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Bayesian Neural Networks With Physics-Informed
Priors With Application to Boundary Layer Velocity
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Abstract—One of the most popular recent areas of machine
learning predicates the use of neural networks (NNs) augmented
by information about the underlying process in the form of
partial differential equations (PDEs). These physics-informed
NNs (PINNSs) are obtained by penalizing the inference with a PDE
and have been cast as a minimization problem currently lacking
a formal approach to quantify the uncertainty. In this work, we
propose a novel model-based framework that regards the PDE
as a prior information of a deep Bayesian NN (BNN), physics-
informed prior (PIP)-BNN. The prior is calibrated without data
to resemble the PDE solution in the prior mean, while our degree
of confidence in the PDE with respect to the data is expressed
in terms of the prior variance. The information embedded in
the PDE are then propagated to the posterior yielding physics-
informed forecasts with uncertainty quantification. We apply our
approach to a simulated viscous fluid and to an experimentally
obtained turbulent boundary layer velocity in a water tunnel
using an appropriately simplified Navier-Stokes (NS) equation.
Our approach requires very few observations to produce phys-
ically consistent forecasts as opposed to nonphysical forecasts
stemming from noninformed priors, thereby allowing forecasting
complex systems, where some amount of data as well as some
contextual knowledge is available.

Index Terms—Bayesian neural network (BNN), Navier—Stokes
(NS), physics-informed priors (PIPs), variational inference.

I. INTRODUCTION

VER the last two decades, data-rich problems have

become increasingly more relevant due to the extraor-
dinary increase in the volume, velocity, and variety of data
available. The simultaneous growth in computational capabili-
ties has also allowed researchers to implement highly complex
models, especially nonparametric constructs such as neural
networks (NNs), able to capture complex patterns in the
data. This has facilitated new findings, such as predicting
long-term trends in the EI Nifio-Southern Oscillation [1],
constructing optimal wind farms given scattered observational
data [2], and understanding complex flows in computational
fluid dynamics [3].
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While NNs have unequivocally presented new opportunities
for data-rich problems, in their original formulation they
discard any contextual information that may be provided by
a theoretical model. This is a major limitation of these con-
structs, as a significant amount of applied problems consists of
some data as well as some information in the form of a partial
differential equation (PDE). In their original formulation, NNs
are unsuitable to account for additional context, as parameters
are learned by minimizing a loss function which is agnostic of
the specific problem [4]. A rapidly growing branch of machine
learning has been focusing on NNs that can account for the
physical laws governing a given system of interest. These
physics-informed NNs (PINNs) incorporate this knowledge as
an additional PDE constraint on the objective function, so
that the inference steers the model toward predictions that
are physically consistent [5]. PINNs have been shown to
perform better than NNs in many applications, where data
are difficult to collect but information on the process in
the form of a PDE are available [2], [6], [7]. Alternative
approaches to incorporate physical knowledge in deep NNs
are Hamiltonian NNs [8], Lagrangian NNs [9], and Newtonian
NNs [10]. While promising in their own right, each of the three
models ultimately aligns with the standard PINN framework
introduced in [5], i.e., none of them are Bayesian models, and
physical knowledge is incorporated via a physics-augmented
loss function.

While PINNs have demonstrated more flexibility than stan-
dard NNs, to the best of the authors’ knowledge, they have
always been regarded as algorithmic minimization problems
rather than an outcome of an inferential process from a
statistical model. As such, a formal approach to quantify
uncertainty in PINNs has not yet been agreed upon [11]. In
the context of NNs, uncertainty quantification can be assessed
using dropout, a bootstrapping-inspired method [12], [13], or
in a Bayesian framework by imposing (often vague) prior
distributions, thereby introducing parameter uncertainty [14].
In the context of PINNs, Bayesian NNs (BNNs) have been
used to augment PINNs’ predictions in the identification of
the system inertia and damping in power systems [15] as well
as in the estimation of hypocenter location during seismic
activity [16]. Even though these studies’ results do include
measures of uncertainty, they do so in a similar fashion as
classical data-driven PINN approaches in forward problems
and, most importantly, are cast as PDE solvers [17]. Previous
attempts in fact focus on PINN-driven approximations to
PDEs to construct Bayesian priors and eventually augment
those deterministic approximations [11], [17]. In particular, the
B-PINN model [17] is a Bayesian PDE solver, which assumes
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that the data are noisy observations centered around the latent
solution. To the best of the authors’ knowledge, a unified
model-based approach aimed at presenting PINNs as outcomes
from a statistical model has not been developed yet.

In this work, we propose a novel Bayesian approach that
incorporates contextual knowledge in the prior stage of a
deep BNN. Our construction of PDE-informed priors builds
upon a well-established tradition of embedding domain knowl-
edge into Bayesian models. In econometrics, structured priors
have been shown to improve forecasting under uncertainty
in Bayesian vector autoregression models [18], [19], [20].
Similarly, in spatial statistics, stochastic PDEs define Gaussian
process priors through differential operators, enabling scal-
able inference for continuous spatial fields [21]. For inverse
problems, PDE constraints serve as natural regularizers, ensur-
ing well-posed posterior inferences [22]. Recent advances in
machine learning rigorously characterize the role of latent
variable nonidentifiability in variational autoencoders [23],
proposing hierarchical priors that mitigate posterior collapse
by enforcing meaningful latent structure. Diffusion models,
inspired by stochastic differential equations, employ learned
noise schedules that mimic PDE-driven dynamics, improving
sample quality in generative tasks [24].

Our approach is fundamentally different from the classical
PINN paradigm, which instead adapts the loss function to a
set of governing equations [5], and from previous Bayesian-
inspired approaches to PINNs, whose main focus remains
uncertainty quantification of latent PDE solutions [11], [17].
At the core of our proposed method is the acknowledgment
that an established theory effectively constitutes our prior
beliefs on a given system’s behavior, which is then updated
with some data, and is, thus, an inherently Bayesian approach.
This work also addresses the issue of uncertainty quantification
in PINNs which is naturally derived from the posterior distri-
bution. In practice, we propose to calibrate the parameters’
prior distribution such so the prior mean is close to the
PDE solution, while the prior variance reflects our degree
of confidence in the PDE with respect to the data. From an
epistemological perspective, our approach regards PINNs as a
Bayesian construct, where the prior calibration occurs before
any observation is made, so that prior and data are modeled
independently of each other to obtain physically consistent
posteriors with uncertainty quantification. The large param-
eter space of BNNs implies a computationally challenging
inference, so we approximate it with a variational inference
approach [14]. Our methodology is very general as it can be
adapted to any system for which an NN (or more generally
any model) is to be applied along with some contextual
information in the form of a PDE and prescribes a formal
approach to incorporate both in the analysis. Henceforth, we
will refer to our method as a BNN with physics-informed
priors (PIPs)-BNN for short.

We consider an application of a turbulent boundary layer
in a water tunnel—the flow that develops as fluid flows
over a wall beneath. The governing set of PDEs, the
Navier—Stokes (NS) equations, dictate the conservation of
mass and momentum in three spatial dimensions and are gen-
erally able to describe accurately the turbulent, time-dependent
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velocity in boundary layers. For such turbulent flows,
however, the goal is rarely to predict the instantaneous velocity
field. Instead, the equations are typically averaged so as
to predict the mean velocity field, which requires certain
modeling assumptions. We show how physics-informed priors
acknowledge some degree of variation in the mean water
velocity, as expected from the experimental configuration.
When augmented with sufficiently flexible prior variance and
observations, our approach produces realistic forecasts even
with a small number of data. Noninformed priors instead result
in nonphysical predictions.

