

Association of amyloid and cardiovascular risk with cognition: Findings from KBASE

Soumilee Chaudhuri^{1,2,3} | Desarae A. Dempsey^{1,2,3} | Yen-Ning Huang^{1,2} |
 Tamina Park^{1,2} | Sha Cao^{2,4} | Evgeny J. Chumin^{1,2} | Hannah Craft^{1,2} |
 Paul K. Crane⁵ | Shubhabrata Mukherjee⁵ | Seo-Eun Choi⁵ | Phoebe Scollard⁵ |
 Michael Lee⁵ | Connie Nakano⁵ | Jesse Mez⁶ | Emily H. Trittschuh^{7,8} |
 Brandon S. Klinedinst⁹ | Timothy J. Hohman¹⁰ | Jun-Young Lee¹¹ | Koun Mi Kang¹² |
 Chul-Ho Sohn¹² | Yu Kyeong Kim¹³ | Dahyun Yi¹⁴ | Min Soo Byun^{15,16} |
 Shannon L. Risacher^{1,2,3} | Kwangsik Nho^{1,2,17} | Andrew J. Saykin^{1,2,3,18} |
 Dong Young Lee^{14,15,16} | for the KBASE Research Group

¹Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA

²Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA

³Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA

⁴Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA

⁵Department of Medicine, University of Washington, Seattle, Washington, USA

⁶Department of Neurology, Boston University, Boston, Massachusetts, USA

⁷Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA

⁸Geriatrics Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA

⁹Department of General Internal Medicine, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington, USA

¹⁰Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA

¹¹Department of Neuropsychiatry, SMGSNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea

¹²Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea

¹³Department of Nuclear Medicine, SMGSNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea

¹⁴Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Jongno-gu, Seoul, Republic of Korea

¹⁵Department of Neuropsychiatry, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea

¹⁶Department of Psychiatry, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea

¹⁷School of Informatics and Computing, Indiana University, Indianapolis, Indiana, USA

¹⁸Department of Medical and Molecular Genetics, Medical Research and Library Building, Indiana University School of Medicine, Indianapolis, Indiana, USA

Correspondence

Andrew J. Saykin and Kwangsik Nho, Center for Neuroimaging, 355 W 16th Street, Goodman Hall Ste 4100, Indianapolis, IN 46202, USA.
Email: asaykin@iu.edu and knho@iu.edu

Abstract

BACKGROUND: Limited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians.

Soumilee Chaudhuri and Desarae A. Dempsey contributed equally to this study.

This is an open access article under the terms of the [Creative Commons Attribution](#) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Author(s). *Alzheimer's & Dementia* published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

Dong Young Lee, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
Email: sefpsy@snu.ac.kr

Funding information

NIH, Grant/Award Numbers: P30 AG010133, P30 AG072976, R01 AG019771, R01 AG057739, U19 AG024904, R01 LM013463, R01 AG068193, T32 AG071444, U01 AG068057, U01 AG072177, U19 AG074879; New Faculty Startup Fund, Seoul National University; Korean government, Grant/Award Numbers: NRF-2014M3C7A1046042, HI18C0630, HI19C0149, RS-2022-00165636, RS-2023-KH136195; ADNI Health Equity Scholarship Program, subaward of NIA, Grant/Award Number: U01AG072177

METHODS: Vascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally.

RESULTS: Baseline analyses revealed that amyloid-negative ($A\beta^-$) cognitively normal (CN) individuals with high FRS had lower cognition compared to $A\beta^-$ CN individuals with low FRS ($p < 0.0001$). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups.

CONCLUSION: Our findings indicate that managing vascular risk may be crucial in preserving cognition in $A\beta^-$ individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid-positive individuals had worse cognitive performance than $A\beta^-$ individuals.

KEY WORDS

Alzheimer's disease, amyloid, CN, cognition, Framingham Risk Score, Korean older adults, longitudinal, MCI, vascular risk factors

Highlights

- Vascular risk significantly affects cognition in amyloid-negative older Koreans.
- Amyloid-negative CN older adults with high vascular risk had lower baseline cognition.
- Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk.
- The study underscores the impact of vascular health on the AD disease spectrum.

1 | BACKGROUND

Prevention of Alzheimer's disease (AD) by targeting modifiable vascular risk factors has been a focal point of study in the absence of an effective and safe treatment strategy.^{1–3} Both the American Heart Association (AHA) and Lancet Committee have identified lifestyle (smoking, diet, etc.) and biological (blood pressure, total cholesterol [TC], etc.) metrics conducive to vascular health and dementia prevention.^{4,5} While these vascular risk factors have been associated with cognitive decline, individually and through systemic cardiovascular measures such as the Framingham General Cardiovascular Risk Score (FRS),^{6–8} most of these studies have predominantly focused on non-Hispanic white (NHW) populations in Western countries.^{3,9–17}

By 2030, dementia is projected to increase by 107% in Asia, with high regional variation in dementia and cardiovascular disease (CVD) burden in different East Asia countries.^{18–21} South Korea has one of the most rapidly aging populations and a higher prevalence of dementia and CVD burden than most Asian and Western countries.^{22–25} Several studies within this region have noted a high incidence of CV risk being associated with cognitive decline and increased risk for AD.^{26–30} However, these findings have been conflicting and primarily focused on singular CV risk factors that influence dementia in

Koreans.^{31–36} Few studies in this region have investigated the relationship between vascular risk and cognition and their interplay with amyloid, a pathophysiological hallmark of AD.

Within North America, while some studies have demonstrated a positive correlation between CV risk and cognitive decline in East Asian subgroups,^{30,32,37–42} these findings have been inconsistent^{3,10,11,13,43} as well. Thus, there is a significant gap in understanding how CV risk affects cognition based on amyloid pathology in the AD spectrum among older Korean adults due to the limited number of longitudinal dementia studies focusing specifically on East Asian or East Asian American populations. Understanding the relationship between vascular risk, amyloid pathology, and cognition in specific East Asian subgroups is crucial due to variations in the prevalence and impact of modifiable vascular risk factors as well as racial and ethnic differences in amyloid pathology presentation among these groups.^{44–47}

Recognizing these needs, we leveraged the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) data to focus on understanding vascular risk and cognition in a specific Asian subgroup: older Korean adults. KBASE is an initiative modeled after the Alzheimer's Disease Neuroimaging Initiative (ADNI),⁴⁸ and this particular study utilized cardiometabolic variables

and the amyloid status of participants in KBASE over 4 years. This study could inform further iterations of ADNI as well as future clinical practice, particularly in the realm of intervention strategies tailored to East Asian American diasporas. Moreover, this study is crucial as it provides (1) valuable insights into the broader East Asian context, as well as (2) significant implications for Asian American subgroups in North America regarding the association of CV risk and amyloid with longitudinal cognitive decline.

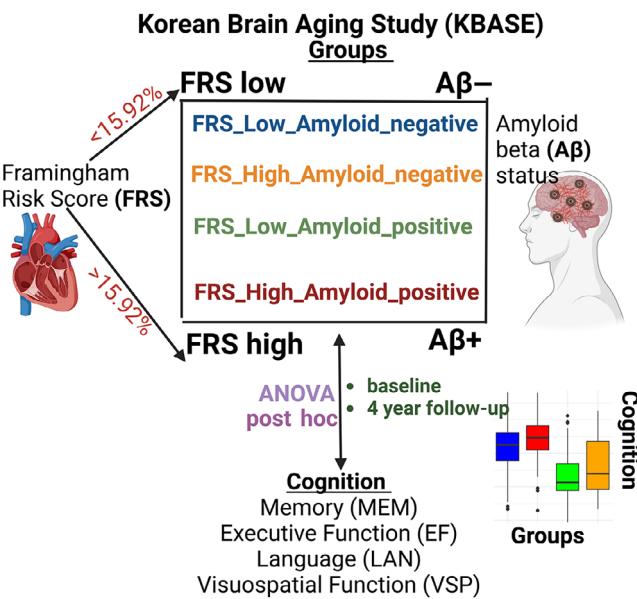
Therefore, our overall goal was to understand how vascular risk and amyloid pathology influence cognitive decline among older Korean adults. Specifically, vascular burden was quantified using the FRS, and participants were categorized into four groups based on combinations of FRS (FRS high or FRS low with a median split) and amyloid status (amyloid beta $\text{A}\beta+$ or $\text{A}\beta-$ based on a cutoff of 1.24 standardized uptake value ratio [SUVR]). Cognitive function was evaluated using standardized neuropsychological tests processed with structural equation models to produce domain scores for memory, executive functioning, language, and visuospatial function. Analysis of variance (ANOVA) was employed at baseline to analyze cognitive differences among these groups within three clinical diagnosis groups. Longitudinal mixed-effects models spanning 4 years from the initial visit captured cognitive changes within these groups. We hypothesized that higher CV risk, as measured by the FRS, will be associated with greater amyloid burden and poorer cognitive status over time, with these associations varying by clinical diagnosis.

