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In this paper, we develop a new adaptive hyperbolic-cross-space mapped Jacobi (AHMJ) method 
for solving multidimensional spatiotemporal integrodifferential equations in unbounded domains. 
By devising adaptive techniques for sparse mapped Jacobi spectral expansions defined in a 
hyperbolic cross space, our proposed AHMJ method can efficiently solve various spatiotemporal 
integrodifferential equations such as the anomalous diffusion model with reduced numbers of 
basis functions. Our analysis of the AHMJ method gives a uniform upper error bound for solving 
a class of spatiotemporal integrodifferential equations, leading to effective error control.

 Introduction

There have been wide applications of unbounded-domain spatiotemporal integrodifferential to describe the evolution of physical 
 biological quantities in different physical or biophysical models. For example, 2D or 3D unbounded-domain anomalous diffusion 
uations incorporating fractional Laplacian operators are used in material science [2–4]. Additionally, unbounded-domain multidi-
ensional aggregation-diffusion equations, which include a convolutional term to model the nonlocal interaction among individuals, 
e used to model swarming behavior and chemotaxis [5–8].
Spatiotemporal integrodifferential equations in unbounded domains present computational challenges for many existing methods. 
r instance, mesh-based approaches like finite difference and finite element methods struggle with unbounded domains when applied 
rectly [9,10]. Truncating the unbounded domain into a bounded domain is necessary for using those mesh-based methods. Yet, 
main truncation requires devising artificial boundary conditions [11–13], which could be intricate to formulate.
Spectral methods could be an effective approach for solving unbounded-domain problems [14–21]. Some basis functions, such as 
e Hermite functions and Laguerre functions, are inherently defined in unbounded domains. Thus, with basis functions defined in 
bounded domains, spectral methods can be directly applied to solve unbounded-domain spatiotemporal equations. Recently, novel 
aptive techniques for spectral methods [20–23] have been proposed to improve the efficiency of using spectral methods to solve 
bounded-domain spatiotemporal equations. By monitoring a frequency indicator and an exterior-error indicator, the adaptive 
ectral method can automatically adjust the decaying rate, the displacement, and the expansion order of the spectral expansion to 
curately capture the dynamic behaviors of solutions in the unbounded domain.
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When using spectral methods to solve multidimensional spatiotemporal equations, the “curse of dimensionality” arises as the 
mber of basis functions needed could grow exponentially with dimensionality [9,24,25,15,26]. A sparse spectral method based on 
yperbolic cross space [9,24,26] has been proposed to effectively reduce the number of basis functions needed when approximating a 
ultidimensional function. The hyperbolic-cross-space spectral methods have yielded good results in solving high-dimensional elliptic 
uations [24,25,15] and high-dimensional parabolic equations [9,26]. Yet, when solving spatiotemporal equations, the behavior of 
lutions to those unbounded-domain spatiotemporal equations may evolve over time and require adaptive adjustment of the basis 
nctions [20,21]. Previous adaptive Hermite methods [20,21,23] have primarily focused on using a dense spectral expansion without 
y dimension reduction techniques. However, compared to sparse spectral methods with spectral expansion in a proper hyperbolic 
oss space, full-tensor-product Hermite spectral expansions use much more basis functions without substantially improving accuracy 
d could thus be computationally ineffective.
Furthermore, solutions to certain unbounded-domain multidimensional spatiotemporal equations such as the anomalous diffusion 
uation [2–4] and the Patlak-Keller-Segel equation [27] decay algebraically at infinity. Solving those equations requires using basis 
nctions that can characterize algebraic decay at infinity such as the mapped Jacobi functions rather than the exponentially decaying 
rmite functions [16,19,17]. Yet, to our knowledge, there has been little research on how to develop adaptive sparse spectral methods 

 effectively solve unbounded-domain spatiotemporal equations with algebraically decaying basis functions.
In this work, we develop an adaptive hyperbolic-cross-space mapped Jacobi (AHMJ) method to efficiently solve multidimensional 
atiotemporal integrodifferential equations in unbounded domains. Our main contributions are summarized as follows: i) devise 
aptive hyperbolic-cross-space techniques for properly adjusting basis functions over time in a spectral expansion defined in hy-
rbolic cross spaces [9,24,26] for solving unbounded-domain multidimensional spatiotemporal equations; ii) extend the adaptive 
ectral techniques to mapped Jacobi spectral expansions [15–17,19]; iii) carry out an analysis on the error bound of applying the 
oposed AHMJ method for solving integrodifferential spatiotemporal equations.
We study the following general nonlinear spatiotemporal equation of the weak form(

𝜕𝑡𝑢, 𝑣
)
+ 𝑎

(
𝑢, 𝑣; 𝑡

)
=
(
𝑓 (𝑢; 𝑡), 𝑣

)
, (𝒙, 𝑡) ∈ℝ𝑑 × [0, 𝑇 ],(

𝑢(𝒙,0), 𝑣̃
)
=
(
𝑢0(𝒙), 𝑣̃

)
, ∀(𝑣, 𝑣̃) ∈𝐿2([0, 𝑇 ];𝐻1(ℝ𝑑 )

)
×𝐻1(ℝ𝑑 ).

(1.1)

re, 𝐻1(ℝ𝑑 ) is the Sobolev space build on 𝐿2(ℝ𝑑 ) [28, Chapter 6], and 
(
⋅, ⋅
)
denotes the 𝐿2 inner product w.r.t. the spatial variable 

(we also use 
(
⋅, ⋅
)
to denote the duality [29] between 𝐻1(ℝ𝑑 ) and 𝐻−1(ℝ𝑑 )):(

𝑢, 𝑣
)
∶= ∫

ℝ𝑑

𝑢(𝒙)𝑣(𝒙) d𝒙. (1.2)

𝑢, 𝑣; 𝑡) is a bilinear form, 𝑓 (𝑢; 𝑡) is a nonlinear operator, and 𝑢0(𝒙) denotes the initial value. We shall prove the following theorem 
 the error bound for applying the AHMJ method.

eorem 1.1. We assume that 𝑎
(
𝑢, 𝑣; 𝑡

)
is a symmetric bilinear form satisfying the following continuous and coercive conditions: there exist 

o constants 𝐶0, 𝑐0 > 0 such that

𝑎
(
𝑢, 𝑣; 𝑡

) ≤ 𝐶0‖𝑢‖𝐻1‖𝑣‖𝐻1 , 𝑐0‖𝑢‖2𝐻1 ≤ 𝑎(𝑢, 𝑢; 𝑡). (1.3)

rthermore, we assume that the nonlinear term 𝑓 (𝑢; 𝑡) satisfies the Lipschitz condition: there exists a constant 𝐿 > 0 such that

∀𝑢, 𝑣,𝜙 ∈𝐿2(ℝ𝑑 )⟹
(
𝑓 (𝑢; 𝑡) − 𝑓 (𝑣; 𝑡), 𝜙

) ≤𝐿‖𝑢− 𝑣‖𝐿2‖𝜙‖𝐿2 . (1.4)

en, the 𝐿2 error of using the AHMJ method to solve the model problem Eq. (1.1) can be bounded by the sum of three separate error bounds:‖‖‖𝑢(⋅, 𝑇 ) −𝑈𝜷,𝒙0
𝑁,𝛾

(⋅, 𝑇 )‖‖‖𝐿2 ≤𝐸 (𝑇 ) +𝐸𝑅𝐾 (𝑇 ) +𝐸𝐴(𝑇 ), (1.5)

ere 𝑈𝜷,𝒙0
𝑁,𝛾

(𝒙, 𝑇 ) denotes the numerical solution of the AHMJ method and an implicit Runge-Kutta (IRK) scheme [30,22,31]. 𝐸 , 𝐸𝑅𝐾 , 
d 𝐸𝐴 denote the mapped Jacobi approximation error bound, the IRK time discretization scheme error bound, and the adaptive technique 
ror bound, respectively.

