
Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based

Hyperedge Prediction

Changlin Wan1,2, Muhan Zhang3*, Pengtao Dang2, Wei
Hao1, Sha Cao2, Pan Li1,4* and Chi Zhang2*

1 Purdue University, West Lafayette, Indiana, United States.
2 Indiana University, Indianapolis, Indiana, United States.

3 Peking University, Beijing, China.
4 Georgia Institute of Technology, Atlanta, Georgia, United

States.

*Corresponding author(s). E-mail(s): muhan@pku.edu.cn;
panli@gatech.edu; czhang87@iu.edu;

Contributing authors: wan82@purdue.edu; pdang@iu.edu;
haow@purdue.edu; shacao@iu.edu;

Abstract

A hypergraph is a generalization of a graph that depicts higher-order
relations. Predicting higher-order relations, i.e. hyperedges, is a funda-
mental problem in hypergraph studies, and has immense applications
in multiple domains. Recent development of graph neural network
(GNN) advanced the prediction of pair-wise relations in graphs. How-
ever, existing methods can hardly be extended to hypergraphs due
to the lack of higher-order dependency in their graph embedding.
In this paper, we mathematically formulate the ambiguity challenges
of GNN-based representation of higher-order relations, namely node-
level and hyperedge-level ambiguities. We further present HIGNN
(Hyperedge Isomorphism Graph Neural Network) that utilizes bipartite
graph neural network with hyperedge structural features to collectively
tackle the two ambiguity issues in the hyperedge prediction problem.
HIGNN achieves constant performance improvement compared with
recent GNN-based models. In addition, we apply HIGNN to a new
task, predicting genetic higher-order interactions on 3D genome orga-
nization data. HIGNN shows consistently higher prediction accuracy
across different chromosomes, and generates novel findings on 4-way
gene interactions, which is further validated by existing literature.

1



Springer Nature 2021 LATEX template

2 Ambiguities in Neural-Network-based Hyperedge Prediction

Fig. 1 Hyperedge reflects higher-order interaction in many real world data. A. Schematic of
cell nucleus in 3D [22]. B. Illustration of enhancer-promoter-gene for regulated gene expres-
sion. C. Molecule diagram of penicillin. D. A flavourful fish dish with multiple ingredients.

Keywords: Hypergraph, Edge Prediction, Graph Neural Network, Ambiguity

1 Introduction

Graphs have been broadly utilized to study relational data in various domains
such as drug design [1], social network analysis [2, 3], and recommender
system [4]. While many methods have been devoted to represent pair-wise
relations in ordinary graphs, it has been recognized that many real-world rela-
tionships are characterized with more than two participating partners and thus
not pairwise [5–14]. Taking the genetic interaction as an example (Figure 1A,
1B). An accurate characterization of gene expression involves the joint inter-
action among gene, promoter and enhancer, and capturing only their pair-wise
interaction (enhancer-promoter, promoter-gene or gene-enhancer) will not fully
recapitulate the gene regulatory relationship (Figure 1B) [15–17]. The same
issue also exists in the analysis of multi-component drug design (Figure 1C),
multi-ingredient recipes (Figure 1D), where multilateral relationships are not
compatible with ordinary graph edges [18–20]. To overcome such conceptual
limitations, hypergraph has been used to model the higher-order interaction
data [21]. In a hypergraph, any higher-order connection is represented by a
hyperedge that could join an any number of entities (blue shadow Figure
1B, 1C, 1D). Hence, predicting missing higher-order relations among multiple
entities is transformed into the hyperedge prediction problem in hypergraphs.

Earlier works to build learning models on hypergraphs rely on converting
hypergraphs into graphs, such as clique expansion (mapping hyperedges into
cliques) [23] or star expansion (mapping hyperedges into stars) [23], which
use pairwise relations between two entities to represent higher-order relations.
Hyperedge prediction can therefore adopt and generalize the traditional heuris-
tics [2] to predict edges over graphs such as common neighbor, geometric mean,
Adar index [6, 9, 24]. However, many recent works have shown that reduction
of hyperedges into edges often cause a loss of information [6, 25–27]. More-
over, using heuristic structural features may significantly reduce the model
expressive power [28, 29]. Therefore, recently neural network approaches have



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 3

been introduced as a powerful method to encode hypergraphs [30–38]. We
uniformly call them hypergraph neural networks (HGNNs). Different HGNN
models have shown on-par or even better performance than the traditional
heuristic approaches to predict hyperedges [39–42].

However, both heuristic and HGNN methods suffer from severe ambiguity
issues. For instance, two hypergraphs can have nodes with identical pair-wise
connections but different hyperedges (such as {v1, v2} in Figure 2A and {v1, v2}
in Figure 2B). Methods based on pair-wise node heuristics like common neigh-
bor (the number of neighbors share by two nodes) will fail to tell the differences
of the hyperedges that v1 and v2 are in. Later, we term the ambiguity induced
by projecting hypergraphs to graphs node-level ambiguity. Another exam-
ple is to consider two different hyperedges whose connected nodes themselves
are highly similar ({v1, v2, v3} and {v2, v3, v6} in Figure 2D). Previous HGNNs
that aggregate node embeddings will wrongly generate the same presentation
for these two hyperedges (Figure 2D). Because node embeddings computed
by previous HGNNs essentially encode the hypergraph structure around each
node individual [29, 43–45] and thus the nodes that can be mapped to each
other under automorphism (later termed isomorphic nodes, e.g. v1 and v6 in
Figure 2D) will be associated with the same node embeddings. Later, we call
this ambiguity induced by these pairs of nodes as hyperedge-level ambigu-
ity. These two types of ambiguity yield the major challenges of to the current
approaches to achieve super highly accurate hyperedge prediction.

To address the two ambiguity issues for a better representation/prediction
of hyperedges, we propose HIGNN which utilizes a bipartite GNN and a
hyperedge-specific structural features to avoid such information loss. Innova-
tively, the hyperedge-specific structural features are constructed based on the
spectrum of an affinity matrix between the nodes (to predict the hyperedge
over) of interest and all the nodes locally around the nodes of interest. The
affinity score between two nodes is based on the shortest path distance between
the two nodes over the hypergraph. Compared with most recent models,
HIGNN achieved a large margin of performance increase on the hyperedge pre-
diction task. We also applied HIGNN to higher order genome interaction data,
where HIGNN showed consistent stability across different chromosomes. More-
over, HIGNN gives plausible DNA interaction prediction as the top predicted
result is validated by existing literature.

We summarize our contributions as:

• We mathematically describe the two challenges in hyperedge representation
learning as node- and hyperedge-level ambiguities, which prevent simple
models from making accuracte hyperedge prediction.

• We introduce a general framework HIGNN to tackle the two ambiguities,
i.e., by using bipartite graph neural network to handle node-level ambiguity
and hyepredge-specific node structure features to handle hyperedge-level
ambiguity.

• Experiments show consistent performance improvement compared with
recent state-of-the-art models for hyperedge prediction.



Springer Nature 2021 LATEX template

4 Ambiguities in Neural-Network-based Hyperedge Prediction

Fig. 2 A, B, C: ambiguity of different hypergraphs that have the same pair-wise
node connections. D: ambiguity of isomorphic nodes v1, v6 in different target node sets
{v1, v2, v3}, {v2, v3, v6}.

2 The two ambiguities in hyperedge
representation

We first introduce the notations used in this work. Denote a set as an upper-
case character (e.g. X), elements in a set as lowercase characters (x), a vector
as a bold lower case character (x), and a matrix as a bold uppercase char-
acter (X), respectively. The dimension and indices of entries of a matrix are
represented by its upper-script (e.g. Xn×m) and lower-script (e.g. i -th row:
Xi:, j -th column: X:j , and the entry of the i -th row and j -th column: Xij),
respectively. Let H = (V,E) represent a hypergraph, where V is the node set
V = {v1, .., vn} and E is the hyperedge set E = {S1, ..., Sm}, E ⊆ P (V ), and
P (V ) represents the powerset of V . The cardinality of a hyperedge S is defined
by the number of nodes in S, which is denoted by ∥S∥. Since a hyperedge could
also be considered as a set of nodes, we will use hyperedge and node set to
characterize S interchangebly in the following context. The incidence matrix

of a hypergraph is defined as H ∈ {0, 1}∥V ∥×∥E∥, in which Hij = 1 indicates
vi ∈ ej , and otherwise Hij = 0. Denote a representation learning function as

f : S,H → Rk, where S ⊂ V . The hyperedge prediction problem can be gen-
erally formulated as training f as well as a prediction function p that takes
f(S,H) as input, by which p(f(S,H)) predicts if the node set S forms a
hyperedge. Collectively, we denote the overall prediction function p(f(S,H))
as p ◦ f . When H is clear from the context, we sometimes write f(S,H) as
f(S).

In this work, we only consider undirected and non-attributed hypergraph,
so that the representation learning function f only captures the topological
characteristics of the hypergraph. Nevertheless, the method described in this
study can be easily extended to the representation learning of hypergraphs
with directions and node-/edge-attributes.

2.1 Objective of hyperedge prediction

Intrinsically, the objective of hyperedge representation learning function is
to identify the hyperedges with identical contextual topological structures
around them and differentiate those do not. Here, we mathematically depict



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 5

hyperedge similarities by defining permutation invariance and hypergraph iso-
morphism, and characterize the effectiveness of p ◦ f by the difference between
permutation invariance ΠI and F -invariance Πf .