The remainder of this article is organized as follows.
Section II outlines the proposed Bayesian model and the algo-
rithm chosen to estimate its parameters. Section III presents a
simulation study with a viscous fluid to compare our approach
with a standard BNN with vague priors. Section IV reports the
proposed model’s results when implemented on the boundary
layer velocity application. Section V summarizes this article
findings and discusses future work.

II. METHODS

This section formally introduces the general Bayesian
framework PIP-BNN and proceeds as follows. We first review
deep BNNs in Section II-A. Then, we introduce our novel
BNN prior physical calibration in Section II-B. Due to the
high number of parameters in the BNN, deriving the posteriors
is computationally challenging, so Section II-C presents a
variational inference approach to approximate the posteriors.
Finally, Section II-D highlights the differences between PIP-
BNN and existing methods.

A. Bayesian Neural Network

We consider a spatiotemporal process u(s, t), where (s,¢) €
Qx[0,7T] c R? x [0, c0) and d is the number of spatial dimen-
sions. We model u with an L-layer deep BNN parameterized
by 6 = (6,,...,0.) € ®, where 0, = (W, b;} is the parameters
in the Ith layer, comprised of its weights W; and bias terms
b;, and O is the parameter space. Formally, we have

Hy = (s,1) (1a)
H=g¢gWH_ +b), le{l,... L} (1b)
Hp = (. (s,1), 05 (s, 1)) € R x [0, 00) (1c)
u(s,t) ~ N (wy (s,0), 0% (s,1)) (1d)

where the Lth layer is 2-D, every hidden layer / € {1,...,L—1}
has the same number of nodes K (although this assumption can
be relaxed), and u(s, t) is distributed as a normal distribution
with mean g, (s, ) and variance o%(s, f). Each realization of u
is, therefore, assumed to be conditionally independent given
the mean and variance. The nonlinear activation function g is
assumed to be the same for all /, and common choices for
g are the rectified linear unit, sigmoid, or hyperbolic tangent
function [25].
The parameters are assumed to have a prior distribution

p@) =N (u, %), le{l,...,L}. )

Then, if we denote with u = {u(si,ty),...,u(s,,t,)} the
observations collected at n spatiotemporal locations and
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pO) = ]_[,L:1 p(6)) the prior of 0 (i.e., 6; is a priori independent),
then, we can write the posterior as p(@ | u) o< p(u | §)p(9),
where p(u | ) is the Gaussian likelihood implied by (1). While
p(@ | u) is formally straightforward, the dimensionality of 6
comprising, among others, of all entries in the weight matrices
W, is such that in practice this expression is computationally
intractable. In fact, except for some degenerate cases, e.g.,
a single-layer BNN with an identity activation function that
degenerates into a Bayesian linear regression model, conjugate
priors in deep BNNs do not generally exist and the large
parameter space makes posterior sampling numerically infea-
sible. For this reason, variational inference techniques are used
to approximate the true posterior and generate forecasts [14],
as we show in Section II-C.

B. Physics-Informed Priors

The focus of this work lies in the choices of prior mean
H=(y,...,ny) and variance X = (X,...,X;) in (2) so that
the priors are informed by the physics of the problem. To this
end, we assume the existence of a theoretical model in the
form of a spatiotemporal PDE for u

Ou(s,t)
ot

+ N u(s,n] =0,
u(s,0) = hic(s),
u(s,t) = hpc(s, 1),

s€Q, tel0,T] (3a)

seQ (3b)
s€0Q, te[0,T] (3c)

where A[-] is a (possibly nonlinear) differential spatial oper-
ator that may contain derivatives with respect to s, (3b) is the
initial condition, (3c¢) is the boundary condition, and 0€Q is the
boundary of Q. Our objective is to calibrate the parameters u
so that a prior for u captures as much information carried by
the PDE (3) as possible.

A deep NN, such as (1), can be augmented to yield prior
means that are compliant with physical laws [5]. Let (s, 1)
be the estimate of u(s, ) as induced by u, the prior mean of
0 at spatiotemporal location (s, 7). Well-calibrated prior means
are such that i,(s,?) conforms with the physical model (3).
Given any input (s, ), we can find values of y that minimize

N __ Oly(s, 1)
Ju(s, 1) = o

while also being compliant with the initial conditions in (3b)
and boundary conditions in (3c). We discretize the domain
over which (3) exists with Nppg, Nic, and Npc points, repre-
senting the number of grid points in Q x [0, T'], Q x {0}, and in
0Q x [0, T], identifying each of the PDE conditions (3a)—(3c),
respectively. Then, we can obtain u as follows:

+ N [y (s, 0)] “4)

H = :uphysics = arg mmnimse (ﬂ)
u

= arg min {mseppg () + mseic(u) + msepc(u)}
u

= arg min {/ |ﬁ,(s, t)izds dr
7 Qx[0,T]
~ 2
+ / |hic () = i, (5,0)| ds
Q

+ f |hsc (5,1) =ty (s, D) ds dr
0Qx[0,T]

1 NppE 5
~ arg min N Z |f,, (si, t,-)|
u PDE ‘7
Nic

1
v Zl e (s0) = fiy (52, 0)|”

Ngc

+NLBC;ith(si,ri)—a,,<s,-,r,-)|2 .o

In summary, we assign values to the prior means g as
determined by the minimizers of (5), so that the prior is
compliant with the physical model (3). It is important to note
that we are not interested in solving the PDE (3). Rather,
this formulation yields prior means f, ., that carry physical
meaning, specifically one that expresses actual prior beliefs,
i.e., our best guess for the observed behavior of u resembling
the physical model (3).

In spite of its apparent similarities to a PDE solver, the
prior calibration is fundamentally different. If the primary goal
were to solve the PDE, we would look for the best (possibly
NN) model, sometimes cast as a function approximator for
u(s,t), so that fi(s, ) satisfies physical constraints. However,
from the perspective of the BNN, that is the model for u(s, 7),
the calibration seeks to find a set of parameters (in our case
prior means) given physical constraints.

The prior variance X; in (2), [ = 1,...,L, is a de
facto measure of confidence in the prior means [ es =
(1 physicss - - - » L physics)- Here, we assume X;;; = 0 for i # j,
i.e., a priori independence for the elements of #; for all /
and denote the diagonal of X; by aiphysics, where a'ghysics =
(07 physics -+ » T physics)- FOT @ given C > 0, expressing our
relative degree of confidence in the theoretical model against
the data, and N, the number of elements in f; s, We let

C

2
2 - ~
O-I,physics = (ﬁlﬂl,physics) , lefl,.... L}

so that the variance of each 6, is relative to its mean fI; ;e
and, from (2), we have

PO) =N (. %) (62)
= ﬁl,physics’ Zl = dlag (o-lz,physics) s le {1’ cet L}
(6b)

If we let ﬁﬁphysics(s, t) be the estimate of u(s,t) as induced by
Aphysics> previous work [11], [26] suggests a possible choice
for C determined by a function of the mean squared error
between ﬁﬁphysics(s, t) and u(s, ). However, such a metric would
employ data and the priors would no longer reflect prior
beliefs. In general, values of C close to 0 imply a high level of
confidence in fi,, ., and, by extension, a posterior that will
skew in the direction the physical model (3). On the other
hand, large values of C grant the likelihood more flexibility
to drive posterior inference, rendering the model similar to
one with vague priors. In both cases, the uncertainty encoded
in the physics-informed priors propagates through the BNN
and the influence that the physics places on the posterior, and
ultimately the forecasts, is rooted in an established theoretical
model.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 01,2025 at 18:09:53 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

The formula for the prior variance aims to quantify a
subjective issue (i.e., how does one quantify confidence in a
PDE?), a challenge compounded by the limited interpretability
of BNN parameters. The Bayesian Lasso paper [26], which
establishes the equivalence between Bayesian linear regression
with Laplace priors and Lasso regression, also proposes the use
of hyperpriors as a strategy to adaptively learn prior scales.
Following seminal works in economic forecasting [18], [19],
[20], domain-informed hierarchical priors have been shown
to improve the robustness of uncertainty quantification and
facilitate automatic selection of prior variances [27]. Such an
approach also helps account for varying coefficient magnitudes
across different regions of the parameter space. Nonethe-
less, the number of parameters in deep learning models is
often orders of magnitude larger than in classical parametric
models, and implementing full-hierarchical priors may incur
prohibitive computational costs. The introduction of additional
hyperparameters can also exacerbate issues of identifiability
and increase the risk of overfitting, particularly when the
amount of data relative to the number of parameters is limited,
as is often the case in physics-informed settings. For these
reasons, we maintain that the best practical strategy in PIP-
BNN is to determine prior variances via cross validation.