In Section 3, we prove that the mapped Jacobi method error bound 𝐸 in Eq. (1.5) is determined by the hyperbolic-cross-space 
apped Jacobi approximation error 𝑢 −𝜋𝜷,𝒙0

𝑁,𝛾
𝑢; 𝐸𝑅𝐾 and 𝐸𝐴 are determined by the implementation of the time discretization scheme 

d the implementation of adaptive techniques, respectively. Given a smooth function, 𝐸𝑅𝐾 can be maintained small if some appro-
iate high-order time discretization schemes are implemented. Therefore, we can control 𝐸 and 𝐸𝐴 by choosing an appropriate 
perbolic cross space and properly implementing the adaptive techniques for the sparse spectral expansion approximation. Theo-
m 1.1 indicates the error in implementing our AHMJ method to solve multidimensional spatiotemporal integrodifferential equations 
n be well controlled.
The rest of this paper is organized as follows: Section 2 analyzes the model problem Eq. (1.1) and gives the numerical scheme for 
2

plying the AHMJ method to numerically solve it; Section 3 carries out a numerical analysis of the model problem Eq. (1.1) and 
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Table 1

Definitions of the main variables and notations used in this study.
Symbol Definition

 𝛽,𝑥0
𝑛 (𝑥)  𝛽,𝑥0

𝑛 (𝑥) = 𝑛(𝛽(𝑥 − 𝑥0)) is the 𝑛th order mapped Jacobi 
function [16,19]

𝒙 𝒙 ∶= (𝑥1, ⋯ , 𝑥𝑑 ) ∈ℝ𝑑 is the 𝑑-dimensional spatial variable
𝒏 𝒏 ∶= (𝑛1, ⋯ , 𝑛𝑑 ) is the 𝑑-dimensional index
𝜷 𝜷 ∶= (𝛽1, ⋯ , 𝛽𝑑 ) is the 𝑑-dimensional scaling factor 𝛽𝑖 is the 

scaling factor in the 𝑖th dimension
𝒙0 𝒙0 ∶= (𝑥01, ⋯ , 𝑥0𝑑 ) is the 𝑑-dimensional displacement of the 

basis functions. 𝑥0 𝑖 is the displacement in the 𝑖th dimension 𝜷,𝒙0
𝒏 (𝒙)  𝜷,𝒙0

𝒏 (𝒙) ∶=∏𝑑

𝑖=1  𝛽𝑖 ,𝑥0 𝑖
𝑛𝑖

(𝑥𝑖) is the tensorial mapped Jacobi 
function; here 𝒏 ∶= (𝑛1, ..., 𝑛𝑑 )

Υ𝑁,𝛾 Υ𝑁,𝛾 ∶=
{
𝒏 ∈ ℕ𝑑 ∶ |𝒏|mix|𝒏|−𝛾∞ ≤𝑁1−𝛾} is the hyperbolic 

cross index set [24,26], where |𝒏|mix ∶=∏𝑑

𝑖=1 max{1, 𝑛𝑖}
𝑉

𝜷,𝒙0
𝑁,𝛾

𝑉
𝜷,𝒙0
𝑁,𝛾

∶= span𝒏∈Υ𝑁,𝛾
{ 𝜷,𝒙0

𝒏 (𝒙)
}
is the hyperbolic cross 

mapped Jacobi approximation space
𝜋
𝜷,𝒙0
𝑁,𝛾

the projection operator 𝜋𝜷,𝒙0
𝑁,𝛾

∶𝐿2(ℝ𝑑 ) → 𝑉
𝜷,𝒙0
𝑁,𝛾

such that (
𝜋
𝜷,𝒙0
𝑁,𝛾

𝑢 − 𝑢, 𝜋𝜷,𝒙0
𝑁,𝛾

𝑢
)
= 0, ∀𝑢 ∈𝐿2(ℝ𝑑 )

𝐿2([𝑎, 𝑏];𝑉 ) the Bochner space {𝑢 ∶ [𝑎, 𝑏] → 𝑉 ; ∫ 𝑏
𝑎
‖𝑢(𝑡)‖2

𝑉
𝑑𝑡 <∞}

𝑋(𝑡0, 𝑡1) the Sobolev-Bochner space [29, page 472]{
𝑢 ∈𝐿2([𝑡0, 𝑡1];𝐻1(ℝ𝑑 )

)
∶ 𝜕𝑡𝑢 ∈𝐿2([𝑡0, 𝑡1];𝐻−1(ℝ𝑑 )

)}
𝑌 (𝑡0, 𝑡1) the Sobolev-Bochner space 𝐿2([𝑡0, 𝑡1]; 𝐻1(ℝ𝑑 )

)
×𝐻1(ℝ𝑑 )

oves Theorem 1.1; Section 4 presents the AHMJ method and numerical results; Section 5 concludes our paper. A summary of the 
ain variables and notations is given in Table 1.

 Model problem analysis and the numerical scheme

In this section, we prove the existence and uniqueness of a solution to the model problem Eq. (1.1). Then, we introduce the sparse 
perbolic-cross-space mapped Jacobi approximation and present the AHMJ method to solve the model problem Eq. (1.1).

1. Analysis on the model problem Eq. (1.1)

The following theorem establishes the existence and the uniqueness of a weak solution 𝑢(𝒙, 𝑡) ∈ 𝑋(0, 𝑇 ) to the model problem 
. (1.1), where 𝑋(𝑡0, 𝑡1) is the Bochner–Sobolev space defined in Table 1. The norm of 𝑢(𝒙, 𝑡) in the Bochner-Sobolev 𝑋(𝑡0, 𝑡1) space 
defined by

‖𝑢‖2
𝑋(𝑡0 ,𝑡1)

∶=

𝑡1

∫
𝑡0

(‖𝜕𝑡𝑢‖2𝐻−1 + ‖𝑢‖2
𝐻1

)
d𝑡+ ‖𝑢(⋅, 𝑡0)‖2𝐿2 . (2.1)

eorem 2.1. Assume that the continuous and coercive conditions in Eqs. (1.3) and (1.4) are satisfied. If we additionally assume that 𝐿 < 𝑐0, 
en there exists a unique solution 𝑢(𝒙, 𝑡) ∈𝑋(0, 𝑇 ) to the model problem Eq. (1.1).

The proof of Theorem 2.1 is given in Supplement [1, S 1]. Actually, a wide range of spatiotemporal integrodifferential equations 
n be cast into the model problem Eq. (1.1). As an example, consider an 𝑎

(
𝑢, 𝑣; 𝑡

)
containing convolutional operator:

𝑎
(
𝑢, 𝑣; 𝑡

)
∶=

(
𝐺 ∗ ∇𝑢,∇𝑣

)
+ 𝜀

(
(𝑢, 𝑣) + (∇𝑢,∇𝑣)

)
, (2.2)

here (𝐺 ∗ 𝑢)(𝒙) ∶= ∫ℝ𝑑 𝐺(𝒙−𝒚)𝑢(𝒚)d𝒚 is a spatial convolutional operator. The following proposition shows under which assumptions 
 the convolutional kernel 𝐺 does 𝑎(𝑢, 𝑣; 𝑡) in Eq. (2.2) satisfy the conditions in Theorem 1.1.

oposition 1. Assume that the convolution kernel 𝐺(𝒙) in Eq. (2.2) satisfies:

. 𝐺(𝒙) ∈𝐿1(ℝ𝑑 ).