Definition 1 (Permutation invariance) A permutation operation of a hypergraph is
defined by a bijective mapping of its nodes: V → V . Denote a permutation as π and
the complete set of all n! such permutations as Πn, where n is the number of nodes.
Denote the permutation operation on any node set S ⊂ V as π(S) = {π(i)∥i ∈ S} and
the incidence matrix of the hypergraph after permutation as π(H), π(H)π(i)j = Hij .
Similarly, the permutation operation on any (hyperedge) representation learning
function can be defined as π(f(S,H)) = f(π(S), π(H)). A representation learning
function f(S,H) is called permutation invariant if ∀S ⊂ V , and ∀π ∈ Πn that only
permutes nodes in S, f(S,H)=f(π(S), π(H)).

Constructing a permutation invariant representation learning function
f(S,H) is important for model prediction, because it guarantees that the
model will make the same prediction to an unseen node set S if S shares the
same structural property with (i.e., be isomorphic to) another node set S′ that
has been exposed to the model f during the training. Our later model will
keep permutation invariant.

Definition 2 (Hypergraph isomorphism) Two hypergraphs H = (V,E) and

H′ = (V ′, E′) are isomorphic, if ∃ a bijective mapping π : V → V ′, s.t. π(V ) = V ′

and π(E) = {π(S)∥S ⊂ E} = E′, where π(S) = {π(v)∥v ∈ S}. Such a bijec-
tive mapping is called an isomorphic mapping. Specifically, a permutation
operation π : V → V is isomorphic if π(E) = E (automorphism). Isomorphic

permutations are also exchangeable, i.e. if ∃π, s.t., π(H) = H ′, there must

also exists π−1, s.t., π−1(H ′) = H. We can define the set of all isomor-
phic permutation from H = (V,E) to itself H = (V,E) as ΠI . For any node

v, its isomorphic node set is defined by I(v) = {v′∥∃ π ∈ ΠI s.t. π(v) = v′}
(orbit [46]), and isomorphic hyperedge set of any edge S is defined by

ΠI(S) = {S′∥∃π ∈ ΠI s.t. π(S′) = S} (hyperedge orbit). It is noteworthy that ΠI

generates a segmentation of P (V ), denoted as ΠI(H), which can be represented as
ΠI(H) = {ΠI(S(i))∥S(i) ∈ P (V ); ∪ΠI(S(i)) = P (V ); ΠI(S(i)) ∩ΠI(S(j)) = ∅, ∀i, j}.

Definition 3 (Isomorphic invariance) A hyperedge representation learn-
ing function f is called isomorphic-invariant if for ∀S ⊂ V and ∀π ∈ ΠI ,
f(S,H) = f(π(S), π(H)).

Intuitively, a good hyperedge learning function f should be isomorphic
invariant, as it ensures the generalization of f on isomorphic hyperedges
, i.e., hyperedges within the same hyperedge orbit will get same represen-
tation. If we assume the valid hyperedge presentation function accurately
differentiate the isomorphic hyperedges with non-isomorphic hyperedges, i.e.,
ΠI(S) = Πfvalid

(S). The isomorphic invariant property of f is a necessary but



Springer Nature 2021 LATEX template

6 Ambiguities in Neural-Network-based Hyperedge Prediction

insufficient condition of a valid hyperedge predictor (ΠI(S)). To measure the
efficacy of f , we introduce F -invariance (Πf (S)) as follows.

Definition 4 (f -invariance) Two hyperedges S and S′ are f -invariant
w.r.t a isomorphic invariant hyperedge representation function f , if

∃π : V → V ′ s.t. f(S,H) = f(π(S′), π(H′)). Here, we define the f -invariant

hyperedge set of S ∈ V as Πf (S) = {S′∥∃π ∈ Πn s.t. f(S) = f(π(S′))}
(hyperedge orbit w.r.t f). Similarly to isomorphic permutations, Πf also
generates a segmentation of the powerset P (V ), which is defined by
Πf (H) = {Πf (S(i))∥S(i) ∈ P (V ); ∪Πf (S(i)) = P (V ); Πf (S(i)) ∩Πf (S(j)) = ∅, ∀i, j}.

Lemma 1 Any isomorphic invariant function f(S,H) is permutation invariant, and
∀S ⊂ V , ΠI(S) ⊆ Πf (S).

Proof If a hypergraph does not have any non-trivial isomorphic permutation,
∀S ⊂ V , ΠI(S) only has one element, ΠI(S) ⊆ Πf (S). For a hypergraph having at
least one non-trivial isomorphic permutation, and an isomorphic invariant function f ,

f(S,H) = f(π(S′), π(H)) = f(S′,H), ∀S′ ∈ ΠI(S), i.e., S and all of its isomorphic

hyperedge S′ ∈ ΠI(S) share the same output of f . Hence f is permutation invariant
and ΠI(S) ⊆ Πf (S). □

Lemma 2 For a hyperedge S ⊂ V , if ∃ a permutation π, s.t.
f(S,H) = f(π(S), π(H)) and f is isomorphic invariant, then π(S) ∈ Πf (S).

Proof Considering the bijective mapping π0:

π0(S) = π(S), π0(π(S)) = π−1(π(S)) = S,

and
π0(v) = v, v ∈ V \ (S ∪ π(S)).

Since f(S,H) = f(π(S), π(H)) and f is permutation invariant,
f(A) = f(π0(A)), ∀A ⊂ (S ∪ π(S)). And π0 is an identical mapping for
v ∈ V \ (S ∪ π(S)). Hence, π0 is an f -invariant permutation w.r.t. f , i.e.,
π(S) ∈ Πf (S). □

Lemma 1 suggests that the segmentation ΠI(H) is always finer than Πf (H).
Because p(f(S,H)) has the same output for S ⊂ Πf (S). Specifically, if ΠI(S)
is strictly a subset of Πf (S), it reflects that the model f does not have sufficient
expressive power to distinguish S with some other node set S′ that are not
isormorphic to S. Lemma 2 characterizes a general condition of the hyperedges
in a same f -invariant hyperedge set. For two permutation invariant functions
f1 and f2, if ∀S ⊂ V , Πf1(S) ⊆ Πf2(S), we call f2 is at least as expressive as
f1 in representing H. If further there exists S ⊂ V , Πf1(S) ⊂ Πf2(S), we call
f2 is less expressive than f1. Thus, the objective to achieve more expressive



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 7

hyperedge representations, is to find the permutation invariant representa-
tion function f , whose f -invariant edge set Πf (S) is expected to be close
to the isomorphic set of hyperedges, i.e., Πf (S) approximates ΠI(S) for all
S ⊂ V . Building more expressive hyperedge representation models is cru-
cial for hyperedge prediction [29, 45]. In the following, we discuss the current
heuristics and HGNN-based methods for hyperedge prediction and illustrate
hyperedge- and node-level ambiguity that lead to ΠI(S) ⊂ Πf (S), i.e., ∃S1, S2

s.t. S2 ∈ Πf (S1), S2 /∈ ΠI(S1).

2.2 Heuristics and GNNs for hyperedge prediction

A classic way to represent a hyperedge is to utilize structural heuristics. Take
common neighbor (CN) that generalizes the one for graphs from [2] as an
example. Let N(v) denote the neighbor set of node v in hypergraph H. The
hyperedge S could be represented as

fCN (S,H) = ∥ ∩v∈S N(v)∥.

The prediction p is often by comparing f with some threshold to predict
whether S is expected to form hyperedge.

Recent development of GNN on representation learning tasks also have
achieved unprecedented performance [28, 47, 48]. The representation learning
of GNN takes a general form as, for l = 0, 1, 2, ..., L− 1,

X(l+1) = σ(D−1/2AD−1/2X(l)W (l)),

where X(t) ∈ R∥V ∥×k represents the node embedding given by the tth-layer,
σ is a entry-wise non-linear activation function, e.g., ReLU σ(a) = max{a, 0},
A ∈ {0, 1}∥V ∥×∥V ∥ is the adjacency matrix of the input graph. Dii =

∑
j Aij

is the degree matrix and W (l) ∈ Rk×k is the layer-specific weight matrix for
the lth layer.

In the hypergraph case, the adjacency matrix is defined by
a clique expansion of the incidence matrix [49], e.g., one choice
A = sign(HHT ) ∈ {0, 1}∥V ∥×∥V ∥, in which Aij = 1 if node vi and vj belong
to at least one hyperedge, and otherwise, Aij = 0. Of course, normalization
based on node degree can also be considered.

A hyperedge S is then represented by aggregating information from the

learned node embedding in the last layer X(L) in a permutation invariant
fashion (e.g. sum-pooling, mean-pooling, max-pooling et al), i.e.,

fGNN(S,A) = AGG(X(L)
v: ∥v ∈ S).

Since X
(L)
v: could be considered as the output of fGNN(v,A), the function f

could also be written as

fGNN(S,A) = AGG(fGNN(v,A)∥v ∈ S).



Springer Nature 2021 LATEX template

8 Ambiguities in Neural-Network-based Hyperedge Prediction

Followed by a fully connected neural network p as prediction function, GNN-
based methods (p ◦ f) could be trained end to end, compared with heuristic
approaches.

2.3 Node-level ambiguity

Node-level ambiguity is defined as a false assignment of identical node
embeddings to non-isomorphic nodes. Adjacency matrix over-simplifies the
topological characteristics of a hypergraph, which can cause a node-level ambi-
guity as showcased in Figure 2A, 2B, 2C. Clearly, any two nodes from two
hypergraphs H1 = {V1, E1} and H2 = {V2, E2} are not isomorphic. However,
due to H1 and H2 having the same clique expansion AH1

= AH2
, fCN and

fGNN assign the same common neighbor or node embedding to any nodes from
them. Hence, these methods cannot distinguish these two cases and fail to
make the correct hyperedge prediction.

