterer. “Poisoning Network Flow Classifiers”. In: Proceedings of the
39th Annual Computer Security Applications Conference. ACSAC ’23. New York,
NY, USA: Association for Computing Machinery, Dec. 2023, pp. 337–351. ISBN:
9798400708862. DOI: 10.1145/3627106.3627123.

[191] Giorgio Severi, Matthew Jagielski, Gökberk Yar, Yuxuan Wang, Alina Oprea, and
Cristina Nita-Rotaru. “Network-Level Adversaries in Federated Learning”. In:
2022 IEEE Conference on Communications and Network Security (CNS). Oct. 2022,
pp. 19–27. DOI: 10.1109/CNS56114.2022.9947237.

[192] Giorgio Severi, Tim Leek, and Brendan Dolan-Gavitt. “Malrec: Compact Full-
Trace Malware Recording for Retrospective Deep Analysis”. In: Detection of In-
trusions and Malware, and Vulnerability Assessment (DIMVA). Vol. 10885. Cham:

https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1145/1644893.1644895
https://doi.org/10.1145/1644893.1644895
https://doi.org/10.1016/j.ins.2011.08.020
https://doi.org/10.1109/MALWARE.2015.7413680
https://arxiv.org/abs/2407.08159
https://doi.org/10.1145/3627106.3627123
https://doi.org/10.1109/CNS56114.2022.9947237

Bibliography 155

Springer International Publishing, 2018, pp. 3–23. ISBN: 978-3-319-93410-5 978-3-
319-93411-2. DOI: 10.1007/978-3-319-93411-2_1.

[193] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. “Explanation-Guided
Backdoor Poisoning Attacks Against Malware Classifiers”. In: 30th USENIX Se-
curity Symposium (USENIX Security 21). 2021, pp. 1487–1504. ISBN: 978-1-939133-
24-3.

[194] Hovav Shacham. “The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the X86)”. In: Proceedings of the 14th ACM Conference
on Computer and Communications Security. ACM, 2007, pp. 552–561.

[195] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. “Poison Frogs! Targeted Clean-Label Poi-
soning Attacks on Neural Networks”. In: Advances in Neural Information Process-
ing Systems. Apr. 2018.

[196] Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, and Katrin Franke. “Ma-
chine Learning Aided Static Malware Analysis: A Survey and Tutorial”. In: Cyber
Threat Intelligence. Vol. 70. Cham: Springer International Publishing, 2018, pp. 7–
45. ISBN: 978-3-319-73950-2 978-3-319-73951-9. DOI: 10.1007/978-3-319-73951-
9_2.

[197] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y. Zhao. “Poison Foren-
sics: Traceback of Data Poisoning Attacks in Neural Networks”. In: 31st USENIX
Security Symposium (USENIX Security 22). 2022, pp. 3575–3592. ISBN: 978-1-939133-
31-1.

[198] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. “Toward Gen-
erating a New Intrusion Detection Dataset and Intrusion Traffic Characteriza-
tion:” in: Proceedings of the 4th International Conference on Information Systems Se-
curity and Privacy. Funchal, Madeira, Portugal: SCITEPRESS - Science and Tech-
nology Publications, 2018, pp. 108–116. ISBN: 978-989-758-282-0. DOI: 10.5220/
0006639801080116.

[199] Ryan Sheatsley, Blaine Hoak, Eric Pauley, Yohan Beugin, Michael J. Weisman,
and Patrick McDaniel. “On the Robustness of Domain Constraints”. In: Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’21. Virtual Event, Republic of Korea: Association for Computing Machin-
ery, 2021, pp. 495–515. ISBN: 9781450384544. DOI: 10.1145/3460120.3484570.
URL: https://doi.org/10.1145/3460120.3484570.

[200] Virat Shejwalkar and A. Houmansadr. “Manipulating the Byzantine: Optimizing
Model Poisoning Attacks and Defenses for Federated Learning”. In: NDSS. 2021.