. the Fourier transform ℱ(𝐺)(𝒙) ≥ 0, ∀𝒙 ∈ℝ𝑑 .

en the bilinear form 𝑎(𝑢, 𝑣; 𝑡) defined in Eq. (2.2) satisfies the continuous condition and coercive conditions in Theorem 1.1.

The proof of Proposition 1 is given in Supplement [1, S 2]. The assumptions on the convolutional kernel 𝐺 in Lemma 1 can be 
et by many commonly used convolutional kernels which are radial symmetric functions, such as the Gaussian potential kernel [32]
3

d the Morse potential kernel [33].
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2. Hyperbolic-cross-space mapped Jacobi approximation

Now, we introduce the mapped Jacobi functions [15,16,19,17] defined in ℝ. We denote {𝑗𝛼1,𝛼2𝑛 (𝜉)}∞
𝑛=0 to be the set of Jacobi poly-

mials defined on the interval (−1, 1) with two fixed parameters 𝛼1, 𝛼2 > −1 [14, Chapter 3.2]. Fixing 𝛼1, 𝛼2, the Jacobi polynomials 
rm a set of orthogonal basis functions w.r.t. the weight function 𝑤𝛼1 ,𝛼2 ∶= (1 − 𝜉)𝛼1 (1 + 𝜉)𝛼2 .
Given a one-to-one mapping ℎ𝛽,𝑟(𝑥) from 𝑥 ∈ℝ to 𝜉 ∈ (−1, 1), we can formulate a novel orthogonal basis in the unbounded domain 

, through the images of the Jacobi polynomials under the mapping 𝜉 ∶= ℎ𝛽,𝑟(𝑥),

∫
ℝ

𝑗
𝛼1 ,𝛼2
𝑚 (𝜉)𝑗𝛼1 ,𝛼2𝑛 (𝜉)𝑤𝛼1 ,𝛼2 (𝜉) d𝜉

d𝑥
d𝑥 =

√
𝛾𝑚𝛾𝑛𝛿𝑚,𝑛, (2.3)

here 𝛾𝑛 ∶= ∫ 1
−1(𝑗

𝛼1 ,𝛼2
𝑛 )2𝑤𝛼1 ,𝛼2d𝜉. Here, we consider a family of mappings ℎ𝛽,𝑟(𝑥) in [15, Section 2.2] defined by

dℎ𝛽,𝑟(𝑥)
d𝑥

= 𝛽
(
1 − ℎ2

𝛽,𝑟
(𝑥)

)1+𝑟∕2
and ℎ𝛽,𝑟(0) = 0. (2.4)

re, 𝛽 is the scaling factor, and 𝑟 ≥ 0 is a non-negative integer. For 𝑟 = 0, 1, ℎ𝛽,𝑟(𝑥) can be computed explicitly as follows:

ℎ𝛽,𝑟(𝑥) =
⎧⎪⎨⎪⎩
tanh(𝛽𝑥) logarithmic mapping 𝑟 = 0

𝛽𝑥√
1 + 𝛽2𝑥2

algebraic mapping 𝑟 = 1. (2.5)

Using the mapping ℎ𝛽,𝑟(𝑥) defined in Eq. (2.4), we define the mapped Jacobi functions on the unbounded domain ℝ as

 𝛽,𝑥0
𝑛,𝛼1 ,𝛼2 ,𝑟

(𝑥) ∶= 1√
𝛾𝑛
𝑗
𝛼1 ,𝛼2
𝑛

(
ℎ𝛽,𝑟(𝑥− 𝑥0)

)
𝜇𝛼1 ,𝛼2

(
ℎ𝛽,𝑟(𝑥− 𝑥0)

)
, (2.6)

here 𝜇𝛼1 ,𝛼2
(
ℎ𝛽,𝑟(𝑥)

)
∶=

√
𝑤𝛼1 ,𝛼2

(
ℎ𝛽,𝑟(𝑥)

)
ℎ′
𝛽,𝑟
(𝑥) is the modified weight function. This modified weight function 𝜇𝛼1 ,𝛼2 (𝑥) makes the 

apped Jacobi functions { 𝛽,𝑥0
𝑛,𝛼1 ,𝛼2 ,𝑟

} a complete and orthogonal basis of the Hilbert space 𝐿2(ℝ) [16, Proposition 2.2]. For notational 
plicity, we omit 𝛼1, 𝛼2 for the mapped Jacobi basis functions and the mapping parameter 𝑟 in the subindex of  𝛽,𝑥0

𝑛,𝛼1,𝛼2 ,𝑟
(𝑥), i.e., we 

e the notation  𝛽,𝑥0
𝑛 (𝑥) instead.

Detailed theoretical properties of the mapped Jacobi functions can be found in [15–17,19]. Different from the generalized Hermite 
nctions which decay at an exponential rate of 𝑒−

1
2 |𝛽𝑥|2 for large |𝑥|, the decaying rate of the mapped Jacobi basis functions can be 

ned by choosing an appropriate 𝑟 in the mapping Eq. (2.4). For example, when using the algebraic mapping (𝑟 = 1 in Eq. (2.4)), 
e mapped Jacobi basis functions decay at a rate of |𝛽𝑥|−1 [16] for large |𝑥|, which are suitable for approximating a function that 
cays faster than |𝑥|−1 as |𝑥| →∞ [15].

We shall use sparse mapped Jacobi spectral expansions defined in the hyperbolic cross space 𝑉 𝜷,𝒙0
𝑁,𝛾

characterized by the hyperbolic 
oss index set Υ𝑁,𝛾 (defined in Table 1). The following two inverse inequalities hold for the mapped Jacobi spectral expansions in 
e hyperbolic cross space 𝑉 𝜷,𝒙0

𝑁,𝛾
.

mma 2.2. For all 𝑈𝜷,𝒙0
𝑁,𝛾

∈ 𝑉 𝜷,𝒙0
𝑁,𝛾

,‖‖‖𝜕𝑥𝑖𝑈𝜷,𝒙0
𝑁,𝛾

‖‖‖𝐿2 ≤ 𝛽3∕2𝑖
𝑁

1∕2
𝛼,𝑟

‖‖‖𝑈𝜷,𝒙0
𝑁,𝛾

‖‖‖𝐿2 . (2.7)

additionally restricting that 𝑟 ≤ 1 in Eq. (2.4), we have‖‖‖𝑥𝑖𝜕𝑥𝑖𝑈𝜷,𝒙0
𝑁,𝛾

‖‖‖𝐿2 ≤ 𝛽1∕2𝑖
𝑁

1∕2
𝛼,𝑟

‖‖‖𝑈𝜷,𝒙0
𝑁,𝛾

‖‖‖𝐿2 , (2.8)

ere 𝑁𝛼,𝑟 ∶= 2𝑁(𝑁 + 𝛼1 + 𝛼2 + 1) + 2(1 + 𝛼1 + 𝛼2 + 𝑟∕2)2.

The proof of Lemma 2.2 is given in Supplement [1, S 3].