The proposed approach can also be extended to allow for
PDEs, where the physical parameters need to be estimated. In
other terms, we could assume that the physical parameters in
the differential operator A/[-] are not fixed to their true value
and are instead unknown. In such cases, a natural extension
is to incorporate physical parameter uncertainty by estimating
their posterior distribution before the prior on the PIP-BNN is
calibrated. The supplementary material includes a simulation
study where this approach is shown.

C. Posterior Inference

In this work, we approximate the true posterior p(€ | u)
with variational inference methods, which we summarize here
[28], [29], [30]. We chose this posterior estimation approach
since it is the most common in the BNN literature (see
the review paper in [31]). The main advantage over other
methods, mainly Markov chain Monte Carlo (MCMC), is that
variational inference casts the estimation of the posterior as
an optimization problem for which stochastic gradient descent
works well. While MCMC (asymptotically) provides samples
from the true posterior, it may pose significant challenges,
in terms of runtime and convergence, when the number of
parameters in the BNN is large, as also pointed out by
Papamarkou et al. [32]. On the other hand, variational infer-
ence compromises some amount of accuracy for the sake of
computational demand and scalability. Further technical details
on the mathematical formulation of the chosen approach are
available in the supplementary materials.

We approximate the posterior using a distribution g(6;n) €
Q, where Q is a family of Gaussian distributions with dimen-
sionality equal to that of p(@ | u). The variational parameters
are B = (u,,p.), where p, = loglexp(o.) — 1] and ¢q(6;n)
has mean u, and diagonal covariance diag(o?). We want
to find the density §(0;7)) € Q that is a suitable approx-
imation for p(@ | u), which we accomplish by minimizing
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the Kullback-Leibler (KL) divergence between the variational
and true posterior [33]. The variational approximation g(6; #})
also indirectly depends on the observations u through the KL
divergence and the shape of g(0;n) is determined by 5 [29].
The optimal choice of g(8; ), defined as follows:

q(6:7) = arg min KL (¢(6:m) 1 p (6] w)
g€
N . q(0:m)
= arfergm/(;q (0, I]) log (p(0 | u)) de

= arg min/ logq (6;m) —log p ()
qeQ 0O | —— ——

Physics
prior

Variational
distribution

—logp|8)|q(6:n) d& (1)
————
Likelihood
where the last equation holds because of the Bayes theorem.

The minimization can be achieved to computing gradients of
the cost function

F (n.u) :=/®[10gq(9;n)—10gp(0)

—logpu|0)]q(6;n) do
=KL (q(8:m) Il p(9))

- /@ logp(u|6)q(6;n) do (8)

with respect to 1. While the first integral in (8) can be
computed analytically, as ¢(@;n) and p(@) are both Gaussian,
the second integral is such that minimizing (8) naively is
computationally demanding [28], [34]. Indeed, standard Monte
Carlo approximation, i.e., drawing samples ) from g(6; 1)
directly, j = 1,...,E, leads to a gradient estimator of the
likelihood term in (8)

| &

z > logp (| 6) Y, logq (6V; )

J=1

~V, |:/®10gp(u|0)q(0;17) da]

with very high variance when E is low and significant com-
putational burden when E is high [35]. Such issues arise
since sampling from ¢(8; i) directly would yield samples that
depend on 7, with respect to which we are trying to optimize.
Here, we estimate §(6; f) using the Bayes By Backprop (BBB)
optimization algorithm, an adaptation of stochastic gradient
descent applied to variational inference [28], which addresses
this issue. We describe the approximate minimization of
F(n,u) in general, i.e., assuming that the first term in (8)
may not be computed analytically, even though in our work
we use its exact KL divergence.

BBB predicates estimation of F(7,u) (and ensuing gradi-
ents) using an auxiliary variable € ~ g(€) = N(0,I) € Q.
Given any (fixed) value of the variational parameters 5,
we sample E realizations from g(e), {e!V, ..., €} and obtain
samples from the variational distribution as follows:

040 =y’ +log (1 +exp (p)) 0 €V, j=1,....E
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Algorithm 1 BBB
1 Given B, M, Nggg,n
2i=0
3 1 = (u,,p.) {Initialize n}
4 for i < Nggg do

5 b=0

6 for b < B do

7 Draw € ~ N(0,1)

8 0 := pu, +log[1 + exp(p.)] o € {Reparameterization}

9 ¢(8.1) = KL (q(6:n) Il p(0)) -
ﬁ Zl,wl log p (”J | 9)

10 Vo= a¢(0 oy d";f ) {Proposition S1}

11 V. = a¢g;q) 1+ex;( —5 + a%(‘(); ) {Proposition S1}

12 7 =(Vy,,V,,) {Unbiased MC gradients}

13 n=n-ay {a/ is the learning rate}

14 b=b+1

15 end for

16 i=i+1

17 end for

18 return f,, p,

[P

where “o” indicates the pointwise multiplication. We then
write the approximation

1

E
F (n9,u) = Z log ¢ (6%7; 1) — log p (6)
]=1

- logp (u | g(i,j))]

E

= %qu(mf),q@,u) . 9)

J=1

Since the function ¢(-) is differentiable and %/ is not drawn
directly from the variational distribution ¢(6;n), one can
show (proof available in the supplementary material) that
VEqom [0, 1,u)] = Eye[Vy4(0,n,u)], so we can use the
gradient estimator

YV, F (1, u

ZV ¢ 0(lj) )

which is unbiased for V,F(7"”,u) [28], to update the varia-
tional parameters 1 until some convergence criterion is met.
The minimization of the original KL divergence in (7) is now
reduced to computing gradients of a differentiable function
with respect to 7, as in the case of stochastic gradient descent
for standard NNs.

We also set E = 1 and divide the n observations in
u into B mini-batches, where each mini-batch u; contains
M observations (i.e., assume for simplicity n = MB), so
that u, = {up1,...,upy) and u = {uy,...,up}, which is a
common strategy to achieve faster convergence while lessening
the computational burden [34]. The mini-batch optimization

implemented in this work computes (9) for each u;, as follows:

M .
—m@@wwm@
—logp (ub | 0(/’))

so that the variational parameters are updated BNpgp times
during the optimization, where Nggp denotes the total number
of iterations. The entire optimization procedure is summarized
in Algorithm 1 and further details on the KL divergence are
available in the supplementary material.

The optimization yields the Gaussian distribution g(6; 1))
that balances the physics-informed priors and the likelihood,
resulting in an approximation of the posterior that is informed
by the theoretical and observed behavior of u(s,t). From the
estimated i = (1,, p,), we retrieve 0> = log(exp(p,) + 1)* and

have
p@lu) ~§(6:5) =N (4., diag (67))

so that we can compute and sample from the posterior predic-
tive distribution as follows:

P(/Ju(s,t)lu)=/@P(ﬂu(s,t)lt‘?)l?(@lu) de

F(n?,up) =

z/@p(pu(s,tﬂa)@(e;ﬁ) de

6" ~ 3(6:7)

(10)

1 M
~ — ) pus.0)]67),
Py

and likewise from p(c(s,?) | u), yielding physics-informed
forecasts E(u,(s,r) | u) and physics-informed variance
E(o3(s,1) | w) [28]. The prior means fi, ., and prior vari-
ance (J'lz)hySiCS thus influence the posterior mean and posterior
variance, yielding physics-informed forecasts and physics-
informed variance.

