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Bayesian Neural Networks With Physics-Informed

Priors With Application to Boundary Layer Velocity

Luca Menicali , David H. Richter , and Stefano Castruccio

Abstract—One of the most popular recent areas of machine
learning predicates the use of neural networks (NNs) augmented
by information about the underlying process in the form of
partial differential equations (PDEs). These physics-informed
NNs (PINNs) are obtained by penalizing the inference with a PDE
and have been cast as a minimization problem currently lacking
a formal approach to quantify the uncertainty. In this work, we
propose a novel model-based framework that regards the PDE
as a prior information of a deep Bayesian NN (BNN), physics-
informed prior (PIP)-BNN. The prior is calibrated without data
to resemble the PDE solution in the prior mean, while our degree
of confidence in the PDE with respect to the data is expressed
in terms of the prior variance. The information embedded in
the PDE are then propagated to the posterior yielding physics-
informed forecasts with uncertainty quantification. We apply our
approach to a simulated viscous fluid and to an experimentally
obtained turbulent boundary layer velocity in a water tunnel
using an appropriately simplified Navier–Stokes (NS) equation.
Our approach requires very few observations to produce phys-
ically consistent forecasts as opposed to nonphysical forecasts
stemming from noninformed priors, thereby allowing forecasting
complex systems, where some amount of data as well as some
contextual knowledge is available.

Index Terms—Bayesian neural network (BNN), Navier–Stokes
(NS), physics-informed priors (PIPs), variational inference.

I. INTRODUCTION

OVER the last two decades, data-rich problems have

become increasingly more relevant due to the extraor-

dinary increase in the volume, velocity, and variety of data

available. The simultaneous growth in computational capabili-

ties has also allowed researchers to implement highly complex

models, especially nonparametric constructs such as neural

networks (NNs), able to capture complex patterns in the

data. This has facilitated new findings, such as predicting

long-term trends in the El Niño-Southern Oscillation [1],

constructing optimal wind farms given scattered observational

data [2], and understanding complex flows in computational

fluid dynamics [3].
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While NNs have unequivocally presented new opportunities

for data-rich problems, in their original formulation they

discard any contextual information that may be provided by

a theoretical model. This is a major limitation of these con-

structs, as a significant amount of applied problems consists of

some data as well as some information in the form of a partial

differential equation (PDE). In their original formulation, NNs

are unsuitable to account for additional context, as parameters

are learned by minimizing a loss function which is agnostic of

the specific problem [4]. A rapidly growing branch of machine

learning has been focusing on NNs that can account for the

physical laws governing a given system of interest. These

physics-informed NNs (PINNs) incorporate this knowledge as

an additional PDE constraint on the objective function, so

that the inference steers the model toward predictions that

are physically consistent [5]. PINNs have been shown to

perform better than NNs in many applications, where data

are difficult to collect but information on the process in

the form of a PDE are available [2], [6], [7]. Alternative

approaches to incorporate physical knowledge in deep NNs

are Hamiltonian NNs [8], Lagrangian NNs [9], and Newtonian

NNs [10]. While promising in their own right, each of the three

models ultimately aligns with the standard PINN framework

introduced in [5], i.e., none of them are Bayesian models, and

physical knowledge is incorporated via a physics-augmented

loss function.

While PINNs have demonstrated more flexibility than stan-

dard NNs, to the best of the authors’ knowledge, they have

always been regarded as algorithmic minimization problems

rather than an outcome of an inferential process from a

statistical model. As such, a formal approach to quantify

uncertainty in PINNs has not yet been agreed upon [11]. In

the context of NNs, uncertainty quantification can be assessed

using dropout, a bootstrapping-inspired method [12], [13], or

in a Bayesian framework by imposing (often vague) prior

distributions, thereby introducing parameter uncertainty [14].

In the context of PINNs, Bayesian NNs (BNNs) have been

used to augment PINNs’ predictions in the identification of

the system inertia and damping in power systems [15] as well

as in the estimation of hypocenter location during seismic

activity [16]. Even though these studies’ results do include

measures of uncertainty, they do so in a similar fashion as

classical data-driven PINN approaches in forward problems

and, most importantly, are cast as PDE solvers [17]. Previous

attempts in fact focus on PINN-driven approximations to

PDEs to construct Bayesian priors and eventually augment

those deterministic approximations [11], [17]. In particular, the

B-PINN model [17] is a Bayesian PDE solver, which assumes
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that the data are noisy observations centered around the latent

solution. To the best of the authors’ knowledge, a unified

model-based approach aimed at presenting PINNs as outcomes

from a statistical model has not been developed yet.

In this work, we propose a novel Bayesian approach that

incorporates contextual knowledge in the prior stage of a

deep BNN. Our construction of PDE-informed priors builds

upon a well-established tradition of embedding domain knowl-

edge into Bayesian models. In econometrics, structured priors

have been shown to improve forecasting under uncertainty

in Bayesian vector autoregression models [18], [19], [20].

Similarly, in spatial statistics, stochastic PDEs define Gaussian

process priors through differential operators, enabling scal-

able inference for continuous spatial fields [21]. For inverse

problems, PDE constraints serve as natural regularizers, ensur-

ing well-posed posterior inferences [22]. Recent advances in

machine learning rigorously characterize the role of latent

variable nonidentifiability in variational autoencoders [23],

proposing hierarchical priors that mitigate posterior collapse

by enforcing meaningful latent structure. Diffusion models,

inspired by stochastic differential equations, employ learned

noise schedules that mimic PDE-driven dynamics, improving

sample quality in generative tasks [24].

Our approach is fundamentally different from the classical

PINN paradigm, which instead adapts the loss function to a

set of governing equations [5], and from previous Bayesian-

inspired approaches to PINNs, whose main focus remains

uncertainty quantification of latent PDE solutions [11], [17].

At the core of our proposed method is the acknowledgment

that an established theory effectively constitutes our prior

beliefs on a given system’s behavior, which is then updated

with some data, and is, thus, an inherently Bayesian approach.

This work also addresses the issue of uncertainty quantification

in PINNs which is naturally derived from the posterior distri-

bution. In practice, we propose to calibrate the parameters’

prior distribution such so the prior mean is close to the

PDE solution, while the prior variance reflects our degree

of confidence in the PDE with respect to the data. From an

epistemological perspective, our approach regards PINNs as a

Bayesian construct, where the prior calibration occurs before

any observation is made, so that prior and data are modeled

independently of each other to obtain physically consistent

posteriors with uncertainty quantification. The large param-

eter space of BNNs implies a computationally challenging

inference, so we approximate it with a variational inference

approach [14]. Our methodology is very general as it can be

adapted to any system for which an NN (or more generally

any model) is to be applied along with some contextual

information in the form of a PDE and prescribes a formal

approach to incorporate both in the analysis. Henceforth, we

will refer to our method as a BNN with physics-informed

priors (PIPs)-BNN for short.

We consider an application of a turbulent boundary layer

in a water tunnel—the flow that develops as fluid flows

over a wall beneath. The governing set of PDEs, the

Navier–Stokes (NS) equations, dictate the conservation of

mass and momentum in three spatial dimensions and are gen-

erally able to describe accurately the turbulent, time-dependent

velocity in boundary layers. For such turbulent flows,

however, the goal is rarely to predict the instantaneous velocity

field. Instead, the equations are typically averaged so as

to predict the mean velocity field, which requires certain

modeling assumptions. We show how physics-informed priors

acknowledge some degree of variation in the mean water

velocity, as expected from the experimental configuration.

When augmented with sufficiently flexible prior variance and

observations, our approach produces realistic forecasts even

with a small number of data. Noninformed priors instead result

in nonphysical predictions.

The remainder of this article is organized as follows.