[201] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning important
features through propagating activation differences”. In: International conference
on machine learning. PMLR. 2017, pp. 3145–3153.

https://doi.org/10.1007/978-3-319-93411-2_1
https://doi.org/10.1007/978-3-319-73951-9_2
https://doi.org/10.1007/978-3-319-73951-9_2
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1145/3460120.3484570
https://doi.org/10.1145/3460120.3484570

156 Bibliography

[202] Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall,
Mario Goertzel, Andi Comissoneru, Matt Swann, and Sharon Xia. “Adversar-
ial Machine Learning-Industry Perspectives”. In: 2020 IEEE Security and Privacy
Workshops (SPW). May 2020, pp. 69–75. DOI: 10.1109/SPW50608.2020.00028.

[203] Skylight Cyber | Cylance, I Kill You! https://skylightcyber.com/2019/07/18/cylance-
i-kill-you/.

[204] Charles Smutz and Angelos Stavrou. “Malicious PDF Detection Using Metadata
and Structural Features”. In: Proceedings of the 28th Annual Computer Security Ap-
plications Conference on - ACSAC ’12. Orlando, Florida: ACM Press, 2012, p. 239.
ISBN: 978-1-4503-1312-4. DOI: 10.1145/2420950.2420987.

[205] Nedim Srndic and Pavel Laskov. “Practical Evasion of a Learning-Based Classi-
fier: A Case Study”. In: 2014 IEEE Symposium on Security and Privacy. San Jose,
CA: IEEE, May 2014, pp. 197–211. ISBN: 978-1-4799-4686-0. DOI: 10.1109/SP.
2014.20.

[206] Michael Steinbach, Levent Ertöz, and Vipin Kumar. “The Challenges of Clus-
tering High Dimensional Data”. In: New Directions in Statistical Physics: Econo-
physics, Bioinformatics, and Pattern Recognition. Ed. by Luc T. Wille. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2004, pp. 273–309. ISBN: 978-3-662-08968-2.
DOI: 10.1007/978-3-662-08968-2_16. URL: https://doi.org/10.1007/978-3-
662-08968-2_16.

[207] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. “Certified defenses for data
poisoning attacks”. In: Proceedings of the 31st International Conference on Neural In-
formation Processing Systems. NIPS’17. Long Beach, California, USA: Curran As-
sociates Inc., 2017, pp. 3520–3532. ISBN: 9781510860964.

[208] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul F Christiano. “Learning to Summa-
rize with Human Feedback”. In: Advances in Neural Information Processing Sys-
tems. Vol. 33. Curran Associates, Inc., 2020, pp. 3008–3021.

[209] Octavian Suciu, Scott E. Coull, and Jeffrey Johns. “Exploring Adversarial Exam-
ples in Malware Detection”. In: 2019 IEEE Security and Privacy Workshops (SPW).
San Francisco, CA, USA: IEEE, May 2019, pp. 8–14. ISBN: 978-1-72813-508-3. DOI:
10.1109/SPW.2019.00015.

[210] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume Iii, and Tudor Du-
mitras. “When Does Machine Learning {FAIL}? Generalized Transferability for
Evasion and Poisoning Attacks”. In: 27th USENIX Security Symposium (USENIX
Security 18). 2018, pp. 1299–1316. ISBN: 978-1-939133-04-5.

[211] Jingwei Sun, Ang Li, Louis DiValentin, Amin Hassanzadeh, Yiran Chen, and Hai
Li. “FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Feder-
ated Learning from a Client Perspective”. In: Thirty-Fifth Conference on Neural

https://doi.org/10.1109/SPW50608.2020.00028
https://doi.org/10.1145/2420950.2420987
https://doi.org/10.1109/SP.2014.20
https://doi.org/10.1109/SP.2014.20
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1109/SPW.2019.00015

Bibliography 157

Information Processing Systems. 2021. URL: https://openreview.net/forum?id=
96uH8HeGb9G.

[212] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan.
“Can you really backdoor federated learning?” In: arXiv preprint arXiv:1911.07963
(2019).

[213] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for
Deep Networks”. In: Proceedings of the 34th International Conference on Machine
Learning. PMLR, July 2017, pp. 3319–3328.