3. Numerical scheme

Here, we describe the AHMJ method to solve the model problem Eq. (1.1). We define two function spaces, 𝑋𝜷 ,𝒙0
𝑁,𝛾

(𝑡0, 𝑡1) and 
𝜷,𝒙0
,𝛾

(𝑡0, 𝑡1):

𝑋
𝜷,𝒙0
𝑁,𝛾

(𝑡0, 𝑡1) ∶=
{
𝑈

𝜷,𝒙0
𝑁,𝛾

∈𝐿2([𝑡0, 𝑡1];𝑉
𝜷,𝒙0
𝑁,𝛾

) ∶ 𝜕𝑡𝑈
𝜷,𝒙0
𝑁,𝛾

∈𝐿2([𝑡0, 𝑡1];𝑉
𝜷,𝒙0
𝑁,𝛾

)
}
,( ) (2.9)
4

𝑌
𝜷,𝒙0
𝑁,𝛾

(𝑡0, 𝑡1) ∶=𝐿2 [𝑡0, 𝑡1];𝑉
𝜷,𝒙0
𝑁,𝛾

× 𝑉 𝜷,𝒙0
𝑁,𝛾

.
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𝜷,𝒙0
𝑁,𝛾

(𝑡0, 𝑡1) is a subspace of the Sobolev-Bochner space 𝑋(𝑡0, 𝑡1), which inherits the norm ‖ ⋅ ‖𝑋(𝑡0 ,𝑡1) defined in Eq. (2.1). The space 
𝜷,𝒙0
,𝛾

(𝑡0, 𝑡1) is equipped with the norm

‖𝒗‖2
𝑌 (𝑡0 ,𝑡1)

∶= ‖(𝑣, 𝑣̃)‖2
𝑌 (𝑡0 ,𝑡1)

∶=

𝑡1

∫
𝑡0

‖𝑣‖2
𝐻1d𝑡+ ‖𝑣̃‖2

𝐿2 . (2.10)

To obtain a continuous-time mapped Jacobi approximation to the solution 𝑢(𝒙, 𝑡) of the model problem Eq. (1.1), we wish to find

𝑈̃
𝜷,𝒙0
𝑁,𝛾

(𝒙, 𝑡) ∶=
∑

𝒏∈Υ𝑁,𝛾

𝑢̃
𝜷,𝒙0
𝒏 (𝑡) 𝜷,𝒙0

𝒏 (𝒙) ∈𝑋𝜷,𝒙0
𝑁,𝛾

(0, 𝑇 ), (2.11)

ch that ∀
(
𝑣𝑁 , 𝑣̃𝑁

)
∈ 𝑌 𝜷,𝒙0

𝑁,𝛾
(0, 𝑇 ),(

𝜕𝑡𝑈̃
𝜷,𝒙0
𝑁,𝛾

, 𝑣𝑁
)
+ 𝑎

(
𝑈̃

𝜷,𝒙0
𝑁,𝛾

, 𝑣𝑁 ; 𝑡
)
=
(
𝑓 (𝑈̃𝜷,𝒙0

𝑁,𝛾
; 𝑡), 𝑣𝑁

)
, ∀𝑡 ∈ [0, 𝑇 ],

(
𝑈̃

𝜷,𝒙0
𝑁,𝛾

(⋅,0), 𝑣̃𝑁
)
=
(
𝑢0(⋅), 𝑣̃𝑁

)
. (2.12)

We rearrange the coefficients in the hyperbolic-cross-space mapped Jacobi spectral expansion 𝑈̃𝜷 ,𝒙0
𝑁,𝛾

into a vector by arranging 
e coefficients in dictionary order, i.e., we shall define the following order relation on the index set Υ𝑁,𝛾 :

𝒏1 ≤ 𝒏2 ∶ ∃ 𝑖 ∈ ℕ+ such that 𝑛1
𝑖
≤ 𝑛2

𝑖
and ∀𝑗 < 𝑖, 𝑛1

𝑗
= 𝑛2

𝑗
. (2.13)

us, the basis functions can be indexed by {1, ⋯ , |Υ𝑁,𝛾 |}, and 𝑈̃𝜷,𝒙0
𝑁,𝛾

can be rewritten as

𝑈̃
𝜷,𝒙0
𝑁,𝛾

(𝒙, 𝑡) ∶=
|Υ𝑁,𝛾 |∑
𝑖=1

𝑢̃
𝜷,𝒙0
𝑖

(𝑡) 𝜷,𝒙0
𝒏𝑖

(𝒙). (2.14)

noting

𝒖̃
𝜷,𝒙0
𝑁,𝛾

(𝑡) ∶=
(
𝑢̃
𝜷,𝒙0
1 (𝑡),⋯ , 𝑢̃

𝜷 ,𝒙0|Υ𝑁,𝛾 |(𝑡)), (2.15)

,𝒙0
,𝛾
(𝑡) satisfies the following ODE

d
d𝑡
𝒖̃
𝜷,𝒙0
𝑁,𝛾

+𝐴𝜷

𝑁
(𝑡)𝒖̃𝜷,𝒙0

𝑁,𝛾
= 𝐹 𝜷

𝑁
(𝒖̃𝜷,𝒙0
𝑁,𝛾

; 𝑡), ∀𝑡 ∈ [0, 𝑇 ], 𝑢̃𝜷,𝒙0
𝑖

(0) =
(
𝑢0, 𝜷,𝒙0

𝒏𝑖

)
, ∀𝒏 ∈Υ𝑁,𝛾 . (2.16)

ditionally, when acting on 𝒖̃𝜷,𝒙0
𝑁,𝛾

, the 𝑖th components of 𝐴𝜷

𝑁
𝒖̃
𝜷,𝒙0
𝑁,𝛾

and 𝐹 𝜷

𝑁
(𝒖̃𝜷,𝒙0
𝑁,𝛾

) are calculated by

(
𝐴
𝜷

𝑁
(𝑡)𝒖̃𝜷,𝒙0

𝑁,𝛾

)
𝑖
=

|Υ𝑁,𝛾 |∑
𝑗=1

𝑎
( 𝜷,𝒙0

𝒏𝑖
, 𝜷,𝒙0

𝒏𝑗
; 𝑡
)
𝑢̃
𝜷,𝒙0
𝑗

,
(
𝐹

𝜷

𝑁

(
𝒖̃
𝜷,𝒙0
𝑁,𝛾

; 𝑡
))
𝑖

=
(
𝑓
(
𝑈̃

𝜷,𝒙0
𝑁,𝛾

; 𝑡
)
, 𝜷,𝒙0

𝒏𝑖

)
. (2.17)

The ODE (2.16) on the mapped Jacobi expansion coefficients usually cannot be analytically solved. Instead, it can be numerically 
lved using IRK schemes [31, Chapters 69-70]. To be specific, we divide the time interval [0, 𝑇 ] into 𝐾 subintervals [𝑡𝓁 , 𝑡𝓁+1] using 
uniform step size Δ𝑡, where 𝑡𝓁 = 𝓁Δ𝑡 for 𝓁 ∈ {0, 1, 2, ⋯ , 𝐾}. Given the parameters (𝜷𝓁 , 𝑁𝓁 , 𝒙0𝓁) within the time interval (𝑡𝓁 , 𝑡𝓁+1)
d the numerical solution at time 𝑡 = 𝑡𝓁 ,