Section II outlines the proposed Bayesian model and the algo-

rithm chosen to estimate its parameters. Section III presents a

simulation study with a viscous fluid to compare our approach

with a standard BNN with vague priors. Section IV reports the

proposed model’s results when implemented on the boundary

layer velocity application. Section V summarizes this article

findings and discusses future work.

II. METHODS

This section formally introduces the general Bayesian

framework PIP-BNN and proceeds as follows. We first review

deep BNNs in Section II-A. Then, we introduce our novel

BNN prior physical calibration in Section II-B. Due to the

high number of parameters in the BNN, deriving the posteriors

is computationally challenging, so Section II-C presents a

variational inference approach to approximate the posteriors.

Finally, Section II-D highlights the differences between PIP-

BNN and existing methods.

A. Bayesian Neural Network

We consider a spatiotemporal process u(s, t), where (s, t) ∈

Ω×[0,T ] ⊂ Rd × [0,∞) and d is the number of spatial dimen-

sions. We model u with an L-layer deep BNN parameterized

by θ = (θ1, . . . , θL) ∈ Θ, where θl = {Wl, bl} is the parameters

in the lth layer, comprised of its weights Wl and bias terms

bl, and Θ is the parameter space. Formally, we have

H0 = (s, t) (1a)

Hl = g (WlHl−1 + bl) , l ∈ {1, . . . , L} (1b)

HL =
�

µu (s, t) , σ2
u (s, t)

�

∈ R× [0,∞) (1c)

u (s, t) ∼ N
�

µu (s, t) , σ2
u (s, t)

�

(1d)

where the Lth layer is 2-D, every hidden layer l ∈ {1, . . . , L−1}

has the same number of nodes K (although this assumption can

be relaxed), and u(s, t) is distributed as a normal distribution

with mean µu(s, t) and variance σ2
u(s, t). Each realization of u

is, therefore, assumed to be conditionally independent given

the mean and variance. The nonlinear activation function g is

assumed to be the same for all l, and common choices for

g are the rectified linear unit, sigmoid, or hyperbolic tangent

function [25].

The parameters are assumed to have a prior distribution

p (θl) = N
�

µl,Σl

�

, l ∈ {1, . . . , L} . (2)

Then, if we denote with u = {u(s1, t1), . . . , u(sn, tn)} the

observations collected at n spatiotemporal locations and
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p(θ) =
QL

l=1 p(θl) the prior of θ (i.e., θl is a priori independent),

then, we can write the posterior as p(θ | u) ∝ p(u | θ)p(θ),

where p(u | θ) is the Gaussian likelihood implied by (1). While

p(θ | u) is formally straightforward, the dimensionality of θ

comprising, among others, of all entries in the weight matrices

Wl, is such that in practice this expression is computationally

intractable. In fact, except for some degenerate cases, e.g.,

a single-layer BNN with an identity activation function that

degenerates into a Bayesian linear regression model, conjugate

priors in deep BNNs do not generally exist and the large

parameter space makes posterior sampling numerically infea-

sible. For this reason, variational inference techniques are used

to approximate the true posterior and generate forecasts [14],

as we show in Section II-C.

B. Physics-Informed Priors

The focus of this work lies in the choices of prior mean

µ = (µ1, . . . ,µL) and variance Σ = (Σ1, . . . ,ΣL) in (2) so that

the priors are informed by the physics of the problem. To this

end, we assume the existence of a theoretical model in the

form of a spatiotemporal PDE for u

∂u (s, t)

∂t
+N [u (s, t)] = 0, s ∈ Ω, t ∈ [0,T ] (3a)

u (s, 0) = hIC(s), s ∈ Ω (3b)

u (s, t) = hBC(s, t), s ∈ ∂Ω, t ∈ [0,T ] (3c)

where N [·] is a (possibly nonlinear) differential spatial oper-

ator that may contain derivatives with respect to s, (3b) is the

initial condition, (3c) is the boundary condition, and ∂Ω is the

boundary of Ω. Our objective is to calibrate the parameters µ

so that a prior for u captures as much information carried by

the PDE (3) as possible.

A deep NN, such as (1), can be augmented to yield prior

means that are compliant with physical laws [5]. Let ûµ(s, t)

be the estimate of u(s, t) as induced by µ, the prior mean of

θ at spatiotemporal location (s, t). Well-calibrated prior means

are such that ûµ(s, t) conforms with the physical model (3).

Given any input (s, t), we can find values of µ that minimize

f̂µ(s, t) :=
∂ûµ(s, t)

∂t
+N

�

ûµ (s, t)
�

(4)

while also being compliant with the initial conditions in (3b)

and boundary conditions in (3c). We discretize the domain

over which (3) exists with NPDE, NIC, and NBC points, repre-

senting the number of grid points in Ω×[0,T ], Ω×{0}, and in

∂Ω× [0,T ], identifying each of the PDE conditions (3a)–(3c),

respectively. Then, we can obtain µ as follows:

µ := µ̂physics = arg min
µ

mse (µ)

= arg min
µ

{msePDE(µ) + mseIC(µ) + mseBC(µ)}

= arg min
µ

�Z

Ω×[0,T ]

ˇ
ˇ f̂µ (s, t)

ˇ
ˇ
2

ds dt

+

Z

Ω

ˇ
ˇhIC (s) − ûµ (s, 0)

ˇ
ˇ
2

ds

+

Z

∂Ω×[0,T ]

ˇ
ˇhBC (s, t) − ûµ (s, t)

ˇ
ˇ
2

ds dt

�

≈ arg min
µ

(

1

NPDE

NPDEX

i=1

ˇ
ˇ f̂µ (si, ti)

ˇ
ˇ
2

+
1

NIC

NICX

i=1

ˇ
ˇhIC (si) − ûµ (si, 0)

ˇ
ˇ
2

+
1

NBC

NBCX

i=1

ˇ
ˇhBC (si, ti) − ûµ (si, ti)

ˇ
ˇ
2

)

. (5)

In summary, we assign values to the prior means µ as

determined by the minimizers of (5), so that the prior is

compliant with the physical model (3). It is important to note

that we are not interested in solving the PDE (3). Rather,

this formulation yields prior means µ̂physics that carry physical

meaning, specifically one that expresses actual prior beliefs,

i.e., our best guess for the observed behavior of u resembling

the physical model (3).

In spite of its apparent similarities to a PDE solver, the

prior calibration is fundamentally different. If the primary goal

were to solve the PDE, we would look for the best (possibly

NN) model, sometimes cast as a function approximator for

u(s, t), so that û(s, t) satisfies physical constraints. However,

from the perspective of the BNN, that is the model for u(s, t),

the calibration seeks to find a set of parameters (in our case

prior means) given physical constraints.

The prior variance Σl in (2), l = 1, . . . , L, is a de

facto measure of confidence in the prior means µ̂physics =

(µ̂1,physics, . . . , µ̂L,physics). Here, we assume Σl,i j = 0 for i , j,

i.e., a priori independence for the elements of θl for all l

and denote the diagonal of Σl by σ2
l,physics, where σ2

physics =

(σ2
1,physics, . . . ,σ

2
L,physics). For a given C > 0, expressing our

relative degree of confidence in the theoretical model against

the data, and Nl, the number of elements in µ̂l,physics, we let

σ2
l,physics :=

�
C

Nl

µ̂l,physics

�2

, l ∈ {1, . . . , L}

so that the variance of each θl is relative to its mean µ̂l,physics

and, from (2), we have

p (θl) = N
�

µl,Σl

�

(6a)

µl = µ̂l,physics, Σl = diag
�

σ2
l,physics

�

, l ∈ {1, . . . , L}.