2.4 Hyperedge-level ambiguity

Hyperdge-level ambiguity is defined by a false assignment of identical embed-
dings to non-isomorphic hyperedges.

Lemma 3 Consider an isomorphic invariant hyperedge representation learning
function follows f(S,H) = AGG({f(v1,H), f(v2,H), ..., f(vm,H)}) where vi ∈ S.

Then, for ∀S′ = {v′1, ..., v′m} where v′i ∈ Πf (vi), i = 1, 2, ...,m, S′ ∈ Πf (S).

Proof As f is isomorphic invariant, f(S,H) = f(S′,H), and by Lemma 2,

S′ ∈ Πf (S). □

In Lemma 3, S′ may be not necessarily in ΠI(S) so f that satis-
fies the condition of Lemma 3 does not hold sufficient expressive power.
A simple aggregation of node embedding ensures a high computational
feasibility and an easy handling of the hyperedges of different cardinal-
ities. However, Lemma 3 suggests that isomorphic invariant f ignores
the topological dependency of nodes with S when it adopts the aggre-
gation based formulation, i.e. f(S,H) = AGG(f(v,H)∥v ∈ S). Hence, all
aforementioned methods suffer an over-simplified edge embedding. Figure
2D illustrates one example of hyperedge-level ambiguity caused by such
over-simplification. In the hypergraph, {v1, v2, v5, v6} are isomorphic and
{v3, v4} are isomorphic. If f satisfies Lemma 3, f(v1) = f(v6), then
p(f(v1, v2, v3)) = p(AGG(f(v1), f(v2), f(v3))) = p(f(v2, v3, v6)). However, the
node sets S1 = {v1, v2, v3} and S2 = {v2, v3, v6} clearly have different topolog-
ical structures, i.e. S2 ∈ Πf (S1) and S2 ̸∈ ΠI(S1).



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 9

Fig. 3 Our model transforms hypergraphs into bipartite graphs and run message passing
neural networks on the obtained bipartite graphs.

3 Methodology

In this section, we discuss techniques to solve the above two ambiguities.
Specifically, (1) to address the node-level ambiguity, we adopt a bipartite
message passing neural network as shown in Fig. 3; and (2) to address the
hyperedge-level ambiguity, we propose Hyperedge-Specific Node Structural
Features which encode each node’s structural relationship w.r.t. the target
hyperedge to predict. We show that by using these two techniques, the two
ambiguities can be effectively alleviated.

3.1 Bipartite message passing neural network.

Considering each hyperedge as an individual object, the hypergraph
H = (V,E) could be manifested as a bipartite graph, where one partite rep-
resents nodes V and the other represents the hyperedges E (Figure 3). The
edge-node bipartite graph is equivalent to the incidence matrix H, which con-
ceive more information than the clique expansion. Bipartite message passing
neural networks have been utilized in previous studies [32, 36], that takes the
general form as, for l = 0, 1, 2, ..., L− 1

X
(l+1)
E = σ(HTX

(l)
V W

(l)
E ), X

(l+1)
V = σ(HX

(l)
E W

(l)
V )

The nonlinear activation in updating XE and XV enables a flexible and
optimized information retrieval from H, which is more informative than a
clique expansion based representation (A), i.e.

Hσ(HTXV WE)WV ̸= AXV WEWV , (⋆)

where the equality may be achieves only when the nonlinearity on the hyper-
edge side becomes linear. Obviously, the awareness of H can easily distinguish
hyperedges of different cardinality (⋆ left hand side). It can avoid the node-
level ambiguity introduced by clique expansion in general graph neural
network models (⋆ right hand side).

In our model HIGNN, we apply this framework with a slight modification
by introducing a one-side normalization term D−1

E when updating XE , where



Springer Nature 2021 LATEX template

10 Ambiguities in Neural-Network-based Hyperedge Prediction

Fig. 4 A. In terms of whole hypergraph, v1, v2, v5, v6 and v3, v4 are isomorphic. B.C.D.E.
The isomorphic property of nodes changed by focusing on the relationship with target nodes
set S. The S-specific affinity matrix P S is thus regarded as the structure feature of nodes
for the topological representation of hyperedge S.

DE is a diagonal matrix that records the size of each hyperedge.

X l+1
E = σ(D−1

E HTX l
V WE), X l+1

V = σ(HX l
EWV )

Empirically, the one-sided normalization approach can balance the trade off
between degree bias and representation power. Our experiments suggest that
the one-sided normalization has a better performance than normalizing both
XV and XE or no normalization.

3.2 Hyperedge-specific node structural features

We first visualize the hyperedge-level ambiguity by taking GNN and the
hypergraph in Figure 4A as an example. Without distinguishing node fea-
tures, GNN learns the embedding of node v by retrieving its relationship with
every node. Owing to isomorphic invariant property of GNN, it is easy to
derive that fGNN(v1,H) = fGNN(v2,H) = fGNN(v5,H) = fGNN(v6,H) and
fGNN(v3,H) = fGNN(v4,H) as v2, v5, v6 ∈ ΠI(v1) and v4 ∈ ΠI(v3). Following
lemma 3, by aggregating the node embeddings, GNN incurs hyperedge-level
ambiguity that recognise two different hyperedges S1 = {v1, v2, v3} (Figure 4B)
and S2 = {v2, v3, v5} (Figure 4D) as the same when

AGG(fGNN(v1), fGNN(v2), fGNN(v3)) = AGG(fGNN(v2), fGNN(v3), fGNN(v5)).

This example can shed light on how to address the hyperedge-level ambi-
guity (Figure 4A, 4B, 4D). Essentially, the structure differences between S1

and S2 can be reflected based on the relations between the nodes in the hyper-
graph and the nodes within the hyperedge. Here, we approx this relationship
with hyperedge-specific affinity matrix as P S ∈ R∥V ∥×∥S∥ (Specifically, P S1

and P S2 in Figure 4C, 4E), defined as follows.

Definition 5 (Hyperedge-specific affinity matrix) Given the hypergraph H and a

target node set of interest S, we define hyperedge-specific matrix P S ∈ R∥V ∥×∥S∥,

where P S
ij = ζ(vi, vj) and ζ is an nodes pair affinity measure function. P S reveals

the structural relationship between the nodes within the hyperedge and nodes from
the hypergraph. For ease of illustration, in this paper, we use shortest path distance



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 11

(smallest number of edges that link two nodes) as the affinity measure function, i.e.,
ζSPD, whereas other affinity functions could be similarly applied.

Note that the hyperedge-specific affinity matrices P S1 in Figure 4C and
P S2 in Figure 4E are different for S1 and S2. However, GNN does not incor-
porate such difference. Thus, it wrongly identified v1, v5 with same embedding
w.r.t S1 and S2, while f(v1,H∥S1) and f(v5,H∥S2) should not be considered
as equal since P S1

v1: ̸= P S2
v5: (Figure 4C, 4E).

To encode such difference, here, we use the hyperedge-specific affinity
matrix to define hyperedge-specific node structure features and use them in
our model. Specifically, we consider using 1) the row of the matrix P S

vi: as the
structure feature for node vi w.r.t S, and 2) P S as whole as a structure fea-
ture of hyperedge S. For 2), we will use the spectrum of P S as detailed in
Section 4.2 later to remove the dependence on the node order used to defined
P S . Considering the information in P S ease hyperedge-level ambiguity
as any permutation invariant f is more likely to distinguish hyperedges. For
instance, since P S1

v1: ̸= P S2
v5:, by adding such information, GNN can easily differ-

entiate S1 and S2. Noted, P
S will still be the same for isomorphic hyperedges.

If S1 ∈ ΠI(S2), it is easy to derive P S1 = π(P S2).

Definition 6 (Hyperedge-specific local representation) Given a hyperedge (or a
target nodes set) S, its q-hop neighbor nodes set V S

(q), edges set E
S
(q), incidence matrix

HS
(q) and hyperedge-specific local node structure feature P S

(q) are defined as follows:

V S
(q) = {vj∥ζSPD(vi, vj) ≤ q, ∀vj ∈ V, ∀vi ∈ S}

ES
(q) = {ei∥ei ⊆ V S

(q), ∀ei ∈ E}

HS
(q) ∈ {0, 1}∥V

S
(q)∥×∥ES

(q)∥, where HS
(q)ij

= 1 if V S
(q)i

∈ ES
(q)j

, otherwise HS
(q)ij

= 0

P S
(q) ∈ R∥V S

(q)∥×∥S∥, where P S
(q)ij

= ζSPD(vi, vj∥vi ∈ V S
(q), vj ∈ S) .

Encoding the structural information of affinity matrix causes additional
computation. To ensure the computational feasibility, instead of the represen-
tation with entire graphs, we consider using hyperedge local representation
that only requires q-hop enclosing subgraph HS

(q) around S defined as above.

Practically, q ≤ 2 is sufficient for a good prediction performance. We argue
that q ≤ 2 is a practical setting in real-world analysis, because (1) exact iso-
morphic nodes are rare in real-world hypergraphs, and utilizing local structure
information is often sufficient to remove the hyperedge ambiguity caused by
these nodes; (2) For the task of hyperedge prediction, the structure feautures
beyond 2-hop may be less relevant and introduce noise; (3) q ≤ 2 bounds
the size of HS

(q) and P S
(q) that dramatically reduce the computational cost

and can be directly implemented in the message passing neural network.
We present our model rooted in f(S,P S

(q),H
S
(q)) for the hypergraph edge

representation/prediction task in the next section.