[214] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[215] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. “Intriguing Properties of Neural Net-
works”. In: International Conference on Learning Representations. 2014.

[216] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. “Cop-
perDroid: Automatic Reconstruction of Android Malware Behaviors”. In: Inter-
net Society, 2015. ISBN: 978-1-891562-38-9. DOI: 10.14722/ndss.2015.23145.

[217] Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. “Guilt by Association:
Large Scale Malware Detection by Mining File-Relation Graphs”. In: Proceed-
ings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’14. New York, New York, USA: Association for Computing
Machinery, 2014, pp. 1524–1533. ISBN: 9781450329569. DOI: 10.1145/2623330.
2623342. URL: https://doi.org/10.1145/2623330.2623342.

[218] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. “Data Poison-
ing Attacks Against Federated Learning Systems”. en. In: arXiv:2007.08432 [cs,
stat] (Aug. 2020). arXiv: 2007.08432 [cs, stat].

[219] Florian Tramèr and Javier Rando Ramirez. “Universal Jailbreak Backdoors from
Poisoned Human Feedback”. In: The Twelfth International Conference on Learning
Representations (ICLR 2024). OpenReview, 2024. DOI: 10.3929/ethz-b-00066046
3.

[220] Florian Tramèr, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski,
Sanghyun Hong, and Nicholas Carlini. “Truth Serum: Poisoning Machine Learn-
ing Models to Reveal Their Secrets”. In: Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’22. New York, NY, USA:
Association for Computing Machinery, Nov. 2022, pp. 2779–2792. ISBN: 978-1-
4503-9450-5. DOI: 10.1145/3548606.3560554.

[221] Brandon Tran, Jerry Li, and Aleksander Mądry. “Spectral Signatures in Back-
door Attacks”. In: Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems. NIPS’18. Montréal, Canada: Curran Associates Inc.,
Dec. 2018, pp. 8011–8021.

https://openreview.net/forum?id=96uH8HeGb9G
https://openreview.net/forum?id=96uH8HeGb9G
https://doi.org/10.14722/ndss.2015.23145
https://doi.org/10.1145/2623330.2623342
https://doi.org/10.1145/2623330.2623342
https://doi.org/10.1145/2623330.2623342
https://arxiv.org/abs/2007.08432
https://doi.org/10.3929/ethz-b-000660463
https://doi.org/10.3929/ethz-b-000660463
https://doi.org/10.1145/3548606.3560554

158 Bibliography

[222] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-Consistent Back-
door Attacks. Dec. 2019. DOI: 10.48550/arXiv.1912.02771. arXiv: 1912.02771
[cs, stat].

[223] Alexander Turner, Dimitris Tsipras, and Aleksander Mądry. “Clean-Label Back-
door Attacks”. In: Manuscript submitted for publication (2018), p. 21.

[224] María Vargas Muñoz, Rafael Martínez-Peláez, Pablo Velarde Alvarado, Efraín
Moreno-Garcia, Deni Torres-Roman, and José Ceballos-Mejia. “Classification of
network anomalies in flow level network traffic using Bayesian networks”. In:
2018 International Conference on Electronics, Communications and Computers (CONI-
ELECOMP). IEEE, Feb. 2018, pp. 238–243. DOI: 10.1109/CONIELECOMP.2018.
8327205.

[225] Shobha Venkataraman, Avrim Blum, and Dawn Song. “Limits of Learning-based
Signature Generation with Adversaries”. In: 16th Annual Network & Distributed
System Security Symposium Proceedings. 2008, p. 16.

[226] Sridhar Venkatesan, Harshvardhan Sikka, Rauf Izmailov, Ritu Chadha, Alina
Oprea, and Michael J. de Lucia. “Poisoning Attacks and Data Sanitization Miti-
gations for Machine Learning Models in Network Intrusion Detection Systems”.
In: MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM).
Nov. 2021, pp. 874–879. DOI: 10.1109/MILCOM52596.2021.9652916.

[227] Sridhar Venkatesan, Harshvardhan Sikka, Rauf Izmailov, Ritu Chadha, Alina
Oprea, and Michael J. de Lucia. “Poisoning Attacks and Data Sanitization Miti-
gations for Machine Learning Models in Network Intrusion Detection Systems”.
In: MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM).
2021, pp. 874–879. DOI: 10.1109/MILCOM52596.2021.9652916.