(6b)

If we let ûµ̂physics
(s, t) be the estimate of u(s, t) as induced by

µ̂physics, previous work [11], [26] suggests a possible choice

for C determined by a function of the mean squared error

between ûµ̂physics
(s, t) and u(s, t). However, such a metric would

employ data and the priors would no longer reflect prior

beliefs. In general, values of C close to 0 imply a high level of

confidence in µ̂physics and, by extension, a posterior that will

skew in the direction the physical model (3). On the other

hand, large values of C grant the likelihood more flexibility

to drive posterior inference, rendering the model similar to

one with vague priors. In both cases, the uncertainty encoded

in the physics-informed priors propagates through the BNN

and the influence that the physics places on the posterior, and

ultimately the forecasts, is rooted in an established theoretical

model.
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The formula for the prior variance aims to quantify a

subjective issue (i.e., how does one quantify confidence in a

PDE?), a challenge compounded by the limited interpretability

of BNN parameters. The Bayesian Lasso paper [26], which

establishes the equivalence between Bayesian linear regression

with Laplace priors and Lasso regression, also proposes the use

of hyperpriors as a strategy to adaptively learn prior scales.

Following seminal works in economic forecasting [18], [19],

[20], domain-informed hierarchical priors have been shown

to improve the robustness of uncertainty quantification and

facilitate automatic selection of prior variances [27]. Such an

approach also helps account for varying coefficient magnitudes

across different regions of the parameter space. Nonethe-

less, the number of parameters in deep learning models is

often orders of magnitude larger than in classical parametric

models, and implementing full-hierarchical priors may incur

prohibitive computational costs. The introduction of additional

hyperparameters can also exacerbate issues of identifiability

and increase the risk of overfitting, particularly when the

amount of data relative to the number of parameters is limited,

as is often the case in physics-informed settings. For these

reasons, we maintain that the best practical strategy in PIP-

BNN is to determine prior variances via cross validation.

The proposed approach can also be extended to allow for

PDEs, where the physical parameters need to be estimated. In

other terms, we could assume that the physical parameters in

the differential operator N [·] are not fixed to their true value

and are instead unknown. In such cases, a natural extension

is to incorporate physical parameter uncertainty by estimating

their posterior distribution before the prior on the PIP-BNN is

calibrated. The supplementary material includes a simulation

study where this approach is shown.

C. Posterior Inference

In this work, we approximate the true posterior p(θ | u)

with variational inference methods, which we summarize here

[28], [29], [30]. We chose this posterior estimation approach

since it is the most common in the BNN literature (see

the review paper in [31]). The main advantage over other

methods, mainly Markov chain Monte Carlo (MCMC), is that

variational inference casts the estimation of the posterior as

an optimization problem for which stochastic gradient descent

works well. While MCMC (asymptotically) provides samples

from the true posterior, it may pose significant challenges,

in terms of runtime and convergence, when the number of

parameters in the BNN is large, as also pointed out by

Papamarkou et al. [32]. On the other hand, variational infer-

ence compromises some amount of accuracy for the sake of

computational demand and scalability. Further technical details

on the mathematical formulation of the chosen approach are

available in the supplementary materials.

We approximate the posterior using a distribution q(θ; η) ∈

Q, where Q is a family of Gaussian distributions with dimen-

sionality equal to that of p(θ | u). The variational parameters

are η = (µ∗, ρ∗), where ρ∗ = log[exp(σ∗) − 1] and q(θ; η)

has mean µ∗ and diagonal covariance diag(σ2
∗). We want

to find the density q̂(θ; η̂) ∈ Q that is a suitable approx-

imation for p(θ | u), which we accomplish by minimizing

the Kullback–Leibler (KL) divergence between the variational

and true posterior [33]. The variational approximation q̂(θ; η̂)

also indirectly depends on the observations u through the KL

divergence and the shape of q(θ; η) is determined by η [29].

The optimal choice of q(θ; η), defined as follows:

q̂
�

θ; η̂
�

= arg min
q∈Q

KL
�

q
�

θ; η
�

|| p (θ | u)
�

= arg min
q∈Q

Z

Θ

q
�

θ; η
�

log

 

q
�

θ; η
�

p (θ | u)

!

dθ

= arg min
q∈Q

Z

Θ

2

6
6
6
4

log q
�

θ; η
�

„ ƒ‚ …

Variational
distribution

− log p (θ)
„ ƒ‚ …

Physics
prior

− log p (u | θ)
„ ƒ‚ …

Likelihood

3

5 q
�

θ; η
�

dθ (7)

where the last equation holds because of the Bayes theorem.

The minimization can be achieved to computing gradients of

the cost function

F
�

η,u
�

:=

Z

Θ

�

log q
�

θ; η
�

− log p (θ)

− log p (u | θ)
�

q
�

θ; η
�

dθ

= KL
�

q
�

θ; η
�

|| p (θ)
�

−

Z

Θ

log p (u | θ) q
�

θ; η
�

dθ (8)

with respect to η. While the first integral in (8) can be

computed analytically, as q(θ; η) and p(θ) are both Gaussian,

the second integral is such that minimizing (8) naı̈vely is

computationally demanding [28], [34]. Indeed, standard Monte

Carlo approximation, i.e., drawing samples θ( j) from q(θ; η)

directly, j = 1, . . . , E, leads to a gradient estimator of the

likelihood term in (8)

1

E

E
X

j=1

log p (u | θ)∇q(θ( j)) log q
�

θ( j); η
�

≈ ∇η

�Z

Θ

log p (u | θ) q
�

θ; η
�

dθ

�

with very high variance when E is low and significant com-

putational burden when E is high [35]. Such issues arise

since sampling from q(θ; η) directly would yield samples that

depend on η, with respect to which we are trying to optimize.

Here, we estimate q̂(θ; η̂) using the Bayes By Backprop (BBB)

optimization algorithm, an adaptation of stochastic gradient

descent applied to variational inference [28], which addresses

this issue. We describe the approximate minimization of

F(η,u) in general, i.e., assuming that the first term in (8)

may not be computed analytically, even though in our work

we use its exact KL divergence.

BBB predicates estimation of F(η,u) (and ensuing gradi-

ents) using an auxiliary variable ε ∼ q(ε) = N (0, I) ∈ Q.

Given any (fixed) value of the variational parameters η(i),

we sample E realizations from q(ε), {ε(1), . . . , ε(E)} and obtain

samples from the variational distribution as follows:

θ(i, j) := µ(i)
∗ + log

�

1 + exp
�

ρ(i)
∗

��

◦ ε( j), j = 1, . . . , E

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 01,2025 at 18:09:53 UTC from IEEE Xplore.  Restrictions apply. 



MENICALI et al.: BNNs WITH PHYSICS-INFORMED PRIORS WITH APPLICATION TO BOUNDARY LAYER VELOCITY 5

Algorithm 1 BBB

1 Given B,M,NBBB, n

2 i = 0

3 η = (µ∗, ρ∗) {Initialize η}

4 for i < NBBB do

5 b = 0

6 for b < B do

7 Draw ε ∼ N (0, I)

8 θ := µ∗ + log[1 + exp(ρ∗)] ◦ ε {Reparameterization}

9 φ(θ, η) = M
n

KL
�

q
�

θ; η
�

|| p(θ)
�

−
1
M

PM
j=1 log p

�

u j | θ
�

10 ∇µ∗φ =
∂φ(θ,η)

∂θ
+
∂φ(θ,η)

∂µ∗
{Proposition S1}

11 ∇ρ∗φ =
∂φ(θ,η)

∂θ
ε

1+exp(−ρ∗)
+
∂φ(θ,η)

∂ρ∗
{Proposition S1}

12 γ = (∇µ∗ ,∇ρ∗ ) {Unbiased MC gradients}

13 η = η − αγ {α is the learning rate}

14 b = b + 1

15 end for

16 i = i + 1

17 end for

18 return µ̂∗, ρ̂∗

where “◦” indicates the pointwise multiplication. We then

write the approximation

̂F
�

η(i),u
�

=

8

<

:

1

E

E
X

j=1

�

log q
�

θ(i, j); η(i)
�

− log p
�

θ(i, j)
�

− log p
�

u | θ(i, j)
��

9

=

;

=

8

<

:

1

E

E
X

j=1

φ
�

θ(i, j), η(i),u
�

9

=

;
. (9)

Since the function φ(·) is differentiable and θ(i, j) is not drawn

directly from the variational distribution q(θ; η), one can

show (proof available in the supplementary material) that

∇ηEq(θ;η)[φ(θ, η,u)] = Eq(ε)[∇ηφ(θ, η,u)], so we can use the

gradient estimator

̂∇ηF
�

η(i),u
�

=

0

@
1

E

E
X

j=1

∇ηφ
�

θ(i, j), η(i),u
�

1

A

which is unbiased for ∇ηF(η(i),u) [28], to update the varia-

tional parameters η until some convergence criterion is met.