𝑈
𝜷,𝒙0
𝑁,𝛾

(𝒙, 𝑡𝓁) =
|Υ𝑁,𝛾 |∑
𝑖=1

𝑢
𝜷,𝒙0
𝑖

(𝑡𝓁) 𝜷,𝒙0
𝒏𝑖

(𝒙), (2.18)

e 𝑞th-order IRK scheme for forwarding time from 𝑡𝓁 to 𝑡𝓁+1 is

𝒖
𝜷,𝒙0
𝑁,𝛾

(𝑡𝓁+1) = 𝒖
𝜷,𝒙0
𝑁,𝛾

(𝑡𝓁) + Δ𝑡
𝑞∑
𝑠=1
𝑏𝑠
𝑅𝐾
𝐺

𝜷

𝑁
(𝒘𝑠, 𝑡𝓁 + 𝑐𝑠

𝑅𝐾
Δ𝑡),

𝒘𝑠 = 𝒖
𝜷,𝒙0
𝑁,𝛾

(𝑡𝓁) + Δ𝑡
𝑞∑
𝑟=1
𝑎𝑟𝑠
𝑅𝐾
𝐺

𝜷

𝑁
(𝒘𝑟, 𝑡𝓁 + 𝑐𝑟𝑅𝐾Δ𝑡),

(2.19)

here 𝑎𝑟𝑠
𝑅𝐾
, 𝑏𝑠
𝑅𝐾

and 𝑐𝑠
𝑅𝐾

are the IRK coefficients. 𝐺𝜷

𝑁
on the RHS is given by

𝐺
𝜷

𝑁
(𝒘𝑠, 𝑡) ∶= 𝐹

𝜷

𝑁
(𝒘𝑠; 𝑡) −𝐴

𝜷

𝑁
(𝑡)𝒘𝑠. (2.20)

e numerical solution at 𝑡𝓁+1 is thus

𝜷,𝒙0

|Υ𝑁,𝛾 |∑
𝜷,𝒙0 𝜷,𝒙0
5

𝑈
𝑁,𝛾

(𝒙, 𝑡𝓁+1) =
𝑖=1

𝑢
𝑖

(𝑡𝓁+1)𝒏𝑖
(𝒙). (2.21)
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istence of the solution to the IRK system Eq. (2.19) is proved in [34].
Finally, it has been revealed that adaptively adjusting the parameters 𝜷 , 𝒙0, and 𝑁 over time is crucial for efficiently applying 
ectral methods to solve spatiotemporal equations [20–23]. Suppose we use the IRK scheme Eq. (2.19) to forward time and get 
𝜷𝓁 ,𝒙0𝓁
𝓁 ,𝛾

(𝒙, 𝑡𝓁+1) at 𝑡𝓁+1 given the numerical solution 𝑈
𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(𝒙, 𝑡𝓁) at 𝑡𝓁 (the IRK scheme will not adjust the three parameters 𝜷 , 𝒙0, 
d 𝑁). We then apply the adaptive hyperbolic-cross-space techniques for spectral methods (described in Section 4) to update the 
rameters (𝜷𝓁 , 𝑁𝓁 , 𝒙0𝓁) ⟶ (𝜷𝓁+1, 𝑁𝓁+1, 𝒙0𝓁+1) and get the new numerical solution at 𝑡𝓁+1:

𝑈
𝜷𝓁+1 ,𝒙0𝓁+1
𝑁𝓁+1 ,𝛾

(𝒙, 𝑡𝓁+1)⟵ 𝜋
𝜷𝓁+1 ,𝒙0𝓁+1
𝑁𝓁+1 ,𝛾

𝑈
𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(𝒙, 𝑡𝓁+1), (2.22)

here 𝜋𝜷𝓁+1 ,𝒙0𝓁+1
𝑁𝓁+1 ,𝛾

is the projection operator defined in Table 1.

 Analysis on the AHMJ method

In this section, we give an upper error bound of ‖‖‖𝑢(⋅, 𝑡) −𝑈𝜷,𝒙0
𝑁,𝛾

(⋅, 𝑡)‖‖‖𝐿2 , where 𝑢 solves the model problem (1.1) and 𝑈𝜷,𝒙0
𝑁,𝛾

(⋅, 𝑡) is 
e numerical solution obtained by the AHMJ method described in Subsection 2.3, respectively. In Subsection 3.1, we analyze the 
ror bound on the mapped Jacobi approximation which solves the continuous-time problem Eq. (2.12). Next, we derive the error 
und for applying the IRK scheme, detailed in Subsection 3.2. Then, we carry out an analysis on the error bound for implementing 
aptive techniques in Subsection 3.3. Integrating the aforementioned error analysis, we shall eventually prove Theorem 1.1.

1. Continuous-time mapped Jacobi approximation error

In this subsection, we give the upper error bound of solving the continuous-time approximation Eq. (2.12) with a hyperbolic-
oss-space mapped Jacobi approximation.

eorem 3.1. Suppose 𝑈̃𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(𝒙, 𝑡) ∈𝑋𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(𝑡𝓁 , 𝑡𝓁+1) solves(
𝜕𝑡𝑈̃

𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

, 𝑣𝑁
)
+ 𝑎

(
𝑈̃

𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

, 𝑣𝑁 ; 𝑡
)
=
(
𝑓 (𝑈̃𝜷𝓁 ,𝒙0𝓁

𝑁𝓁 ,𝛾
; 𝑡), 𝑣𝑁

)
, ∀𝑡 ∈ [𝑡𝓁 , 𝑡𝓁+1],(

𝑈̃
𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(𝒙, 𝑡𝓁), 𝑣̃𝑁
)
=
(
𝑈 (𝒙, 𝑡𝓁), 𝑣̃𝑁

)
, ∀

(
𝑣𝑁 , 𝑣̃𝑁

)
∈ 𝑌 𝜷𝓁 ,𝒙0𝓁

𝑁𝓁 ,𝛾
(𝑡𝓁 , 𝑡𝓁+1),

(3.1)

ere 𝑈 (𝒙, 𝑡𝓁) is the initial condition at 𝑡 = 𝑡𝓁 . Then, there exist two constants, 𝐶 and 𝑐 , that only depend on 𝑎(𝑢, 𝑣; 𝑡) and 𝑓 (𝑢; 𝑡), such 
at ‖‖‖𝑢(⋅, 𝑡𝓁+1) − 𝑈̃𝜷𝓁 ,𝒙0𝓁

𝑁𝓁 ,𝛾
(⋅, 𝑡𝓁+1)

‖‖‖𝐿2 ≤ exp
(
(𝐿− 𝑐0)Δ𝑡

)‖‖‖𝑢(⋅, 𝑡𝓁) −𝑈 (⋅, 𝑡𝓁)
‖‖‖𝐿2

+𝐶 exp(𝑐Δ𝑡)‖‖‖𝑢− 𝜋𝜷𝓁 ,𝒙0𝓁𝑁𝓁 ,𝛾
𝑢
‖‖‖𝑋(𝑡𝓁 ,𝑡𝓁+1)

,
(3.2)

ere 𝑢(𝒙, 𝑡) is the analytical solution to the model problem Eq. (1.1).

The proof of Theorem 3.1 is given in Supplement [1, S 4]. Specifically, the second term on the RHS of Eq. (1.1) is the error bound 
r applying the mapped Jacobi method approximation in space. We shall use

𝑒 ([𝑡𝓁 , 𝑡𝓁+1]) ∶= 𝐶 exp(𝑐Δ𝑡)‖‖‖𝑢− 𝜋𝜷𝓁 ,𝒙0𝓁𝑁𝓁 ,𝛾
𝑢
‖‖‖𝑋(𝑡𝓁 ,𝑡𝓁+1)

(3.3)

 denote this mapped Jacobi approximation error bound.