D. Comparison With Other Methods

Our PIP-BNN model is a general approach to incorporating
physical knowledge into an NN via a Bayesian framework.
As such, it is not an alternative to, nor an improvement
of the existing physics-informed methodologies discussed in
Section I. Our proposed approach casts the PINN paradigm
as a statistical problem, akin to how The Bayesian Lasso
[26] demonstrated the parallel between Lasso regression and
Bayesian linear regression with Laplace priors. We highlight
the differences between PIP-BNN and the existing literature
by focusing on the PINN approach introduced in [5] and the
B-PINN model in [17], as they are the two methods from
which PIP-BNN draws inspiration.

Standard PINNs, which are adopted in [1], [2], [3], [8], [9],
and [10] predicate the use of a physics-augmented objective
function, e.g., “Loss = Losspa, + ALossppg,” to estimate the
parameters of a deep NN. This frequentist framework does
not directly address uncertainty quantification, which PIP-
BNN does by design. B-PINN is instead a Bayesian model
inspired by PINN, but is aimed at solving the PDE rather than
tradingoff the information from observations and physics. In
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addition, B-PINN assumes that noisy observations of the PDE
solution, boundary conditions, and the forcing term must be
all available and that the noise in the data is known. In other
words, PIP-BNN assumes a BNN (1) and aims at finding a
set of parameters (in our case prior means) given physical
constraints. B-BNN is instead looking for the best NN model
so that #(s, r) satisfies the physical constraints of the PDE.

In spite of the aforementioned fundamental differences, PIP-
BNN shares enough similarities with standard PINNs (the
incorporation of a PDE in the inferential process) and B-PINN
(parameter uncertainty), that a comparison with each method
is warranted. The results can be found in the supplementary
material.

III. SIMULATION STUDY

We conduct a simulation study in a system that is fully
explained by a physical model. In Section III-A, we report the
simulation details. In Section III-B, we assess the performance
of our general Bayesian framework with physics-informed
priors against the noninformed alternative. In Section III-C, we
conduct sensitivity analyses by considering different scenarios
of data availability as well as specifications of the physical
model.

A. Simulation Details

1) Governing PDE: We simulate data from a 1-D Burgers’
equation, a fundamental nonlinear PDE that is often used as
a prototype for conservation laws in compressible fluids [36].
Formally, the spatiotemporal process u(s,t) is the velocity of
a fluid as a function of space and time, where d = 1 so that
s=x

(x,)eQx[0,T] =[-1,1] x [0,2] (11)
and the governing model is
2
aug; J u(x, t)aug; ) = va ’;S; ) (12a)
u(x,0) = —sin(rx) (12b)
u(-1,0=u(l,r) =0 (12¢)

where the nonlinear differential operator from (3) is
Nlu(x, D] = u(x, H)((Au(x, 1))/ 0x) — v((0*u(x, 1))/0x>). The vis-
cosity v € {0.01,0.05} measures a fluid’s resistance to flow.
The initial condition (12b) describes a sinusoidal shock at
t = 0 and the Dirichlet boundary condition (12c¢) enforces
the resting velocity at the bounds of Q. Fig. 1 shows the
solution to Burgers’ equation with a viscosity of v = 0.05,
which will be used for the main comparison of the physics-
informed approach with the noninformed alternative.

2) Data: We obtained solutions to Burgers’ equation
using the PhiFlow open-source simulation software (publicly
available at github.com/tumpbs/PhiFlow). We discretized the
domain (11) with an Ny x N, grid, where N; = 100 are points
equally spaced in the spatial domain [—-1, 1] and N, = 1000
are points equally spaced in the temporal domain [0,2],
creating a grid of N = N; x N; points (as shown in Fig.
S1 of the supplementary material), and solved for u*(x;,1),
ief{l,...,N}, where (x;,t;) are elements of the grid. In order to
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Fig. 1. Solution u*(x,7) to Burgers’ equation in (12), with v = 0.05.

(a) u*(x,t) throughout the domain (11) and the n spatiotemporal locations
chosen for training the model. (b) u*(x,f) at four cross sections of ¢t €
{0,0.67,1.33,2}. As time increases, the initial sinusoidal shock dissipates and
the fluid reverts back to its resting state.

have more realistic data, we add Gaussian noise with variance
o3 = 0.1

i N (0, 0'%))

u(xi t;) = u'(xi, ;) + &, €& (13)
so that u(x;,t;) are N noisy observations from Burgers’ equa-
tion model. We subsample n = 50 data points uniformly in
{u(xy, 1), ..., u(xy,ty)}, shown in black in Fig. 1, and we
assume that we observe u = {u(xy,1),...,u(x,,t,)} to predict
the spatiotemporal process u(x, r) across the entire domain of
Burgers’ equation using our deep BNN model.

3) Physics-Informed Priors: As outlined in Section II, the
first step to implement our approach is to calibrate the prior
distribution to a BNN using the physical model (12). We con-
sider a BNN comprised of L = 4 hidden layers, k = 10 nodes
in each layer, and a hyperbolic tangent activation function
g(+) = tanh(:). We employ the same N, x N, discretization grid
of the domain (11) to assign prior means for p(@). Denote with
Nppg = N X N; the grid for the domain of (12a), Nic = N; the
grid for the domain of (12b), and Ngc = 2N, the grid for the
domain of (12c), for a total of Nppg + Nic + Npc calibration
points. We find fi, . by minimizing

Nppe

1 ~
mse(u) ~ Neos Z | fu (xi,fi)|2
i=1

1 Nic 5
— in(rrx;) + fiy, (x;, 0
+ Nec ; }sm(nx )+ iy, (x )|

Nic

1 2
+— i, (=1,1)
e o)
LS 2
+— iy, (1,4)
o)

R Oy, (x;,t) Oy, (x;, ;)
ﬁ,(xi,ti) L= IJT + Uy (M‘?Q)#
Py (xi, 1)

O0x?
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Fig. 2. (a) and (b) Comparison between physics-informed and (c) and (d)
nonphysics-informed predictions using Burgers’ equation at ¢t = 0.67 and
t; = 1.33 (two of the same times from Fig. 1). (a) and (b) Simulation results
using priors informed by Burgers’ equation (12). The domain-wide median
squared bias and variance across the Ngn = 100 simulations are 0.15 X 1072
and 1.08 x 1072, respectively. (c) and (d) Results using a noninformed prior,
now with g = 0. In this case, the median squared bias and variance are
15.69 x 1072 and 16.73 x 1072, respectively.

For simplicity, we set the prior variance as X; = o-éhysicsl,
with O-lz)hysics = 0.0025%, for every L The sensitivity of our
approach’s performance with respect to n, o-l%hysics, o3, the ini-
tial and boundary conditions, and the viscosity v is addressed
in Section III-C.

4) Bayesian Inference: Using the n = 50 observations in the
vector u, we performed the BBB optimization (Algorithm 1)
with Nggg = 10000 iterations to approximate the true poste-
rior. The choice to rely on a small number of observations 7 is
intentional, as our approach is most effective for applications
where data may be scarce. As such, using too many observa-
tions may defeat the purpose of relying on physics-informed
priors. We performed N, = 100 different simulations, each
corresponding to a different realization of (13).