The minimization of the original KL divergence in (7) is now

reduced to computing gradients of a differentiable function

with respect to η, as in the case of stochastic gradient descent

for standard NNs.

We also set E = 1 and divide the n observations in

u into B mini-batches, where each mini-batch ub contains

M observations (i.e., assume for simplicity n = MB), so

that ub = {ub,1, . . . , ub,M} and u = {u1, . . . ,uB}, which is a

common strategy to achieve faster convergence while lessening

the computational burden [34]. The mini-batch optimization

implemented in this work computes (9) for each ub as follows:

F̂
�

η(i),ub

�

=
M

n
KL

�

q
�

θ; η(i)
�

|| p(θ)
�

− log p
�

ub | θ
( j)
�

so that the variational parameters are updated BNBBB times

during the optimization, where NBBB denotes the total number

of iterations. The entire optimization procedure is summarized

in Algorithm 1 and further details on the KL divergence are

available in the supplementary material.

The optimization yields the Gaussian distribution q̂(θ; η̂)

that balances the physics-informed priors and the likelihood,

resulting in an approximation of the posterior that is informed

by the theoretical and observed behavior of u(s, t). From the

estimated η̂ = (µ̂∗, ρ̂∗), we retrieve σ̂2
∗ = log(exp(ρ̂∗)+ 1)2 and

have

p (θ | u) ≈ q̂
�

θ; η̂
�

= N
�

µ̂∗, diag
�

σ̂2
∗

��

so that we can compute and sample from the posterior predic-

tive distribution as follows:

p (µu (s, t) | u) =

Z

Θ

p (µu (s, t) | θ) p (θ | u) dθ

≈

Z

Θ

p (µu(s, t) | θ) q̂
�

θ; η̂
�

dθ

≈
1

M

M
X

i=1

p
�

µu(s, t) | θ(i)
�

, θ(i) ∼ q̂
�

θ; η̂
�

(10)

and likewise from p(σ2
u(s, t) | u), yielding physics-informed

forecasts E(µu(s, t) | u) and physics-informed variance

E(σ2
u(s, t) | u) [28]. The prior means µ̂physics and prior vari-

ance σ2
physics thus influence the posterior mean and posterior

variance, yielding physics-informed forecasts and physics-

informed variance.

D. Comparison With Other Methods

Our PIP-BNN model is a general approach to incorporating

physical knowledge into an NN via a Bayesian framework.

As such, it is not an alternative to, nor an improvement

of the existing physics-informed methodologies discussed in

Section I. Our proposed approach casts the PINN paradigm

as a statistical problem, akin to how The Bayesian Lasso

[26] demonstrated the parallel between Lasso regression and

Bayesian linear regression with Laplace priors. We highlight

the differences between PIP-BNN and the existing literature

by focusing on the PINN approach introduced in [5] and the

B-PINN model in [17], as they are the two methods from

which PIP-BNN draws inspiration.

Standard PINNs, which are adopted in [1], [2], [3], [8], [9],

and [10] predicate the use of a physics-augmented objective

function, e.g., “Loss = LossData + λLossPDE,” to estimate the

parameters of a deep NN. This frequentist framework does

not directly address uncertainty quantification, which PIP-

BNN does by design. B-PINN is instead a Bayesian model

inspired by PINN, but is aimed at solving the PDE rather than

tradingoff the information from observations and physics. In
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addition, B-PINN assumes that noisy observations of the PDE

solution, boundary conditions, and the forcing term must be

all available and that the noise in the data is known. In other

words, PIP-BNN assumes a BNN (1) and aims at finding a

set of parameters (in our case prior means) given physical

constraints. B-BNN is instead looking for the best NN model

so that û(s, t) satisfies the physical constraints of the PDE.

In spite of the aforementioned fundamental differences, PIP-

BNN shares enough similarities with standard PINNs (the

incorporation of a PDE in the inferential process) and B-PINN

(parameter uncertainty), that a comparison with each method

is warranted. The results can be found in the supplementary

material.

III. SIMULATION STUDY

We conduct a simulation study in a system that is fully

explained by a physical model. In Section III-A, we report the

simulation details. In Section III-B, we assess the performance

of our general Bayesian framework with physics-informed

priors against the noninformed alternative. In Section III-C, we

conduct sensitivity analyses by considering different scenarios

of data availability as well as specifications of the physical

model.

A. Simulation Details

1) Governing PDE: We simulate data from a 1-D Burgers’

equation, a fundamental nonlinear PDE that is often used as

a prototype for conservation laws in compressible fluids [36].

Formally, the spatiotemporal process u(s, t) is the velocity of

a fluid as a function of space and time, where d = 1 so that

s = x

(x, t) ∈ Ω× [0,T ] = [−1, 1] × [0, 2] (11)

and the governing model is

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= ν
∂2u(x, t)

∂x2
(12a)

u(x, 0) = − sin(πx) (12b)

u(−1, t) = u(1, t) = 0 (12c)

where the nonlinear differential operator from (3) is

N[u(x, t)] = u(x, t)((∂u(x, t))/∂x) − ν((∂2u(x, t))/∂x2). The vis-

cosity ν ∈ {0.01, 0.05} measures a fluid’s resistance to flow.

The initial condition (12b) describes a sinusoidal shock at

t = 0 and the Dirichlet boundary condition (12c) enforces

the resting velocity at the bounds of Ω. Fig. 1 shows the

solution to Burgers’ equation with a viscosity of ν = 0.05,

which will be used for the main comparison of the physics-

informed approach with the noninformed alternative.

2) Data: We obtained solutions to Burgers’ equation

using the PhiFlow open-source simulation software (publicly

available at github.com/tumpbs/PhiFlow). We discretized the

domain (11) with an Ns × Nt grid, where Ns = 100 are points

equally spaced in the spatial domain [−1, 1] and Nt = 1000

are points equally spaced in the temporal domain [0, 2],

creating a grid of N = Ns × Nt points (as shown in Fig.

S1 of the supplementary material), and solved for u∗(xi, ti),

i ∈ {1, . . . ,N}, where (xi, ti) are elements of the grid. In order to

Fig. 1. Solution u∗(x, t) to Burgers’ equation in (12), with ν = 0.05.
(a) u∗(x, t) throughout the domain (11) and the n spatiotemporal locations
chosen for training the model. (b) u∗(x, t) at four cross sections of t ∈

{0, 0.67, 1.33, 2}. As time increases, the initial sinusoidal shock dissipates and
the fluid reverts back to its resting state.

have more realistic data, we add Gaussian noise with variance

σ2
D = 0.12

u(xi, ti) = u∗(xi, ti) + εi, εi
i.i.d.
∼ N

�

0, σ2
D

�

(13)

so that u(xi, ti) are N noisy observations from Burgers’ equa-

tion model. We subsample n = 50 data points uniformly in

{u(x1, t1), . . . , u(xN , tN)}, shown in black in Fig. 1, and we

assume that we observe u = {u(x1, t1), . . . , u(xn, tn)} to predict

the spatiotemporal process u(x, t) across the entire domain of

Burgers’ equation using our deep BNN model.

