
Transform Analysis of Preemption Overhead in the M/G/1

Shefali Ramakrishna
Cornell University

sr899@cornell.edu

Ziv Scully
Cornell University

zivscully@cornell.edu

1. INTRODUCTION
Preemptive scheduling policies, which allow pausing jobs
mid-service, are ubiquitous because they allow important
jobs to receive service ahead of unimportant jobs that would
otherwise delay their completion. The canonical example is
Shortest Remaining Processing Time (SRPT), which pre-
emptively serves the job with least remaining work at every
moment in time [9]. There is a robust literature analyzing
response time (elapsed time between a job’s arrival and com-
pletion) in the M/G/1 queue under many preemptive policies
[6, 10, 11], shedding light on questions such as how preemp-
tion a!ects the mean and tail of response time, and whether
preemption is unfair towards low-priority jobs.

In practice, there is a cost to preempting individual jobs,
known as preemption overhead. For instance, in computer sys-
tems, overhead can take the form of context switch, reloading
from disk into memory, or reloading from memory into cache.
However, with very few exceptions (§ 1.2), the queueing the-
ory literature does not account for preemption overhead. It
is thus unclear how overhead a!ects preemption tradeo!s.

In light of overhead, one might hope to alter preemptive
policies to reduce the amount of preemption, and thus over-
head, that occurs. An example is making the job in service
“resistant” to preemption by increasing its priority. But with
one exception (§ 1.2), policies with such resistance have not
been analyzed, even without overhead. We thus lack the tools
needed to theoretically understand preemption resistance.

1.1 Contributions and techniques
We give the first transform response time analysis of the
M/G/1 queue under preemptive priority scheduling with
preemption overhead. Our overhead model is flexible: over-
head amounts are stochastic and can occur whenever a job
is paused, resumed, or both. We derive recursive formulas
for the Laplace transform (hereafter simply “transform”) of
each priority class’s response time distribution, which yield
closed-form formulas for all moments of response time. Our
techniques further extend to analyze “preemption resistance”.

At the heart of our analysis is a new queueing model we
call the arrival-sensitive M/G/1 (M/G/1/AS). The name
refers to a job’s service time being a!ected by arrivals during
its service. One of our key insights is that under preemptive
priority scheduling, preemption overhead can be viewed as
a type of arrival sensitivity. That is, when a high-priority
job J1 arrives during service of a low-priority job J2, we view
J1’s arrival as increasing J2’s service time.

This work was supported by the NSF under grant no. CMMI-
2307008.
Copyright is held by author/owner(s).

Among the obstacles we overcome is analyzing busy periods
in the M/G/1/AS. Recall that a busy period started by a set
of jobs is the total service time of the initial set of “level 0”
jobs, “level 1” arrivals that occur during service of level 0
jobs, “level 2” arrivals during level 1 jobs, etc. Busy period
transforms play a critical role in many prior M/G/1 response
time transform analyses [6, 9, 11]. However, arrival-sensitivity
complicates busy period analysis, because it introduces a new
dependency between a job’s service time and the number of
arrivals that occur during it. We develop a new toolbox for
analyzing M/G/1/AS busy periods based on multivariable
transforms that capture this new dependence. We then derive
the required multivariable transforms for our preemption
overhead model.

In this paper, we introduce the M/G/1/AS model and
analyze its busy periods (§ 2), express a flexible model of
preemptive priority with overhead and using the M/G/1/AS
(§ 3), state our response time results for a system with pre-
emption overhead (§ 4), and briefly describe how our results
and techniques extend to handle resistance (§ 5). We view
our work as a first step towards incorporating preemption
overhead into SOAP [11] and other M/G/1 scheduling theory.

1.2 Prior work
Overhead from preempting individual jobs has not been
studied extensively in queueing. There are two prior works
considering preemption overhead. Goerg [5] studies SRPT
with overhead and resistance, but only considers mean re-
sponse time and has a less flexible preemption model than
ours. Specifically, overhead is deterministic and only occurs
when pausing jobs, not resuming them. Peng [8] studies
preemptive priority with overhead under a more flexible pre-
emption model, which we also adopt (§ 3), but only considers
mean response time and does not consider resistance.

Most literature on overheads in queues covers overheads
from switching between classes of jobs [7, 12], or between
queues of jobs in polling systems [1–3]. This work does not
capture preemption overhead because almost all the policies
studied never switch classes or queues during a job’s service.
To the best of our knowledge, the only exception is the
work of Cao and Xie [3], but it studies a preempt-restart
model, meaning that preempted jobs do not retain progress.
In contrast, we study a preempt-resume model, meaning
progress on a job is retained even after it is preempted.

