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Abstract

Backward erosion piping (BEP) is a complex degradation mechanism in
geotechnical flood protection infrastructure (GFPI) that is still relatively less
understood, particularly when considering its time-dependent features. This
manuscript presents a novel dual random lattice modeling (DRLM) approach
for three-dimensional simulation of BEP, with a focus on its evolution over
time. The key novelty of this presented framework is twofold: (1) we pro-
pose and incorporate a novel constitutive relationship for computation of
time-dependent soil erosion based on the theory of rate processes, and (2) we
devise an algorithm for calculation of coupled degradation of the dual lat-
tices for accurate computation of 3-D hydraulic gradients. The constitutive
relationship was developed from fundamental granular physics, and brings
the potential to provide deeper fundamental physical understanding of the

phenomenon. The capabilities of the modeling framework are investigated
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by comparison with available laboratory experiments which illustrates good
agreement in the spatial advancement of piping erosion, pipe progression
speeds, as well as the evolution of local gradients. To the best knowledge of
the authors, the presented model is the first to be able to capture all of the
aforementioned features when simulating BEP.

Keywords: backward erosion piping, numerical modeling, constitutive law,

time evolution, computational algorithm

1. Introduction

Flooding has been identified as the most common and costly source of
natural risk in the United States and worldwide (FEMA, 2019). Piping is
reported to be responsible for nearly half of all documented geotechnical
flood protection infrastructure (GFPI) failures and among different types of
piping incidents nearly one third are attributed to backward erosion pip-
ing (BEP) (Foster et al., 2000; Richards and Reddy, 2007). BEP refers to
continuous removal of particles by seepage flow in saturated sandy soils, so
that an open pipe initiates and progresses from the downstream side up-
wards (Richards and Reddy, 2007, 2012). BEP is usually initiated by flow
exit conditions on the downstream side of the system, where flow concentra-
tions occur and lead to sand boils (Fleshman and Rice, 2013; van Beek et
al., 2015).

Although several research groups have studied BEP from an analytical
and experimental point of view, the fundamental mechanisms of pipe ini-
tiation and progression, and characterization of their spatial and temporal

features still pose significant challenges in the design and operation of GFPIL.
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This is due to the fact that BEP is a complex physical process which in-
volves the interactions of soil mechanics, fluid mechanics and sediment trans-
port (Schmertmann, 2000). Focus of some of these studies has been on de-
veloping models for identification of factors of safety for GFPIs against BEP.
Aided by experimental observations, previous authors developed empirical or
semi-analytical models for identifying a threshold hydraulic gradient, shear
stress, or flow velocity which represents the critical hydraulic conditions in
the structures (Bligh, 1910; Fleshman and Rice, 2013; Negrinelli, 2015; Ojha
et al., 2003; Peng and Rice, 2020; Reddi et al., 2000; Schmertmann, 2000;
Sellmeijer, 1988; van Beek, 2015; van Beek et al., 2010). In order to charac-
terize temporal evolution of BEP, a number of experimental investigations
studied pipe progression rates at small and medium scales (Allan, 2018; Pol
et al., 2021; Robbins et al., 2018; Vandenboer et al., 2019). Formal method-
ologies to apply these findings to field conditions have not been achieved due
to the effects of soil variability and complexity in hydraulic conditions in the
field (Negrinelli et al., 2016). Numerical modeling serves as a complementary
tool to study BEP, particularly for detailed characterization of its spatial and
temporal evolution.

Several numerical models have been previously proposed to deepen un-
derstanding of the physical mechanisms governing BEP. As summarized by
Wang et al. (2014), the BEP numerical models in the literature can be
grouped into three categories based on their representations of the erosion
process: (1) homogenized continuum formulations based on seepage analy-
sis, with or without schemes to update hydraulic conductivity as a result of

erosion (Hagerty and Curini, 2004; Rahimi et al., 2021), (2) models formu-
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lated with discrete element method (DEM) (Zeghal and El Shamy, 2004; El
Shamy and Aydin, 2008), and (3) multi-phase models describing the interac-
tion between the fluid phase and solid skeleton (Bonelli and Benahmed, 2010;
Fascetti and Oskay, 2019b; Fujisawa et al., 2010). Despite progress made by
these contributions, the following three aspects remain to be outstanding
challenges: (1) capturing the three dimensional characteristics of the phe-
nomenon (Robbins and Griffiths, 2021), as the majority of available studies
have primarily focused on two-dimensional configurations, (2) describing ran-
dom features of BEP propagation (Rotunno et al., 2019; van Beek, 2022), as
several existing models constrain the erosion paths based on mesh contours
or define the path a priori, and (3) deriving a physics-based description of
the relationship between erosion rate and local hydraulic conditions, since
available models largely employ semi-analytical descriptions of BEP derived
from limited experimental observations.