3) Physics-Informed Priors: As outlined in Section II, the

first step to implement our approach is to calibrate the prior

distribution to a BNN using the physical model (12). We con-

sider a BNN comprised of L = 4 hidden layers, k = 10 nodes

in each layer, and a hyperbolic tangent activation function

g(·) = tanh(·). We employ the same Ns ×Nt discretization grid

of the domain (11) to assign prior means for p(θ). Denote with

NPDE = Ns×Nt the grid for the domain of (12a), NIC = Ns the

grid for the domain of (12b), and NBC = 2Nt the grid for the

domain of (12c), for a total of NPDE + NIC + NBC calibration

points. We find µ̂physics by minimizing

mse(µ) ≈
1

NPDE

NPDEX

i=1

ˇ
ˇ f̂µ (xi, ti)

ˇ
ˇ
2

+
1

NIC

NICX

i=1

ˇ
ˇsin(πxi) + ûµ (xi, 0)

ˇ
ˇ
2

+
1

NBC

NBCX

i=1

ˇ
ˇûµ (−1, ti)

ˇ
ˇ
2

+
1

NBC

NBCX

i=1

ˇ
ˇûµ (1, ti)

ˇ
ˇ
2

f̂µ (xi, ti) : =
∂ûµ (xi, ti)

∂t
+ ûµ (xi, ti)

∂ûµ (xi, ti)

∂x

− ν
∂2ûµ (xi, ti)

∂x2
.
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Fig. 2. (a) and (b) Comparison between physics-informed and (c) and (d)
nonphysics-informed predictions using Burgers’ equation at t1 = 0.67 and
t2 = 1.33 (two of the same times from Fig. 1). (a) and (b) Simulation results
using priors informed by Burgers’ equation (12). The domain-wide median
squared bias and variance across the Nsim = 100 simulations are 0.15 × 10−2

and 1.08 × 10−2, respectively. (c) and (d) Results using a noninformed prior,
now with µ = 0. In this case, the median squared bias and variance are
15.69 × 10−2 and 16.73 × 10−2, respectively.

For simplicity, we set the prior variance as Σl = σ
2
physicsI,

with σ2
physics = 0.00252, for every l. The sensitivity of our

approach’s performance with respect to n, σ2
physics, σ

2
D, the ini-

tial and boundary conditions, and the viscosity ν is addressed

in Section III-C.

4) Bayesian Inference: Using the n = 50 observations in the

vector u, we performed the BBB optimization (Algorithm 1)

with NBBB = 10 000 iterations to approximate the true poste-

rior. The choice to rely on a small number of observations n is

intentional, as our approach is most effective for applications

where data may be scarce. As such, using too many observa-

tions may defeat the purpose of relying on physics-informed

priors. We performed Nsim = 100 different simulations, each

corresponding to a different realization of (13).

5) Performance Metrics: We measure each simulation’s

performance by reporting the mean squared error (MSE),

defined as the sum of the squared bias between the posterior

mean and ground truth and the average posterior variance

MSE =
1

Ns × Nt

NsX

i=1

NtX

j=1

8

<̂

:̂

�

E
�

µu

�

xi, t j

�

| u
�

− u∗
�

xi, t j

��2

„ ƒ‚ …

Bias2

+ E
�

σ2
u

�

xi, t j

�

| u
�

„ ƒ‚ …

Variance

9

>=

>;

(14)

where E(µu(xi, t j) | u) and E(σ2
u(xi, t j) | u) are obtained as

in (10).

B. Comparing Physics-Informed and Noninformed Priors

Table I shows summary statistics across the Nsim sim-

ulations, reporting the median metrics from the end of

Section III-A5 and their interquantile ranges. We just report

TABLE I

PHYSICS-INFORMED VERSUS NONINFORMED PRIORS SIMULATION USING

n = 50 OBSERVATIONS OF BURGERS’ EQUATION (12) WITH VISCOSITY

ν = 0.05. DISPLAYED ARE THE MEDIAN AND INTERQUARTILE

RANGES ACROSS NSIM = 100 DIFFERENT REALIZATIONS FOR

THE BIAS, VARIANCE, AND MSE AS DEFINED IN (14).

THE COMPUTATIONAL DEMAND DOES NOT MATERI-

ALLY CHANGE ACROSS THE SIMULATIONS, SO WE

JUST REPORT THE MEDIAN VALUE

the median computational demand, since it is practically the

same across the Nsim simulations. In the physics-informed

case, we let the prior means be informed by Burgers’ equation,

E(θ) = µ̂physics from (5) and Σ = σ2
physicsI, while the nonin-

formed priors assume E(θ) = 0 and Σ = I. A visual illustration

of the difference in performance is shown in Fig. 2, where we

show forecasts at two time points for one of the simulations.

(a) and (b) show simulation results using the physics-informed

priors (PIP-BNN), while (c) and (d) show the same results

using noninformative priors.

The physics-informed model is able to retrieve a good

approximation for the true solution (as shown in red in Fig. 2)

with a median squared bias of 0.15× 10−2, compared with an

increase of almost two orders of magnitude across the nonin-

formed simulations (15.69 × 10−2) for the noninformed case.

This model-based approach provides informed prior beliefs,

while the scattered data points steer the posterior in the direc-

tion of observed behavior. As shown in Fig. 2(a) and (b), this

knowledge propagates to the posterior yielding an improved

forecast. Fig. 2(c) and (d) instead illustrates how the nonin-

formed forecast is essentially a flat line.

In addition, even though only n = 50 observations were

employed in the Bayesian update, the credibility intervals

around the posterior mean (in gray in Fig. 2) are small relative

to ground truth, as the median posterior variance across the

domain is 1.08 × 10−2, whereas in the noninformed case it

rises by an order of magnitude (16.73 × 10−2). Notably, the

median posterior variance in the physics-informed simula-

tions resembles the amount of Gaussian noise we added, as

1.08×10−2 is approximately σ2
D = 0.12. The posterior variance

is a function of the confidence in the physical model, in this

case, σ2
physics = 0.00252, and the noise in the data, which we

set at σ2
D = 0.12, and in Section III-C, we perform a sensitivity

analysis with respect to these quantities.

C. Sensitivity Analysis

We conduct a sensitivity analysis to understand our

approach’s performance as we change data availability or the

viscosity in Burgers’ equation. For each scenario, we perform

Nsim = 20 different simulations and report the median MSE as

defined in (14) as well as the interquantile ranges. We report

the median computational demand, since it does not change
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TABLE II

SENSITIVITY ANALYSES OF THE PHYSICS-INFORMED PRIOR WITH

RESPECT TO (A) NUMBER OF AVAILABLE OBSERVATIONS, (B) TEM-

PORAL SAMPLING, (C) SPATIAL SAMPLING, (D) AMOUNT OF

GAUSSIAN NOISE ADDED, (E) CONFIDENCE IN THE PHYSI-

CAL MODEL, AND (F) INITIAL AND BOUNDARY CONDI-

TIONS AND THE VISCOSITY IN THE PDE. DISPLAYED

ARE THE MEDIAN AND INTERQUARTILE RANGES

ACROSS NSIM = 20 DIFFERENT REALIZA-

TIONS FOR THE BIAS, VARIANCE, AND MSE

AS DEFINED IN (14). THE COMPUTA-

TIONAL DEMAND DOES NOT MATERI-

ALLY CHANGE ACROSS THE SIMU-

LATIONS, SO WE JUST REPORT

THE MEDIAN VALUE

materially across the Nsim simulations. All of the simulations

in the sensitivity study assume physics-informed priors.