2. Implicit Runge-Kutta scheme error

Next, we discuss the error bound for implementing the IRK scheme Eq. (2.19) to forward time from 𝑡𝓁 to 𝑡𝓁+1 to solve Eq. (3.1). 
ven 𝑈𝜷,𝒙0

𝑁,𝛾
(𝒙, 𝑡𝓁) at 𝑡𝓁 as the numerical solution at 𝑡𝓁 , we have‖‖‖𝑢(⋅, 𝑡𝓁+1) −𝑈𝜷𝓁 ,𝒙0𝓁

𝑁𝓁 ,𝛾
(⋅, 𝑡𝓁+1)

‖‖‖𝐿2 ≤ ‖‖‖𝑢(⋅, 𝑡𝓁+1) − 𝑈̃𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1)
‖‖‖𝐿2

+ ‖‖‖𝑈̃𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1) −𝑈
𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1)
‖‖‖𝐿2 ,

(3.4)

here 𝑈̃𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(𝒙, 𝑡𝓁+1) is the solution of the continuous-time problem Eq. (3.1). ‖‖‖𝑈̃𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1) − 𝑈
𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1)
‖‖‖𝐿2 is the error 

m applying the IRK scheme. The analysis of the IRK scheme has been carried out in [35,34], which is presented in Theorem 3.2.

eorem 3.2. Let 𝑈𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(𝒙, 𝑡𝓁+1) be the numerical solution to Eq. (3.1) obtained by the IRK scheme in Eq. (2.19). Suppose that the IRK 
6

heme in Eq. (2.19) satisfies
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. [34, section 4] The IRK scheme has a stage order 𝑞 and a quadrature order at least 𝑞 + 1.

. [34, algebraic stability] The weights (𝑏𝑠
𝑅𝐾

)𝑞
𝑠=1 are positive, and the matrix  ∶= (𝑎𝑟𝑠

𝑅𝐾
𝑏𝑟
𝑅𝐾

+𝑎𝑠𝑟
𝑅𝐾
𝑏𝑠
𝑅𝐾

−𝑏𝑟
𝑅𝐾
𝑏𝑠
𝑅𝐾

)𝑞
𝑟,𝑠=1 ∈ℝ𝑞×𝑞 is positive 

semi-definite.

e assume that the time step Δ𝑡 satisfies:

Δ𝑡 ≤ 𝑐0

4
√
2𝐿(𝐶0 +𝐿)𝐶𝑎𝑏

where 𝐶2
𝑎𝑏
=

𝑞∑
𝑠=1

𝑞∑
𝑟=1

(
𝑎𝑟𝑠
𝑅𝐾

)2
𝑏𝑟
𝑅𝐾

∕𝑏𝑠
𝑅𝐾
. (3.5)

en, there exists a constant 𝐶𝑅𝐾 that depends on the bilinear form 𝑎(𝑢, 𝑣; 𝑡), the nonlinear operator 𝑓 (𝑢; 𝑡), and the IRK coefficients, such 
at ‖‖‖𝑈̃𝜷𝓁 ,𝒙0𝓁

𝑁𝓁 ,𝛾
(⋅, 𝑡𝓁+1) −𝑈

𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1)
‖‖‖𝐿2 ≤ 𝐶𝑅𝐾Δ𝑡𝑞+1‖‖‖𝜕(𝑞+1)𝑡

𝑈̃
𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

‖‖‖𝑋(𝑡𝓁 ,𝑡𝓁+1)
, (3.6)

ere 𝑈̃𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(𝒙, 𝑡) is the solution to Eq. (3.1).

The proof of Theorem 3.2 is in Supplement [1, S 5]. Combining the error estimation of the mapped Jacobi spectral method in 
eorem 3.1 and the IRK scheme in Theorem 3.2, we have:‖‖‖𝑢(⋅, 𝑡𝓁+1) −𝑈𝜷𝓁 ,𝒙0𝓁

𝑁𝓁 ,𝛾
(⋅, 𝑡𝓁+1)

‖‖‖𝐿2 ≤ exp
(
(𝐿− 𝑐0)Δ𝑡

)‖‖‖𝑢(⋅, 𝑡𝓁)−𝑈 (⋅, 𝑡𝓁)
‖‖‖𝐿2 + 𝑒 ([𝑡𝓁 , 𝑡𝓁+1]) +

‖‖‖𝑈̃𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1)−𝑈
𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1)
‖‖‖𝐿2

≤ exp
(
(𝐿− 𝑐0)Δ𝑡

)‖‖‖𝑢(⋅, 𝑡𝓁)−𝑈 (⋅, 𝑡𝓁)
‖‖‖𝐿2 + 𝑒 ([𝑡𝓁 , 𝑡𝓁+1]) + 𝑒𝑅𝐾 ([𝑡𝓁 , 𝑡𝓁+1]),

(3.7)

here 𝑒 ([𝑡𝓁 , 𝑡𝓁+1]) and 𝑒𝑅𝐾 ([𝑡𝓁 , 𝑡𝓁+1]) are the mapped Jacobi approximation error bound defined in Eq. (3.3) and the IRK scheme 
ror bound when advancing time from 𝑡𝓁 to 𝑡𝓁+1, respectively:

𝑒𝑅𝐾 ([𝑡𝓁 , 𝑡𝓁+1]) ∶= 𝐶𝑅𝐾Δ𝑡𝑞+1
‖‖‖𝜕(𝑞+1)𝑡

𝑈̃
𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

‖‖‖𝑋(𝑡𝓁 ,𝑡𝓁+1)
. (3.8)

3. Adaptive techniques error

Finally, we analyze the error bound for adjusting the scaling factor 𝜷𝓁 , displacement 𝒙0𝓁 , and the expansion order 𝑁𝓁 of the 
apped Jacobi spectral expansion in Eq. (2.22). We adopt the posterior estimation of the adaptive technique error of adjusting the 
rameters 

(
𝜷, 𝑁, 𝒙0

)
introduced in [23], which gives‖‖‖𝑈𝜷𝓁 ,𝒙0𝓁

𝑁𝓁 ,𝛾
(⋅, 𝑡𝓁+1) −𝑈

𝜷𝓁+1 ,𝒙0𝓁+1
𝑁𝓁+1 ,𝛾

(⋅, 𝑡𝓁+1)
‖‖‖𝐿2 ≤ 𝑒𝐴(𝑡𝓁+1), (3.9)

here

𝑒𝐴(𝑡𝓁+1) ∶= 𝑒𝑚(𝑡𝓁+1) + 𝑒𝑠(𝑡𝓁+1) + 𝑒𝑐(𝑡𝓁+1). (3.10)

re, the moving error bound 𝑒𝑚, the scaling error bound 𝑒𝑠, and the coarsening error bound 𝑒𝑐 are given by:

𝑒𝑚(𝑡𝓁+1) ∶=
𝑑∑
𝑖=1

|||𝑥0𝓁+1,𝑖 − 𝑥0𝓁,𝑖|||‖‖‖𝜕𝑥𝑖𝑈𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1)
‖‖‖𝐿2 ,

𝑒𝑠(𝑡𝓁+1) ∶=
𝑑∑
𝑖=1

|||||1 − 𝛽𝓁,𝑖

𝛽𝓁+1,𝑖

|||||
√
𝛽𝓁+1,𝑖 + 𝛽𝓁,𝑖

2𝛽𝓁,𝑖
‖‖‖𝑥𝑖𝜕𝑥𝑖𝑈𝜷𝓁 ,𝒙0𝓁+1

𝑁𝓁 ,𝛾
(⋅, 𝑡𝓁+1)

‖‖‖𝐿2 ,

𝑒𝑐(𝑡𝓁+1) ∶=
‖‖‖𝑈𝜷𝓁+1 ,𝒙0𝓁+1

𝑁𝓁 ,𝛾
(⋅, 𝑡𝓁+1) − 𝜋

𝜷𝓁+1 ,𝒙0𝓁+1
𝑁𝓁+1 ,𝛾

𝑈
𝜷𝓁+1 ,𝒙0𝓁+1
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁+1)
‖‖‖𝐿2 .