Earlier empirical studies and recent semi-analytical investigations adopted
different forms of linear relationships between the shear stress exerted onto
the erodible particles by the seepage flow and the erosion rate in the soil (Khi-
lar et al., 1985; Reddi et al., 2000; Indraratna et al., 2009). These studies
hinge on the fundamental assumption that BEP is controlled by the par-
ticle erosion at the walls of the established pipe under seepage flow (the
so-called secondary erosion, according to Hanses (1985)). However, Allan
(2018) pointed out that pipe progression is more likely to be dominated by
soil erosion at the pipe tip (primary erosion, according to Hanses (1985))
instead. Moreover, in the vicinity of the pipe tip, no consensus has been

reached as to which directional component of the seepage flow, vertical or
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horizontal, controls mobilization of particles (i.e., erosion rate) (Allan, 2018).
This makes formulations of constitutive relations for the erosion rate a chal-
lenging task when devising strategies based on hydraulic loading measures
such as hydraulic gradient or shear stress. In recent investigations, Sibille
et al. (2015) and Kodieh et al. (2021) devised a novel energy-based frame-
work for predicting erosion rates, as measured in internal erosion tests, from
fundamental principles based on fluid mechanics. This provides an alterna-
tive approach for erosion rate estimation at the pipe tip where complex 3D
equilibrium conditions exist.

Available computational approaches capable of describing temporal de-
velopment of piping in the simulations include the transient groundwater flow
model (van Esch et al., 2013), erosion rates-based model for hole erosion test
simulation (Bonelli and Benahmed, 2010), a bed-load transport model in lam-
inar flow (Cheng, 2004), and models focusing on pipe progression speed (Fu-
jisawa et al., 2010; Rotunno et al., 2019; Wang et al., 2014). However, in
all these works, the erosion rates are generally estimated from the afore-
mentioned semi-analytical shear stress-/gradient-based approaches (Bonelli
and Benahmed, 2010; Cheng, 2004; Fujisawa et al., 2010; Rotunno et al.,
2019; Wang et al., 2014). Moreover, there still exists a fundamental lack of
validation against experimental results, particularly for what concerns the
time-dependent characteristics of BEP (Cheng, 2004; van Esch et al., 2013).

The primary contribution of this manuscript is a new dual random lattice
formulation that is capable of modeling time evolution of backward erosion
piping (BEP) in three dimensions. The central motivation and novelty of

this work are discussed prior to the systematic presentation of the govern-
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Figure 1: Schematic of BEP initiation and progression: (a) overview, and (b) soil erosion

at pipe tip via successive particle rearrangement

ing equations, which encompass those for describing hydraulic dynamics as
a transport problem and estimating soil erosion rates based on the theory
of rate processes. The following section introduces the implementation of
simulations with the model and proposes an algorithm for accurately calcu-
lating interdependent changes in permeability properties due to soil erosion
across dual lattice networks. Lastly, the manuscript presents and discusses
comparisons of simulation results with one set of available experimental find-

ings, serving to evaluate the proposed model’s capacity to accurately simulate

BEP.
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2. Motivation and Novelty

Although time evolution of BEP is critical for GFPI safety, relatively less
attention has been given to it in comparison with identifying critical hydraulic
loading conditions associated with BEP initiation. Capability of describing
the pipe progression speed would enable prediction of the time required for
a pipe to reach upstream side, as well as unveil fundamental mechanisms
governing the phenomenon. This capability would enable evaluation of the
risk for full pipe development for a given flood duration or estimation of how
many flood events a given dam/levee could survive if past flood levels and
duration are available in flood hydro-graphs (Allan, 2018).

To this end, this study develops a three-dimensional numerical method
capable of accurately simulating time evolution of BEP in GFPI. Figure 1
illustrates the BEP process at system scale (Fig. 1(a)) and time-dependent
particle erosion at micro-scale. As shown in Fig. 1(b), we hypothesize that
BEP progression is driven by particle erosion at the pipe tip as a result of
successive particle rearrangements under seepage flow, such that erosion can
be described as a rate process. A new constitutive relationship, based on
the theory of rate processes, is then adopted to estimate erosion rate in the
soil as a function of the seepage flow energy. This constitutive relationship
is incorporated into a dual random lattice model (DRLM). The proposed
numerical method is then evaluated by means of comparison with available
highly instrumented laboratory tests.

The key novel contributions of this work are: (1) the development of a con-
stitutive relationship for computation of soil erosion rate under seepage based

on fundamental granular physics and incorporating this relationship into a
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3-dimensional DRLM approach, and (2) the definition of a new methodology

for calculation of coupled degradation on dual lattice networks.

3. Governing Equations

3.1. Nonlinear Transport Problem

Erosion in porous media (i.e., aquifers) can be described as a transport
problem using a non-linear diffusion equation (Fascetti and Oskay, 2019a;

Hagerty and Curini, 2004; Robbins, 2016; Vandenboer et al., 2014):

Oh(x,t)
ot

where h represents the hydraulic head field, €2 the computational domain, T’

— V. (D(h(x,1)Vh(x,t)) xeQ,te(0,T) (1)

the total time, and D = k/Sg the soil diffusivity coefficient, which is related
the hydraulic conductivity and specific storage (Green and Wang, 1990).