[228] VirSCAN.Org - Free Multi-Engine Online Virus Scanner v1.02, Supports 47 AntiVirus
Engines! https://www.virscan.org/.

[229] VirusTotal - Home. https://www.virustotal.com/gui/home/upload.
[230] Aaron Walters, David Zage, and Cristina Nita Rotaru. “A Framework for Miti-

gating Attacks Against Measurement-Based Adaptation Mechanisms in Unstruc-
tured Multicast Overlay Networks”. In: IEEE/ACM Transactions on Networking
16.6 (2008), pp. 1434–1446. DOI: 10.1109/TNET.2007.912394.

[231] B. Wang, X. Cao, J. Jia, and N. Z. Gong. “On certifying robustness against back-
door attacks via randomized smoothing”. In: CVPR 2020 Workshop on Adversarial
Machine Learning in Computer Vision. 2020.

[232] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. “Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks”. In: 2019 IEEE Symposium on Security and Privacy
(SP). San Francisco, CA, USA: IEEE, May 2019, pp. 707–723. ISBN: 978-1-5386-
6660-9. DOI: 10.1109/SP.2019.00031.

https://doi.org/10.48550/arXiv.1912.02771
https://arxiv.org/abs/1912.02771
https://arxiv.org/abs/1912.02771
https://doi.org/10.1109/CONIELECOMP.2018.8327205
https://doi.org/10.1109/CONIELECOMP.2018.8327205
https://doi.org/10.1109/MILCOM52596.2021.9652916
https://doi.org/10.1109/MILCOM52596.2021.9652916
https://doi.org/10.1109/TNET.2007.912394
https://doi.org/10.1109/SP.2019.00031

Bibliography 159

[233] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh
Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. “Attack of
the Tails: Yes, You Really Can Backdoor Federated Learning”. In: Advances in
Neural Information Processing Systems. 2020. arXiv: 2007.05084.

[234] Wenxiao Wang, Alexander Levine, and Soheil Feizi. “Improved Certified De-
fenses against Data Poisoning with (Deterministic) Finite Aggregation”. In: In-
ternational Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA. Ed. by Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato. Vol. 162. Proceedings of Machine Learn-
ing Research. PMLR, 2022, pp. 22769–22783. URL: https://proceedings.mlr.
press/v162/wang22m.html.

[235] Ben Weintraub, Cristina Nita-Rotaru, and Stefanie Roos. “Structural Attacks on
Local Routing in Payment Channel Networks”. In: Workshop on Security and Pri-
vacy on the Blockchain. 2021.

[236] Di Wu, Binxing Fang, Junnan Wang, Qixu Liu, and Xiang Cui. “Evading Ma-
chine Learning Botnet Detection Models via Deep Reinforcement Learning”. In:
ICC 2019 - 2019 IEEE International Conference on Communications (ICC). Shanghai,
China: IEEE, 2019, pp. 1–6. DOI: 10.1109/ICC.2019.8761337.

[237] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms”. In: arXiv:1708.07747
[cs, stat]. 2017. URL: http://arxiv.org/abs/1708.07747.

[238] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli. “Is Feature Selection Secure against Training Data Poisoning?” In:
International Conference on Machine Learning. 2015, p. 10.

[239] Jian Xu, Shao-Lun Huang, Linqi Song, and Tian Lan. “SignGuard: Byzantine-
robust Federated Learning through Collaborative Malicious Gradient Filtering”.
In: CoRR abs/2109.05872 (2021).

[240] Jing Xu and Christian R. Shelton. “Intrusion Detection Using Continuous Time
Bayesian Networks”. In: J. Artif. Int. Res. 39.1 (Sept. 2010), pp. 745–774. ISSN:
1076-9757.

[241] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramacha-
neni. “Modeling Tabular Data Using Conditional GAN”. In: Advances in Neural
Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019.