2 | METHODS

2.1 | Study population

The data presented in this article were collected as part of the first iteration of the KBASE, an ongoing prospective study that began in 2014. The KBASE study protocol was approved by the Institutional Review Boards of Seoul National University Hospital and Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Center (Seoul, South Korea) and conducted in accordance with the Declaration of Helsinki. A total of 526 individuals (cognitively normal [CN] = 286, mild cognitive impairment [MCI] = 148, and AD = 92), who participated in the KBASE study between 2014 and 2018 were included. These participants had complete baseline information for amyloid positron emission tomography (PET) imaging, cognitive tests, and cardiometabolic variables such as body mass index (BMI), TC, blood pressure (BP), and so forth. Participants' ages ranged from 55 to 90 years. Young CN individuals, below age 55, were excluded from the study sample for analysis but were used for determination of amyloid positivity.

The CN participants had no diagnosis of MCI or dementia and a Clinical Dementia Rating (CDR) score of 0. Participants with MCI had a global CDR of 0.5 and fulfilled the core clinical criteria for diagnosis of MCI according to the recommendations of the National Institute on Aging-Alzheimer's Association guidelines (NIA-AA).⁴⁹ Participants with AD dementia had a global CDR score of 0.5 or 1 and met the cri-


RESEARCH IN CONTEXT

1. **Systematic review:** The authors reviewed the literature using traditional sources like PubMed and found limited publications investigating the relationship between cardiovascular risk and amyloid pathology in Alzheimer's disease (AD) in East Asians.
2. **Interpretation:** Our study revealed distinct cognitive effects based on vascular risk and amyloid status in older Korean adults. In cognitively normal (CN) individuals, those with high vascular risk and low amyloid had worse cognition than those with low vascular risk and low amyloid. Longitudinally, amyloid pathology predominantly drove cognitive decline, while vascular risk alone or with amyloid had negligible effects on cognition.
3. **Future directions:** Our study enhances the understanding of vascular risk in AD progression in a diverse East Asian population with low vascular burden. The differential role of vascular risk and amyloid pathology in cognition across the AD spectrum warrants attention. Additionally, exploring associations of amyloid and vascular risk in pre-symptomatic stages could help identify early intervention targets.

teria for dementia in accordance with the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision (DSM-IV-TR), and the criteria for probable AD dementia in accordance with the NIA-AA.⁵⁰ The exclusion criteria were (1) the presence of any psychiatric or neurological disorders that could affect mental function, (2) severe communication problems that would make assessments or brain scans difficult, (3) contraindications for magnetic resonance imaging (MRI) scanning, (4) absence of a reliable informant, or (5) being illiterate. Details of the KBASE cohorts and recruitment and exclusion criteria have previously been described.⁵¹ Demographic characteristics (age, sex, and education) were from self-reports. A visual summary of our study methods is presented in Figure 1.

2.2 | Cognitive function assessments

As previously described, participants underwent comprehensive neuropsychological testing, following a standardized protocol incorporating the Consortium to Establish a Registry for Alzheimer's Disease, Korean version (CERAD-K) neuropsychological battery.^{51,52} Cognitive composite scores were created and harmonized using the same workflow as previously described.⁵³ Briefly, items administered were categorized into memory, executive functioning, visuospatial function, language, or none of these domains. Investigators ensured identical scoring of anchor items to previous English-based studies. Anchor items were those identified as having been administered and scored

FIGURE 1 Overall study design. Vascular burden was quantified using the Framingham General Cardiovascular Risk Score (FRS), and participants were categorized into four groups based on combinations of FRS (FRS high or FRS low with a median split) and amyloid status (A β + or A β - based on a cutoff of 1.2373). Cognitive function was evaluated using standardized neuropsychological tests processed with structural equation models to produce domain scores for memory, executive functioning, language, and visuospatial. Analysis of variance was employed at baseline to analyze cognitive differences among these groups and within each clinical diagnosis. Longitudinal mixed-effects models spanning 4 years from the initial visit captured cognitive changes within these groups. A β , amyloid beta; ANOVA, analysis of variance; EXF, composite score for executive functioning; FRS, Framingham General Cardiovascular Risk Score; KBASE, Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease; LAN, composite score for language; MEM, composite score for memory; VSP, composite score for visuospatial functioning.

identically in the Korean and English-based test versions. We generated cognitive scores that were on the same scale, enabling comparisons across domains as well as other Alzheimer's study cohorts such as the ADNI. Full details pertaining to the harmonization and co-calibration scoring and analysis for KBASE can be found in the *Supplementary Materials*.

This study focused on key cognitive function metrics: baseline cognitive function and longitudinal trajectory of cognitive decline. Baseline cognitive function was determined using the harmonized scores from participants' initial cognitive assessments. These baseline cognition scores, pertaining to each of the four cognitive domains, were subsequently used as endophenotypes in our analyses.

2.3 | CV risk factors

The presence of vascular risk factors (VRFs), including diabetes (Diab), hypertension (HTN), dyslipidemia (HLD), coronary artery disease (CAD), transient ischemic attack (TIA), and stroke, was assessed from

data collected during systematic interviews by trained nurses with participants and their informants. Smoking status (never/former/smoker) was evaluated through interviews with nurses. BMI was calculated as weight in kilograms divided by the square of the height in meters. It was measured at the baseline visit. Trained research nurses measured the participants' height and body weight using standard anthropometric methods.

Vascular burden was quantified using the FRS. The FRS is an aggregated sex-specific measure of CV burden constructed based on age, TC, high-density lipoprotein (HDL) cholesterol, systolic and diastolic pressures, smoking, and diabetes.^{54,55} The FRS, defined as the risk of having a 10-year risk of coronary heart disease (CAD), has been reported to be associated with cognitive decline and brain pathology; it is a widely reported standardized measure of systemic vascular risk.⁵⁶ Several meta-analyses have validated the FRS in multiethnic populations, finding that the FRS works well in populations with Asian ancestry.^{57,58} This version of the score has been validated and employed in numerous prior studies.^{14–17,56,59–61} We had a median FRS of 15.92%, and participants below that threshold were characterized into the FRS low group for analyses. The specific variables used in the FRS are displayed and quantified in Table 1.

2.4 | Amyloid neuroimaging biomarkers

2.4.1 | Amyloid PET image acquisition

The details of amyloid PET image acquisition have been described previously.⁵¹ Participants underwent simultaneous 3D [11C] Pittsburgh Compound B [PiB]-PET and 3D T1-weighted MRI using the 3.0 T PET-MR scanner. After intravenous administration of ~555 MBq of [11C] PiB (range, 450 to 610 MBq), and a 40-min uptake period, a 30-min emission scan was obtained (4- to 5-min frames). PiB-PET data were collected in list mode and processed for routine corrections such as uniformity, ultrashort echo time (UTE)-based attenuation, and decay corrections, and were reconstructed into a 256 \times 256 image matrix using iterative methods (six iterations with 21 subsets).

2.4.2 | Amyloid PET image processing

PiB-PET images for the KBASE cohort were preprocessed with Statistical Parametric Mapping 12 (SPM12); <https://www.fil.ion.ucl.ac.uk/spm/software/spm12/>. First, 40- to 70-min static PiB-PET images were created with motion correction between frames. Each participant's static PiB-PET images were co-registered with each individual's T1 structural image from the same visit. Next, voxel-based segmentation of the T1 images generated transformation matrices to normalize each T1 image to standard Montreal Neurological Institute (MNI) space. The transformation matrices were then used to normalize the aligned static PiB-PET images to MNI space. Finally, normalized PiB-PET scans were intensity normalized to create SUVR images, using a cerebellar grey matter region of interest (ROI) from the Centiloid project (<https://www.gaan.org/centiloid-project>)⁶²; and

TABLE 1 Participant characteristics at baseline in mean (SD).

Characteristic	Mean (SD)				
	CN (N = 286)	MCI (N = 148)	AD (N = 92)	Total (N = 526)	p-value ^a
Age, years	69.02 (8.05)	73.51 (6.91)	72.50 (7.69)	70.89 (7.94)	<0.0001
Age range, years	55–87	55–90	55–85	55–90	NA
Female no. (%)	48.60	34.46	31.52	41.63	<0.01
Education, years	11.92 (4.82)	10.24 (4.50)	9.59 (5.42)	11.04 (4.94)	<0.0001
A β positive (%)	4.21	35.13	68.48	24.19	<0.0001
APOE ϵ 4 carriers (%)	18.53	39.86	57.61	31.37	<0.0001
Framingham General Cardiovascular Risk Score (FRS) variables					
FRS (%)	16.69 (10.13)	21.47 (12.27)	19.45 (10.99)	18.52 (11.10)	<0.001
Systolic blood pressure, mm Hg	125.63 (16.85)	124.68 (16.62)	128.61 (17.17)	123.75 (16.57)	0.74
Diabetes (%)	16.43	18.92	15.22	16.92	0.72
Current smoker (%)	6.99	2.70	4.35	5.32	0.15
Treatment with anti-hypertensive medication (%)	44.75	52.70	38.04	45.82	0.07
HDL cholesterol	53.83 (14.23)	55.37 (12.98)	56.27 (13.00)	54.69 (13.69)	0.10
Total cholesterol	185.50 (35.05)	186.26 (40.63)	192.81 (44.57)	186.99 (38.48)	0.15
Other cardiometabolic variables					
BMI	24.21 (2.98)	24.76 (3.13)	23.82 (2.60)	24.30 (3.15)	0.73
LDL cholesterol	108.91 (29.77)	108.97 (37.81)	115.04 (41.50)	110.00 (34.43)	0.20
CAD (%)	5.24	4.05	5.43	4.94	0.84
Stroke (%)	0	0	0	0	NA
TIA (%)	0.70	0.67	0	0.57	0.72
PET-amyloid (log-transformed)					
Gl_Ctx_CL	0.16 (0.11)	0.30 (0.19)	0.46 (0.19)	0.25 (0.19)	<0.0001
Cognition composites					
MEM	0.50 (0.50)	−0.50 (0.46)	−1.14 (0.43)	−0.067 (0.81)	<0.0001
EXF	0.73 (0.61)	0.15 (0.53)	−0.28 (0.67)	0.39 (0.72)	<0.0001
VSP	0.33 (0.92)	−0.50 (1.10)	−1.35 (1.33)	−0.22 (1.23)	<0.0001
LAN	0.54 (0.62)	−0.04 (0.57)	−0.47 (0.64)	0.20 (0.73)	<0.0001
Follow-up, years (for longitudinal analyses)	2.00 (1.414)	2.00 (1.415)	2.00 (1.415)	2.00 (1.41)	1.00