The domain is subjected to the following prescribed boundary conditions:

h:h3<t) on FbcﬁQ

(2)
qE—Dg—Z:qB on I'y, C 902

with I', NI, = (), gp is the prescribed outward flux orthogonal to the domain
boundary with normal n, and Ap the time-dependent prescribed hydraulic
head at the boundary. Under assumption of laminar flow, Darcy’s law and the
Kozeny-Carman equation can be utilized to complement the previous equa-
tion and estimate hydraulic conductivity of the soil from its porosity (White,
1940; van Beek, 2015). It is worth mentioning that the assumptions of lam-

inar flow and the applicability of Darcy’s law in the context of backward
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erosion piping have been validated through both experimental and numeri-
cal studies on sandy soils, as reported in Sellmeijer (1988), van Beek et al.
(2015), and Robbins and Griffiths (2021). While the behavior of seepage flow
at microscopic scale may deviate from laminar flow, at the scale of the con-
trol volume employed in the numerical simulations, these assumptions have

been demonstrated to be valid.

3.2. Soil Erosion As A Rate Process

The theory of rate processes was originally developed for describing ki-
netics of chemical reactions and was systematically summarized in Eyring
(1936) and Glasstone et al. (1941). The theory later found successful applica-
tions in describing rates of different processes in soils involving rearrangement
of granular matter, such as creep, shear deformation, and surface soil ero-
sion (Gularte et al., 1980; Mitchell, 1964; Mitchell et al., 1968; Michalowski
et al., 2018). The observations of BEP in various experimental studies ex-
hibit traits that are usually observed in rate processes, such as stochasticity,
“step-wise” pipe progression, and non-linear acceleration of pipe advance-
ment over time (Robbins et al., 2018; van Beek et al., 2015). In view of these
traits, Wang et al. (2024) proposed a constitutive relationship between the
energy density of seepage flow and the soil erosion rate in the aquifer dur-
ing BEP based on the theory of rate processes. As postulated in this work,
mobilization of the particles involves sliding and/or rolling at inter-particle
contacts, which involves crossings of energy barriers formed by confinements
exerted by neighboring particles (see Fig. 1(b)).

Previous studies employed the hydraulic shear stress to estimate the ero-

sion rate by assuming that detachment of particles occurs primarily on walls

9
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of the pipe, rather than in the vicinity of the pipe tip (Bonelli and Benahmed,
2010; Cheng, 2004; Fujisawa et al., 2010; Rotunno et al., 2019). However, as
pointed out by Allan (2018), soil erosion is more likely a result of particle
mobilizations at the pipe tip where seepage flows exhibits complex three-
dimensional traits, which not only reduce applicability of shear stress-based
relationships, but also impose challenges in resolving the local hydraulic con-
ditions. Based on this reasoning, energetic principles are adopted in this
study as the fundamental metric for devising a three-dimensional constitu-
tive relationship that describes the erosion rate as a function of the energy
expended by the flow. The flow power, Py, in a control volume is given
by (Gelet and Marot, 2022; Kodieh et al., 2021; Marot et al., 2012; Sibille et
al., 2015):

Pfiow = —/(pV~n¢—|—7wzv-ni)dS
Si

—/ ((p+ Ap) v-n, + v,(z+ Az) v-n,)dS (3)

where, S; and S, are the inlet and outlet boundary surfaces of the control
volume, having outer unit normal vector denoted by n; and n,; p and p+ Ap
are the static pressures at the inlet and outlet boundary surfaces; z and
z + Az are the elevations at the inlet and outlet boundary surfaces; v is
the flow velocity; and =, is the unit weight of water. Five assumptions
were made while developing Eq. (3) at the control volume scale: (i) the
energy is mainly dissipated by viscous shear at the direct vicinity of the solid
particles, (ii) the change in thermal energy at the control volume scale is

negligible when compared to the mechanical energy expended by the flow in

10
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eroding the particles, therefore the fluid temperature is considered constant,
(iii) the system is adiabatic, (iv) a steady-state flow is considered, and (v)
the flow is considered laminar. The validity of such assumptions have been
demonstrated in Marot et al. (2012), Sibille et al. (2015), Kodieh et al. (2021),
and Gelet and Marot (2022).

The instantaneous cumulative expended flow energy at time ¢ can be

calculated as the integral of the flow power over time:

Epion(t) = / Ppiow (1)t (4)

One can define the flow power density and flow energy density as Pji.,(t) =
Priow(t)/V and Ef(t) = Ef10u(t)/V, respectively (V is the control volume).
Then, according to Eq. (4):

t+At
Eflow(t) = /t Pflow(t>dt' (5>

Wang et al. (2024) proposed a constitutive relationship between the flow

energy density F 10w (t) and the soil erosion rate per unit volume 7i:
m = a sinh (ﬁ Eflow) (6)

with o and /3 given as:

kgT AF
@ = 2pdryﬁ €xXp “RT

| 7)

BIS@T

where pg,, is the dry bulk density of the soil, kg the Boltzmann’s constant

(1.38 x 107* J/K), T the temperature in K, hp the Planck’s constant

11
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(6.624 x 10734 J/s), AF the free activation energy, R the universal gas con-
stant (8.3144 J-K~'-mol™!'), X the displacement of the flow unit per crossing
of an energy barrier (with 2.8 x 107!% m as a reasonable assumed value which
is the diameter of an oxygen ion according to Mitchell et al. (1969)), and S
the number of flow units per unit area.