1) Sample Size, Spatial and Temporal Sampling, and Noise:

We perform the same experiment with less and more obser-

vations (n = 2 and 250, as opposed to n = 50). We also

study the effects of spatial and temporal subsampling. Finally,

we test our approach for different amounts of Gaussian noise,

σ2
D = 0.52 and σ2

D = 0.0012, added to the solutions to Burgers’

equation. Beyond the sensitivity of our model performance,

these simulations could replicate several scenarios of data

availability such as the volume of collectable observations,

the locations where sensors may be placed, or the reliability

of those sensors. In Table II, we consider differing numbers of

observations n for the Bayesian update [see (a)], restrictions

on the temporal domain in which observations are available

[see (b)], restrictions on the spatial domain in which observa-

tions are available [see (c)], and magnitude of the Gaussian

noise σ2
D [see (d)].

As apparent from Table II (a), if n = 250 observations

are available, we observe a very low median bias but a

larger median posterior variance compared to the scenario with

n = 2. When the number of observations is low, the Gaussian

noise’s influence on the posterior variance is minimal and the

prior confidence in the PDE, σ2
physics = 0.00252, is the main

determinant of the posterior variance. When instead n = 250,

the posterior variance mimics the magnitude of the Gaussian

noise σ2
D, as in the physics-informed results of Table I.

The simulations in Table II (b) assume observations over a

selected subset of the temporal domain, while the simulations

in Table II (c) assume that one can collect n = 50 observations

at just three and five locations across the spatial domain. The

bias and variance in (b) are comparable to those of Table I,

which suggests that temporal sampling does not affect our

approach’s forecasting ability. (c) instead shows a notable

increase in bias when we restrict the spatial domain to just

three locations compared with five, suggesting that collecting

many observations at scattered times may be preferable to

collecting many observations in the same locations over time

(visual evidence is in Figs. S2 and S3 of the supplementary

material). In Table II(d), we also see how increasing the

Gaussian noise added to the solutions to Burgers’ equation by

a factor of 5 still results in a good performance for the physics-

informed prior, as it allows the posteriors to overcome the

comparatively low signal-to-noise ratio in the data, yielding

forecasts with low bias. At the same time, the amount of

noise in the data propagates through the model, yielding a

large posterior variance, as is apparent in Figs. S4 and S5

of the supplementary material. Overall, Table II(a)–(d) shows

that, if the Bayesian priors are physics-informed and data are

available at several spatial locations, our approach does not

require a large number of observations to produce physically

consistent forecasts.

2) Prior Confidence in the PDE, Initial and Boundary

Conditions, and Viscosity: Table II(e) and (f) shows results

for different levels of prior confidence in the PDE as well

as different initial and boundary conditions and viscosity. We

test our approach under different levels of confidence in the

PDE, σ2
physics = 0.012 and σ2

physics = 0.00012, a greater and

smaller prior variance than in the simulations discussed in

Section III-B in Table II(e). We also consider a less viscous

fluid, ν = 0.01, and a specification of Burgers’ equation with

initial condition u(x, 0) = cos(πx) and a periodic boundary

condition, as shown in Table II(f).

Higher levels of confidence in the physical model, i.e., lower

prior variance, translate to more accurate forecasts and lower

levels of uncertainty, and vice versa, as we show in Table II(e).

When the prior variance is very low, our approach yields the

smallest posterior bias, with an interquartile range of (0.13,

0.17), visually illustrated in Fig. S6 of the supplementary

material. On the other hand, lesser confidence in the physical

model, in this case by a factor of 16, implies that a greater
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level of uncertainty propagates through the model, yielding

greater posterior bias and variance. Table II(f) shows the

results from simulations whose priors are calibrated with

respect to different initial and boundary conditions or viscosity,

yielding a similar performance to the main simulation results

we report in Table I, as also shown in Figs. S7 and S8 of the

supplementary material.

D. Additional Sensitivity Analysis

We also tested our PIP-BNN model for different NN archi-

tectures and sample sizes. Our results suggest that model

architecture does not materially affect predictive ability, while

runtime, expectedly, increases as the amount of parameters

increases. Similarly, when we tested PIP-BNN for different

sample sizes, we observed that the predictive ability remained

relatively stable, while runtime increased significantly. Further

details on these simulations are available in Section S3 of the

supplementary material.

IV. APPLICATION TO BOUNDARY LAYER FLOW

We apply our approach to model and forecast boundary

layer velocity from a high-resolution experimental dataset

from a water tunnel [37], [38]. Boundary layer velocity

presents highly nonlinear patterns, in time and space, described

by the 3-D NS equations. Forecasting boundary layers presents

considerable challenges, as the velocity field interacts with

surfaces, and is one of the most active areas of research in fluid

mechanics [39], [40], with applications in drag optimization

along a moving object in fields such as aerospace, civil,

or mechanical engineering. The section proceeds as follows.

Section IV-A presents the data. Section IV-B describes the

physical model used to calibrate the physics-informed priors

and the associated calibration of the prior mean. Section IV-C

presents the results.

A. Data

The dataset used in this work is part of an experimental

campaign to study boundary layer velocity focused near the

bottom wall of a water tunnel. Data were collected in a cross

section, wall-normal plane parallel to the direction of the flow.

The region of interest, in the middle of the 8-m base, has a

length of about 20 cm along the wall, a height of about 5 cm,

and a temporal resolution of 0.001 s over a total period of

5.004 s [37], [38]. The velocity data was obtained via particle

image velocimetry (PIV), the noninvasive optical measurement

technique of choice when fluid mechanics experiments are

performed with an unobstructed view of the flow [41]. PIV

takes multiple laser-fluoresced images of a 2-D area of interest,

spaced a known time interval apart, and calculates the fluid

velocity on a Cartesian grid via statistical correlation of

the seed particle locations between image pairs [42], [43],

[44], [45].

The data are comprised of the instantaneous velocity in

the streamwise and wall-normal directions (not in the third,

spanwise dimension), u(si, t) and v(si, t), respectively, in an

N = Nx × Ny rectangular grid, Nx = 503 and Ny = 124, where

si = (xi, yi) denotes the spatial coordinates {s1, . . . , sN} and

Fig. 3. Boundary layer data collected in a rectangular window inside an
experimental water tunnel. (a) Single snapshot of the instantaneous streamwise
velocity (going from left to right), namely, t = 1000, si ∈ {s1, . . . , sN }.
(b) Streamwise velocity u(si), after averaging across the T = 5004 time steps.
The pattern is stratified from the wall (x ≈ 0) to the top of the domain, where
u approaches the free-stream, i.e., undisturbed by the wall, velocity which
the experimental set at 0.67 m/s. The points are a subsample of size n = 30
used to predict the entire domain. (c) Average vertical profile of u, i.e., after
averaging out x, showing the behavior of the streamwise velocity in a fully
developed turbulent boundary layer.

t = 1, . . . ,T = 5004. We decompose the instantaneous velocity

at spatial location si and time t into its expectation (time trend)

and fluctuation and average it over the T time steps. In the case

of the streamwise velocity, we have

1

T

T
X

t=1

u (si, t) =
1

T

T
X

t=1

8

<

:
u (si)
„ƒ‚…

time trend

+ u′ (si, t)
„ ƒ‚ …

fluctuation

9

=

;
= u (si)

since the average of the fluctuations over time is 0 by def-

inition. The manipulation for the instantaneous wall-normal

velocity v(s, t) is similar. Since the data collection region is

sufficiently downstream in the water tunnel, the flow can be

considered fully developed—i.e., streamwise gradients in the

mean velocities are approximately 0. We also assume that

there are no gradients in the mean velocities in the spanwise

direction. With these assumptions, mass conservation, which

requires a divergence-free mean velocity for an incompressible

flow, implies ∂v/∂y ≈ 0. At the lower wall, v(0, y) = 0 m/s,

so that v(si) = 0, i ∈ {1, . . . ,N}. Thus, we expect that the only

nonzero mean velocity component u is approximately only a

function of the wall-normal coordinate y. Note, however, that

for generality, we retain an explicit dependence of u on both

x and y [i.e., u(x, y) = u(si)]. Diagnostics are available in Figs.