Abbreviations: AD, Alzheimer's disease; APOE, apolipoprotein E; A β , amyloid beta; BMI, body mass index; CAD, coronary artery disease; CN, cognitively normal; EXF, composite score for executive functioning; FRS, Framingham's General Cardiovascular Risk Score; Gl_Ctx_CL, global cortical Pittsburgh Compound B standardized uptake value ratio from PET scans; HDL, high-density lipoprotein; LAN, composite score for language; LDL, low-density lipoprotein; MCI, mild cognitive impairment; MEM, composite score for memory; PET, positron emission tomography; TIA, transient ischemic attack; VSP, composite score for visuospatial functioning.

^aChi-squared test for categorical variables and analysis of variance (ANOVA) tests for continuous variables.

smoothed using an 8-mm full-width half maximum (FWHM) kernel. For this study, we used the global cortical amyloid SUVR measure, which was log-transformed to reduce skewness.

2.5 | Blood testing and laboratory assessments

Overnight fasting blood samples were collected from each participant. Laboratory tests including serum lipids (TC, HDL cholesterol, low-density lipoprotein [LDL] cholesterol, and triglycerides) were

measured. Genomic DNA was isolated from whole blood, followed by apolipoprotein E (APOE) genotyping using methods described previously.^{51,63} Participants were grouped into one of two APOE groups, based on the absence or presence of at least one ϵ 4 allele.

2.6 | Statistical analyses

For demographic tables, continuous data were analyzed using ANOVA, and categorical data were analyzed using chi-square tests.

TABLE 2 Baseline participants' characteristics by FRS risk and amyloid status.

FRS category (median cutoff: 15.92)	Amyloid-beta negative A β -		Amyloid-beta positive A β +		<i>p</i> -value ^a
	FRS low (<15.92)	FRS high (>15.92)	FRS low (<15.92)	FRS high (>15.92)	
N	176	147	86	115	
Diagnoses group					
CN, <i>n</i> (%)	142 (80.68)	99 (67.35)	27 (31.39)	17 (14.78)	<0.0001
MCI, <i>n</i> (%)	29 (16.48)	37 (25.17)	26 (30.23)	56 (48.69)	<0.01
AD, <i>n</i> (%)	5 (2.84)	11 (7.48)	33 (38.37)	42 (36.52)	<0.0001
Age, years	66.57 (8.23)	73.57 (6.68)	70.44 (8.04)	74.44 (5.40)	<0.0001
Age range, years	55–90	56–87	55–86	56–88	NA
Female no. (%)	63.07	20.41	66.28	17.39	
Education, years	12.19 (4.88)	9.86 (4.95)	12.21 (4.57)	9.94 (4.73)	<0.0001
APOE ϵ 4 carriers (%)	13.64	16.33	50.00	63.48	<0.0001
Cardiometabolic variables					
Systolic blood pressure, mm Hg	119.35 (15.50)	113.84 (15.47)	115.46 (14.30)	132.35 (14.40)	<0.0001
BMI	23.98 (2.97)	24.97 (2.25)	23.10 (2.91)	24.79 (3.05)	<0.0001
Diabetes (%)	10.79	28.57	8.14	18.26	<0.0001
Current smoker (%)	7.39	5.44	3.49	3.48	0.42
Treatment with anti-hypertensive medication (%)	31.25	69.38	31.39	48.69	<0.0001
HDL cholesterol	55.42 (16.24)	53.22 (11.75)	55.17 (13.15)	54.96 (11.99)	0.50
LDL cholesterol	102.58 (29.14)	112.81 (34.39)	108.39 (32.73)	117.43 (41.34)	<0.01
Total cholesterol	181.66 (34.90)	189.79 (37.14)	181.69 (39.39)	195.47 (43.25)	<0.01
PET-amyloid (log-transformed)					
Gl_Ctx_CL	0.118 (0.04)	0.123 (0.04)	0.445 (0.13)	0.471 (0.15)	<0.0001

Abbreviations: AD, Alzheimer's disease; APOE, apolipoprotein E; A β , amyloid beta; BMI, body mass index; CN, cognitively normal; FRS, Framingham's General Cardiovascular Risk Score; Gl_Ctx_CL, global cortical Pittsburgh Compound B standardized uptake value ratio from PET scans; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MCI, mild cognitive impairment; PET, positron emission tomography.

^aChi-squared test for categorical variables and analysis of variance (ANOVA) tests for continuous variables.

Descriptive statistics for participant characteristics, imaging biomarker levels, and cognitive performance were compared across diagnosis groups (CN, MCI, and AD) (Table 1) and by FRS and amyloid positivity groups (Table 2).

2.6.1 | Cross-sectional analyses

At baseline, linear regression models were used to analyze the associations between (1) FRS and amyloid burden, (2) FRS and cognition, and (3) amyloid and cognition within each clinical diagnostic group. Additionally, to determine if FRS and amyloid imaging biomarkers interact with cognition at baseline, we estimated the association of FRS with each composite cognitive score using multivariable-adjusted linear regression (composite cognitive score ~ FRS \times Amyloid + covariates). Covariates included baseline age, sex, APOE genotype, and educational attainment. Before analysis, all continuous variables were *z*-transformed.

To further explore the interactive relationships between amyloid and FRS variables, we created four groups: FRS+ A β -, FRS- A β -, FRS+ A β +, and FRS- A β +. The FRS score was split into high and low groups based on a median split of 15.92%. The amyloid positivity cutoff was determined using a receiver operator characteristic (ROC) curve using baseline SUVR from the global cortical ROI from the Centiloid project⁶⁴ to classify young CN from AD patients. The maximal stratification cutoff was 1.24% with 83% sensitivity and 100% specificity. To test for significant differences in cognition across the groups based on FRS and amyloid status, we ran two-way analyses of covariance (ANCOVAs) in each diagnostic subgroup (CN, MCI, and AD) separately.

The *p*-value threshold was maintained at 0.05, and all obtained *p*-values were multiplied by 4 to account for Bonferroni correction. This adjustment ensured that the overall type I error rate was controlled for the presence of four cognitive domains. For instance, if the raw *p*-value was 0.0042, the adjusted *p*-value presented would be 0.0168. All reported *p* values shown in our results are post-Bonferroni correction, and the ones that survived the correction threshold have been

designated with * (p value < 0.05), ** (p value < 0.01), *** (p value < 0.001), or **** (p value < 0.0001) for visibility. All statistical analyses were performed using R Studio, R version 4.3.3.

2.6.2 | Longitudinal analyses

At the 4-year follow-up, we used a linear mixed effects model (LMM) to understand (1) how FRS and amyloid (categorical) associates with cognitive composite scores over time, (2) if FRS and amyloid interact synergistically together with time ($FRS \times Amyloid \times Time$) to predict cognitive decline, and (3) if FRS interacts with time ($FRS \times Time$) independently alongside amyloid ($Amyloid \times Time$) to predict cognitive decline. For each diagnosis group, these models were analyzed with longitudinal LMMs that included random intercepts and slopes with unstructured covariance.⁶⁵

First, linear mixed-effects models were used to estimate β -coefficients and significance levels for the associations between the four FRS and amyloid stratified groups (categorical) and annual change in four cognitive domains, with follow-up time (in years) as the time scale. The fixed effect included age, sex, APOE, educational attainment, groups, time, and their interaction. The random effect model included random intercept and slope, allowing the individual differences at baseline and across follow-up, defined as follows.

lme (Cognition ~ 1 + Age + Sex + APOEGrp + Edu
+ Group * time, random = ~ time|id)

Then, we used the synergistic model to understand the three-way combined effects of FRS and amyloid on cognitive decline over time ($FRS \times Amyloid \times Time$), whereas the additive model looked at the independent contributions of FRS and amyloid, with time on cognitive decline ($FRS \times Time$ and $Amyloid \times Time$). For this, the model predictors included time, as well as baseline age, sex, APOE $\epsilon 4$ genotype, education (years), FRS, amyloid deposition, their interaction (cross-product) with time, $FRS \times Amyloid$ interaction, and $FRS \times Amyloid \times Time$ interaction.