Springer Nature 2021 LATEX template

12 Ambiguities in Neural-Network-based Hyperedge Prediction

4 HIGNN for hyperedge prediction

In this section, we represent our model HIGNN to solve the ambiguity issues
in hyperedge representation and prediction problems. HIGNN integrates two
isomorphic invariant functions:

1. Structural representing Neural network fSN (S,P S
(q),H

S
(q)) that awares

the hyperedge size differences (node-level ambiguity) by utilizing bipartite
graph neural network and offsets the aggregating impact in lemma 3 with
structural features as node features (hyperedge-level ambiguity).

2. Hyperedge Local Spectrum fLS(S,P
S
(q)) that reflects the low-rank property

of P S indicating the joint interactions between hyperedge and its local
environment.

4.1 Structural representing neural network

A series of works have explored the fixed k-node edge representation with

affinity matrix P S
(q) ∈ R∥V S

(q)∥×k, which grants new labels for each node in the

presentation of edge S by imposing a permutation invariant function on every
row of P S

(q) (figure 4) [28, 50–53]. For instance, to predict the link in graph,

i.e., k = 2, SEAL considered a specific type of node labeling by tracking dis-
tances of a node to the target two nodes and showed superior performance
over existing methods [28, 29]. Li et al., further generalized such a definition
to the case with S of arbitrary sizes but they still work on graphs instead of
hypergraphs [45]. Mathematically, Li et al., characterized the expressive power
of the obtained GNNs which solves the edge-level ambiguity issue previously
observed in graphs [46]. Motivated by these works, we propose fSN , which
integrates structural feature P S

(q) by using a bipartite graph neural network.

Unlike k-size edge representation, the affinity matrix P S
(q) ∈ R∥V S

(q)∥×∥S∥ has

varied dimension depending on the size of hyperedge, i.e. ∥S∥. To construct a
uniformed input, we first process P S

(q) by using a set neural network (setNN)

developed in precisely Deepsets [54]. Specifically, by treating each row of P S
(q)

as an individual set vector, setNN acts as a permutation invariant function to
standardize the node-wise feature into a feature matrix of a fixed dimension
d. This feature matrix is then served as the input node features to initiate the
message passing in the bipartite neural network, i.e.,

X0
V S
(q)

= fsetNN (P S
(q)),X

0
V S
(q)

∈ R∥V S
(q)∥×d

X l+1
ES

(q)

= σ((HS
(q))

TX l
V S
(q)
D−1

ES
(q)

W l
E)

X l+1
V S
(q)

= σ(HS
(q)X

l
ES

(q)
W l

V ),



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 13

Fig. 5 The HIGNN framework. To predict the existence of hyperedge S, HIGNN tackles
edge-/node-level ambiguity by integrating bipartitte graph neural network with structure
feature. To captures the joint connections of target nodes with its nearby nodes, HIGNN
retrieves the local spectrum information of structure feature matrix. Followed by a dense
layer, HIGNN combines all the information and gives the prediction result.

where fsetNN maps each row of P S
(q) into a d-dim vector. Such that,

fSN (v∥v ∈ S) = XV S
(q)v:

and fSN (S) also follows the aggregation form, i.e.

fSN (S) = AGG(fSN (v∥v ∈ S)).

4.2 Spectrum of the structure feature matrix

The utilization of P S in fSN alleviates the hyperedge-level ambiguity. How-
ever, such integration omits the matrix structure of P S and does not represent
it in full. In sight of this, we further propose to use fLS , a function based on the
singular values P S

(q), i.e., the spectrum of the subgraph HS
(q). The rationale is

that singular values reflect the topological structure of HS
(q) as a whole instead

of each row separately. For example, the spectrum of the affinity matrix may
reflect the rank information, while higher low-rankness suggests the nodes in
S are of higher topological similarity. As the singular value decomposition is
invariant to row-and-column-wise shuffles, fLS based on the singular values
of P S

(q) is also isomorphic invariant. Also, to cope with hyperedge of varied

sizes, i.e., ∥S∥ ≥ 2, currently fLS only takes the two largest singular value into
account.

fLS(S,P
S
(q)) = f(Σ11,Σ22), P S

(q) = UΣV T

Together, we present the HIGNN framework (Figure 5) that integrates
two permutation invariant functions, the Structure Neural network fSN and
Local Spectrum information of structural feature matrix fLS . Follows by a
dense layer as prediction function p, HIGNN determines the existence of the
hyperedges by

p(concat(fSN (S,P S
(q),H

S
(q)), fLS(S,P

S
(q))))



Springer Nature 2021 LATEX template

14 Ambiguities in Neural-Network-based Hyperedge Prediction

4.3 Discussion on complexity

To tackle the ambiguities problems in the hyperedge prediction task, HIGNN
utilizes different components for specific tasks. Such integration adds more
computational burdens to the framework, wherein the extraction of structure
features plays the key role. Theoretically, retrieving the structure feature of
a hyperedge requires the transverse of whole graph, which adds an order of
computation and makes it infeasible for large datasets. Though the extra com-
putation is inevitable, we can reduce the cost in several ways. First, not all
the information in the structure feature is important for the representation of
a hyperedge, especially for the nodes that are far away from the hyperedge.
Restraining the structure information within local neighbors of the hyperedge,
i.e., local structure information, is sufficient to restore most of the informa-
tion for the model generalization and also save great computation by limiting
the transverse within q-hop. Empirically, without loss of generalization power
[48], for dense hypergraphs where each hyperedge has a large number of nodes
within their q-hop neighborhood, sampling the neighborhood is also a feasible
way to reduce the computational cost. Noted, the added computation does not
prevent the application of HIGNN on very large hypergraph (exceed the mem-
ory of GPU) as the framework fits very well with mini-batch training scheme
(extracts subgraphs for target nodes set).

5 Benchmark with existing models

In this section, we evaluate the performance of HIGNN with state-of-the-art
GNN-based and structural heuristic based models.

5.1 Experiment setting

We evaluate our methods on twelve datasets1. Detailed statistics of the twelve
datasets are summarized in table 1. We also report the mean value of edge
and node degree along with its standard derivation. We argue these datasets
represent different scenarios in hypergraphs, including sparse (NDC-classes,
threads-ask), medium (NDC-substance, threads-math), and dense (DAWN,
email-Eu, email-Enron, tags-ask, tags-math, contact-high, contact-primary,
congress) hypergraphs. We believe these datasets form a comprehensive bench-
mark set that will evaluate the performance and robustness of each model. We
only keep the hyperedges containing at least two nodes and generate 5 times
negative hyperedges to the real ones as negative training data for each dataset.

For the comparison with GNN based methods, we use 5-fold cross vali-
dation, and report the mean and standard variation of the F1-score. For the
benchmark with structure heuristic methods, we report the area under curve
(AUC) value of the precision and recall curve as for the direct comparison with
the methods in [9] that also adopts AUC. For the hyper-parameters involved
in HIGNN, we only consider one-hop neighbors of the hyperedge. As shown in

1All data are retrieved from www.cs.cornell.edu/∼arb/data/



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 15

Table 1 Dataset statistics, for edge and node degree, we report the mean value along
with its standard derivation.

Dataset
Statistic

No. Edge No. Node Edge degree Node degree

DAWN 138742 2290 3.987(2.207) 241.554(1055.753)
email-Eu 24399 979 3.488(2.849) 86.935(114.531)
email-Enron 1457 143 3.085(1.942) 31.434(24.058)
NDC-classes 1047 1149 6.115(4.839) 5.572(15.708)
NDC-substances 6264 3438 7.964(5.910) 14.510(42.724)
threads-ask 115987 90054 2.309(0.635) 2.974(21.754)
threads-math 535323 153806 2.610(0.933) 9.087(91.405)
tags-ask 145053 3031 3.427(0.992) 164.558(606.784)
tags-math 169259 1627 3.497(0.945) 363.801(1040.086)
contact-high 7818 327 2.327(0.531) 55.633(27.063)
contact-primary 12704 242 2.419(0.550) 126.979(55.148)
congress 83105 1718 8.812(6.853) 426.261(475.654)

Table 2 Model performance comparison on F1 score of GNN-based methods.

Dataset
Method

HGNN HRGCN NHP FamilySet SetSEAL HIGNN(fSN ) HIGNN(fSN , fLS)

DAWN 0.624(0.010) 0.634(0.003) 0.667(0.000) 0.677(0.004) 0.814(0.013) 0.840(0.012) 0.838(0.010)
email-Eu 0.664(0.003) 0.661(0.006) 0.668(0.002) 0.687(0.002) 0.758(0.011) 0.780(0.010) 0.785(0.011)
email-Enron 0.618(0.032) 0.599(0.040) 0.668(0.001) 0.685(0.016) 0.667(0.032) 0.793(0.007) 0.793(0.016)
NDC-classes 0.614(0.005) 0.676(0.049) 0.669(0.003) 0.768(0.004) 0.822(0.015) 0.880(0.021) 0.896(0.020)
NDC-substances 0.421(0.014) 0.525(0.006) 0.669(0.002) 0.512(0.032) 0.868(0.019) 0.914(0.007) 0.918(0.006)
threads-ask 0.425(0.007) 0.464(0.010) 0.670(0.003) 0.605(0.002) 0.581(0.015) 0.623(0.024) 0.714(0.019)
threads-math 0.453(0.007) 0.487(0.006) 0.669(0.002) 0.586(0.002) 0.483(0.021) 0.627(0.018) 0.654(0.027)
tags-ask 0.545(0.005) 0.545(0.006) 0.669(0.002) 0.605(0.002) 0.798(0.018) 0.823(0.009) 0.822(0.012)
tags-math 0.599(0.009) 0.572(0.003) 0.668(0.002) 0.642(0.006) 0.833(0.015) 0.869(0.006) 0.869(0.006)
contact-high 0.759(0.030) 0.739(0.012) 0.671(0.003) 0.786(0.033) 0.783(0.023) 0.832(0.003) 0.832(0.009)
contact-primary 0.645(0.031) 0.669(0.012) 0.668(0.001) 0.716(0.034) 0.772(0.016) 0.832(0.003) 0.834(0.002)
congress 0.412(0.003) 0.544(0.004) 0.667(0.001) 0.566(0.011) 0.777(0.073) 0.893(0.010) 0.893(0.008)

table 1, most hypergraph are dense graphs, hence the one-hop neighbor would
balance the overall performance and computational cost. For the set neural
network, i.e., Deepsets [54], we retrieved the code from [55] and only modi-

fied the output dimension as 20, i.e., P S
(q) ∈ R∥V S

(q)∥×∥S∥ → XV S
(q)

∈ R∥V S
(q)∥×20.