5) Performance Metrics: We measure each simulation’s
performance by reporting the mean squared error (MSE),
defined as the sum of the squared bias between the posterior
mean and ground truth and the average posterior variance

Ny

[B (i (x15) 1) = u* (1) ]

. 2
Bias”

-
MSE = ———
Nst,Z

i=1 j=1

+E[O’ﬁ (Xi,fj) |u] (14)
—_—

Variance

where E(u,(x;,t;) | u) and E(o-ﬁ(xi, tj) | u) are obtained as
in (10).

B. Comparing Physics-Informed and Noninformed Priors
Table 1 shows summary statistics across the Ng, sim-

ulations, reporting the median metrics from the end of
Section III-AS and their interquantile ranges. We just report

TABLE I

PHYSICS-INFORMED VERSUS NONINFORMED PRIORS SIMULATION USING
n = 50 OBSERVATIONS OF BURGERS’ EQUATION (12) WITH VISCOSITY
v = 0.05. DISPLAYED ARE THE MEDIAN AND INTERQUARTILE
RANGES ACROSS Ngiy = 100 DIFFERENT REALIZATIONS FOR
THE BIAS, VARIANCE, AND MSE AS DEFINED IN (14).

THE COMPUTATIONAL DEMAND DOES NOT MATERI-

ALLY CHANGE ACROSS THE SIMULATIONS, SO WE
JUST REPORT THE MEDIAN VALUE

Non-Informed Priors
15.69 (15.54,15.94)
16.73 (14.11,18.47)
32.36 (29.81,34.34)
02 : 58 ‘

Physics-Informed Priors
0.15 (0.12,0.19)
1.08 (0.91,1.26)
1.25 (1.06,1.42)

02 : 54 ‘

Bias? (1072)
Variance (10*2)
MSE (10—2)

Runtime (mm:ss)

the median computational demand, since it is practically the
same across the Ny, simulations. In the physics-informed
case, we let the prior means be informed by Burgers’ equation,
E(#) = fppysics from (5) and X = o-l%hysicsl, while the nonin-
formed priors assume E(f) = 0 and X = I. A visual illustration
of the difference in performance is shown in Fig. 2, where we
show forecasts at two time points for one of the simulations.
(a) and (b) show simulation results using the physics-informed
priors (PIP-BNN), while (¢) and (d) show the same results
using noninformative priors.

The physics-informed model is able to retrieve a good
approximation for the true solution (as shown in red in Fig. 2)
with a median squared bias of 0.15 x 1072, compared with an
increase of almost two orders of magnitude across the nonin-
formed simulations (15.69 x 1072) for the noninformed case.
This model-based approach provides informed prior beliefs,
while the scattered data points steer the posterior in the direc-
tion of observed behavior. As shown in Fig. 2(a) and (b), this
knowledge propagates to the posterior yielding an improved
forecast. Fig. 2(c) and (d) instead illustrates how the nonin-
formed forecast is essentially a flat line.

In addition, even though only n = 50 observations were
employed in the Bayesian update, the credibility intervals
around the posterior mean (in gray in Fig. 2) are small relative
to ground truth, as the median posterior variance across the
domain is 1.08 x 1072, whereas in the noninformed case it
rises by an order of magnitude (16.73 x 1072). Notably, the
median posterior variance in the physics-informed simula-
tions resembles the amount of Gaussian noise we added, as
1.08 x 1072 is approximately o3, = 0.12. The posterior variance
is a function of the confidence in the physical model, in this
case, O'ZhysicS = 0.00252, and the noise in the data, which we
setat oy, = 0.12, and in Section III-C, we perform a sensitivity
analysis with respect to these quantities.

C. Sensitivity Analysis

We conduct a sensitivity analysis to understand our
approach’s performance as we change data availability or the
viscosity in Burgers’ equation. For each scenario, we perform
Nsim = 20 different simulations and report the median MSE as
defined in (14) as well as the interquantile ranges. We report
the median computational demand, since it does not change
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TABLE I

SENSITIVITY ANALYSES OF THE PHYSICS-INFORMED PRIOR WITH
RESPECT TO (A) NUMBER OF AVAILABLE OBSERVATIONS, (B) TEM-
PORAL SAMPLING, (C) SPATIAL SAMPLING, (D) AMOUNT OF
GAUSSIAN NOISE ADDED, (E) CONFIDENCE IN THE PHYSI-
CAL MODEL, AND (F) INITIAL AND BOUNDARY CONDI-
TIONS AND THE VISCOSITY IN THE PDE. DISPLAYED
ARE THE MEDIAN AND INTERQUARTILE RANGES
ACROSS Ngpy = 20 DIFFERENT REALIZA-

TIONS FOR THE BIAS, VARIANCE, AND MSE
AS DEFINED IN (14). THE COMPUTA-

TIONAL DEMAND DOES NOT MATERI-

ALLY CHANGE ACROSS THE SIMU-

LATIONS, SO WE JUST REPORT
THE MEDIAN VALUE

(@)

n=2

n = 250

Bias? (1072) 3.05 (0.98,10.88) 0.12 (0.11,0.13)
Variance (1072) 0.03 (0.02,0.10) 1.16 (1.07,1.22)
MSE (10~2) 3.18 (1.01,10.91) 1.28 (1.19,1.33)
Runtime (mm:ss) 00 : 53 12:13
(b)
t €[0,0.25] t € [0.6,0.90]

Bias? (1072) 0.22 (0.19,0.25) 0.17 (0.14,0.20)
Variance (10~2) 1.00 (0.87,1.27) 1.02 (0.80,1.12)
MSE (10—2) 1.22 (1.11,1.46) 1.20 (1.02,1.30)
Runtime (mm:ss) 04:16 04 :10
©
z € {0,0.5,1} z € {-1,-0.5,0,0.5,1}

Bias? (1072) 3.28 (1.30, 7.66) 0.18 (0.13,0.23)
Variance (10~2) 2.01 (1.24,10.49) 0.99 (0.80,1.17)
MSE (10~2) 11.00 (4.58,16.81) 1.18 (1.00, 1.39)
Runtime (mm:ss) 03:24 03 : 58
(d)
0% =0.5% 0% =0.001%

Bias? (10~2) 1.06 (0.59,1.55) 0.12 (0.11,0.13)
Variance (1072)  23.95 (21.48,28.87) 0.11 (0.09,0.14)
MSE (10~2) 26.49 (22.47,30.60) 0.23 (0.21,0.26)
Runtime (mm:ss) 04 :10 04 :10
(e)
O ysies = 0:01° O ysies = 0-0001°

Bias? (1072) 0.15 (0.13,0.18) 0.14 (0.13,0.17)
Variance (10~2) 1.34 (1.24,1.51) 1.06 (0.98,1.23)
MSE (10~2) 1.47 (1.43,1.71) 1.19 (1.13,1.40)
Runtime (mm:ss) 04:11 04 : 09
®
u(x,0) = cos(mx)
u(—1,t) = u(l,t) v =0.01

Bias? (1072) 0.16 (0.14,0.19) 0.19 (0.18,0.26)
Variance (1072) 1.10 (0.93,1.22) 1.15 (1.05,1.35)

MSE (10—2) 1.29 (1.10,1.50) 1.38 (1.24,1.65)
Runtime (mm:ss) 03 : 54 03 : 50

materially across the Ny, simulations. All of the simulations
in the sensitivity study assume physics-informed priors.

1) Sample Size, Spatial and Temporal Sampling, and Noise:
We perform the same experiment with less and more obser-
vations (n = 2 and 250, as opposed to n = 50). We also
study the effects of spatial and temporal subsampling. Finally,
we test our approach for different amounts of Gaussian noise,
o = 0.5% and o2, = 0.001%, added to the solutions to Burgers’
equation. Beyond the sensitivity of our model performance,
these simulations could replicate several scenarios of data
availability such as the volume of collectable observations,
the locations where sensors may be placed, or the reliability
of those sensors. In Table II, we consider differing numbers of
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observations n for the Bayesian update [see (a)], restrictions
on the temporal domain in which observations are available
[see (b)], restrictions on the spatial domain in which observa-
tions are available [see (c)], and magnitude of the Gaussian
noise o5 [see (d)].