The three-way interactions examined the possible synergism between baseline FRS and amyloid deposition on cognitive trajectories. If this term was not significant, we ran reduced models that excluded this term (and the $FRS \times Amyloid$ interaction term) to examine the independent associations between FRS and amyloid with the rate of change in cognition (as indicated by the $FRS \times Time$ and $Amyloid \times Time$ interaction terms, respectively).

Synergistic model

lme (Cognition ~ 1 + Age + Sex + APOEGrp + Edu
+ FRS * Amyloid * time, random = ~ time|id)

Additive model

lme (Cognition ~ 1 + Age + Sex + APOEGrp + Edu
+ FRS * time + Amyloid * time, random = ~ time|id)

These models were repeated for each diagnostic group (CN, MCI, and AD).

Model fit was assessed using goodness-of-fit statistics including the Bayesian Information Criterion (BIC). Likelihood ratio tests were conducted to determine the significance of predictor variables and interaction terms in explaining variance in cognitive performance across different diagnostic groups and time points. All continuous variables were z -transformed beforehand. The p -value threshold was maintained at 0.05, and all obtained p -values were multiplied by 4 to account for Bonferroni correction. This adjustment ensured that the overall type I error rate controlled for the presence of four cognitive domains. For instance, if the raw p -value was 0.0042, the adjusted p -value presented would be 0.0168. All reported p values shown in our results are post Bonferroni correction, and the ones that survived correction threshold and have been designated with * (p value < 0.05), ** (p value < 0.01), *** (p value < 0.001), or **** (p value < 0.0001) for visibility. All statistical analyses were performed using R Studio, R version 4.3.3.

3 | RESULTS

3.1 | Participant demographics

Participant demographics are shown in Tables 1 and 2. Significant differences were observed across diagnostic groups in age, sex, education, amyloid positivity, and APOE $\epsilon 4$ carrier status (all $p < 0.05$; Table 1). FRS significantly differed across diagnostic groups ($p < 0.001$), and anti-hypertension medications were marginally significant ($p = 0.07$). Systolic blood pressure, BMI, diabetes, current smoking status, HDL, LDL, TC levels, CAD, stroke, and TIA occurrence were not significantly different. As expected, significant differences were observed for amyloid deposition and cognition composite scores for cognitive domains (all $p < 0.001$; Table 1).

The prevalence of CN individuals differed significantly between the $A\beta-$ and the $A\beta+$ groups ($p < 0.0001$), with a higher proportion of CN individuals observed in the $A\beta-$ groups (Table 2). Conversely, the prevalence of MCI and AD significantly varied across the $A\beta-$ and $A\beta+$ groups ($p < 0.01$, $p < 0.0001$, respectively), with higher proportions of MCI and AD individuals observed in the $A\beta+$ groups, particularly among those with FRS high (> 15.92). Additionally, significant differences were noted in age ($p < 0.0001$), education level ($p < 0.0001$), APOE $\epsilon 4$ carrier status ($p < 0.0001$), cardiometabolic variables including systolic BP ($p < 0.0001$), BMI ($p < 0.0001$), diabetes prevalence ($p < 0.0001$), LDL cholesterol ($p < 0.01$), and total cholesterol ($p < 0.01$) across the four groups (Table 2).

3.2 | Cross-sectional analyses

Association of cardiovascular risk burden with amyloid deposition and cognition composite scores for cognitive domains.

We first examined the relationships between FRS, amyloid, and cognition through linear regression analyses within each diagnosis group.

TABLE 3 β coefficients and associated significance levels for the multivariate-adjusted linear regression models at baseline for the (1) association of FRS, (2) amyloid, and (3) FRS and amyloid, with changes in cognitive function in different domains for each diagnosis group.

β coefficients for the multivariate-adjusted linear regression models for (1) association of FRS, (2) amyloid, and (3) FRS and amyloid, with changes in cognitive function at baseline					
Diagnosis	Predictors	MEM	EXF	VSP	LAN
CN	FRS	−0.051	−0.034	−0.154	0.431
	Amyloid	−0.229	−0.030	0.329	0.382
	FRS × Amyloid	0.103	0.155	0.606	0.180
MCI	FRS	−0.039	−0.008	−0.153	−0.012
	Amyloid	−1.005***	0.582	−0.655	−0.243
	FRS × Amyloid	0.312*	−0.025	0.051	0.064
AD	FRS	0.070	0.027	0.242	0.004
	Amyloid	−0.535	−0.341	−0.833	−0.470
	FRS × Amyloid	0.120	0.125	−0.382	0.117

Note: Covariates are age, sex, education, and APOE $\varepsilon 4$ genotype. Detailed covariate statistics associated with each baseline model are included in Tables S2–S7.

Abbreviations: AD, Alzheimer's disease; APOE, apolipoprotein E; CN, cognitively normal; EXF, composite score for executive functioning; FRS, Framingham's General Cardiovascular Risk Score; LAN, composite score for language; MCI, mild cognitive impairment; MEM, composite score for memory; VSP, composite score for visuospatial functioning.

* p -value < 0.05.

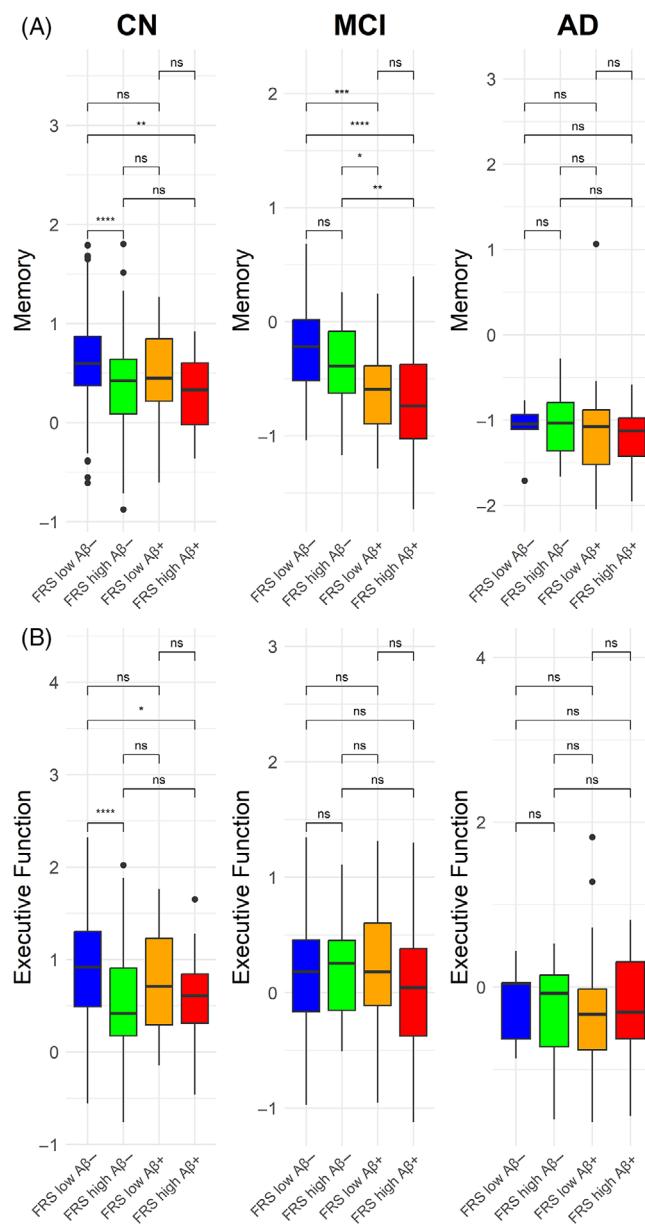
** p -value < 0.01.

*** p -value < 0.001.

**** p -value < 0.0001.

Continuous measures of FRS and amyloid were highly associated with each other only in the AD group ($\beta = -0.068$, $p < 0.05$) (Table S1, Figure S1). FRS alone was not significantly associated with any of the composite scores for cognitive domains within any of the clinical diagnosis groups (Tables 3 and S2–S4). Amyloid alone was significantly associated ($\beta = -1.005$, $p < 0.05$) only with the memory domain of the MCI group (Tables 3 and S5–S7). Similarly, the FRS and amyloid interaction (FRS × Amyloid) was significant only in the MCI group ($\beta = 0.312$, $p < 0.05$) for the memory domain (Tables 3 and S2–S4). The effect of FRS also differed in amyloid-positive and amyloid-negative individuals in the MCI and AD groups (Figure S2); FRS seemed to have the biggest impact on amyloid-negative individuals.