S14 and S15 of the supplementary material.

In summary, we consider u(si), the average velocity in the

streamwise direction across the 5004 time steps. We subsample

observations from five vertical cross sections and only keep

5% of them from each section, as shown in black in Fig. 3(b),
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so the data used to predict the entire spatial domain are now

u := u = {u(s1), . . . , u(sn)}, n = 30, which amounts to less than

0.05% of the N total observations.

Fig. 3(a) shows one of the T = 5004 snapshots of the

instantaneous streamwise velocity going from left to right,

in this case u(s, 1000). The turbulent nature of this boundary

layer is clearly shown in the large variance of the gradients

in both the streamwise and wall-normal directions. Fig. 3(b)

shows the average streamwise velocity u(s), where the spatial

coordinates x and y, both measured in meters, represent the

base and height of the PIV measurement window, respectively.

(c) shows the average (in both time and x) vertical profile of

u which varies from 0.4 m/s near the wall to 0.65 m/s at the

top of the observable domain. As we move away from the

surface, the flow’s velocity approaches its free-stream profile,

i.e., undisturbed by the wall, which the experiment set at

0.67 m/s. The lowest recorded velocity being 0.4 m/s (close to

but not at the wall) is consistent with boundary layer theory,

as the gradient of u with respect to the wall-normal direction

is largest near the wall, and we would expect measurements

of u at y = 0, if recordable, to be 0 m/s [46]. Since the flow

moves from left to right, time-averaging smooths out most

of the vertical perturbations and the wall-normal component

becomes negligible [see Fig. 3(a) and (b)].

B. Governing PDE

The (3-D, instantaneous) velocity in turbulent boundary lay-

ers is governed by the NS equations, which encode momentum

and mass conservation. The lack of observations in the third

dimension compels us to consider the Reynolds-averaged NS

(RANS) (i.e., time-averaged) equations, a static version of NS

that governs the behavior of the stream-wise velocity in space.

Under appropriate assumptions (verified for this data in the

supplementary material), the governing model simplifies to

a 1-D PDE (the full derivation is also in the supplementary

material)

u2
τ

δ
+
δuτ

Re

∂2u(x, y)

∂y2
−
∂

∂y
u′v′ = 0 (15a)

−u′v′ = (κy)
u(x, y)

uτ

∂u(x, y)

∂y
„ ƒ‚ …

Reynolds stress
approximation

(15b)

where (15b) introduces a standard model for the Reynolds

stress term u′v′. In this case, the derivative of u with respect

to time is 0 and the nonlinear differential operator as defined

in the PDE (3a) is

N
�

u(x, y)
�

=
u2
τ

δ
+
δuτ

Re

∂2u(x, y)

∂y2

+
∂

∂y

�

(κy)
u(x, y)

uτ

∂u(x, y)

∂y

�

where from the experimental data, Re = 2700 is the Reynolds

number, δ = 0.1 m is the boundary layer thickness, uτ = 0.027

m/s is the friction velocity, and κ = 0.01107. The boundary

conditions are u(x, 0) = 0 m/s and u(x, δ) = U∞, where U∞ =

0.67 m/s is the free-stream velocity.

Fig. 4. Comparing boundary layer predictions with (a) and (c) physics-
informed priors and (b) and (d) noninformed priors. The spatial forecast for
each is shown in (a) and (b) along with the n = 30 observations. Average
vertical profile of the predicted and observed velocity, along with the 95%
credibility intervals is shown in (c) and (d). In (c), we also show the velocity
forecast induced by the prior means. We do not show its counterpart in (d)
since it is a flat line at 0 m/s.

1) BNN Assumptions and Prior Calibration: We employ

a deep BNN comprised of L = 2 hidden layers, k = 10

nodes in each layer, a hyperbolic tangent activation func-

tion g(·) = tanh(·), and the likelihood is now expressed as

u(x, y) ∼ N (µu(x, y), σ2
u(x, y)). We can afford a shallower BNN

here than the one in Section III because the process is static in

time and the spatial relationships are 1-D, as shown in Fig. 3.

Since the boundary conditions on (15) are u(x, 0) = 0

and u(x, δ) = 0.67 and the data only cover the wall-normal

direction up to y = 0.0473 m, we discretize the interval [0, δ]

with Ny points and use a NPDE = Nx ×Ny grid (Nx and Ny are

defined as in Section IV-A) to obtain µ̂physics by minimizing

the MSE with respect to (15)

mse (µ) ≈
1

NPDE

NPDEX

i=1

ˇ
ˇ f̂µ (xi, yi)

ˇ
ˇ
2

+
1

Nx

NxX

i=1

nˇ
ˇûµ (xi, 0)

ˇ
ˇ
2

+

ˇ
ˇûµ (xi, δ) − U∞

ˇ
ˇ
2
o

f̂µ (xi, yi) :=
u2
τ

δ
+
δuτ

Re

∂2ûµ(xi, yi)

∂y2

+
∂

∂y

(

(κyi)
ûµ (xi, yi)

uτ

∂ûµ (xi, yi)

∂y

)

. (16)

Fig. 4(c) in Section IV-C includes the results of the prior

calibration (in blue), showing a clear departure from the

observations (in red). Even with (16) on the order of magnitude

of 10−5, the inferred approximation ûµ̂physics
shows a clear

discrepancy with u, due to the Reynolds stress approximation

in (15b). Our prior confidence in µ̂physics is, therefore, smaller

than in the simulation study in Section III and we set C = 0.03,

where C is as defined in Section II-B. By comparison, the

average entry of Σ, from (2), is over four times larger than it
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TABLE III

PHYSICS-INFORMED APPLICATION RESULTS OF n = 30 OBSERVATIONS

FOR DIFFERENT LEVELS OF PRIOR CONFIDENCE, AS DEFINED IN

SECTION II-B, C ∈ {0.03, 0.01/100}, IN (A) AND (B). (C) RESULTS

FOR THE NONPHYSICS INFORMED APPLICATION, I.E., WITH

A VAGUE PRIOR. DISPLAYED ARE THE BIAS, VARIANCE,

AND MSE AS DEFINED IN SECTION III-A5 FOR THE

PREDICTED STREAM-WISE VELOCITY u. WE ALSO

REPORT THE COMPUTATIONAL DEMAND

is in the simulation study, where each diagonal entry of Σ is

equal to σ2
physics = 0.00252. In Section IV-C, we also consider

C = 0.01/100 to discuss the role of an excessively high prior

confidence in (15).

Using the n = 30 observations in the vector ū, we per-

form the Bayesian update with variational inference with

NBBB = 10000 iterations of Algorithm 1 to approximate the

true posterior. This particular choice of observations is meant

to replicate an instrument that can record 2-D velocity at

scattered locations along a vertical line with some amount of

measurement error.

C. Results

We applied our approach with a physics-informed prior,

E(θ) = µ̂physics and Σ determined by C ∈ {0.03, 0.01/100}, as

well as a noninformed prior, E(θ) = 0 and Σl = (1/Nl)I, where

Nl is the number of parameters in the lth layer. Fig. 4(a) and (b)

shows the forecast throughout the spatial domain and Fig. 4(c)

and (d) shows the average vertical profiles of the streamwise

velocity and 95% credibility intervals. A similar figure for

the case with C = 0.01/100 is available in the supplementary

material. Table III(a) and (c) presents the MSE as introduced

in (14).