As apparent from Table II (a), if n = 250 observations
are available, we observe a very low median bias but a
larger median posterior variance compared to the scenario with
n = 2. When the number of observations is low, the Gaussian
noise’s influence on the posterior variance is minimal and the
prior confidence in the PDE, o7, ;. = 0.0025%, is the main
determinant of the posterior variance. When instead n = 250,
the posterior variance mimics the magnitude of the Gaussian
noise o2, as in the physics-informed results of Table L
The simulations in Table II (b) assume observations over a
selected subset of the temporal domain, while the simulations
in Table II (c) assume that one can collect n = 50 observations
at just three and five locations across the spatial domain. The
bias and variance in (b) are comparable to those of Table I,
which suggests that temporal sampling does not affect our
approach’s forecasting ability. (c) instead shows a notable
increase in bias when we restrict the spatial domain to just
three locations compared with five, suggesting that collecting
many observations at scattered times may be preferable to
collecting many observations in the same locations over time
(visual evidence is in Figs. S2 and S3 of the supplementary
material). In Table II(d), we also see how increasing the
Gaussian noise added to the solutions to Burgers’ equation by
a factor of 5 still results in a good performance for the physics-
informed prior, as it allows the posteriors to overcome the
comparatively low signal-to-noise ratio in the data, yielding
forecasts with low bias. At the same time, the amount of
noise in the data propagates through the model, yielding a
large posterior variance, as is apparent in Figs. S4 and S5
of the supplementary material. Overall, Table II(a)—(d) shows
that, if the Bayesian priors are physics-informed and data are
available at several spatial locations, our approach does not
require a large number of observations to produce physically
consistent forecasts.

2) Prior Confidence in the PDE, Initial and Boundary
Conditions, and Viscosity: Table Il(e) and (f) shows results
for different levels of prior confidence in the PDE as well
as different initial and boundary conditions and viscosity. We
test our approach under different levels of confidence in the
PDE, 073 oo = 0.01% and o . = 0.0001%, a greater and
smaller prior variance than in the simulations discussed in
Section III-B in Table II(e). We also consider a less viscous
fluid, v = 0.01, and a specification of Burgers’ equation with
initial condition u(x,0) = cos(nx) and a periodic boundary
condition, as shown in Table II(f).

Higher levels of confidence in the physical model, i.e., lower
prior variance, translate to more accurate forecasts and lower
levels of uncertainty, and vice versa, as we show in Table II(e).
When the prior variance is very low, our approach yields the
smallest posterior bias, with an interquartile range of (0.13,
0.17), visually illustrated in Fig. S6 of the supplementary
material. On the other hand, lesser confidence in the physical
model, in this case by a factor of 16, implies that a greater
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level of uncertainty propagates through the model, yielding
greater posterior bias and variance. Table II(f) shows the
results from simulations whose priors are calibrated with
respect to different initial and boundary conditions or viscosity,
yielding a similar performance to the main simulation results
we report in Table I, as also shown in Figs. S7 and S8 of the
supplementary material.

D. Additional Sensitivity Analysis

We also tested our PIP-BNN model for different NN archi-
tectures and sample sizes. Our results suggest that model
architecture does not materially affect predictive ability, while
runtime, expectedly, increases as the amount of parameters
increases. Similarly, when we tested PIP-BNN for different
sample sizes, we observed that the predictive ability remained
relatively stable, while runtime increased significantly. Further
details on these simulations are available in Section S3 of the
supplementary material.

IV. APPLICATION TO BOUNDARY LAYER FLOW

We apply our approach to model and forecast boundary
layer velocity from a high-resolution experimental dataset
from a water tunnel [37], [38]. Boundary layer velocity
presents highly nonlinear patterns, in time and space, described
by the 3-D NS equations. Forecasting boundary layers presents
considerable challenges, as the velocity field interacts with
surfaces, and is one of the most active areas of research in fluid
mechanics [39], [40], with applications in drag optimization
along a moving object in fields such as aerospace, civil,
or mechanical engineering. The section proceeds as follows.
Section IV-A presents the data. Section IV-B describes the
physical model used to calibrate the physics-informed priors
and the associated calibration of the prior mean. Section IV-C
presents the results.

A. Data

The dataset used in this work is part of an experimental
campaign to study boundary layer velocity focused near the
bottom wall of a water tunnel. Data were collected in a cross
section, wall-normal plane parallel to the direction of the flow.
The region of interest, in the middle of the 8-m base, has a
length of about 20 cm along the wall, a height of about 5 cm,
and a temporal resolution of 0.001 s over a total period of
5.004 s [37], [38]. The velocity data was obtained via particle
image velocimetry (PIV), the noninvasive optical measurement
technique of choice when fluid mechanics experiments are
performed with an unobstructed view of the flow [41]. PIV
takes multiple laser-fluoresced images of a 2-D area of interest,
spaced a known time interval apart, and calculates the fluid
velocity on a Cartesian grid via statistical correlation of
the seed particle locations between image pairs [42], [43],
[44], [45].

The data are comprised of the instantaneous velocity in
the streamwise and wall-normal directions (not in the third,
spanwise dimension), u(s;,t) and v(s;,t), respectively, in an
N = N, x N, rectangular grid, N, = 503 and N, = 124, where
s; = (x;,y;) denotes the spatial coordinates {si,...,sy} and

0.23 0.31 040 0.48 0.56 0.64 0.72

v

¥ (distance from wall, in m)

G

¥ (distance from wall, in m)

0.025 0.050 0.075 0.100 0.125 0.150 0.175

X (length of the PIV measurement window, in m)

g

y (distance from wall, in m)

0.00

aty)

Fig. 3. Boundary layer data collected in a rectangular window inside an
experimental water tunnel. (a) Single snapshot of the instantaneous streamwise
velocity (going from left to right), namely, t = 1000, s; € {s1,...,Sn}.
(b) Streamwise velocity u(s;), after averaging across the 7' = 5004 time steps.
The pattern is stratified from the wall (x ~ 0) to the top of the domain, where
u approaches the free-stream, i.e., undisturbed by the wall, velocity which
the experimental set at 0.67 m/s. The points are a subsample of size n = 30
used to predict the entire domain. (c) Average vertical profile of #, i.e., after
averaging out x, showing the behavior of the streamwise velocity in a fully
developed turbulent boundary layer.

t=1,...,T = 5004. We decompose the instantaneous velocity
at spatial location s; and time ¢ into its expectation (time trend)
and fluctuation and average it over the T time steps. In the case
of the streamwise velocity, we have

T T
1 1
— u(s;,t) = — u(s; W (si, )y =u(s;
T;(,) T; (s) +1(si,0) ¢ =T (s)
- - time trend  fluctuation

since the average of the fluctuations over time is O by def-
inition. The manipulation for the instantaneous wall-normal
velocity v(s,?) is similar. Since the data collection region is
sufficiently downstream in the water tunnel, the flow can be
considered fully developed—i.e., streamwise gradients in the
mean velocities are approximately 0. We also assume that
there are no gradients in the mean velocities in the spanwise
direction. With these assumptions, mass conservation, which
requires a divergence-free mean velocity for an incompressible
flow, implies dv/dy ~ 0. At the lower wall, ¥(0,y) = 0 m/s,
so that v(s;) =0, i € {1,..., N}. Thus, we expect that the only
nonzero mean velocity component u is approximately only a
function of the wall-normal coordinate y. Note, however, that
for generality, we retain an explicit dependence of u on both
x and y [i.e., u(x,y) = u(s;)]. Diagnostics are available in Figs.
S14 and S15 of the supplementary material.