Remark: For a soil at a given temperature, the parameter « is a function
of the dry bulk density pg4-, and the activation energy AF' of the soil, with
the former being a function of the porosity and the latter demonstrated to
be a soil property (Mitchell and Soga, 2005). The parameter § is a function
of the number of bonds per unit area .S, which has been demonstrated to be
a function of the average effective stress in the soil (Mitchell et al., 1969).
For a given soil, one can perform erosion tests while maintaining the same
porosity, temperature, and confining stress to experimentally establish the

values of a and .

4. Model Implementation

4.1. Dual Random Lattice Model

This work exploits a three-dimensional DRLM framework for simulat-
ing temporal and spatial evolution of BEP in GFPI. Random lattice models
are an attractive alternative to continuum approaches for modeling vari-
ous civil engineering problems including transport problems (Bolander and
Sukumar, 2005; Fascetti et al., 2016, 2018; Fascetti and Oskay, 2019a; Kozicki
and Tejchman, 2008). The fundamental idea behind this class of numerical
methods, which follows the pioneering work of Hrennikoff (1941), is that the

three-dimensional behavior of a solid can be resolved on a dense lattice of

12
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Figure 2: Graphical interpretation of the dual random lattice model

one-dimensional elements. In the context of simulating BEP, the main advan-
tages of this approach include the following: (1) the solution of the governing
equations is evaluated on a dense network of 1-dimensional lattice elements,
which simplifies the derivation of the constitutive law; (2) the discrete na-
ture of the model enables the representation of localized phenomena such as
erosion; and (3) the spatial randomness of the lattice provides a substantial
mesh independence (Kozicki and Tejchman, 2008). A thorough description
of the main features of this modeling framework may be found in Fascetti
and Oskay (2019a).

The DRLM exploits the geometrical features of the Delaunay and Voronoi
tessellations of a 3D domain (see Fig. 2). Consider a randomly distributed
set of nodes in a given 3D domain. The randomly distributed pointset can be
obtained by randomly generating 3-D coordinates sampled from a uniform

probability distribution function, as described in Fascetti and Oskay (2019a).
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The Delaunay triangulation is a tessellation performed on the pointset such
that none of the points lies inside the circumsphere of any tetrahedron in
the triangulation. The Voronoi diagram, on the other hand, is the geomet-
rical tessellation on the set of node points that associates each point with
a polyhedron composed of all the points that are closer to that point than
any other in the pointset (Okabe et al., 1994). The two tessellations hold
the fundamental property of being dual, meaning that each edge in the De-
launay tessellation is associated with a unique Voronoi area, and vice versa.
The areas on both lattices also hold the property of being orthogonal to the
corresponding edge in the dual tessellation. This property is of fundamental
importance in computing the gradients of the field variable resolved on the
lattices, as described in the following.

Based on the aforementioned properties, a prevalent feature of the pro-
posed DRLM approach is that the field variable h is simultaneously resolved
on both the Delaunay and Voronoi lattice networks. This allows for 3-
dimensional features of the solution (such as gradients) to be accurately
evaluated, whereas traditional lattice approaches can only resolve this infor-
mation at the 1-dimensional level of the lattice struts.

As derived in Fascetti and Oskay (2019a), the nonlinear diffusion problem
defined by Eq. (1) can be written in compact form as:

dh

U=M—_ +K(h)h—f=0 (8)

where M is the global mass matrix, h the hydraulic head vector, K(h) the
global diffusion matrix, and f the force vector. The expressions for these

relevant matrices were derived in the previous work by the authors (Fascetti
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and Oskay, 2019a):

DA | 1 -1
K. = / B DBdO = / DA, (x)B'Bdz = ——¢
Q le e -1 1
2 1
M, = / NTNdQ = / A (x)N'Ndx = Ve (9)
Q le 611 2
—qr A,
£ / aNTde, = | "
Qq _QJAe

where, V, is the value of the effective volume of the current element, N is
the vector containing the element shape functions and B the vector of their
derivatives.

Remark: Although the element matrices in Eq. (9) take similar form
as those reported in Grassl and Bolander (2016), Grassl et al. (2013), and
Savija et al. (2013), such works introduced a phenomenological correction
parameter in the calculation of the matrix M to ensure consistent calculation
of the volume of the domain. In this work, the exact value of V, is calculated
by connecting the vertices of the resisting areas with the two ends of their
associated elements (see Fig. 2), therefore conservation of volume is satisfied
exactly.

Discretization in time is performed by means of the Crank-Nicolson method (Lewis
et al., 2004):

h"tt —h" 1

M— - Kn+1hn+1 Knhn . fn+1 . fn _ 1
INE ( - ) =0 (10)

where At is the time step size and superscripts indicate the time step count

(1 < n < ngt, with ngt the total number of steps). The Crank-Nicholson

15
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method is a semi-implicit scheme and unconditionally stable (Thomas, 2013).
Due to the presence of decaying spurious oscillation in the solution of the
transient problem, the maximum allowable time step size is set to:

2
At = % (11)
where [,,,;, is the minimum value of the lattice element length in the mesh.
It is worth noting that the temporal evolution of BEP is a dynamic process,
therefore it is resolved as a transient problem in the numerical simulations.
This aspect of the numerical implementation is not in contrast with the
steady-state flow assumption when deriving the closed form solution for the
flow power (see Eq. (3)) which has the physical meaning of assuming that
the kinetic energy of the fluid does not change (i.e., it is negligible with
respect to the change in energy induced by viscous effects). This assumption
is only required to derive a closed form solution for the power of flow, as
originally demonstrated in Marot et al. (2012), Sibille et al. (2015), Kodiech
et al. (2021), and Gelet and Marot (2022).