The bipartite graph neural network has three identical layers, each with a
node→edge and edge→node linear transformation followed by a ReLU activa-
tion. Currently, due to the varied size of a hyperedge (i.e. ∥S∥ ≥ 2), we take
the first two singular values as the input of fLS to keep the uniformity of
HIGNN for hyperedges of different sizes. In our training procedure, we set our
batch size as 50 and applied dropout. Throughout the experiments, we set at
maximum 30 epoches for HIGNN. For all other methods, we slightly tune the
hyperparameters and report the best performance. Detailed codes could be
accessed at: https://github.com/clwan/SNALS.



Springer Nature 2021 LATEX template

16 Ambiguities in Neural-Network-based Hyperedge Prediction

5.2 Benchmark with GNN-based models

Our first baseline method HGNN [30, 35] utilizes the incidence matrix H to
replace A in the representation learning function , i.e.

X l+1 = σ(D−1/2
v HW l

ED
−1
e HTD−1/2

v X lW l
V ).

This approach along with its variants could be regarded as a weighted clique
expansion, and is thus expected to be affected by both ambiguities. The sec-
ond baseline method employes relational graph neural network on node-edge
bipartite expansion (HRGCN) to offset node-level ambiguity [41], but not
hyperedge-level ambiguity. The third baseline, NHP, also takes the general
form of bipartite graph neural network but applies an additional scoring layer
to preserve the higher order properties for hyperedge prediction [42]. As our
fourth baseline, Srinivasan et al. have recently developed a hyperedge family
based representation learning function (FamilySet) [41] that updates node-
/edge-wise embeddings with their nearby nodes/edges, whose representation
function follows

X l+1
E = σ(concat(AEX

l
E ,H

TX l
V )W

l
E)

X l+1
V = σ(concat(AV X

l
V ,HX l

E)W
l
V ),

where AV is the clique expansion that records nearby nodes information. AE

is the line graph for connected hyperedges [56], where AEij
= 1 if ∃v ∈ V s.t

v ∈ Si, v ∈ Sj , otherwise AEij
= 0. The adaptation of clique expansion and

line graph is expected to avoid node-level ambiguity and partially hyperedge-
level ambiguity. For our fifth baseline, we access the methods that deal with
hyperedge-level ambiguity but are affected by node-level ambiguity. A series of
work try to amend such differences in edge presentation by adding additional
affinity labels to each nodes [28, 45, 46, 57]. Among them, SEAL is the SOTA
algorithm in utilizing structure feature as node label for link prediction [28]. To
adopt SEAL in hyperedge prediction, we propose setSEAL that also take the
output of Deepsets [54], i.e., X0

V S
(q)

as node features for graph neural networks

instead of the bipartite graph neural network. SetSEAL is expected to be
affected by node-level ambiguity. For our model HIGNN, we also compare
the performance with or without fLS to illustrate the necessity to add the
spectrum information.

Using 5-fold cross validation, we report the mean and standard devia-
tion of the F1-scores for GNN-based methods in Table 2. SetSEAL shows
better performance than other baseline methods, indicating more profound
impact of hyperedge-level ambiguity over node-level ambiguity. By tack-
ling both node- and hyperedge-level ambiguity, HIGNN on average achieves
big margin performance increase over all baseline methods. Compared with
HIGNN(fSN ), adding local spectrum information, namely, HIGNN(fSN , fLS),
further increases model performance in some datasets while maintaining the
same performance in others.



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 17

Table 3 Model performance comparison on AUC score for HIGNN and heuristic methods
in predicting 2-nodes hyperedges.

Dataset
Method

GM HM AM CN JC AA HIGNN

DAWN 0.557(0.007) 0.609(0.011) 0.609(0.011) 0.783(0.023) 0.759(0.024) 0.786(0.023) 0.838(0.017)
email-Eu 0.630(0.010) 0.700(0.015) 0.700(0.015) 0.866(0.011) 0.867(0.011) 0.870(0.011) 0.887(0.008)
email-Enron 0.769(0.013) 0.830(0.011) 0.830(0.011) 0.855(0.017) 0.882(0.015) 0.869(0.015) 0.902(0.014)
NDC-classes 0.606(0.015) 0.692(0.028) 0.692(0.028) 0.675(0.025) 0.682(0.026) 0.678(0.026) 0.828(0.015)
NDC-substances 0.660(0.010) 0.720(0.012) 0.720(0.012) 0.714(0.018) 0.732(0.022) 0.728(0.020) 0.920(0.015)
threads-ask 0.500(0.000) 0.501(0.001) 0.501(0.001) 0.504(0.002) 0.496(0.002) 0.504(0.002) 0.850(0.031)
threads-math 0.500(0.000) 0.501(0.000) 0.501(0.000) 0.504(0.002) 0.496(0.002) 0.504(0.002) 0.828(0.045)
tags-ask 0.540(0.008) 0.594(0.013) 0.594(0.013) 0.813(0.026) 0.770(0.027) 0.816(0.026) 0.873(0.015)
tags-math 0.554(0.012) 0.629(0.019) 0.629(0.019) 0.884(0.012) 0.841(0.010) 0.886(0.015) 0.887(0.015)
contact-high 0.616(0.003) 0.706(0.004) 0.706(0.004) 0.930(0.005) 0.930(0.004) 0.932(0.005) 0.995(0.001)
contact-primary 0.656(0.006) 0.730(0.006) 0.730(0.006) 0.864(0.004) 0.891(0.001) 0.871(0.004) 0.897(0.002)
congress 0.734(0.015) 0.811(0.014) 0.811(0.014) 0.904(0.009) 0.915(0.007) 0.908(0.008) 0.911(0.009)

Table 4 Model performance comparison on AUC score for HIGNN and heuristic methods
in predicting 3-nodes hyperedges.

Dataset
Method

GM HM AM CN JC AA HIGNN

DAWN 0.896(0.008) 0.924(0.010) 0.943(0.010) 0.935(0.010) 0.918(0.011) 0.937(0.010) 0.971(0.004)
email-Eu 0.935(0.008) 0.951(0.004) 0.970(0.004) 0.948(0.005) 0.942(0.006) 0.949(0.005) 0.984(0.006)
email-Enron 0.969(0.010) 0.793(0.014) 0.973(0.006) 0.944(0.008) 0.949(0.007) 0.949(0.007) 0.982(0.006)
NDC-classes 0.714(0.032) 0.794(0.026) 0.795(0.025) 0.716(0.029) 0.716(0.029) 0.716(0.029) 0.869(0.006)
NDC-substances 0.887(0.017) 0.933(0.011) 0.940(0.012) 0.863(0.015) 0.866(0.017) 0.872(0.015) 0.973(0.009)
threads-ask 0.500(0.001) 0.521(0.005) 0.521(0.005) 0.524(0.008) 0.524(0.008) 0.524(0.008) 0.881(0.036)
threads-math 0.504(0.004) 0.524(0.005) 0.524(0.005) 0.527(0.004) 0.527(0.004) 0.527(0.004) 0.889(0.011)
tags-ask 0.788(0.010) 0.877(0.006) 0.883(0.005) 0.875(0.008) 0.834(0.008) 0.877(0.008) 0.960(0.007)
tags-math 0.877(0.006) 0.927(0.003) 0.940(0.003) 0.927(0.005) 0.969(0.004) 0.929(0.005) 0.978(0.004)
contact-high 0.977(0.004) 0.834(0.009) 0.989(0.002) 0.973(0.005) 0.970(0.006) 0.974(0.005) 0.995(0.001)
contact-primary 0.977(0.003) 0.729(0.010) 0.977(0.003) 0.924(0.003) 0.941(0.002) 0.928(0.003) 0.980(0.001)
congress 0.891(0.007) 0.875(0.008) 0.938(0.011) 0.967(0.009) 0.969(0.008) 0.969(0.009) 0.971(0.006)

5.3 Benchmark with heuristic models

Structural-heuristics-based methods also show comparative performance in
hyperedge prediction. Whereas not following the aggregation form in lemma
3, most of the methods are free from hyperedge-level ambiguity. Shown in a
recent study [9], node-level ambiguity could also be alleviated by involving
higher order heuristics. However, the introduction of higher order information
restrict heuristic methods to predict specific k-size hyperedges. Following [9],
the higher-order information of a hypergraph is accessed by reconstructing
the hypergraph, H = (V,E), into a n−projected graph, Gn = (Vn, En) (defi-
nition 4.1 in [9]). Thus the heuristic methods to extract the presentation of a
hyperedge S in the projected graph Gn are:

• Geometric mean (GM): f(S) = (
∏

en∈En(S) wn(en))
1

∥En(S)∥

• Harmonic mean (HM): f(S) = ∥En(S)∥∑
en∈En(S) wn(S)−1

• Arithmetic mean (AM): f(S) = 1
∥En(S)∥

∑
en∈En(S) wn(en)

• Common neighbors (CN): f(S) = ∩vn∈SNn(vn)

• Jacccard coefficient (JC): f(S) =
∩vn∈SNn(vn)
∪vn∈SNn(vn)

• Adamic-Adar index (AA): f(S) =
∑

un∈∩vn∈SNn(vn)
1

log∥Nn(un)∥



Springer Nature 2021 LATEX template

18 Ambiguities in Neural-Network-based Hyperedge Prediction

Table 5 Model performance comparison on AUC score for HIGNN and heuristic methods
in predicting 4-nodes hyperedges.