In summary, we consider u(s;), the average velocity in the
streamwise direction across the 5004 time steps. We subsample
observations from five vertical cross sections and only keep
5% of them from each section, as shown in black in Fig. 3(b),
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so the data used to predict the entire spatial domain are now
u:=u={u(sy),...,u(s,)}, n =30, which amounts to less than
0.05% of the N total observations.

Fig. 3(a) shows one of the 7 = 5004 snapshots of the
instantaneous streamwise velocity going from left to right,
in this case u(s, 1000). The turbulent nature of this boundary
layer is clearly shown in the large variance of the gradients
in both the streamwise and wall-normal directions. Fig. 3(b)
shows the average streamwise velocity u(s), where the spatial
coordinates x and y, both measured in meters, represent the
base and height of the PIV measurement window, respectively.
(c) shows the average (in both time and x) vertical profile of
u which varies from 0.4 m/s near the wall to 0.65 m/s at the
top of the observable domain. As we move away from the
surface, the flow’s velocity approaches its free-stream profile,
i.e., undisturbed by the wall, which the experiment set at
0.67 m/s. The lowest recorded velocity being 0.4 m/s (close to
but not at the wall) is consistent with boundary layer theory,
as the gradient of u with respect to the wall-normal direction
is largest near the wall, and we would expect measurements
of u at y = 0, if recordable, to be 0 m/s [46]. Since the flow
moves from left to right, time-averaging smooths out most
of the vertical perturbations and the wall-normal component
becomes negligible [see Fig. 3(a) and (b)].

B. Governing PDE

The (3-D, instantaneous) velocity in turbulent boundary lay-
ers is governed by the NS equations, which encode momentum
and mass conservation. The lack of observations in the third
dimension compels us to consider the Reynolds-averaged NS
(RANS) (i.e., time-averaged) equations, a static version of NS
that governs the behavior of the stream-wise velocity in space.
Under appropriate assumptions (verified for this data in the
supplementary material), the governing model simplifies to
a 1-D PDE (the full derivation is also in the supplementary
material)

2 2
uz  Our 0°u(x, y) 0 ——
14y = 1
5 + — Re By _Byu v =0 (15a)
iV = (k) u(x,y) du(x, y) (15b)
Ur ay

Reynolds stress

approximation
where (15b) introduces a standard model for the Reynolds
stress term ’v'. In this case, the derivative of u with respect
to time is O and the nonlinear differential operator as defined
in the PDE (3a) is

_ u% S, 0%u(x, y)
N[M(X,y)] =% + Re 5—)12
(( )u(x ,y) Ou(x, y))
dy

where from the experimental data, Re = 2700 is the Reynolds
number, 6 = 0.1 m is the boundary layer thickness, u,; = 0.027
m/s is the friction velocity, and ¥ = 0.01107. The boundary
conditions are u(x,0) = 0 m/s and u(x,6) = U, where Uy, =
0.67 m/s is the free-stream velocity.
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Fig. 4. Comparing boundary layer predictions with (a) and (c) physics-
informed priors and (b) and (d) noninformed priors. The spatial forecast for
each is shown in (a) and (b) along with the n = 30 observations. Average
vertical profile of the predicted and observed velocity, along with the 95%
credibility intervals is shown in (c) and (d). In (c), we also show the velocity
forecast induced by the prior means. We do not show its counterpart in (d)
since it is a flat line at O m/s.

1) BNN Assumptions and Prior Calibration: We employ
a deep BNN comprised of L = 2 hidden layers, k = 10
nodes in each layer, a hyperbolic tangent activation func-
tion g(-) = tanh(-), and the likelihood is now expressed as
u(x,y) ~ N(uz(x, ), a'%(x, ¥)). We can afford a shallower BNN
here than the one in Section III because the process is static in
time and the spatial relationships are 1-D, as shown in Fig. 3.

Since the boundary conditions on (15) are u(x,O0)
and u(x,0) = 0.67 and the data only cover the wall-normal
direction up to y = 0.0473 m, we discretize the interval [0, J]
with N, points and use a Nppg = N, X N, grid (N, and N, are
defined as in Section IV-A) to obtain fies by minimizing
the MSE with respect to (15)

Nppg

1 N
mse (u) ~ Noor Z |fﬂ (xi’yi)|2
i=1

Ny

+NLZ{|ﬁ,, (x, 0)[*

*oi=1

+ [ (30,8) - Uas|}

uf 7 g up(xuyt)
fp(xnyl) = E 6—})2
T is Vi 63 is Vi
+2 (g 0220 Tty (X y)}. (16)
dy Ur dy

Fig. 4(c) in Section IV-C includes the results of the prior
calibration (in blue), showing a clear departure from the
observations (in red). Even with (16) on the order of magnitude
of 1073, the inferred approximation ﬁﬂphy,m shows a clear
discrepancy with u, due to the Reynolds stress approximation
in (15b). Our prior confidence in fiy, e 1S, therefore, smaller
than in the simulation study in Section IIT and we set C = 0.03,
where C is as defined in Section II-B. By comparison, the
average entry of X, from (2), is over four times larger than it
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TABLE III

PHYSICS-INFORMED APPLICATION RESULTS OF n = 30 OBSERVATIONS
FOR DIFFERENT LEVELS OF PRIOR CONFIDENCE, AS DEFINED IN
SECTION II-B, C € {0.03,0.01/100}, IN (A) AND (B). (C) RESULTS
FOR THE NONPHYSICS INFORMED APPLICATION, I1.E., WITH
A VAGUE PRIOR. DISPLAYED ARE THE BIAS, VARIANCE,

AND MSE AS DEFINED IN SECTION III-A5 FOR THE
PREDICTED STREAM-WISE VELOCITY u. WE ALSO
REPORT THE COMPUTATIONAL DEMAND

Physics-Informed Non-Informed
C =0.03 | C=0.01/100 || %; = (1/N)I
@ (b) ©
Bias? (1073) 0.77 1.31 4.20
Variance (1073) 43.38 12.96 77.66
MSE (10—3) 44.15 14.27 81.86
Runtime (mm:ss) 05 : 54 05 : 58 06 : 10

is in the simulation study, where each diagonal entry of X is
equal to a'zhysics = 0.00252. In Section IV-C, we also consider
C =0.01/100 to discuss the role of an excessively high prior
confidence in (15).

Using the n = 30 observations in the vector #, we per-
form the Bayesian update with variational inference with
Nggp = 10000 iterations of Algorithm 1 to approximate the
true posterior. This particular choice of observations is meant
to replicate an instrument that can record 2-D velocity at
scattered locations along a vertical line with some amount of
measurement error.

C. Results

We applied our approach with a physics-informed prior,
E(0) = fiypysics and X determined by C € {0.03, 0.01/100}, as
well as a noninformed prior, E(f) = 0 and X; = (1/N;)I, where
N; is the number of parameters in the /th layer. Fig. 4(a) and (b)
shows the forecast throughout the spatial domain and Fig. 4(c)
and (d) shows the average vertical profiles of the streamwise
velocity and 95% credibility intervals. A similar figure for
the case with C = 0.01/100 is available in the supplementary
material. Table IlI(a) and (c) presents the MSE as introduced
in (14).