(3.11)

,𝑖 and 𝑥0𝓁,𝑖 denote the 𝑖th component of 𝜷𝓁 and 𝒙0𝓁 , respectively. Invoking the inverse inequalities (Lemma 2.2), we have

𝑒𝑚(𝑡𝓁+1) ≤
𝑑∑
𝑖=1

|||𝑥0𝓁+1,𝑖 − 𝑥0𝓁,𝑖|||√𝛽3𝓁,𝑖𝑁
1∕2
𝓁,𝛼,𝑟(𝑡𝓁)‖𝑈𝜷𝓁 ,𝒙0𝓁

𝑁𝓁 ,𝛾
(⋅, 𝑡𝓁+1)‖𝐿2 ,

𝑒𝑠(𝑡𝓁+1) ≤
𝑑∑
𝑖=1

|||||1 − 𝛽𝓁,𝑖

𝛽𝓁+1,𝑖

|||||
√
𝛽𝓁+1,𝑖 + 𝛽𝓁,𝑖

2
𝑁

1∕2
𝓁,𝛼,𝑟‖𝑈𝜷𝓁 ,𝒙0𝓁

𝑁𝓁 ,𝛾
(⋅, 𝑡𝓁+1)‖𝐿2 .

(3.12)

re, 𝑁𝓁,𝛼,𝑟 ∶= 2𝑁𝓁(𝑁𝓁 + 𝛼1 + 𝛼2 + 1) + 2(1 + 𝛼1 + 𝛼2 + 𝑟∕2)2. Specifically, if 𝜷𝓁 = 𝜷𝓁+1, then 𝑒𝑠(𝑡𝓁+1) = 0; if 𝒙0𝓁 = 𝒙0𝓁+1, then 
(𝑡𝓁+1) = 0; if 𝑁𝓁 ≥𝑁𝓁+1, then 𝑒𝑐(𝑡𝓁+1) = 0.
Finally, by combining Eqs. (3.7) and (3.9), the single-step error bound of the AHMJ method and the IRK scheme can be obtained:( )
7

𝐸(𝑡𝓁+1) ≤ exp (𝐿− 𝑐0)Δ𝑡 𝐸(𝑡𝓁) + 𝑒 ([𝑡𝓁 , 𝑡𝓁+1]) + 𝑒𝑅𝐾 ([𝑡𝓁 , 𝑡𝓁+1]) + 𝑒𝐴(𝑡𝓁+1), (3.13)
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here 𝐸(𝑡𝓁) ∶= ‖𝑢(⋅, 𝑡𝓁) −𝑈𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

(⋅, 𝑡𝓁)‖𝐿2 . By iterating the single-time-step error bound in Eq. (3.13) from 𝑡0 = 0 to 𝑡𝐾 = 𝑇 , we give 
e error analysis in Theorem 3.3.

eorem 3.3 (Restated Theorem 1.1). Let 𝑈𝜷,𝒙0
𝑁,𝛾

(𝒙, 𝑡) be the numerical solution of the AHMJ method and the implicit Runge- Kutta scheme 
 Eq. (2.19), then‖‖‖𝑢(⋅, 𝑇 ) −𝑈𝜷𝐾 ,𝒙0𝐾

𝑁𝐾 ,𝛾
(⋅, 𝑇 )‖‖‖𝐿2 ≤𝐸 (𝑇 ) +𝐸𝑅𝐾 (𝑇 ) +𝐸𝐴(𝑇 ). (3.14)

e mapped Jacobi approximation error 𝐸 , the IRK scheme error 𝐸𝑅𝐾 and the adaptive techniques error 𝐸𝐴 are given by

𝐸 (𝑇 ) ∶= 𝐶 exp(𝑐Δ𝑡)
𝐾∑
𝓁=1

(
exp

(
(𝐿− 𝑐0)(𝑇 − 𝑡𝓁)

)
⋅ ‖‖‖𝑢− 𝜋𝜷𝓁 ,𝒙0𝓁𝑁𝓁 ,𝛾

𝑢
‖‖‖𝑋(𝑡𝓁−1 ,𝑡𝓁 )

)
, (3.15)

𝐸𝑅𝐾 (𝑇 ) ∶= 𝐶𝑅𝐾Δ𝑡𝑞+1
𝐾∑
𝓁=1

(
exp

(
(𝐿− 𝑐0)(𝑇 − 𝑡𝓁)

)
⋅ ‖‖‖𝜕(𝑞+1)𝑡

𝑈̃
𝜷𝓁 ,𝒙0𝓁
𝑁𝓁 ,𝛾

‖‖‖𝑋(𝑡𝓁−1 ,𝑡𝓁 )

)
, (3.16)

𝐸𝐴(𝑇 ) ∶=
𝐾∑
𝓁=1

(
exp

(
(𝐿− 𝑐0)(𝑇 − 𝑡𝓁)

)
⋅
(
𝑒𝑚(𝑡𝓁) + 𝑒𝑠(𝑡𝓁) + 𝑒𝑐(𝑡𝓁)

))
, (3.17)

ere 𝑒𝑚, 𝑒𝑠 and 𝑒𝑐 are defined in Eqs. (3.11).

Theorem 3.3 gives the upper error bound when using the AHMJ method to solve the spatiotemporal integrodifferential Eq. (1.1). 
eorem 3.3 greatly extends error analysis of using adaptive spectral methods in [23, Theorem1] on solving linear equations to solving 
class of spatiotemporal integrodifferential equations in unbounded domains. Specifically, the mapped Jacobi approximation error 
und 𝐸 only depends on the spectral expansion approximation to the analytical solution 𝑢(𝒙, 𝑡), and the adaptive technique error 
und 𝐸𝐴 depends on the implementing the adaptive techniques for the sparse spectral expansion. The application of the IRK scheme 
es not influence these error bounds 𝐸 (𝑇 ) and 𝐸𝐴(𝑇 ). Additionally, the error bound for using the IRK scheme 𝐸𝑅𝐾 only depends 
 the high-order temporal derivative of the mapped Jacobi approximation 𝑈̃𝜷,𝒙0

𝑁,𝛾
(𝒙, 𝑡). Through the error analysis in Theorem 3.3, 

e can control the error of the AHMJ method by separately analyzing and controlling the three error bounds 𝐸 , 𝐸𝐴, and 𝐸𝑅𝐾 .

 Numerical results

In this section, we first present the AHMJ method. To be specific, we introduce two hyperbolic-cross-space frequency indicators 
𝑥𝑖
and 𝑝) tailored for hyperbolic cross space to properly adjust the scaling factors in each dimension and adjust the expansion 

der 𝑁 of the hyperbolic cross space 𝑉 𝜷,𝒙0
𝑁,𝛾

.