Dataset
Method

GM HM AM CN JC AA HIGNN

DAWN 0.977(0.006) 0.919(0.009) 0.987(0.005) 0.967(0.006) 0.955(0.006) 0.968(0.007) 0.988(0.004)
email-Eu 0.977(0.009) 0.881(0.026) 0.991(0.007) 0.962(0.010) 0.958(0.010) 0.963(0.010) 0.992(0.005)
email-Enron 0.982(0.016) 0.943(0.027) 0.983(0.012) 0.949(0.021) 0.947(0.017) 0.953(0.021) 0.902(0.014)
NDC-classes 0.880(0.053) 0.933(0.029) 0.939(0.028) 0.725(0.054) 0.725(0.054) 0.726(0.054) 0.942(0.028)
NDC-substances 0.916(0.016) 0.944(0.012) 0.952(0.014) 0.877(0.014) 0.875(0.018) 0.882(0.015) 0.920(0.015)
threads-ask 0.519(0.011) 0.565(0.029) 0.565(0.029) 0.540(0.005) 0.540(0.005) 0.540(0.005) 0.984(0.005)
threads-math 0.514(0.005) 0.551(0.013) 0.551(0.013) 0.533(0.008) 0.533(0.008) 0.533(0.008) 0.885(0.030)
tags-ask 0.919(0.012) 0.952(0.004) 0.970(0.003) 0.902(0.013) 0.862(0.010) 0.904(0.013) 0.916(0.013)
tags-math 0.969(0.005) 0.961(0.002) 0.989(0.003) 0.934(0.011) 0.905(0.014) 0.936(0.011) 0.994(0.001)
contact-high 1.000(0.000) 0.980(0.017) 1.000(0.000) 0.988(0.004) 0.984(0.984) 0.987(0.004) 1.000(0.000)
contact-primary 0.988(0.001) 0.965(0.008) 0.998(0.001) 0.946(0.014) 0.942(0.013) 0.947(0.013) 0.994(0.005)
congress 0.928(0.021) 0.742(0.038) 0.963(0.008) 0.971(0.010) 0.974(0.008) 0.972(0.010) 0.984(0.005)

Table 6 Model performance comparison on AUC score for HIGNN and heuristic methods
in predicting 5- and 10-nodes hyperedges.

Methods
Data hyperedge size 5 hyeredge size 10

DAWN email-Enron threads-ask threads-math tags-ask tags-math contact-primary DAWN email-Enron

GM 0.987(0.002) 0.998(0.003) 0.500(0.000) 0.517(0.022) 0.958(0.013) 0.982(0.006) 0.989(0.022) 0.999(0.001) 1.000(0.000)
HM 0.911(0.078) 0.969(0.028) 0.550(0.050) 0.603(0.045) 0.963(0.011) 0.871(0.007) 1.000(0.000) 0.828(0.052) 0.993(0.015)
AM 0.996(0.001) 0.977(0.004) 0.550(0.050) 0.603(0.045) 0.984(0.008) 0.992(0.010) 0.989(0.002) 0.999(0.002) 1.000(0.000)
CN 0.961(0.011) 0.978(0.016) 0.522(0.037) 0.561(0.037) 0.905(0.018) 0.926(0.012) 0.956(0.089) 0.927(0.058) 0.891(0.196)
JC 0.950(0.013) 0.964(0.014) 0.522(0.037) 0.560(0.035) 0.865(0.018) 0.898(0.010) 0.989(0.022) 0.903(0.057) 0.782(0.241)
AA 0.962(0.012) 0.977(0.016) 0.522(0.037) 0.561(0.037) 0.908(0.018) 0.928(0.002) 0.956(0.089) 0.928(0.059) 0.910(0.156)

HIGNN 0.992(0.004) 0.998(0.003) 0.881(0.062) 0.946(0.023) 0.994(0.002) 0.995(0.002) 1.000(0.000) 0.999(0.002) 1.000(0.000)

where En(S) := {(un, vn) ∈ En∥un ∈ S and vn ∈ S}. wn(en) is the edge weight
of en ∈ Gn, here we assume every edge share the same weight. Nn(vn) is the
neighbor nodes set of node vn ∈ Vn in Gn.

To achieve a comprehensive comparison with heuristic methods, we conduct
our evaluation on both small sized hyperedges, i.e., 2-, 3-nodes hyperedges,
and bigger sized hyperedges, i.e., 4-, 5-, and 10-nodes hyperedges. We report
the mean and standard variance of AUC of the precision and recall curve. We
report the comparison results on 2-,3-nodes hyperedges in table 3 and 4, the
comparison results on 4-nodes, and 5-, 10-nodes hyperedges in table 5 and 6. As
the results show, though in some cases, heuristic methods show greater perfor-
mance (e.g., predicting 4-nodes hyperedges in email-Enron dataset), HIGNN
still manage to deliver a stable and better results in all prediction scenarios.
Noted, the memory cost of heuristic methods will increase exponentially for
bigger size hyperedges. Owing to the 55G memory limitation of our supercom-
puter, we fail to test some datasets in the bigger hyperedge scenarios (thus
not shown in table 6). Some datasets also miss the 10-size result as they con-
tain very few 10- size hyperedges. For HIGNN, we still trained the model
with mix-sized hyperedges. Noted, this put HIGNN at a disadvantage as it
requires HIGNN to recognise the hyperedge size differences. Overall, HIGNN
showed better performance on most methods, which advocates its efficiency in
hyperedge representation/prediction tasks.

6 Assessment on the components in HIGNN

We propose the theoretical driven HIGNN framework that tackles the ambigui-
ties issues in hyperedge prediction task. Thus, our key ablation design is to test



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 19

Table 7 AUC results of different pooling methods for set neural network.

Datasets
Methods

Max Mean Sum

DAWN 0.888(0.008) 0.936(0.021) 0.956(0.011)
email-Eu 0.862(0.019) 0.930(0.013) 0.940(0.004)
email-Enron 0.952(0.004) 0.940(0.00) 0.956(0.003)
NDC-class 0.865(0.029) 0.930(0.013) 0.957(0.010)
NDC-substance 0.819(0.047) 0.947(0.015) 0.964(0.012)
threads-ask 0.875(0.010) 0.844(0.051) 0.906(0.013)
threads-math 0.893(0.013) 0.892(0.008) 0.888(0.010)
tags-ask 0.885(0.024) 0.877(0.025) 0.941(0.014)
tags-math 0.943(0.016) 0.932(0.019) 0.969(0.007)
contact-high 0.961(0.003) 0.964(0.002) 0.965(0.002)
contact-primary 0.937(0.002) 0.939(0.002) 0.940(0.002)
congress 0.985(0.002) 0.986(0.002) 0.988(0.002)

the performance differences between our method that consider the ambiguities
issue and baseline methods without such considerations. Specially, the baseline
methods HGNN, setSEAL and structural heuristic methods suffer node-level
ambiguity while HRGCN, NHP, and familyset suffer hyperedge-level ambigu-
ity. The performance increase of HIGNN over the baseline methods is listed
in table 2, 3, 4 and 5, which validate our theoretical analysis and advocate
the necessity in considering the ambiguities. We also evaluate the impact of
spectrum information that illustrates its functionality for the task (table 2).
Nonetheless, HIGNN is a complicated framework that utilized many compo-
nents each serving different purposes. Beside the general comparison, in the
rest of the section, we evaluate some other main components in the HIGNN
framework.

6.1 Pooling methods in set neural network

To deal with different size of hyperedge local structure, we introduce set neural
network to compress and standardize such information for each nodes in the
hyperedge local environment. Because of permutation invariant property of S,
any row-wise operation on P S

(q) should also be permutation invariant. SetNN

fits this property perfectly as it regards P S
(q)i:

as a set rather than an ordered

vector. Moreover, most setNN models like Deepsets [54] are very efficient to
train and apply. One important parameter of setNN is the choice of pooling
methods. Theoretically, any permutation invariant pooling methods (max-
/mean-/sum-pooling) would maintain the permutation invariant property of
setNN [54]. As for the case of hyperedge prediction, we recommend using sum-
pooling which could reflect the edge–size information better than max or mean
pooling. We also report their differences in table 7. For most datasets despite
threads-math, sum-pooling enjoys better and stable performance compared
with max and mean pooling.