[242] Weilin Xu, Yanjun Qi, and David Evans. “Automatically Evading Classifiers: A
Case Study on PDF Malware Classifiers”. In: Proceedings 2016 Network and Dis-
tributed System Security Symposium. San Diego, CA: Internet Society, 2016. ISBN:
978-1-891562-41-9. DOI: 10.14722/ndss.2016.23115.

[243] Weiyu Xu and A Kevin Tang. “A generalized coupon collector problem”. In: Jour-
nal of Applied Probability 48.4 (2011), pp. 1081–1094.

https://arxiv.org/abs/2007.05084
https://proceedings.mlr.press/v162/wang22m.html
https://proceedings.mlr.press/v162/wang22m.html
https://doi.org/10.1109/ICC.2019.8761337
http://arxiv.org/abs/1708.07747
https://doi.org/10.14722/ndss.2016.23115

160 Bibliography

[244] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. “The Feasibil-
ity of Launching and Detecting Jamming Attacks in Wireless Networks”. In: Pro-
ceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and
Computing. MobiHoc ’05. Urbana-Champaign, IL, USA: Association for Com-
puting Machinery, 2005, pp. 46–57. ISBN: 1595930043. DOI: 10.1145/1062689.
1062697. URL: https://doi.org/10.1145/1062689.1062697.

[245] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, and Bo Li.
“Detecting AI Trojans Using Meta Neural Analysis”. In: 2021 IEEE Symposium on
Security and Privacy (SP). 2021.

[246] Kun Yang, Samory Kpotufe, and Nick Feamster. Feature Extraction for Novelty
Detection in Network Traffic. June 2021. DOI: 10.48550/arXiv.2006.16993. arXiv:
2006.16993 [cs].

[247] Limin Yang, Zhi Chen, Jacopo Cortellazzi, Feargus Pendlebury, Kevin Tu, Fabio
Pierazzi, Lorenzo Cavallaro, and Gang Wang. “Jigsaw Puzzle: Selective Back-
door Attack to Subvert Malware Classifiers”. In: IEEE Symposium on Security &
Privacy. Mar. 2023.

[248] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. “Applied federated learning: Im-
proving google keyboard query suggestions”. In: arXiv preprint arXiv:1812.02903
(2018).

[249] Wei Yang, Deguang Kong, Tao Xie, and Carl A. Gunter. “Malware Detection in
Adversarial Settings: Exploiting Feature Evolutions and Confusions in Android
Apps”. In: Proceedings of the 33rd Annual Computer Security Applications Conference
on - ACSAC 2017. Orlando, FL, USA: ACM Press, 2017, pp. 288–302. ISBN: 978-1-
4503-5345-8. DOI: 10.1145/3134600.3134642.

[250] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. “Byzantine-
Robust Distributed Learning: Towards Optimal Statistical Rates”. en. In: Pro-
ceedings of the 35th International Conference on Machine Learning. ISSN: 2640-3498.
PMLR, July 2018, pp. 5650–5659. URL: https://proceedings.mlr.press/v80/
yin18a.html.

[251] Jim Young, Patrick Graham, and Richard Penny. “Using Bayesian Networks to
Create Synthetic Data”. In: Journal of Official Statistics 25 (Dec. 2009), pp. 549–567.

[252] Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y. Chen. “CTAB-GAN: Ef-
fective Table Data Synthesizing”. In: Proceedings of The 13th Asian Conference on
Machine Learning. PMLR, Nov. 2021, pp. 97–112.

[253] Ligeng Zhu and Song Han. “Deep leakage from gradients”. In: Federated learning.
Springer, 2020, pp. 17–31.

[254] Rui Zhu, Di Tang, Siyuan Tang, XiaoFeng Wang, and Haixu Tang. “Selective Am-
nesia: On Efficient, High-Fidelity and Blind Suppression of Backdoor Effects in

https://doi.org/10.1145/1062689.1062697
https://doi.org/10.1145/1062689.1062697
https://doi.org/10.1145/1062689.1062697
https://doi.org/10.48550/arXiv.2006.16993
https://arxiv.org/abs/2006.16993
https://doi.org/10.1145/3134600.3134642
https://proceedings.mlr.press/v80/yin18a.html
https://proceedings.mlr.press/v80/yin18a.html

Bibliography 161

Trojaned Machine Learning Models”. In: 2023 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 2023, pp. 682–700. ISBN: 978-1-66549-336-9.
DOI: 10.1109/SP46215.2023.00070.