Our results show a clear improvement in performance both

in terms of bias and variance when the priors are informed

by the PDE in (15). The bias and variance in the physics-

informed case are 0.77× 10−3 and 43.38× 10−3, respectively,

as the spatial map in Fig. 4(a) shows the forecast velocity in a

similar stratified pattern to the data in Fig. 3. The noninformed

model forecasts a flat streamwise velocity, approximately

equal to the wall-normal average for all y, but is unable

to capture the nonlinearity in the profile, as is apparent in

Fig. 4(c) and (d), with a bias and variance equal to 4.20×10−3

and 77.66 × 10−3, respectively. Most importantly, boundary

layers such as the one outlined in Section IV-A always exhibit

increasing gradients in the wall-normal direction [46] and a

forecast such as the one shown in Fig. 4(b) is not only poor

but also unphysical. On the other hand, the physics-informed

forecast in Fig. 4(a) shows a physically consistent boundary

layer due to the spatial relationship established a priori.

The additional evidence for the improvement in perfor-

mance in the physics-informed case is in diagnostic analysis

of the Reynolds stress u′v′, which, physically, represents

momentum transport due to covariances in turbulent velocity

fluctuations. From the instantaneous velocity fields u(s, t) and

v(s, t), we computed u′v′ for our data as folows:

u′v′(s) =

T
X

t=1

u(s, t)v(s, t) −

"
T
X

t=1

u(s, t)

#"
T
X

t=1

v(s, t)

#

and compared it with its estimated value [derived from (15b)]

by computing the MSE across the spatial domain, where,

recall, the points are on an evenly spaced grid. In the physics-

informed case, the MSE is 4.16×10−7, one order of magnitude

smaller than the MSE in the noninformed case, 1.53 × 10−6,

and visual evidence for this difference is in Fig. S17 of the

supplementary material.

The results with high prior confidence, C = 0.01/100,

show the role of excessive confidence in the prior. As can

be seen from Table III(b), setting a high prior confidence

in the PDE prevents the data from properly augmenting the

physics-informed prior. In this case, the bias increases by

over 70%, 1.31 × 10−3, even though the variance is lower,

12.96 × 10−3. The governing PDE (15) does not faithfully

describe observed behavior in the way that Burgers’ equation

(12) did in Section III, since the Reynolds stress approximation

in (15b) is only approximately correct. As such, (15) consti-

tutes prior knowledge on the behavior of u, but only loosely so.

The physics-informed model with very high prior confidence

unbalances the posterior in the direction of the PDE and, while

outperforming the noninformed model, falls short of producing

a reliable forecast.

These results have significant practical implications. Fluid

dynamics datasets are notoriously difficult to obtain and

experimental settings are often required. Since we consider

the time-averaged streamwise velocity, the vast majority of

the variability in the data is in the y-direction, as shown

in Fig. 3. In spite of this simplification and the n = 30

observations being collected along five vertical cross sections

of the domain, the noninformed models were unable to identify

the spatial relationships in the data. The physics-informed

approach instead established the spatial dependence a priori

and did not require observations evenly distributed in space

to produce physically consistent forecasts. In addition, this

approach also has application in computational fluid dynamics,

where models for unclosed quantities (such as the Reynolds

stress) can be developed with knowledge of a governing PDE.

For example, in the family of Reynolds stress models known as

algebraic stress models, an equation for u′v′ is solved in space

and time (this equation is itself subject to a closure model). If

this PDE were to be used as the prior, with appropriate prior

variance, sparse measurements could potentially yield a PIP-

BNN model for the Reynolds stress which covers space and

time, and which is informed by a governing PDE. Furthermore,

the use of the PIP-BNN approach with varying degrees of

modeling in the governing PDE can be used to understand

more deeply the implications of model accuracy.
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V. CONCLUSION

This work introduced a novel model-based Bayesian

approach, PIP-BNN, to incorporate contextual knowledge in

the form of a PDE in a BNN to forecast spatiotemporal

processes. The proposed model produces improved forecasts

relative to a BNN with vague priors, especially with a small

amount of data, as we show in both a simulation study and an

application to boundary layer velocity. We propose a different

paradigm of PINNs by incorporating physical knowledge in

the prior without relying on observations, rather than express-

ing it as a constraint, so that true a priori knowledge is

encoded. Given a level of confidence in the priors, expressed

as a prior variance, the result is a physics-informed forecast.

Incorporating in the prior the spatiotemporal relationships

described by a PDE constitutes a modeling strategy to borrow

strength from a governing model and data to produce physical

consistent forecasts.

In a simulated environment governed by the viscous

Burgers’ equation, our Bayesian framework shows strong pre-

dictive skills in terms of posterior mean squared error despite

using a small number of observations. We also performed

a sensitivity study and assessed how a larger number of

observations, lower amounts of noise, and lower prior variance

all lead to improved posteriors.

We apply our approach to average boundary layer veloc-

ity as it interacts with a surface, governed by a simplified

NS that only approximately describes observed behavior due

to additional modeling assumptions. The physics-informed

prior again shows superior forecasting abilities to the vague

prior alternative. Our results also show that excessively high

confidence in the PDE yields forecasts that resemble theo-

retical behavior too closely, as the posterior skews in the

direction of the physics-informed prior means. Overall, the

application results show that a governing model need not

perfectly describe observed behavior in order for our approach

to perform better than the vague prior alternative.

Our approach represents the first step toward a Bayesian-

driven model-based methodology that yields physically

consistent predictions. In NNs, the parameters, even if physics-

informed a priori, lack interpretability, and measuring our

prior confidence in them without employing observations is

challenging. We introduce a metric inspired by the coefficient

of variation so that each parameter’s prior variance is relative

to its mean, but it still does not easily translate to confidence.

As such, our results may be interpreted as conditional on a

level of prior confidence, as our approach shows promising

results in its ability to propagate uncertainty through the

model. For a given level of noise in the data, the posterior

variance in both the simulation study and the application

follows the prior confidence, as is expected in any Bayesian

model.

The difference in results of PIP-BNN applied to a simulated

setting versus a real-world case highlights the pivotal role of

the prior variance. The case of Burgers’ equation shows that

when the PDE is the data-generating process, a comparably

large prior variance has a negligible effect on the posterior

mean. In contrast, the boundary layer results suggest the

presence of a lower bound below which the data, especially

when scarce, is unable to yield adequate predictions. As such,

it is sensible to conclude that the optimal choice for the

prior variance, addressing the demonstrably subjective issue

of confidence in a PDE, belongs to a range of values, which

may be found using cross validation.

Since PIP-BNN is not a Bayesian PDE solver, we refrained

from comparing its performance with numerical methods, a

critic often levied in “ML-for-PDE” papers [47], as we also

highlight scenarios for which our proposed approach yields

suboptimal predictions. In fact, in the simulation study results

we report poor model performance even in a highly idealized

setting such as Burgers’ equation. Similarly, in the application,

we show the potentially detrimental role of an excessively

low prior variance, which leads to inadequate posteriors and

therefore suboptimal predictions.

An important issue to be addressed in future work concerns

the physics with respect to which we calibrate the prior. The

governing models employed in Sections III and IV assume

no uncertainty in the PDE itself, as our results may also be

interpreted as conditional on the physical parameters. Large

portions of the PINN literature focus on finding the best

physical parameters for a given system [5], [17], [48] and

an extension of this work would impose a prior on them

as well. Such a framework would provide, in principle, a

more rigorous quantification of our level of prior confidence

in the governing model while producing a posterior on the

physical parameters. Finally, the flexibility of our approach,

along with its modest computational demand, shows promise

for a future application to the 3-D NS equations, which is more

realistic than the average boundary layer velocity studied in

Section IV. Researchers typically tackle these problems using

computational fluid dynamics, which solve NS in every point

of a fine mesh and whose computational demand is especially

high for complex flows [49]. As the classical PINN approach

has already shown promise toward easing the computational

burden [50], extensions of our work may provide an alternative

model-based strategy with significant implications in several

areas of science and engineering.

CODE AND DATA AVAILABILITY

This code and data can be found in the follow-

ing GitHub repository: github.com/Env-an-Stat-group/25.

Menicali.IEEETNNLS. The application data that support the

findings of this study are openly available upon request

from [51].
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