A key characteristic of the DRLM is simultaneous computation of trans-
port behavior on both the Delaunay and Voronoi lattices for more accurate
computation of hydraulic gradient. The local response gradients predicted
by the lattice shape functions vanish along the direction orthogonal to the
lattice element. By resolving the field variable (i.e., the hydraulic head h) on
both assemblies, DRLM can approximate the gradient field at the orthogo-
nal direction, therefore augmenting the local gradient calculation. Figure 3
illustrates a Voronoi lattice element Ay — By and its dual triangular facet

Ap — Bp — Cp (the subscripts D and V indicate Delaunay and Voronoi ele-
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Figure 3: A Voronoi lattice element and its dual triangular facet formed by three Delaunay

elements

ments, respectively). The component of the gradient in the direction parallel
to the element (n direction) is calculated on the Voronoi element (hence, iy),
while the components on the plane orthogonal to the element (i.e., the plane
of the resisting area) is obtained from the computed hydraulic head values
at the Delaunay nodes (hence, ip).

The resultant gradient is obtained by:

hg, —h 1
- l 4 o (hapepc + hppeca + hopeas) (12)

i=iy+ip=n

where n is the unit vector along the Voronoi element; e 45, €egc, €ca are the
unit vectors along the facet edges; ha,,, hp,, ha,, hp,, hc, are the hydraulic
head values evaluated from solving the transport problem on both lattices.
With the calculated resultant hydraulic gradient, the volumetric flow energy
E 10w in the effective volume can be calculated using Egs. (3) and (4). It is
important to include the Az term in Eq. (3) while calculating the flow power,

as a result of the fact that this term represents the change in elevation of
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Figure 4: Erosion of a Voronoi lattice unit and update of its conductivity (updated soil

matrix interpreted as collections of color-coded spheres)

the seepage flow through the effective volume (Az > 0 for a downward flow
direction and Az < 0 otherwise), yielding significant effects on the predicted

erosion rates.

4.2. Coupled Degradation in Dual Lattice Networks

As a result of the erosion process being described on the dual Delaunay
and Voronoi lattices, it is of fundamental importance to accurately capture
the changes in the material characteristics (i.e., the change in diffusivity due
to the development of erosion) in both lattices throughout the simulations.
As described in the previous section, the gradient of the hydraulic head field is
resolved at the mid-point of each Voronoi lattice element (Point M in Fig. 3).
The sub-assembly composed of a Voronoi element and the corresponding

triangular Delaunay facets (see Fig. 4) constitutes the fundamental flow unit
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Figure 5: Volumetric averaging algorithm for computation of updated conductivity of a

Delaunay unit from its dual Voronoi elements

resolved at the dual lattices level. The constitutive law is then exercised to
evaluate the erosion rate at such material point (Eq. 6). Figure 4 depicts
an idealized representation of soil degradation under erosion conditions. The
yellow-colored dots represent non-eroded soil particles, while the dashed blue
spheres represent voids created by the erosion process. The severity of soil
erosion is indicated by the number of eroded particles, represented by the
dashed blue spheres. As a result of the erosion process, updated values for
porosity and conductivity are computed. In order to correctly resolve the
non-linear process through the DRLM approach, this manuscript proposes
an algorithm for the computation of coupled time-dependent degradation of
the dual lattices.

From mass conservation, the following relationship between the rate of
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change in porosity and the particle erosion rate holds:

db(x,t) M
S (13)

By combining Egs. (6) and (13), the rate of change in porosity can be calcu-

lated from the following constitutive relationship:

db(x,t) 1 . _
% — Ea Slnh (5 Eﬂow(x, t)) (14>

The rate of change in porosity of the effective volume of a Voronoi unit
at any time ¢ can be calculated via Eq. (14) and the associated hydraulic
conductivity k of the effective volume is then evaluated from the updated
soil porosity by means of the Kozeny-Carman equation. Figure 4 illustrates
a conceptual representation of the updated soil structure of a Voronoi element
Ay — By and the effective volume it forms with its dual triangular Delaunay
facet Ap — Bp — Cp corresponding to an updated hydraulic conductivity
k?{ The updated hydraulic conductivity field for the entire Voronoi lattice
can be obtained by computing the updated hydraulic conductivity of every
Voronoi lattice unit. A strategy for updating conductivity on the Delaunay
lattice also needs to be devised. We propose that such value be computed
as the weighted average of the Voronoi elements constituting the associated
polygonal resisting area. This proposed algorithm is visually depicted in
Fig. 5. The weight of each Voronoi element izfi (e.g., j=1 to 5 in the case of
Fig. 5) is computed from the ratio of the volume of the tetrahedron associated
with the Voronoi element V7 (formed by the four end nodes of Ay By and
the associated Delaunay element h7) to the total effective volume V7. This

can be expressed mathematically as follows:
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o T VY ¥ RV ,
=S =T (15)
j= e e

where k! is the hydraulic conductivity of the effective volume A? associated

with Delaunay element A’ at time ¢, l%; the hydraulic conductivity of effective
volume AJ associated with Voronoi element / at time ¢ (k7 forms one of the
edges of the polygonal resisting area of A?), V¥ volume of the tetrahedron
associated with ki, V7 total volume of A?, and n; the total number of edges
(Voronoi elements) in the polygonal resisting area of effective volume A’.
Note that in three dimension, the value of n; varies across different Delaunay

elements.