[255] Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan Jia. PoisonedRAG: Knowl-
edge Poisoning Attacks to Retrieval-Augmented Generation of Large Language Models.
Feb. 2024. DOI: 10.48550/arXiv.2402.07867. arXiv: 2402.07867 [cs].

https://doi.org/10.1109/SP46215.2023.00070
https://doi.org/10.48550/arXiv.2402.07867
https://arxiv.org/abs/2402.07867

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Thesis Contributions
	Thesis Organization

	Background
	Machine Learning for Cybersecurity Applications
	Malware Detection Systems
	Network Threats Detection

	Adversarial Machine Learning
	Inference-time Attacks
	Training-time Attacks
	Backdoor Attacks

	Interpretable Machine Learning

	Poisoning Static Malware Classification
	Problem Definition
	Threat Model
	Adversary's Goals and Capabilities

	Explanation-Guided Backdoor Attacks
	Building Blocks
	Feature Selection
	Value Selection

	Attack Strategies

	Experimental Attack Evaluation
	Attack Performance
	Limiting the Attacker

	Problem-Space Considerations
	Windows PEs
	Attack Efficacy
	Behavior Preservation
	Other Datasets

	Mitigation
	Considered Defensive Approaches
	Results of Mitigation Strategies

	Related Literature
	Discussion and Conclusion

	Poisoning Network Flow Classifiers
	Problem Definition
	Threat Model
	Adversary's Goals and Capabilities
	Data Format

	Attack Strategy
	Crafting the Poisoning Data
	Increasing Attack Stealthiness
	Trigger size reduction
	Trigger generation using Bayesian networks

	Experimental Results
	Experimental Setup
	Datasets
	Performance Metrics

	Impact of Feature Selection
	Attack Stealthiness
	Impact of Feature Representation
	Other datasets

	Related Work
	Discussion and Conclusion
	Limitations
	Conclusion

	Mitigating Backdoor Attacks in Cybersecurity Domains
	Problem Definition
	Protecting Cybersecurity Models
	Setting

	Threat Model
	Adversary’s Goals and Capabilities
	Defender's Goals and Capabilities

	Challenges of existing defenses
	Limitations of Selective Amnesia

	Defense strategy
	Dimensionality reduction
	Clustering
	Cluster loss analysis
	Iterative cluster scoring
	Sanitization of high-loss clusters

	Evaluation
	Experimental setup
	Feature representation
	Attacks
	Evaluation metrics

	Evaluation on network traffic classification
	Fixed threshold filtering
	Patching.
	Loss analysis and sanitization

	Evaluation on malware classification
	Fixed threshold filtering
	Patching.
	Loss analysis and sanitization

	Related work
	Mitigations against backdoor attacks

	Discussion and Conclusion
	Limitations
	Conclusions

	Network-Level Interference in Federated Learning
	Problem Definition
	Notes on Federated Learning
	Threat Model
	Adversary's Goals and Capabilities

	Network-Level Attacks on Federated Learning
	Dropping Attack with Random Client Selection
	Identification of Highest-Contributing Clients
	Dropping Attack with Identification of Highest-Contributing Clients
	Analysis of the attack
	How many clients to drop?
	How many rounds are needed to identify the clients?

	Amplifying Dropping Attack with Model Poisoning

	Defenses Against Network-Level Adversaries
	Experiemental Evaluation
	Experiment Setup
	Datasets and Models

	Baselines: Perfect Knowledge and Random Dropping
	Client Identification Evaluation
	Targeted Dropping Evaluation
	Impact of Model Poisoning and Targeted Dropping
	Impact of Adversarial Visibility
	Defense Evaluation

	Related Work
	Discussion and Conclusion

	Conclusion and Future Directions
	Future Directions
	Offensive Research
	Defensive Research

	Bibliography