To better understand the relationship between FRS, amyloid, and cognition, we investigated cognitive differences among the four groups defined by amyloid positivity and FRS (FRS– A β –, FRS+ A β –, FRS– A β +, and FRS+ A β –). Pairwise comparisons revealed lower memory performance in FRS+ A β – individuals compared to FRS– A β – ($p = 0.003$) in the CN diagnosis group (Figure 2). This trend was present in all other cognitive domains for CN individuals but absent for the MCI and AD groups (Figures 2 and S3). Within the MCI group, cognitive differences were shown only in the memory domain primarily between FRS+ and FRS– individuals based on A β status (Figure 2). There were notable differences in memory performances between FRS– A β – and FRS– A β + ($p < 0.001$) individuals as well as FRS+ A β – and FRS+ A β – ($p < 0.01$) individuals within the MCI group.


3.3 | Longitudinal analysis

Assessment of synergistic or additive associations between cardiovascular risk factors and amyloid burden on longitudinal changes in cognition.

Longitudinal analysis examining how cognitive composite scores change over a time of 4 years in CN and MCI groups showed that individuals with FRS+ A β – had slightly lower cognitive scores on average compared to the FRS– A β – group, but these associations were not statistically significant over the span of 4 years (Table 4, Figures 3 and S4).

In the CN diagnosis group, the FRS– A β – group exhibited significantly faster declines in memory ($\beta = -0.059$, $p < 0.01$), visuospatial function ($\beta = -0.129$, $p < 0.05$), and language ($\beta = -0.054$, $p < 0.01$) compared to the FRS– A β – group. The FRS+ A β – group had a significantly steeper rate of decline compared to the FRS– A β – group (reference group) in all cognitive domains, except executive functioning (Table 4, Figures 3 and S4). This suggests that, for each year, compared to amyloid-negative individuals with normal cognition and low Framingham scores, amyloid-positive individuals with normal cognition and high Framingham scores experienced a steeper rate of decline in these cognitive domains.

Within the MCI diagnosis group, both the FRS– A β – and FRS+ A β – groups had a significantly steeper rate of decline compared to the reference group in all cognitive domains, indicating that, irrespective of vascular risk, individuals who are amyloid-beta positive experience

FIGURE 2 Analysis of covariance (ANCOVA) results for baseline cognitive differences in memory and executive function domains stratified by amyloid status and cardiovascular risk in each diagnosis group. (A) Baseline memory. Within each diagnosis, pairwise differences in baseline memory scores were assessed for the four groups stratified by amyloid status ($A\beta-$, $A\beta+$) and the Framingham General Cardiovascular Risk Score (FRS low, FRS high). Lower memory scores in FRS high $A\beta-$ compared to FRS low $A\beta-$ ($p < 0.001$) and FRS low $A\beta+$ individuals ($p < 0.01$) were found in the cognitively normal (CN) group. (B) Baseline executive function. Within each diagnosis, pairwise differences in baseline executive function were assessed for the four groups stratified by amyloid status ($A\beta-$, $A\beta+$) and FRS low versus FRS high. FRS high $A\beta-$ individuals had lower executive function scores compared to FRS low $A\beta-$ ($p < 0.001$) and FRS low $A\beta+$ individuals ($p < 0.01$) only in the CN group. AD, Alzheimer's disease; MCI, mild cognitive impairment. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.

accelerated cognitive decline in the MCI stage. Within the AD diagnosis group, there were no differences in cognitive performance among these four groups (Table 4, Figures 3 and S4).

In assessing the synergistic (FRS \times Amyloid \times Time) interaction of FRS and amyloid on different cognitive domains over time, we found that the Amyloid \times FRS \times Time interaction was only significant for the visuospatial domain in the MCI diagnosis group ($\beta = 0.327$, $p < 0.05$). The impact of amyloid on cognitive decline (Amyloid \times Time) was significant in the CN and MCI groups for most cognitive domains while there was no observed significant impact of FRS on cognitive decline (FRS \times Time) in these diagnosis groups. However, the impact of amyloid on memory decline (Amyloid \times Time) was significantly stronger than that of FRS (FRS \times Time) in most cognitive domains in both the CN and MCI groups, as shown by the reported β values (Tables S8-S11).

In assessing additive contributions of FRS and amyloid (FRS \times Time and Amyloid \times Time) on different cognitive domains over time, we found the only significant FRS \times Time interaction was in the memory domain of the AD group (Table S12), but it was not accompanied by a significant Amyloid \times Time interaction. Moreover, the effect of FRS with time (FRS \times Time) was negligible on memory, language, executive function, and visuospatial functioning for the CN group; wherein lower memory was negligibly affected by FRS but significantly negatively affected by higher amyloid deposition. This pattern is repeated in the MCI group for several other cognitive domains where we see (1) a strong negative effect of amyloid (Amyloid \times Time) and (2) a marginally (positive or negative) effect of FRS (FRS \times Time) with time (Tables S12-S15). We did not observe the aforementioned trends in FRS \times Amyloid \times Time (synergistic interaction) or Amyloid \times Time or FRS \times Time (additive interaction) within the AD group for any of the cognitive domains.

4 | DISCUSSION

In a cross-sectional and longitudinal analysis of 526 well-characterized Korean older adults, we found that the interplay between CV risk factors, measured by the FRS and amyloid status, was associated with differences in cognitive trajectories based on clinical diagnoses. To understand how CV risk and amyloid interplay with cognitive trajectories of Korean older adults, we stratified the KBASE cohort into four groups based on the combination of amyloid status ($A\beta-$ or $A\beta+$) and FRS categories (low [FRS-] or high [FRS+]). At baseline, in the CN subgroup, we found that individuals with FRS+ and $A\beta-$ had worse cognitive performance on average compared to those with FRS- and $A\beta-$, in all domains of cognition. Within the MCI subgroup, cognitive differences were observed only between individuals with FRS+ $A\beta-$ compared to those with FRS+ $A\beta+$, with the former group having higher cognitive scores on average. Interestingly, individuals with FRS- $A\beta-$ within the CN group did not differ significantly from FRS+ $A\beta-$ individuals in longitudinal cognitive performance. However, we did see a significant decline in the cognitive performance of $A\beta+$ individuals, irrespective of the FRS group, compared to $A\beta-$ individuals in both the CN and MCI groups.

TABLE 4 β coefficients and associated significance levels from linear mixed effects model for the association of FRS and amyloid groups (categorical) with longitudinal changes in domain-specific cognitive function over follow-up time, for each clinical diagnosis group.

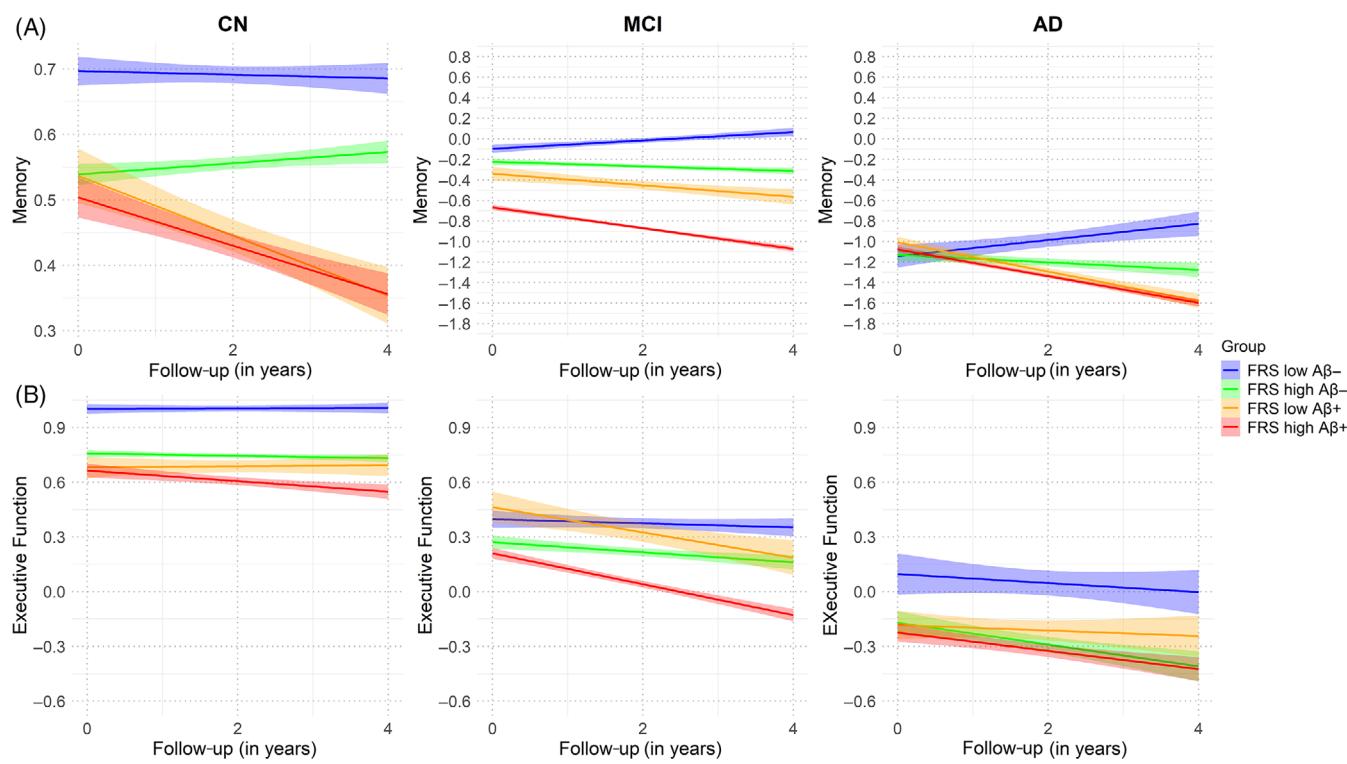
		Cognitive domains			
Diagnosis	FRS/A β categories \times Time	MEM	EXF	VSP	LAN
CN	FRS low A β -* Time	Ref.	Ref.	Ref.	Ref.
	FRS high A β -* Time	0.000	0.000	0.000	-0.001
	FRS low A β +-* Time	-0.059**	-0.021	-0.131*	-0.043**
	FRS high A β +-* Time	-0.058**	-0.030	-0.132*	-0.041**
MCI	FRS low A β -* Time	Ref	Ref	Ref	Ref
	FRS high A β -* Time	-0.002	-0.001	-0.001	0.000
	FRS low A β +-* Time	-0.076**	-0.104*	-0.210**	-0.107**
	FRS high A β +-* Time	-0.078**	-0.102*	-0.210**	-0.107**
AD	FRS low A β -* Time	Ref.	Ref.	Ref.	Ref.
	FRS high A β -* Time	-0.003	0.002	0.000	0.003
	FRS low A β +-* Time	0.003	-0.076	-0.164	-0.112
	FRS high A β +-* Time	0.008	-0.072	-0.162	-0.109