2. THE ARRIVAL-SENSITIVE M/G/1
Like the ordinary M/G/1, the arrival-sensitive M/G/1 is a
single-server queueing system with Poisson job arrivals at
rate ω. The main di!erence is the service dynamics, which



build on the Markov-process job model of Scully [10] by
adding arrival sensitivity.

Each job is an i.i.d. continuous-time absorbing Markov
process, with absorption representing completion. A job’s
state evolves during service and stays static when waiting in
the queue. This is the ordinary Markov-process job model.
We add one more feature: whenever a job arrives, the job
in service may undergo a state transition. This transition is
specified by a transition kernel, i.e. the post-arrival state’s
distribution depends only on the pre-arrival state.

The M/G/1/AS is a highly general model because Markov
processes are very flexible. A priori, one might worry that
analyzing the M/G/1/AS requires discussing the specifics of
the job Markov process. Our first key insight is that lots of
information about the M/G/1/AS can be extracted from a
multidimensional transform (§ 2.1). As such, we do not define
notation for discussing the job Markov process directly.

Throughout, we denote the LST of V by Ṽ , and we denote
the excess of V [6] by EV . In particular, ẼV (ε) = 1→Ṽ (ω)

ωE[V ] .

2.1 Job transform
In the M/G/1/AS, each job has some service time, and some
number of arrivals occur during that service. We denote by
(R,A) the joint distribution of service time R and arrivals-
during-service A. In the ordinary M/G/1, R is the same for
all arrival rates ω, and we have A → Poisson(ωR) conditional
on R. But in the M/G/1/AS, both properties may fail.

Fortunately, one can still show that each job’s service time
and arrivals-during-service are drawn i.i.d. from (R,A). We
omit the proof, which is a straightforward use of the homo-
geneity of Poisson arrivals, for lack of space. We therefore
define the job transform

J (ε, z) = E[e→ωRzA].

Stability conditions can be directly extracted from J (ε, z).
By Wald’s equation and Galton-Watson branching process
theory, the system is stable if ϑ = E[A] < 1. In this situation,
ϑ is also the load (a.k.a. utilization) of the system, and a
renewal-reward [6] argument shows

ϑ = ωE[R] = E[A] and ϑ = ↑ωϖωJ (0, 1) = ϖzJ (0, 1).

We analyze M/G/1/AS in terms of J (ε, z). The busy
period started by a job, denoted B(J ), is the total service
time of that “level 0” job, and all “level h” arrivals, where
level h ↓ 1 arrivals are those that occur during service of
level h↑ 1 jobs. The busy period started by an amount of
work V , denoted B(V ), is defined similarly, except the level 0
job is replaced by a (non-arrival-sensitive) amount of work V .

Theorem 2.1. The busy period transform in M/G/1/AS is

B̃(J )(ε) = J (ε, B̃(J )(ε)),

B̃(V )(ε) = Ṽ
(
ε + ω

(
1↑ B̃(J )(ε)

))
.

2.2 Multiclass M/G/1/AS
In the M/G/1/AS, we also want to be able to distinguish
between di!erent classes of arrivals, as each class of arrival
may a!ect service time di!erently. For instance, in the pre-
emption overhead setting, only arrivals of a lower class will
cause a preemption and thus induce overhead. Then Rk, the
service time of a class k job, has a di!erent dependence on
the number of each class i of arrival Ak,i. The job transform

J for a class k job, denoted Jk, is defined below, taking a
vector z = [zi]

n
i=1 instead of a scalar z:

Jk(ε, z) = E
[
e→ωRk

n∏

i=1

z
Ak,i
i

]
.

Analogous to Theorem 2.1, we can derive the transform
of busy periods from Jk. More generally, we can analyze
class < l busy period, denoted B<l(·). These are defined
analogously to busy periods B(·) in § 2.1, except for all levels
h ↓ 1, we only consider a job to be “level h” if it is also
class < l. They play an important role in many response
time analyses [5, 6, 8–11], including ours (§ 4).

Theorem 2.2.

B̃<l(Jk)(ε) = Jk

(
ε,
[
1(i < l) B̃<l(Ji)(ε) + 1(i ↓ l)

]n
i=1

)
,

B̃<l(V )(ε) = Ṽ
(
ε + ω<l(1↑ B̃<l(J<l)(ε))

)
.