4.3. Modeling Procedure

The three-dimensional domain {2 is first constructed by means of a CAD
software. Then Delaunay tesellation of this domain is generated with a maxi-
mum tetrahedron volume criterion using the open-source TetGen library (Si,
2020). Next, the Voronoi diagram is constructed by connecting the cen-
ters of the circumshperes of every Delaunay tetrahedron. Finally, special
treatments are needed on the discretization of the domain boundaries. As
introduced by Fascetti and Oskay (2019a), the circumcenters pertaining to
external tetrahedra (those lying on an external surface of the domain) are
mirrored with respect to the specific external surface. Only the part of the
resulting Voronoi diagram inside the domain is kept as a new diagram while
the rest part is removed. In this way, the Voronoi elements at the boundary
are orthogonal to the surface.

After the dual lattice networks are constructed, each BEP simulation
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requires the following steps:

1. A transient analysis is first performed until hydraulic equilibrium con-

ditions are attained in the specimen for the given initial imposed heads
(h(x,0) = ho(x)). In this analysis, the hydraulic conductivity of the
soil is assumed to be constant and does not degrade to soil erosion
(k(x,0) = ko for all elements). Also, no degradation zone is assumed

at this stage.

. The hydraulic conductivity of all the lattice elements within a user-

defined pipe initiation zone is amplified (i.e., k(x,0) = myky for x €
Q4ni, where my, is the user-defined amplification factor for conductivity
in the initiation zone and €2;,; is the part of the domain defined as
the initiation zone accounting for a downstream exit condition). The
initiation zone with increased hydraulic conductivity creates a condi-
tion of flow concentration, therefore increasing the hydraulic gradient
in the associated lattice elements. A second transient analysis is then
performed until hydraulic equilibrium is reattained in the domain after
initiation has been introduced. Soil degradation is still assumed not
taking place in this stage with hydraulic conductivity of all elements

remaining constant.

. Simulation of time evolution of BEP is performed by solving the nonlin-

ear transport problem with the coupled degradation algorithm on the
lattices embedded to account for time-dependent soil erosion. At each
time step, soil degradation is evaluated in the following four sub-steps:
(i) the hydraulic gradient field is computed by employing Eq. (12); (ii)
the values of local flow energy density are evaluated through Egs. (3)

22



411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

434

and (4); (iii) the values of hydraulic conductivity of the Voronoi el-
ements are updated based on changes in values of element porosity
computed using Eq. (14) with the flow energy values calculated from
sub-step (ii) and the Kozeny-Carman equation; (iv) the updated val-
ues of conductivity of the Delaunay elements are calculated from the
updated conductivity field of the Voronoi lattice according to Eq. (15).
The flow energy is recalculated at every time step with the updated con-
ductivity field, and it is used to evaluate the degradation rate so as to
update the conductivity values. A limit porosity criterion is adopted to
account for the physical concept that only up to a certain fraction of the
solid skeleton can be mobilized during the erosion process; such value
represents the maximum local porosity attained for fully piped condi-
tions (Fascetti and Oskay, 2019a). A Voronoi sub-assembly is therefore
flagged as “piped” when its porosity reaches the maximum allowable
value. The network formed by the piped elements indicates the erosion
path. The simulation is considered complete when the pipe propagates
to the upstream side or when hydraulic equilibrium is achieved in the

domain (i.e., piping stops).

5. Comparison with Experimental Results

This section presents the assessment of performance of the proposed nu-
merical method with simulations of experimental results reported in the lit-
erature. The experiments and specimens used for simulations are first de-
scribed and values of modeling parameters are discussed. Then, sensitivity

of the model to mesh density is analyzed before comparisons of the simulated

23



435

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

results and experimental observations are presented.

5.1. Calibration of Model Parameters

The set of experiments used to evaluate the capabilities of the model
comprises backward erosion piping tests on cylindrical sand specimens, as
reported in Robbins et al. (2018). A saturated sand specimen with length
958 mm was contained in an acrylic cylinder with internal diameter of 76.2 mm.
The cylinder was closed with O-ring-sealed acrylic end plates bolted at the
two ends to create a water-tight, unidirectional flow environment. The up-
stream end plate contains a porous filter to diffuse flow as it enters the sample
and to prevent loss of soil close to the flow entrance tubing. The downstream
side of the sample has a slope formed at the natural angle of repose of the
soil, to ensure a shortest seepage path at the top of the cylinder and in-
duce pipe initiation and propagation along the top surface of the sample.
The upstream and downstream hydraulic heads were applied through two
constant-head water tanks connected to the two ends of the sample. With a
known pipe path along the top surface, local hydraulic pressures were contin-
uously monitored by means of pressure ports installed at 100 mm intervals.
Temporal pipe progression was visually monitored via high-resolution video
recording aided by dye injection in the fluid. The sand under study had an
initial void ratio of 0.61, an initial relative density of 0.79, and the grain
sizes were between standard U.S. sieves No.70 and No.40. The testing pa-
rameters which are reported in Robbins et al. (2018) were assigned directly
to the corresponding model parameters. The initial values of the other in-
put parameters required in the simulations were adopted from the calibrated

values reported in Wang et al. (2024) and were further refined by means of
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Table 1: Model parameters