Springer Nature 2021 LATEX template

20 Ambiguities in Neural-Network-based Hyperedge Prediction

6.2 Normalization on bipartite graph neural network

The non-linear activation function in bipatite graph neural network captures
the non-linear dependency of hyperedge with different edge-degrees, which
introduce additional flexibility to the edge-embedding XE than the clique
expansion based GNNs. Bipartite graph neural network is capable for repre-
senting hyperedge with different edge size. One important step in the bipartite
graph neural network is to normalize node and edge embedding by their degree
or size. Essentially, such normalizations balance the local topological char-
acteristics and degree bias in embedding a single node or edge. Noted, an
over-normalization could eliminate contextual meaningful topological charac-
teristics while none or less normalization causes a degree or size bias, i.e., the
difference of embedding of nodes and edges is not in agreement with its topo-
logical characteristics but heavily influenced by its node degree or edge size. To
test the impact of different levels of normalization on the model performance,
we test the following four normalization scenarios:

Scenario 1: X l+1
E = σ(HTX l

V W
l
E), X

l+1
V = σ(HX l

EW
l
V )

Scenario 2: X l+1
E = σ(HTX l

V D
−1
E WE), X

l+1
V = σ(HX l

EWV )

Scenario 3: X l+1
E = σ(HTX l

V WE), X
l+1
V = σ(D

−1/2
V HX l

ED
−1/2
V WV )

Scenario 4:X l+1
E = σ(HTX l

V D
−1
E WE),X

l+1
V = σ(D

−1/2
V HX l

ED
−1/2
V WV )

Specifically, scenario 1 corresponds to none normalization on both node and
edge, which relies on WE and WV to compensate the degree impact. Scenario
2 and 3 that correspond to conducting the normalization on only edge-side or
node-side, respectively. And scenario 4 normalizes both edge- and node-side.
We compare the impact of the four normalization scenarios on HIGNN on the
benchmark datasets by fixing all other parameters.

We report the AUC results of different normalization scenarios for differ-
ent hypergraph data in table 8. Compared with none (scenario 1), node-side
(scenario 3) and two-side normalization (scenario 4), edge-side normalization
(scenario 2) consistently shows a better performance in all the eight bench-
mark datasets. Empirically, we argue that the one-side normalization would
better balance the information loss and degree bias, such that it outperforms
scenario 1 and 4. For the better performance of scenario 2 than scenario 3, we
speculate a major reason is that we utilize the node-embedding rather than
edge embedding to predict hyperedge. By omitting the normalization on node-
side, the pipeline would take advantage of node embedding difference for a
better prediction. Such that, in HIGNN, we utilize the edge-size normalization
scheme for the updating of node and edge embedding. We also notice other
works that introduce latent parameters to control the normalization [32]. This
framework could certainly integrated in further improvement of HIGNN.

7 Application on predicting DNA interactions

Genetic interactions are higher-order connections that involve multiple entities,
such as gene, enhancer, promoter, et al [15–17]. Current methods for analyzing



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 21

Table 8 AUC results of different normalization scenarios for different hypergraph data.

Datasets
Methods

Scenario 1 Scenario 2 Scenario 3 Scenario 4

DAWN 0.945(0.006) 0.956(0.011) 0.941(0.006) 0.950(0.006)
email-Eu 0.930(0.013) 0.940(0.004) 0.939(0.005) 0.939(0.005)
email-Enron 0.952(0.005) 0.956(0.003) 0.952(0.005) 0.946(0.005)
NDC-class 0.933(0.013) 0.957(0.010) 0.936(0.014) 0.933(0.019)
NDC-substance 0.967(0.007) 0.964(0.012) 0.956(0.012) 0.960(0.019)
threads-ask 0.920(0.008) 0.906(0.013) 0.867(0.041) 0.857(0.049)
threads-math 0.893(0.007) 0.888(0.010) 0.880(0.013) 0.874(0.017)
tags-ask 0.945(0.011) 0.941(0.014) 0.914(0.026) 0.928(0.017)
tags-math 0.959(0.013) 0.969(0.007) 0.943(0.026) 0.967(0.008)
contact-high 0.964(0.001) 0.965(0.002) 0.964(0.002) 0.965(0.002)
contact-primary 0.939(0.002) 0.940(0.002) 0.939(0.002) 0.939(0.002)
congress 0.988(0.002) 0.988(0.002) 0.988(0.002) 0.988(0.003)

the genome organization data are still limited to pair-wise connections, while
efficient tools/methods are lacking for the exploration of higher order inter-
actions in 3D genome data [10, 58, 59]. As a proof of concept study, here we
utilize HIGNN to predict the genome higher-order interactions (hyperedge) of
mouse embryonic cells. We retrieve the hypergraph of each mouse chromosome
from 3D genome connection data in [10]. We first compare the performance
of HIGNN with the strongest baseline setSEAL, HIGNN achieves better and
more stable performance with the strongest baseline setSEAL. Similarly, we
only keep the hyperedges that have at least two nodes, and construct the neg-
ative training data by generating five negative hyperedges for each hyperedge
observed. We first test whether our model could achieve consistent performance
across different chromosomes. For each of the 17 autosomals in mouse genome,
we randomly select 5 autosomals to study the interactions, resulting in 85 × 85
pair-wise cross validations. We compare HIGNN with the strongest baseline
method setSEAL and report the Area under ROC curve (AUC) in figure 6A.
In general, HIGNN outperforms setSEAL across all the test conditions. More
importantly, the performance of HIGNN is very stable, since it does show any
bias towards specific chromosomes, unlike setSEAL on chromosome 2 and 17.

We then apply HIGNN to predict the 4-way genetic interactions in chromo-
some 11. One hyperedge corresponding to the interactions of the bin elements
5521, 5589, 5602, 5630, is predicted by HIGNN that is not captured by original
assay. These bins are located within the same topological associated domain
[60]. We also find genes Map2k6, Kcnj2 and enhancer E0524334 are located
within 5521, 5589, 5602 (figure 6B). The co-regulation in expression of Map2k6
and Kcnj2 has been experimentally reported in [61]. Together, these indicate
that the co-regulation may be a result of the same enhancer. In summary, we
demonstrate the reliability of HIGNN in predicting genetic higher-order inter-
actions, as well as the potential of using hyperedge prediction to fully evaluate
the effect of higher-order genetic interactions.



Springer Nature 2021 LATEX template

22 Ambiguities in Neural-Network-based Hyperedge Prediction

Fig. 6 HIGNN gives plausible prediction of higher order genetic interaction.

8 Discussion

In this paper, we have discussed the ambiguity issues for current model in
hyperedge structural representing tasks, i.e., node- and hyperedge-level ambi-
guities. Motivated by such derivation and previous works we present HIGNN
framework to predict higher-order interactions in hypergraph. In doing so,
HIGNN utilizes bipartite graph neural network to avoid node-ambiguity caused
by different arrangment of hyperedges and applying structure features to alle-
viate edge ambiguity introduced by aggregating based methods. Moreover,
HIGNN retrieves the spectrum information of the structure features, reflecting
the joint interaction between the hyperedge and its local environment. Such
information is hard to be learned under the framework of current graph neu-
ral network. Such that, HIGNN achieves better performance over most recent
models. Though HIGNN provides a plausible solution for hyperedge represena-
tion tasks. There are still rooms to achieve the exact partition, Πf (S) ≈ ΠI(S).
For example, the structural features is rooted from pair-wise affinity, the
expressive power is in term limited for the clique expansion of hypergraph.
Introducing higher-order structural features is likely to strength presentation
as combining higher order heuristics improves prediction accuracy for empirical
methods. Currently the structural features also limited to the q <= 2 neigh-
bors due to concern of computational efficiency. Incorporating more distant
neighbors like q > 4 would also potentially enhance the precision in hyperedge
representation [9, 62].

9 Acknowledgement

The work is supported by NSF DBI IIBR 2047631 (CZ), NSF IIS 2145314
(SC), NSF IIS 2239565 (PL), and American Cancer Society RSG-22-062-01-
MM (CZ). On behalf of all authors, the corresponding authors state that there
is no conflict of interest.

References

[1] Csermely, P., Agoston, V., Pongor, S.: The efficiency of multi-target drugs:
the network approach might help drug design. Trends in pharmacological



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 23

sciences 26(4), 178–182 (2005)

[2] Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social
networks. Journal of the American society for information science and
technology 58(7) (2007)

[3] Fortunato, S.: Community detection in graphs. Physics reports 486(3-5),
75–174 (2010)

[4] Lü, L., Medo, M., Yeung, C.H., Zhang, Y.-C., Zhang, Z.-K., Zhou, T.:
Recommender systems. Physics reports 519(1), 1–49 (2012)

[5] Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of
complex networks. Science 353(6295) (2016)

[6] Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.:
Simplicial closure and higher-order link prediction. Proceedings of the
National Academy of Sciences 115(48), 11221–11230 (2018)

[7] Li, P., Dau, H., Puleo, G., Milenkovic, O.: Motif clustering and over-
lapping clustering for social network analysis. In: INFOCOM 2017-IEEE
Conference on Computer Communications, IEEE, pp. 1–9 (2017). IEEE

[8] Benson, A.R., Gleich, D.F., Higham, D.J.: Higher-order network anal-
ysis takes off, fueled by classical ideas and new data. arXiv preprint
arXiv:2103.05031 (2021)

[9] Yoon, S.-e., Song, H., Shin, K., Yi, Y.: How much and when do we
need higher-order information in hypergraphs? a case study on hyperedge
prediction. In: Proceedings of The Web Conference (2020)

[10] Quinodoz, S.A., Ollikainen, N., Tabak, B., Palla, A., Schmidt, J.M.,
Detmar, E., Lai, M.M., Shishkin, A.A., Bhat, P., Takei, Y., et al.:
Higher-order inter-chromosomal hubs shape 3d genome organization in
the nucleus. Cell 174(3), 744–757 (2018)

[11] Lambiotte, R., Rosvall, M., Scholtes, I.: From networks to optimal higher-
order models of complex systems. Nature physics 15(4), 313–320 (2019)

[12] Alon, U.: Network motifs: theory and experimental approaches. Nature
Reviews Genetics 8(6), 450–461 (2007)

[13] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon,
U.: Network motifs: simple building blocks of complex networks. Science
298(5594), 824–827 (2002)

[14] Schaub, M.T., Zhu, Y., Seby, J.-B., Roddenberry, T.M., Segarra, S.: Signal
processing on higher-order networks: Livin’on the edge... and beyond.