Above and throughout, we use the following notation con-
ventions. For arrival rates and loads, subscript < k denotes
sum, e.g. ω< k =

∑k→1
i=1 ωi. For busy periods, subscript < k

denotes a class < k busy period (§ 2.2). For other distri-
butions, subscript < k denotes mixture, e.g. J<k(ε, z) =∑k→1

i=1
εi

ε<k
Ji(ε, z). Subscripts ↔ k and > k are analogous.

3. PREEMPTION OVERHEAD
Having obtained the transform for arrival-sensitive busy pe-
riods, we will apply it to a system with preemption overhead.
We first describe our model and introduce some notation.

We are considering a system with a single server, Poisson
arrivals, and static priority, meaning each arriving job has a
class k ↗ {1, . . . , n} that remains unchanged during its time
in the system. The scheduling policy is preemptive priority,
meaning that at each point in time, the job with lowest class
is being served. If a job of class i arrives during service of
a class k job, and i < k, the class k job will be preempted
to serve the class i job, incurring pause overhead when it is
preempted and resume overhead when it resumes service.

We will need the following values for response time analysis:
• ωk: the arrival rate of class k jobs.
• Ck: the distribution of a class k job’s pause overhead.
• Dk: the distribution of a class k job’s resume overhead.
• Sk: the distribution of a class k job’s service time,

excluding overhead.
• Rk: the distribution of a class k job’s full service time,

including overhead.
• ϱk: the load of class k jobs’ pause overheads.
• ςk: the load of class k jobs’ resume overheads.
• φk = ωkE[Sk]: the load of class k jobs’ service times,

excluding overhead.
• ϑk = φk+ϱk+ςk: the load of class k jobs’ service times,

including overhead.
• B<k(Ji): a class < k busy period started by a class i

job, including overhead.
• B<k(Ci) and B<k(Di): a class < k busy period started

by a class i pause or resume, respectively.
As a first step to analyzing preemption overhead, we com-

pute the job transform induced by our overhead model.

Theorem 3.1. The job transform for a class k job is

Jk(ε, z) = J
↑
k

(
ε +

n∑

i=k

ωi(1↑ zi),
k→1∑

i=1

ωi

ω<k
zi

)
,



where

J
↑
k (ε, z) = S̃k

(
ε + ω<k

(
1↑ zOk(ε,ω<k(1↑ z))

))
,

Ok(ε, ↼) =
C̃k(ε + ↼) D̃k(ε + ω<k)

1↑ C̃k(ε + ↼)
(
D̃k(ε + ↼)↑ D̃k(ε + ω<k)

) .

From Theorem 3.1, we can compute ϱk and ςk, obtaining

ϱk =
ω<kφk

D̃k(ω<k)
E[Ck] ςk =

ω<kφk

D̃k(ω<k)
E[Dk].

4. RESPONSE TIME ANALYSIS
We use this joint transform J to analyze the transform of
response time for a preemptive-priority scheduling policy in
a system with preemption overhead. With the busy period
transforms from Theorem 2.2 in hand, we can use a “tagged-
job” style analysis [6, 9, 11].

A class k job must wait behind all class < k jobs present in
the system at the time of its arrival, as well as all class < k
jobs that arrive while it is waiting in the system. To analyze
a class k job’s response time, we make the following key
observation: the class k job will not leave until the entire
class < k busy period started by it completes.

This means we can nearly view a class k job’s response
time as the response time of M/G/1 with arrival rate ωk and
job size distribution B<k(Jk). Specifically, the job sizes in
the modified system correspond to class k residence times in
the original system. A job’s residence time is the amount of
time between when it starts service and when it completes
[6]. However, there are some delays not yet accounted for.
Specifically, a class k job experiences additional delay if it

(a) arrives during a class > k job’s resume,
(b) arrives during a class > k job’s pause,
(c) arrives during a class > k job’s service and causes a

preemption, or
(d) arrives during a class < k job’s service that is not yet

accounted for as part of a class k residence time.
We account for these extra delays by adding a type of

generalized vacations to the modified M/G/1, in the sense
of Fuhrmann and Cooper [4]. Applying their decomposition
theorem reduces the response time analysis to determining
Xk, the response time distribution of class k jobs that do
not arrive during another class k job’s residence time.