Notes: Covariates are age, sex, education, APOE $\epsilon 4$ genotype, time. Visual representation of categorical group differences within each diagnosis is shown in Figure 3 (MEM and EXF) and Figure S4 (VSP and LAN). Detailed covariate statistics associated with each longitudinal model are included in Tables S8-S15.

Abbreviations: AD, Alzheimer's disease; A β , Amyloid beta; APOE, apolipoprotein E; CN, cognitively normal; EXF, composite score for executive functioning; FRS, Framingham's General Cardiovascular Risk Score; LAN, composite score for language; MCI, mild cognitive impairment; MEM, composite score for memory; Ref, reference group; VSP, composite score for visuospatial functioning.

* p -value < 0.05.

** p -value < 0.01.


*** p -value < 0.001.

**** p -value < 0.0001.

At baseline, a clear and significant difference in cognition between amyloid-negative individuals with high FRS versus low FRS in the CN group points toward a differing role of CV health in conferring risk of cognitive decline, unexpectedly in the group with the least amyloid pathology. Previous studies in non-demented Korean populations with no history of cerebrovascular diseases have found similar results wherein individuals with high CV risk had poorer cognitive function compared to those with lower vascular risk.^{27,32,36,66} Using a CV model (Korean Risk Score) tailored for Koreans, Mun et al. found that higher CV risk was associated with poorer cognitive function among ~8000 Korean older adults, with particularly strong effects in older women.²⁷ Similarly, Cho et al. found that poorer CV health was associated with a high risk of dementia including AD and vascular dementia in ~190,000 older Korean adults without prior dementia.³² However, none of these studies took into consideration the amyloid status of the participants. Our study findings are also consistent with what we see in North American cohorts, wherein Hohman et al.'s paper using ADNI and National Alzheimer's Coordinating Center (NACC) datasets found that the presence of amyloid pathology influences how the risk of stroke was associated with AD biomarkers. These findings were attributed to ADNI's enrollment protocol that ensures a restrictive vascular risk⁸ by excluding anyone with a high burden of cerebrovascular disease. As KBASE was modeled on ADNI and follows a similar protocol for enrollment, we also found this cohort to have a substantially low vascular

burden at baseline with a median FRS of only 15.92% (Table 2). This is a study limitation that could explain why FRS influences cognitive decline when there is a low burden of amyloid (in CN), whereas in MCI individuals we see that the cognitive difference at baseline is mostly driven by amyloid pathology. Our baseline findings provide clues to the ongoing debate on whether vascular risk and amyloid are independently associated with cognitive impairment and ultimately suggest that controlling CV health might be important for individuals at low risk for AD and before clinical onset.

Our results from longitudinal analyses are more complex. We observed that within both the CN and MCI groups, irrespective of vascular risk, individuals who were A β -positive experienced an accelerated cognitive decline compared to amyloid-negative individuals. However, when considering the joint impact of CV risk, amyloid, and time (synergistic interaction) or separate contributions of CV risk and amyloid over time (additive contributions), we observed that changes in CV risk over time (FRS \times Time) were only significant for memory in individuals with Alzheimer's disease. Additionally, the negative effect of amyloid over time (Amyloid \times Time) was consistently significant across cognition of all diagnosis groups, except AD individuals. While similar longitudinal modeling of CV risk, amyloid, and cognition in Korean populations is lacking, most previous studies⁶⁷⁻⁶⁹ in North America have indicated additive and independent contributions of FRS and amyloid on cognition or their synergistic behavior¹² in cognitively

FIGURE 3 Longitudinal changes in (A) memory and (B) executive function stratified by amyloid status and cardiovascular risk groups within the clinical diagnosis groups of CN, MCI, and AD. These plots show the longitudinal changes in memory performance and executive functioning over a 4-year follow-up period. The participants in each diagnosis group were categorized into four groups based on their amyloid status ($A\beta-$ or $A\beta+$) and the Framingham General Cardiovascular Risk Score (FRS low or FRS high). Distinct longitudinal patterns of cognitive decline for each clinical diagnosis group indicate that the impact of amyloid status and cardiovascular risk on memory and executive function differ depending on the clinical condition of the individuals. AD, Alzheimer's disease; CN, cognitively normal; MCI, mild cognitive impairment. $*p < 0.05$, $**p < 0.01$, $***p < 0.001$, $****p < 0.0001$.

unimpaired individuals. However, our present longitudinal results in KBASE do not completely align with that.

Some limitations of this study warrant discussion. First, all versions of the metric of CV burden used for this study, the FRS, are known to inflate CV disease burden.^{57,70,71} Large population-based studies that validate the use of the FRS in Asian and Asian American individuals are lacking, and it is possible that we overestimated the CV risk factor burden in these individuals. Population characteristics, data collection types, and the exclusion criteria of KBASE limited our ability to calculate other versions of the FRS, such as the Framingham Stroke Risk Profile (FSRP). Our study only had longitudinal data from three time points (baseline, Visit 1, Visit 2) over 4 years. We also did not examine the use of hypertensive and statin medications that have been shown to moderate the relationship.^{72,73} Third, this study was designed to assess the lifestyle behaviors at baseline and was not updated during the follow-up due to concerns about previously reported reverse causal relationship between lifestyle changes and cognitive impairment as the population ages.⁷⁴ Fourth, our estimates are based on observational data and do not imply certain causality. Due to genetic or sociocultural factors which may affect the interplay between CV risk factors, amyloid, and cognitive trajectories, our findings may not be generalizable to other Asian subgroups or Asian American diasporas living in the United States, as our cohort consisted of Korean older adults residing in the

Republic of Korea. The KBASE study design incorporated structural MRI which we plan to utilize in the future, but the first iteration did not incorporate T2-FLAIR MRI, a measure that has been classically used to understand if CV burden interacts with cerebrovascular pathology such as structural lesions and white matter hyperintensity in the AD cascade leading to cognitive decline. Critical questions remain regarding whether the relationship between CV burden and amyloid might contribute to the ethnic disparities in cognitive aging among different sub-populations. More studies on racially and ethnically diverse populations are warranted, especially given the low rates of diagnoses of clinical AD in East Asian groups and Asian American Pacific Islanders (AAPI).

However, this study is the first to highlight the differential impact of CV risk on cognition, depending on amyloid status and clinical diagnosis group in a Korean subgroup that was selected to have low vascular burden at baseline. This underscores the importance of considering both CV risk factors and amyloid pathology early on in understanding clinical manifestation and cognitive decline in the AD spectrum, particularly in ethnically diverse populations. We need future studies focusing on specific East Asian and AAPI subgroups that delineate possible interactions between vascular risk and amyloid through vascular injury (cerebrovascular diseases), which are thereby hypothesized to promote cognitive decline in non-demented elderly.

Both vascular and amyloid mechanisms of cognitive decline and dementia play important roles in the aging brain and are hypothesized to impact neurocognitive trajectories. Our study provides evidence (1) that high CV burden may be a risk for cognitive decline in amyloid-negative CN participants early on, and (2) points toward a primary role of amyloid pathology driving the cognitive decline, longitudinally. As we were also limited by a relatively small sample size, we also could not robustly confirm that FRS and amyloid, additively or synergistically, have a role in the development of dementia in this specific Asian cohort. Therefore, treatments for cognitive decline in Asian or AAPI cohorts should specifically consider both pathways, especially making note of CV burden in non-demented elderly. Our findings further support the broad heterogeneity in dementia causation even within East Asian groups, emphasizing the critical need to target multiple pathways in ultimate efforts for prevention.