Our results show a clear improvement in performance both
in terms of bias and variance when the priors are informed
by the PDE in (15). The bias and variance in the physics-
informed case are 0.77 x 1073 and 43.38 x 1073, respectively,
as the spatial map in Fig. 4(a) shows the forecast velocity in a
similar stratified pattern to the data in Fig. 3. The noninformed
model forecasts a flat streamwise velocity, approximately
equal to the wall-normal average for all y, but is unable
to capture the nonlinearity in the profile, as is apparent in
Fig. 4(c) and (d), with a bias and variance equal to 4.20 x 1073
and 77.66 x 1073, respectively. Most importantly, boundary
layers such as the one outlined in Section IV-A always exhibit
increasing gradients in the wall-normal direction [46] and a
forecast such as the one shown in Fig. 4(b) is not only poor
but also unphysical. On the other hand, the physics-informed
forecast in Fig. 4(a) shows a physically consistent boundary
layer due to the spatial relationship established a priori.

The additional evidence for the improvement in perfor-
mance in the physics-informed case is in diagnostic analysis
of the Reynolds stress v/, which, physically, represents
momentum transport due to covariances in turbulent velocity
fluctuations. From the instantaneous velocity fields u(s, ) and
v(s, 1), we computed wv for our data as folows:

T T T
WV (s) = Z u(s, HV(s, ) — [Z u(s, t)j| [Z (s, t)j|

=1 =1 =1

and compared it with its estimated value [derived from (15b)]
by computing the MSE across the spatial domain, where,
recall, the points are on an evenly spaced grid. In the physics-
informed case, the MSE is 4.16 x 1077, one order of magnitude
smaller than the MSE in the noninformed case, 1.53 x 107°,
and visual evidence for this difference is in Fig. S17 of the
supplementary material.

The results with high prior confidence, C = 0.01/100,
show the role of excessive confidence in the prior. As can
be seen from Table III(b), setting a high prior confidence
in the PDE prevents the data from properly augmenting the
physics-informed prior. In this case, the bias increases by
over 70%, 1.31 x 1073, even though the variance is lower,
12.96 x 1073. The governing PDE (15) does not faithfully
describe observed behavior in the way that Burgers’ equation
(12) did in Section 111, since the Reynolds stress approximation
in (15b) is only approximately correct. As such, (15) consti-
tutes prior knowledge on the behavior of u, but only loosely so.
The physics-informed model with very high prior confidence
unbalances the posterior in the direction of the PDE and, while
outperforming the noninformed model, falls short of producing
a reliable forecast.

These results have significant practical implications. Fluid
dynamics datasets are notoriously difficult to obtain and
experimental settings are often required. Since we consider
the time-averaged streamwise velocity, the vast majority of
the variability in the data is in the y-direction, as shown
in Fig. 3. In spite of this simplification and the n = 30
observations being collected along five vertical cross sections
of the domain, the noninformed models were unable to identify
the spatial relationships in the data. The physics-informed
approach instead established the spatial dependence a priori
and did not require observations evenly distributed in space
to produce physically consistent forecasts. In addition, this
approach also has application in computational fluid dynamics,
where models for unclosed quantities (such as the Reynolds
stress) can be developed with knowledge of a governing PDE.
For example, in the family of Reynolds stress models known as
algebraic stress models, an equation for #’V’ is solved in space
and time (this equation is itself subject to a closure model). If
this PDE were to be used as the prior, with appropriate prior
variance, sparse measurements could potentially yield a PIP-
BNN model for the Reynolds stress which covers space and
time, and which is informed by a governing PDE. Furthermore,
the use of the PIP-BNN approach with varying degrees of
modeling in the governing PDE can be used to understand
more deeply the implications of model accuracy.
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V. CONCLUSION

This work introduced a novel model-based Bayesian
approach, PIP-BNN, to incorporate contextual knowledge in
the form of a PDE in a BNN to forecast spatiotemporal
processes. The proposed model produces improved forecasts
relative to a BNN with vague priors, especially with a small
amount of data, as we show in both a simulation study and an
application to boundary layer velocity. We propose a different
paradigm of PINNs by incorporating physical knowledge in
the prior without relying on observations, rather than express-
ing it as a constraint, so that true a priori knowledge is
encoded. Given a level of confidence in the priors, expressed
as a prior variance, the result is a physics-informed forecast.
Incorporating in the prior the spatiotemporal relationships
described by a PDE constitutes a modeling strategy to borrow
strength from a governing model and data to produce physical
consistent forecasts.

In a simulated environment governed by the viscous
Burgers’ equation, our Bayesian framework shows strong pre-
dictive skills in terms of posterior mean squared error despite
using a small number of observations. We also performed
a sensitivity study and assessed how a larger number of
observations, lower amounts of noise, and lower prior variance
all lead to improved posteriors.

We apply our approach to average boundary layer veloc-
ity as it interacts with a surface, governed by a simplified
NS that only approximately describes observed behavior due
to additional modeling assumptions. The physics-informed
prior again shows superior forecasting abilities to the vague
prior alternative. Our results also show that excessively high
confidence in the PDE yields forecasts that resemble theo-
retical behavior too closely, as the posterior skews in the
direction of the physics-informed prior means. Overall, the
application results show that a governing model need not
perfectly describe observed behavior in order for our approach
to perform better than the vague prior alternative.

Our approach represents the first step toward a Bayesian-
driven model-based methodology that yields physically
consistent predictions. In NNs, the parameters, even if physics-
informed a priori, lack interpretability, and measuring our
prior confidence in them without employing observations is
challenging. We introduce a metric inspired by the coefficient
of variation so that each parameter’s prior variance is relative
to its mean, but it still does not easily translate to confidence.
As such, our results may be interpreted as conditional on a
level of prior confidence, as our approach shows promising
results in its ability to propagate uncertainty through the
model. For a given level of noise in the data, the posterior
variance in both the simulation study and the application
follows the prior confidence, as is expected in any Bayesian
model.

The difference in results of PIP-BNN applied to a simulated
setting versus a real-world case highlights the pivotal role of
the prior variance. The case of Burgers’ equation shows that
when the PDE is the data-generating process, a comparably
large prior variance has a negligible effect on the posterior
mean. In contrast, the boundary layer results suggest the
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presence of a lower bound below which the data, especially
when scarce, is unable to yield adequate predictions. As such,
it is sensible to conclude that the optimal choice for the
prior variance, addressing the demonstrably subjective issue
of confidence in a PDE, belongs to a range of values, which
may be found using cross validation.

Since PIP-BNN is not a Bayesian PDE solver, we refrained
from comparing its performance with numerical methods, a
critic often levied in “ML-for-PDE” papers [47], as we also
highlight scenarios for which our proposed approach yields
suboptimal predictions. In fact, in the simulation study results
we report poor model performance even in a highly idealized
setting such as Burgers’ equation. Similarly, in the application,
we show the potentially detrimental role of an excessively
low prior variance, which leads to inadequate posteriors and
therefore suboptimal predictions.

An important issue to be addressed in future work concerns
the physics with respect to which we calibrate the prior. The
governing models employed in Sections III and IV assume
no uncertainty in the PDE itself, as our results may also be
interpreted as conditional on the physical parameters. Large
portions of the PINN literature focus on finding the best
physical parameters for a given system [5], [17], [48] and
an extension of this work would impose a prior on them
as well. Such a framework would provide, in principle, a
more rigorous quantification of our level of prior confidence
in the governing model while producing a posterior on the
physical parameters. Finally, the flexibility of our approach,
along with its modest computational demand, shows promise
for a future application to the 3-D NS equations, which is more
realistic than the average boundary layer velocity studied in
Section IV. Researchers typically tackle these problems using
computational fluid dynamics, which solve NS in every point
of a fine mesh and whose computational demand is especially
high for complex flows [49]. As the classical PINN approach
has already shown promise toward easing the computational
burden [50], extensions of our work may provide an alternative
model-based strategy with significant implications in several
areas of science and engineering.

CODE AND DATA AVAILABILITY

This code and data can be found in the follow-
ing GitHub repository: github.com/Env-an-Stat-group/25.
Menicali. IEEETNNLS. The application data that support the
findings of this study are openly available upon request
from [51].
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