Parameter Value

Length of specimen 958.0 mm
Diameter of specimen 76.2 mm
Global hydraulic gradient 0.4100

Initial porosity 0.3790

Initial conductivity 6.2 x 107 m/s
Initial specific storage 7.2x107° m~!
Limit porosity® 0.7536

af 5.94 x 104

¢ 1.00 x 1073

Note: “calibrated with experimental results

a calibration procedure based on the pipe progression speed observed in the
experiments. The calibrated parameters fell into the ranges of values as re-
ported in the literature (Wang et al., 2024). All the material parameters are
reported in Table 1.

5.2. Mesh Sensitivity Analysis

A sensitivity analysis has been carried out to quantify the effect of mesh
density (i.e., the number of Delaunay points used to create the computational
domain) on the obtained results. The goal of the analysis is to identify a lat-

tice resolution with satisfactory accuracy while maintaining acceptable com-
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Figure 6: Visualizations of models with number of Delaunay nodes of: (a) 1,513, (b)

2,213, and (c) 3,177 (erosion path is indicated by piped elements colored in blue)
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Figure 7: Study on lattice resolution
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putational efficiency, in a way that is analogous to mesh convergence analyses
commonly employed in the finite element method (Patil and Jeyakarthikeyan,
2018). The model parameters used in this analysis are the same as those listed
in Table 1, except for the length of the specimen, which was set to 200.0 mm
in order to save computational resources. Simulations with different lattice
resolutions were performed and the results with number of Delaunay nodes
nd = 1,513, 2,213, 3,177 are shown in Fig. 6 and Fig. 7.

Figure 6 provides visualizations of the three models with the computed
erosion paths highlighted (indicated by piped elements in blue). Figure 7
reports the values of average piping speed in the three models. Such speeds
are calculated as L;/At, where L; is the length of a specified portion of the
domain, and At is the time it takes the pipe to traverse such length. For each
model, such values are computed on four consecutive 40.0 mm-long segments
along the longitudinal direction of the specimen. The results reported in Fig 7
were used to examine mesh sensitivity in the proposed approach. The length
of the domain used in the sensitivity analysis is 200.0 mm; the first 30.0 mm
and the last 10.0 mm of the specimen were excluded from the calculations
of pipe speed, due to the fact that the measurements would be relatively less
accurate as a result of imposed boundary conditions. As can be seen in Fig. 7,
the median of the average pipe progression speed converges at the Delaunay

node number of 2,213 (corresponding to V! = 150 mm?). Therefore, a
lattice resolution with a maximum tetrahedron volume V!¢ of 150 mm? i

maxr 8

adopted for the simulation reported below.
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(b) (c) (d)

Figure 8: Topology of erosion path over time: (a) a top view at ¢ = 480 sec, and three

oblique views at (b) t = 0 sec, (c) t = 250 sec, and (d) t = 480 sec
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Figure 9: Experimental and numerical pipe tip location over time (experimental data

available in Robbins et al. (2018))
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Figure 10: Experimental and numerical evolution of local hydraulic gradient (mm/mm)

in the domain: (a) horizontal hydraulic gradient, and (b) vertical hydraulic gradient (ex-

perimental data obtained from Robbins et al. (2018))
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5.3. Numerical Results

Numerical simulation results are presented and their comparisons with the
experimental findings are discussed in this subsection. Figure 8 illustrates
the progressive development of the erosion path predicted by the model over
time. A quantitative description of pipe advancement over time is shown
in Fig. 9, where experimental observations from Robbins et al. (2018) are
included for comparison. As shown in Fig. 8, the proposed numerical model
is capable of capturing the spatial advancement of piping erosion. In Fig. 8,
the erosion path is predicted as a single horizontal network formed by inter-
connected Voronoi elements of which the hydraulic conductivity has reached
the maximum value (i.e., the “piped elements”). Along the longitudinal
direction, most of the cross sections of the pipe path comprise up to four
branches of parallel Voronoi elements. This branching feature of the pipe
path can be attributed to the tessellated representation of the simulation
domain.