Theorem 4.1. The transform for the response time of a
class k job in a system with preemption overhead is

(1↑ ϑ<k ↑ ϑk)B̃<k(Jk)(ε)

1↑ ϑ<k ↑ ϑkẼB<k(Jk)(ε)
X̃k(ε),

where

X̃k(ε) =
n∑

j=k+1

ωj

ω>k

ς>k

1↑ ϑ↓k
ẼB<k(Dj)(ε) B̃<k(Cj)(ε)

+
n∑

j=k+1

j→1∑

i=1

ωi

ω<j

ϱj
1↑ ϑ↓k

ẼB<k(Cj)(ε)
(
B̃<k(Ji)(ε)

)1(i<k)

+
(1↑ ϑ<k)φ>k

1↑ ϑ↓k
B̃<k(C>k)(ε)

+
(1↑ ϑ+ φ>k)ϑ<k

1↑ ϑ↓k
ẼB<k(J<k)(ε).

The main challenge is computing X̃k(ε). Roughly speaking,
items (a)–(c) above correspond to the first three terms in

X̃k(ε), respectively, and item (d) corresponds to the fourth
term and the class < k busy periods throughout.

5. EXTENSION: ADDING “RESISTANCE”
A scheduling policy that potentially balances the costs and
benefits of preemption is what we call preemptive priority
with resistance. This is like preemptive priority, except a
class k job is treated as class r(k) ↔ k while in service, and
thus is only preemptible by jobs of class < r(k).

The same approach used to derive Theorem 4.1 can also
handle preemption resistance, but there are two new chal-
lenges to solve. First, Xk becomes much more complicated.
This is because we have to account for class k jobs that arrive
during class l with 1 < r(l) ↔ k < l. Such jobs resist pre-
emption by class k but might be preempted by other classes.
We thus have to account for class k jobs being delayed by
“partial” class l jobs. Second, class k residence times become
more complicated. Without resistance, a class k job’s resi-
dence time is the class < k busy period the job starts. But if
the job resists preemption, then some jobs from its class < k
busy period may be served after it departs. Accounting for
this involves reasoning about partial class k jobs.

We have seen that both of the main challenges involve
reasoning about partial jobs. We overcome these challenges by
defining and computing additional multivariable transforms.
For example, to compute a class k job’s residence time, we
derive the joint transform of a class k job’s total service time
and the “unpreempted last part” of its service time.

References
[1] Marko A. A. Boon, Rob D. van der Mei, and Erik M. M.

Winands. 2011. Applications of Polling Systems. Surv. Oper.

Res. Manag. Sci. 16, 2, 67–82.
[2] Sem C. Borst and Onno J. Boxma. 2018. Polling: Past,

Present, and Perspective. TOP 26, 3, 335–369.
[3] Jianyu Cao and Weixin Xie. 2017. Stability of a Two-Queue

Cyclic Polling System with BMAPs under Gated Service and
State-Dependent Time-Limited Service Disciplines. Queueing

Syst. 85, 1, 117–147.
[4] S. W. Fuhrmann and Robert B. Cooper. 1985. Stochastic

Decompositions in the M/G/1 Queue with Generalized Va-
cations. Oper. Res. 33, 5, 1117–1129.

[5] Carmelita Goerg. 1986. Evaluation of the Optimal SRPT
Strategy with Overhead. IEEE Trans. Commun. 34, 4, 338–
344.

[6] Mor Harchol-Balter. 2013. Performance Modeling and De-

sign of Computer Systems: Queueing Theory in Action. Cam-
bridge University Press, Cambridge, UK.

[7] Marcel F. Neuts. 1977. The M/G/1 Queue with Several Types
of Customers and Change-over Times. Adv. Appl. Probab. 9,
3, 604–644.

[8] Edwin Peng. 2022. Exact Response Time Analysis of Pre-
emptive Priority Scheduling with Switching Overhead. SIG-

METRICS Perform. Eval. Rev. 49, 2, 72–74.
[9] Linus E. Schrage and Louis W. Miller. 1966. The Queue

M/G/1 with the Shortest Remaining Processing Time Disci-
pline. Oper. Res. 14, 4, 670–684.

[10] Ziv Scully. 2022. A New Toolbox for Scheduling Theory. Ph. D.
Dissertation. Carnegie Mellon University, Pittsburgh, PA.

[11] Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2018.
SOAP: One Clean Analysis of All Age-Based Scheduling
Policies. Proc. ACM Meas. Anal. Comput. Syst. 2, 1, Article
16, 30 pages.

[12] Mark P. Van Oyen, Dimitrios G. Pandelis, and Demosthenis
Teneketzis. 1992. Optimality of Index Policies for Stochastic
Scheduling with Switching Penalties. J. Appl. Probab. 29, 4,
957–966.


	Introduction
	Contributions and techniques
	Prior work

	The arrival-sensitive M/G/1
	Job transform
	Multiclass M/G/1/AS

	Preemption overhead
	Response time analysis
	Extension: adding ``resistance''