ACKNOWLEDGMENTS

We express sincere appreciation to Caleb Whitman for his input and help to systematize the code associated with complex statistics for this manuscript. We also acknowledge the valuable input and guidance provided by Dr. Karmen Yoder, Dr. Juexin Wang, and Dr. Jeff Dage, which enhanced the readability and fluidity of the manuscript. We also extend our appreciation to (1) the KBASE participants who generously contributed their time to this study, (2) the dedicated clinical coordinators who played a crucial role in collecting data and facilitating the study process, as well as (3) the cross-continental data storage and project management team for KBASE. We also thank the Alzheimer's Disease Neuroimaging Initiative Health Equity Scholar Program (ADNI HESP) team for crucial conversations about this manuscript. Figures 1, 2, and S1 were created with Biorender.com. Primary support for KBASE is from U01 AG072177 with additional support as follows. Andrew J. Saykin receives support from multiple NIH grants (P30 AG010133, P30 AG072976, R01 AG019771, R01 AG057739, U19 AG024904, R01 LM013463, R01 AG068193, T32 AG071444, U01 AG068057, U01 AG072177, and U19 AG074879). Kwangsik Nho receives support from NIH grants (R01LM012535, U01AG072177, and U19AG0748790; U19AG074879). Dong Young Lee receives support from Korean government grants (NRF-2014M3C7A1046042, HI18C0630, and HI19C0149) and NIH grants (U01AG072177). Evgeny J. Chumin was supported by NIA grants (T32 AG071444, U01 AG072177, U19 AG074879). Dahyun Yi receives support from NIH grant (U01AG072177). Min Soo Byun receives support from the New Faculty Startup Fund from Seoul National University, Korean government grant (RS-2022-00165636 and RS-2023-KH136195), and NIA grant (U01AG072177). Soumilee Chaudhuri was supported by ADNI Health Equity Scholarship (ADNI HESP) a sub-award of NIA grant (U19AG024904). Desarae A. Dempsey was supported by NIA grant (T32 AG071444). Other co-authors have no competing interests in this study.

CONFLICT OF INTEREST STATEMENT

Andrew J. Saykin has received support from Avid Radiopharmaceuticals, a subsidiary of Eli Lilly (in-kind contribution of PET tracer precur-

sor), and participated in Scientific Advisory Boards (Bayer Oncology, Eisai, Novo Nordisk, and Siemens Medical Solutions USA, Inc) and an Observational Study Monitoring Board (MESA, NIH NHLBI), as well as several other NIA External Advisory Committees. He also serves as Editor-in-Chief of *Brain Imaging and Behavior*, a Springer-Nature journal. Other co-authors have no competing interests in this study. Author disclosures are available in the [supporting information](#).

DATA AVAILABILITY STATEMENTS

KBASE data will be included in future releases of the NIA ADSP harmonized phenotypic and genomic sequence data. The datasets used and/or analyzed in the present report are available from the corresponding author on reasonable request.

CONSENT STATEMENT

All human subjects provided informed consent.

ORCID

Soumilee Chaudhuri <https://orcid.org/0000-0002-8488-6114>

Desarae A. Dempsey <https://orcid.org/0000-0003-4681-0108>

Andrew J. Saykin <https://orcid.org/0000-0002-1376-8532>

REFERENCES

1. Cummings J, Apostolova L, Rabinovici G, et al. Lecanemab: appropriate use recommendations. *J Prev Alzheimers Dis.* 2023;10:362-377.
2. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. *Lancet Neurol.* 2011;10:819-828.
3. Yaffe K, Bahorik AL, Hoang TD, et al. Cardiovascular risk factors and accelerated cognitive decline in midlife: the CARDIA study. *Neurology.* 2020;95:e839-e846.
4. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. *Lancet North Am Ed.* 2020;396:413-446.
5. Gorelick PB, Furie KL, Iadecola C, et al. Defining optimal brain health in adults: a presidential advisory from the American Heart Association/American Stroke Association. *Stroke.* 2017;48:e284-e303.
6. Bos I, Vos SJ, Schindler SE, et al. Vascular risk factors are associated with longitudinal changes in cerebrospinal fluid tau markers and cognition in preclinical Alzheimer's disease. *Alzheimers Dement.* 2019;15:1149-1159.
7. Bambrick P, Tan W, Mulcahy R, Pope G, Cooke J. Vascular risk assessment in older adults without a history of cardiovascular disease. *Exp Gerontol.* 2016;79:37-45.
8. Hohman TJ, Samuels LR, Liu D, et al. Stroke risk interacts with Alzheimer's disease biomarkers on brain aging outcomes. *Neurobiol Aging.* 2015;36:2501-2508.
9. Matthews KA, Xu W, Gaglioti AH, et al. Racial and ethnic estimates of Alzheimer's disease and related dementias in the United States (2015-2060) in adults aged ≥ 65 years. *Alzheimers Dement.* 2019;15:17-24.
10. Pettigrew C, Soldan A, Wang J, et al. Association of midlife vascular risk and AD biomarkers with subsequent cognitive decline. *Neurology.* 2020;95:e3093-e3103.
11. Lane CA, Barnes J, Nicholas JM, et al. Associations between vascular risk across adulthood and brain pathology in late life: evidence from a British birth cohort. *JAMA Neurol.* 2020;77:175-183.
12. Rabin JS, Schultz AP, Hedden T, et al. Interactive associations of vascular risk and β -amyloid burden with cognitive decline in clinically normal elderly individuals: findings from the Harvard Aging Brain Study. *JAMA Neurol.* 2018;75:1124-1131.