Springer Nature 2021 LATEX template

24 Ambiguities in Neural-Network-based Hyperedge Prediction

Signal Processing (2021)

[15] Cramer, P.: Organization and regulation of gene transcription. Nature
573(7772), 45–54 (2019)

[16] Sutherland, H., Bickmore, W.A.: Transcription factories: gene expression
in unions? Nature Reviews Genetics 10(7), 457–466 (2009)

[17] Yu, M., Ren, B.: The three-dimensional organization of mammalian
genomes. Annual review of cell and developmental biology 33, 265–289
(2017)

[18] Jiménez-Luna, J., Grisoni, F., Schneider, G.: Drug discovery with explain-
able artificial intelligence. Nature Machine Intelligence 2(10), 573–584
(2020)

[19] Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: A dynamic recurrent model for
next basket recommendation. In: Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 729–732 (2016)

[20] Zhang, M., Cui, Z., Jiang, S., Chen, Y.: Beyond link prediction: Predicting
hyperlinks in adjacency space. In: AAAI (2018)

[21] Berge, C.: Hypergraphs: Combinatorics of Finite Sets vol. 45. Elsevier,
??? (1984)

[22] Su, J.-H., Zheng, P., Kinrot, S.S., Bintu, B., Zhuang, X.: Genome-scale
imaging of the 3d organization and transcriptional activity of chromatin.
Cell 182(6), 1641–1659 (2020)

[23] Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Clus-
tering, classification, and embedding. Advances in neural information
processing systems 19, 1601–1608 (2006)

[24] Nassar, H., Benson, A.R., Gleich, D.F.: Neighborhood and pagerank
methods for pairwise link prediction. Social Network Analysis and Mining
10(1), 1–13 (2020)

[25] Hein, M., Setzer, S., Jost, L., Rangapuram, S.S.: The total variation on
hypergraphs-learning on hypergraphs revisited. In: Advances in Neural
Information Processing Systems, pp. 2427–2435 (2013)

[26] Liu, Y., Ma, J., Li, P.: Neural predicting higher-order patterns in temporal
networks. In: Proceedings of the ACM Web Conference 2022, pp. 1340–
1351 (2022)

[27] Fountoulakis, K., Li, P., Yang, S.: Local hyper-flow diffusion. Advances



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 25

in Neural Information Processing Systems 34 (2021)

[28] Zhang, M., Chen, Y.: Link prediction based on graph neural networks.
In: NeurIPS (2018)

[29] Zhang, M., Li, P., Xia, Y., Wang, K., Jin, L.: Labeling trick: A theory
of using graph neural networks for multi-node representation learning.
Advances in Neural Information Processing Systems 34 (2021)

[30] Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks.
In: AAAI (2019)

[31] Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar,
P.: Hypergcn: A new method for training graph convolutional networks
on hypergraphs. Advances in neural information processing systems 32
(2019)

[32] Dong, Y., Sawin, W., Bengio, Y.: Hnhn: Hypergraph networks with
hyperedge neurons. arXiv preprint arXiv:2006.12278 (2020)

[33] Huang, J., Yang, J.: Unignn: a unified framework for graph and hyper-
graph neural networks. arXiv preprint arXiv:2105.00956 (2021)

[34] Chien, E., Pan, C., Peng, J., Milenkovic, O.: You are allset: A multi-
set function framework for hypergraph neural networks. In: International
Conference on Learning Representations (2022)

[35] Bai, S., Zhang, F., Torr, P.H.: Hypergraph convolution and hypergraph
attention. Pattern Recognition 110, 107637 (2021)

[36] Arya, D., Gupta, D.K., Rudinac, S., Worring, M.: Hypersage: General-
izing inductive representation learning on hypergraphs. arXiv preprint
arXiv:2010.04558 (2020)

[37] Yadati, N.: Neural message passing for multi-relational ordered and recur-
sive hypergraphs. Advances in Neural Information Processing Systems 33,
3275–3289 (2020)

[38] Yang, C., Wang, R., Yao, S., Abdelzaher, T.: Hypergraph learning with
line expansion. arXiv preprint arXiv:2005.04843 (2020)

[39] Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W.: Structural deep embedding
for hyper-networks. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32 (2018)

[40] Jiang, J., Wei, Y., Feng, Y., Cao, J., Gao, Y.: Dynamic hypergraph neural
networks. In: IJCAI (2019)



Springer Nature 2021 LATEX template

26 Ambiguities in Neural-Network-based Hyperedge Prediction

[41] Srinivasan, B., Zheng, D., Karypis, G.: Learning over families of sets-
hypergraph representation learning for higher order tasks. In: Proceedings
of the 2021 SIAM International Conference on Data Mining (SDM), pp.
756–764 (2021). SIAM

[42] Yadati, N., Nitin, V., Nimishakavi, M., Yadav, P., Louis, A., Talukdar,
P.: Nhp: Neural hypergraph link prediction. In: KDD (2020)

[43] You, J., Ying, R., Leskovec, J.: Position-aware graph neural networks.
In: International Conference on Machine Learning, pp. 7134–7143 (2019).
PMLR

[44] Srinivasan, B., Ribeiro, B.: On the equivalence between positional node
embeddings and structural graph representations. In: ICLR (2020)

[45] Li, P., Wang, Y., Wang, H., Leskovec, J.: Distance encoding: Design prov-
ably more powerful neural networks for graph representation learning. In:
NeurIPS (2020)

[46] Srinivasan, B., Ribeiro, B.: On the equivalence between positional
node embeddings and structural graph representations. arXiv preprint
arXiv:1910.00452 (2019)

[47] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convo-
lutional networks. In: ICLR (2017)

[48] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning
on large graphs. In: NeurIPS (2017)

[49] Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Cluster-
ing, classification, and embedding. In: Advances in Neural Information
Processing Systems, pp. 1601–1608 (2007)

[50] Maron, H., Ben-Hamu, H., Serviansky, H., Lipman, Y.: Provably powerful
graph networks. In: Advances in Neural Information Processing Systems
(2019)

[51] Morris, C., Rattan, G., Mutzel, P.: Weisfeiler and leman go sparse:
Towards scalable higher-order graph embeddings. Advances in Neural
Information Processing Systems 33 (2020)

[52] Azizian, W., Lelarge, M.: Expressive power of invariant and equivariant
graph neural networks. arXiv preprint arXiv:2006.15646 (2020)

[53] Cotta, L., Teixeira, C.H., Swami, A., Ribeiro, B.: Unsupervised joint k-
node graph representations with compositional energy-based models. In:
NeurIPS (2020)



Springer Nature 2021 LATEX template

Ambiguities in Neural-Network-based Hyperedge Prediction 27

[54] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.,
Smola, A.: Deep sets. arXiv preprint arXiv:1703.06114 (2017)

[55] Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set
transformer: A framework for attention-based permutation-invariant neu-
ral networks. In: International Conference on Machine Learning, pp.
3744–3753 (2019). PMLR

[56] Tyshkevich, R., Zverovich, V.E.: Line hypergraphs. Discrete Mathematics
161(1-3), 265–283 (1996)

[57] Zhang, M., Li, P., Xia, Y., Wang, K., Jin, L.: Revisiting graph neural
networks for link prediction. arXiv preprint arXiv:2010.16103 (2020)

[58] Beagrie, R.A., Scialdone, A., Schueler, M., Kraemer, D.C., Chotalia, M.,
Xie, S.Q., Barbieri, M., de Santiago, I., Lavitas, L.-M., Branco, M.R., et
al.: Complex multi-enhancer contacts captured by genome architecture
mapping. Nature 543(7646), 519–524 (2017)

[59] Tavares-Cadete, F., Norouzi, D., Dekker, B., Liu, Y., Dekker, J.: Multi-
contact 3c reveals that the human genome during interphase is largely
not entangled. Nature Structural & Molecular Biology 27(12), 1105–1114
(2020)

[60] Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu,
J.S., Ren, B.: Topological domains in mammalian genomes identified by
analysis of chromatin interactions. Nature 485(7398), 376–380 (2012)

[61] Melo, U.S., Schöpflin, R., Acuna-Hidalgo, R., Mensah, M.A., Fischer-
Zirnsak, B., Holtgrewe, M., Klever, M.-K., Türkmen, S., Heinrich, V.,
Pluym, I.D., et al.: Hi-c identifies complex genomic rearrangements and
tad-shuffling in developmental diseases. The American Journal of Human
Genetics 106(6), 872–884 (2020)

[62] Huang, J., Chen, C., Ye, F., Hu, W., Zheng, Z.: Nonuniform hyper-
network embedding with dual mechanism. ACM Transactions on Infor-
mation Systems (TOIS) 38(3), 1–18 (2020)


	Introduction
	The two ambiguities in hyperedge representation
	Objective of hyperedge prediction
	Heuristics and GNNs for hyperedge prediction
	Node-level ambiguity
	Hyperedge-level ambiguity

	Methodology
	Bipartite message passing neural network.
	Hyperedge-specific node structural features

	HIGNN for hyperedge prediction
	Structural representing neural network
	Spectrum of the structure feature matrix
	Discussion on complexity

	Benchmark with existing models
	Experiment setting
	Benchmark with GNN-based models
	Benchmark with heuristic models

	Assessment on the components in HIGNN
	Pooling methods in set neural network
	Normalization on bipartite graph neural network

	Application on predicting DNA interactions
	Discussion
	Acknowledgement