As shown in Fig. 9, the time evolution of the pipe tip location predicted
with the proposed DRLM model matches the experimental results well. Con-
sistency is evident not only in the similar pipe progression speed but also in
the step-wise patterns in both curves, with the experimental observations
showing more prominent steps. The proposed approach describes the time-
dependent erosion of soil particles as a rate process, resulting in a trend that
shares this fundamental feature with the experimental evidence. Moreover,
discretization on dense 1-dimensional lattice networks allows for substantial
mesh-independence and representation of the 3-dimensional characteristics

of BEP, with the erosion paths not being constrained on element bound-
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ary and/or pre-defined paths, as in most available numerical models. The
variation in step sizes between the two curves can be attributed to the dif-
fering methods used for identifying the pipe tip, with the simulation relying
on porosity analysis while the experiment used visual observations based on
camera recording. The agreement between the numerical and experimen-
tal pipe tip advancement demonstrates the model’s capability in capturing
temporal pipe progression during BEP and supports the hypothesis that soil
erosion can be described as a rate process.

Figure 10 reports comparisons between the experimental and numerically
evaluated hydraulic gradients in the specimen. Evolution of the local gradi-
ents illustrate very similar patterns in the simulation as those observed in the
experiment. It is important to note that the gradient values are calculated
differently in the numerical simulations than in the experiments (Robbins et
al., 2018). The local gradients are computed in the simulation on the individ-
ual Voronoi elements by means of the algorithm introduced in Section 4, while
the experiments estimated local gradients based on hydraulic pressure mea-
surements from adjacent pressure ports and their relative distances (Robbins
et al., 2018). The reason that the numerical gradients were not computed in
the same way as in the experimental study is because to accurately simulate
the hydraulic pressure measurements with pressure transducers connected to
openings on the acrylic cylinder, complex boundary conditions at these loca-
tions need to be considered which is out of the scope of this study. Therefore,
the local gradients as computed in the lattice elements were used for com-
parisons with the experimental results. The corresponding gradient values

from the simulation as illustrated in the Fig. 10 are extracted from Voronoi
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lattices located in three box-shaped measuring regions corresponding to the
locations of the pressure transducers installed on the laboratory specimen.
As shown in Fig. 10(a), the evolution of local horizontal gradients at the three
locations from both the experiment and simulation show significant increases
as the pipe tip approaches. The different resolutions in computing the local
gradients as discussed above could explain the slight difference between the
peak magnitudes of the experimental and numerical gradients, as shown in
Fig. 10. Moreover, in the simulation curves of horizontal gradients labeled as
80—90 and 60— 70 as shown in Fig. 10(a), there are more than one peak while
the experimental data from each measuring location contain only one peak.
This is likely due to local branching in the simulation pipe path with different
branches reaching the measurement areas at different time steps. One other
discrepancy is that in the experiment, the local horizontal gradients dropped
to around 0.2 in the later stage of the test, while they asymptotically tended
to the initial applied gradient in the simulation. This is because in the exper-
iment, the upstream hydraulic head was no longer maintained constant after
the pipe reached the upstream side, as reported in Robbins et al. (2018).
Similar conclusions can be drawn from the comparison of the local vertical
gradients, as shown in Fig. 10(b). The good agreements between the experi-
mental and numerical vertical gradients, as shown in Fig. 10(b), demonstrate
the capability of the proposed model in accurately capturing local gradients

in three dimensions.
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6. Conclusions

A novel three-dimensional dual random lattice modeling approach for
the simulation of BEP in GFPI has been proposed herein. The groundwater
seepage is evaluated by solving the nonlinear diffusion problem on two inde-
pendent dual lattice networks. The first main novelty of this study is that a
constitutive relationship between the flow energy density and particle erosion
rate is adopted in the simulations, alleviating known issues with available nu-
merical methods. The relationship is based on the theory of rate processes,
and describes BEP as successive particle rearrangements caused by the en-
ergy expended by the seepage flow. This formulation based on fundamen-
tal granular physics is distinct from previous empirical approaches, which
primarily relied on experimental observations and provided semi-empirical
descriptions of BEP. The adopted constitutive relationship was incorporated
into the DRLM to enable computations of rates of local soil degradation so
as to calculate time evolution of BEP in the computational domain. The
proposed volume-based averaging algorithm to calculate coupled degrada-
tion of the dual lattices is of critical importance to maintain consistency in
the calculations, when employing dual lattice calculations. Furthermore, the
proposed methodology, while applied to simulation of BEP, is fundamentally
applicable to a wide array of problems involving computation of the gradi-
ents of a field variable, and therefore potentially impacts a broader range of
problems.

The capabilities of the proposed numerical model were investigated by
comparison with experimental observations available in the literature. A

mesh resolution study was performed to identify the optimal mesh density
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to be employed in the simulations. Good agreement was observed between
the numerical and experimental data in all the quantitative metrics reported
in the experiments, namely: (1) spatial advancement of piping erosion, (2)
temporal evolution of the pipe tip, and (3) dynamic evolution of local hy-
draulic gradients. The proposed model has been demonstrated to be capable
of accurately capturing the aforementioned aspects of time evolution of BEP
in saturated sand embankments in 3-D. In a previous study, Fascetti and
Oskay (2019b) developed a machine learning-based reduced order modeling
(ROM) framework to perform regional-scale risk assessment of geotechnical
flood protection systems by means of training the ROM with data obtained
from local-scale simulations. A similar approach can be leveraged to incorpo-
rate the local-scale model proposed herein in a multiscale framework capable

of predicting time evolution of BEP at the global scale.
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