13. Gottesman RF, Schneider AL, Zhou Y, et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. *JAMA*. 2017;317:1443-1450.
14. Jiang X, O'Bryant SE, Johnson LA, Rissman RA, Yaffe K, Health, Team ABSS. Association of cardiovascular risk factors and blood biomarkers with cognition: the HABS-HD study. *Alzheimers Dement (Amst)*. 2023;15:e12394.
15. Rabin JS, Pruzin J, Scott M, et al. Association of β -amyloid and vascular risk on longitudinal patterns of brain atrophy. *Neurology*. 2022;99:e270-e280.
16. Shirzadi Z, Boyle R, Yau W-YW, et al. Vascular contributions to cognitive decline: beyond amyloid and tau in the Harvard aging brain study. *J Cereb Blood Flow Metab*. 2024;44:1319-1328. doi:[10.1177/0271678X241237624](https://doi.org/10.1177/0271678X241237624)
17. Song R, Pan KY, Xu H, et al. Association of cardiovascular risk burden with risk of dementia and brain pathologies: a population-based cohort study. *Alzheimers Dement*. 2021;17:1914-1922.
18. Nichols E, Steinmetz JD, Vollset SE, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study. *Lancet Public Health*. 2019;7:e105-e125.
19. Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer's disease. *Arch Med Res*. 2012;43:600-608.
20. Kandiah N, Choi SH, Hu C-J, Ishii K, Kasuga K, Mok VC. Current and future trends in biomarkers for the early detection of Alzheimer's Disease in Asia: expert opinion. *J Alzheimer's Dis Rep*. 2022;6:699-710.
21. Turana Y, Tengkawan J, Chia YC, et al. Hypertension and dementia: a comprehensive review from the HOPE Asia Network. *J Clin Hypertens*. 2019;21:1091-1098.
22. Kim YJ, Han JW, So YS, Seo JY, Kim KY, Kim KW. Prevalence and trends of dementia in Korea: a systematic review and meta-analysis. *J Korean Med Sci*. 2014;29:903-912.
23. Jhoo JH, Kim KW, Huh Y, et al. Prevalence of dementia and its subtypes in an elderly urban Korean population: results from the Korean Longitudinal Study on Health and Aging (KLoSHA). *Dement Geriatr Cogn Disord*. 2008;26:270-276.
24. Kim E, Baek J, Kim M, Lee H, Bae J-W, Kim HC. Trends in regional disparity in cardiovascular mortality in Korea, 1983-2019. *Korean Circ J*. 2022;52:829-843.
25. Kim HC. Epidemiology of cardiovascular disease and its risk factors in Korea. *Glob Health Med*. 2021;3:134-141.
26. Xu W, Tan L, Wang H-F, et al. Meta-analysis of modifiable risk factors for Alzheimer's disease. *J Neurol Neurosurg Psychiatry*. 2015;86:1299-1306.
27. Mun H, Shim JY, Kimm H, Kang HC. Associations between Korean Coronary Heart Disease Risk Score and cognitive function in dementia-free Korean older adults. *J Korean Med Sci*. 2023;38:e11.
28. Lee S-H, Han K, Cho H, et al. Variability in metabolic parameters and risk of dementia: a nationwide population-based study. *Alzheimer's Res Ther*. 2018;10:1-13.
29. Lee C-J, Lee J-Y, Han K, et al. Blood pressure levels and risks of dementia: a nationwide study of 4.5 million people. *Hypertension*. 2022;79:218-229.
30. Lee H, Kim K, Lee YC, et al. Associations between vascular risk factors and subsequent Alzheimer's disease in older adults. *Alzheimers Res Ther*. 2020;12:117.
31. Choi S-J, Jung S-S, You Y-S, et al. Prevalence of Alzheimer's dementia and its risk factors in community-dwelling elderly Koreans. *Psychiatry Investig*. 2008;5:78.
32. Cho S, Yang P-S, Kim D, et al. Association of cardiovascular health with the risk of dementia in older adults. *Sci Rep*. 2022;12:15673.
33. Choi D, Choi S, Park SM. Effect of smoking cessation on the risk of dementia: a longitudinal study. *Ann Clin Transl Neurol*. 2018;5:1192-1199.
34. Lee D, Kim B-J, Han JW, et al. Low diastolic blood pressure and cognitive decline in Korean elderly people: the Korean longitudinal study on cognitive aging and dementia. *Psychiatry Investig*. 2020;17:21.
35. Yu JH, Han K, Park S, et al. Incidence and risk factors for dementia in type 2 diabetes mellitus: a nationwide population-based study in Korea. *Diabetes Metab*. 2020;44:113-124.
36. Boo YY, Jutila O-E, Cupp MA, Manikam L, Cho S-I. The identification of established modifiable mid-life risk factors for cardiovascular disease which contribute to cognitive decline: Korean Longitudinal Study of Aging (KLoSA). *Aging Clin Exp Res*. 2021;33:2573-2586. doi:[10.1007/s40520-020-01783-x](https://doi.org/10.1007/s40520-020-01783-x)
37. Duan X, Dang Y, Kang C, et al. Associations between trajectories of cardiovascular risk factor change and cognitive impairment in Chinese elderly: a nationwide cohort study. *Front Aging Neurosci*. 2023;15:1084136.
38. Farnsworth von Cederwald B, Josefsson M, Wåhlin A, Nyberg L, Karalija N. Association of cardiovascular risk trajectory with cognitive decline and incident dementia. *Neurology*. 2022;98:e2013-e2022.
39. Xing X, Yang X, Chen J, et al. Multimorbidity, healthy lifestyle, and the risk of cognitive impairment in Chinese older adults: a longitudinal cohort study. *BMC Public Health*. 2024;24:46.
40. Nakamura Y, Kabayama M, Godai K, et al. Longitudinal association of hypertension and dyslipidemia with cognitive function in community-dwelling older adults: the SONIC study. *Hypertens Res*. 2023;46:1829-1839.
41. Jeon SY, Byun MS, Yi D, et al. Influence of hypertension on brain amyloid deposition and Alzheimer's disease signature neurodegeneration. *Neurobiol Aging*. 2019;75:62-70.
42. Kim T, Yi D, Byun MS, et al. Synergistic interaction of high blood pressure and cerebral beta-amyloid on tau pathology. *Alzheimer's Res Ther*. 2022;14:193.
43. Hessler JB, Ander K-H, Brönnér M, et al. Predicting dementia in primary care patients with a cardiovascular health metric: a prospective population-based study. *BMC Neurol*. 2016;16:1-8.
44. Fang J, Luncheon C, Patel A, et al. Self-reported prevalence of hypertension and antihypertensive medication use among Asian Americans: behavioral risk factor surveillance system 2013, 2015 and 2017. *J Immigr Minor Health*. 2021;23:26-34.
45. Jung MY, Lee S, Thomas SB, Juon H-S. Hypertension prevalence, treatment, and related behaviors among Asian Americans: an examination by method of measurement and disaggregated subgroups. *J Rac Ethnic Health Dispar*. 2019;6:584-593.
46. Kim EJ, Kim T, Conigliaro J, Liebschutz JM, Paasche-Orlow MK, Hanchate AD. Racial and ethnic disparities in diagnosis of chronic medical conditions in the USA. *J Gen Intern Med*. 2018;33:1116-1123.
47. Rabinovici GD, Gatsonis C, Apgar C, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among Medicare beneficiaries with mild cognitive impairment or dementia. *JAMA*. 2019;321:1286-1294.
48. Veitch DP, Weiner MW, Aisen PS, et al. Using the Alzheimer's disease neuroimaging initiative to improve early detection, diagnosis, and treatment of Alzheimer's disease. *Alzheimers Dement*. 2022;18:824-857.
49. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers Dement*. 2011;7:270-279.
50. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers Dement*. 2011;7:263-269.

51. Byun MS, Yi D, Lee JH, et al. Korean Brain Aging Study for the early diagnosis and prediction of Alzheimer's disease: methodology and baseline sample characteristics. *Psychiatry Investig.* 2017;14:851-863.
52. Lee DY, Lee KU, Lee JH, et al. A normative study of the CERAD neuropsychological assessment battery in the Korean elderly. *J Int Neuropsychol Soc.* 2004;10:72-81.
53. Mukherjee S, Choi SE, Lee ML, et al. Cognitive domain harmonization and cocalibration in studies of older adults. *Neuropsychology.* 2023;37:409-423.
54. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. *Circulation.* 1998;97:1837-1847.
55. D'Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. *Circulation.* 2008;117:743-753.
56. Song R, Xu H, Dintica CS, et al. Associations between cardiovascular risk, structural brain changes, and cognitive decline. *J Am Coll Cardiol.* 2020;75:2525-2534.
57. D'Agostino RB, Grundy S, Sullivan LM, Wilson P, Group CRP. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. *JAMA.* 2001;286:180-187.
58. Damen JA, Hooft L, Schuit E, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. *BMJ.* 2016;353.
59. Mensegere AL, Sundarakumar JS, Diwakar L, Issac TG. Relationship between Framingham Cardiovascular Risk Score and cognitive performance among ageing rural Indian participants: a cross-sectional analysis. *BMJ Open.* 2023;13:e074977.
60. Ou Y-N, Kuo K, Yang L, et al. Longitudinal associations of cardiovascular health and vascular events with incident dementia. *Stroke Vasc Neurol.* 2024;9(4):418-428. doi:[10.1136/svn-2023-002665](https://doi.org/10.1136/svn-2023-002665)
61. Wang R, Fratiglioni L, Kalpouzos G, et al. Mixed brain lesions mediate the association between cardiovascular risk burden and cognitive decline in old age: a population-based study. *Alzheimers Dement.* 2017;13:247-256.
62. Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. *Alzheimers Dement.* 2015;11:1-15. e4.
63. Wenham PR, Newton CR, Price WH. Analysis of apolipoprotein E genotypes by the amplification refractory mutation system. *Clin Chem.* 1991;37(2):241-244. doi:[10.1093/clinchem/37.2.241](https://doi.org/10.1093/clinchem/37.2.241)
64. Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. *Alzheimers Dement.* 2015;11:1-15. e1-4.
65. Laird NM, Ware JH. Random-effects models for longitudinal data. *Biometrics.* 1982;38(4):963-974. doi:[10.2307/2529876](https://doi.org/10.2307/2529876)
66. Moon S-H, Seo H-J, Lee DY, Kim SM, Park JM. Associations among health insurance type, cardiovascular risk factors, and the risk of dementia: a prospective cohort study in Korea. *Int J Environ Res Public Health.* 2019;16:2616.
67. Otttoy J, Ozzoode M, Zukotynski K, et al. Vascular burden and cognition: mediating roles of neurodegeneration and amyloid PET. *Alzheimers Dement.* 2023;19:1503-1517.
68. Gottesman RF, Wu A, Coresh J, et al. Associations of vascular risk and amyloid burden with subsequent dementia. *Ann Neurol.* 2022;92:607-619.
69. van Gils V, Ramakers I, Jansen WJ, et al. Contributions of vascular burden and amyloid abnormality to cognitive decline in memory clinic patients. *J Alzheimers Dis Rep.* 2023;7:1299-1311.
70. Kasim SS, Ibrahim N, Malek S, et al. Validation of the general Framingham Risk Score (FRS), SCORE2, revised PCE and WHO CVD risk scores in an Asian population. *Lancet Reg Health West Pac.* 2023;35:100742.
71. Chia YC, Gray SYW, Ching SM, Lim HM, Chinna K. Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population: a retrospective cohort study. *BMJ Open.* 2015;5:e007324.
72. Sible IJ, Nation DA. Blood pressure variability and plasma Alzheimer's disease biomarkers in the SPRINT trial. *J Alzheimers Dis.* 2024;97(4):1851-1860.
73. Ruthirakul M, Swardfager W, Xiong L, et al. Investigating the impact of hypertension with and without diabetes on Alzheimer's disease risk: a clinico-pathological study. *Alzheimers Dement.* 2024;20(4):2766-2778.
74. Robinson AC, Bin Rizwan T, Davidson YS, et al. Self-reported late-life hypertension is associated with a healthy cognitive status and reduced Alzheimer's disease pathology burden. *J Alzheimers Dis.* 2024;98(4):1457-1466. doi:[10.3233/JAD-231429](https://doi.org/10.3233/JAD-231429)

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Chaudhuri S, Dempsey DA, Huang Y-N, et al. Association of amyloid and cardiovascular risk with cognition: Findings from KBASE. *Alzheimer's Dement.* 2024;20:8527-8540. <https://doi.org/10.1002/alz.14290>