First, for a hyperbolic-cross-space mapped Jacobi spectral expansion 𝑈𝜷,𝒙0
𝑁,𝛾

∈ 𝑉 𝜷,𝒙0
𝑁,𝛾

, we define the hyperbolic-cross-space fre-
ency indicator in the 𝑖th dimension as

𝑥𝑖 (𝑈𝜷,𝒙0
𝑁,𝛾

) ∶=
‖‖‖𝑈𝜷,𝒙0

𝑁,𝛾
− 𝜋𝜷,𝒙0

𝑁,𝛾,𝑖
𝑈

𝜷,𝒙0
𝑁,𝛾

‖‖‖𝐿2‖𝑈𝜷,𝒙0
𝑁,𝛾

‖𝐿2

, ∀𝑖 ∈ {1,⋯ , 𝑑}. (4.1)

re, 𝜋𝜷,𝒙0
𝑁,𝛾,𝑖

denotes the projection operator onto the space spanned by basis functions whose indices fall into the following index set

Υ𝑁,𝛾,𝑖 ∶=
{
𝒏 ∶ |||(𝑛1,⋯ ,

3
2𝑛𝑖,⋯ , 𝑛𝑑

)|||mix ⋅ |||(𝑛1,⋯ ,
3
2𝑛𝑖,⋯ , 𝑛𝑑

)|||−𝛾∞ ≤𝑁1−𝛾
}
. (4.2)

1, ⋯ , 32𝑛𝑖, ⋯ , 𝑛𝑑 ) indicates that the 𝑖th component of 𝒏 is multiplied by a factor 
3
2 (following the common 

2
3 -rule [36,20]). 𝑥𝑖 thus 

easures the high-frequency components in the 𝑖th direction of 𝑈𝜷,𝒙0
𝑁,𝛾

. 𝑥𝑖 can help us adjust 𝛽𝑖, the scaling factor in the 𝑖th dimension.
Next, we define the hyperbolic-cross-space expansion order frequency indicator 𝑝 for 𝑈𝜷,𝒙0

𝑁,𝛾
∈ 𝑉 𝜷,𝒙0

𝑁,𝛾
:

𝑝(𝑈𝜷,𝒙0
𝑁,𝛾

) ∶=
‖𝑈𝜷,𝒙0

𝑁,𝛾
− 𝜋𝜷,𝒙0

𝑁,𝛾,𝑝
𝑈

𝜷,𝒙0
𝑁,𝛾

‖𝐿2

‖𝑈𝜷,𝒙0
𝑁,𝛾

‖𝐿2

. (4.3)

re, 𝜋𝜷,𝒙0
𝑁,𝛾,𝑝

denotes the projection operator onto the space spanned by basis functions whose indices fall into the following index set

Υ𝑁,𝛾,𝑝 ∶=
{
𝒏 ∶ |𝒏|mix ⋅ |𝒏|−𝛾∞ ≤ ( 2

3𝑁
)1−𝛾}

. (4.4)

measures the overall high-frequency components in 𝑈𝜷 ,𝒙0
𝑁,𝛾

. For one-dimensional spectral expansions, the hyperbolic-cross-space 
8

quency indicators 𝑥 and 𝑝 coincide with the frequency indicators introduced in [20,21].
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. 1. (a, b, c) The basis functions that are used to our proposed hyperbolic-cross-space frequency indicators 𝑥, 𝑦 , and 𝑝 defined in Eqs (4.1) and (4.3). The red 
ts are the indices of the mapped Jacobi basis functions used in the calculation of the numerators of Eq. (4.1) and (4.3). The red and yellow dots are the indices of the 
pped Jacobi basis functions used in the calculation of the denominators of Eqs. (4.1) and (4.3). (d, e, f) The basis functions used to calculate the direct-truncation-
ategy frequency indicators ̃𝑥, ̃𝑦 , and ̃𝑝 defined in Eqs (4.5) and (4.7). The red dots are the indices of the mapped Jacobi basis functions used in the calculation 
the numerators of Eq. (4.5), and (4.7). The red and yellow dots are the indices of the mapped Jacobi basis functions used in the calculation of the denominators of 
. (4.5), and (4.7). Here, we take 𝑁 = 20, 𝛾 = −1 for the hyperbolic space 𝑉 𝜷,𝒙0

𝑁,𝛾
. (For interpretation of the colors in the figure(s), the reader is referred to the web 

rsion of this article.)

Previous adaptive techniques for applying Hermite functions to solve multidimensional spatiotemporal equations use a “direct 
ncation” strategy [22] to calculate the direct-truncation-strategy frequency indicators in the 𝑖th direction, and such strategies are 
ainly applied to the case of using the full-tensor-product spectral expansions instead of the sparse spectral expansions. As a compar-
n, we implement previous adaptive techniques for our sparse mapped Jacobi functions to solve multidimensional spatiotemporal 
uations, which we refer to as the ADMJ method. Specifically, the ADMJ method calculates the direct-truncation-strategy frequency 
dicator in the 𝑖th direction for adjusting 𝛽𝑖 using the following formula

̃𝑥𝑖 (𝑈𝜷,𝒙0
𝑁,𝛾

) ∶=
‖𝑈𝜷,𝒙0

𝑁,𝛾
− 𝜋̃𝜷,𝒙0

𝑁,𝛾,𝑖
𝑈

𝜷,𝒙0
𝑁,𝛾

‖𝐿2

‖𝑈𝜷,𝒙0
𝑁,𝛾

‖𝐿2

, ∀𝑖 ∈ {1,⋯ , 𝑑}. (4.5)

re, 𝜋̃𝜷,𝒙0
𝑁,𝛾,𝑖

denotes the projection operator onto the space spanned by basis functions whose indices fall into the following index set

Υ̃𝑁,𝛾,𝑖 ∶=
{
𝒏 ∈Υ𝑁,𝛾 ∶ 𝑛𝑖 ≤ 2

3𝑁
}
. (4.6)

e direct-truncation-strategy expansion order frequency indicator ̃𝑝 for adjusting the expansion order 𝑁 is defined as

̃𝑝(𝑈𝜷,𝒙0
𝑁,𝛾

) ∶=
‖𝑈𝜷,𝒙0

𝑁,𝛾
− 𝜋̃𝜷,𝒙0

𝑁,𝛾,𝑝
𝑈

𝜷,𝒙0
𝑁,𝛾

‖𝐿2

‖𝑈𝜷,𝒙0
𝑁,𝛾

‖𝐿2

. (4.7)

re, 𝜋̃𝜷,𝒙0
𝑁,𝛾,𝑝

denotes the projection operator onto the space spanned by basis functions whose indices fall into the following index set

Υ̃𝑁,𝛾,𝑝 ∶=
{
𝒏 ∈Υ𝑁,𝛾 ∶ 𝑛𝑖 ≤ 2

3𝑁, ∀𝑖 = {1,⋯ , 𝑑}
}
. (4.8)

We plot the basis functions that we use to calculate the hyperbolic-cross-space frequency indicators 𝑥𝑖 and 𝑝 in Fig. 1 (a, b, c). 
ditionally, we plot the basis functions that we use to calculate the direct-truncation-strategy frequency indicators ̃𝑥𝑖 and ̃𝑝 in 
g. 1 (d, e, f). When 𝛾 = −∞ in the index set Υ𝑁,𝛾 , our hyperbolic-space frequency indicators 𝑥𝑖 and 𝑝 coincide with the direct-
ncation-strategy frequency indicators ̃𝑥𝑖 and ̃𝑝. When 𝛾 >∞, compared to our hyperbolic-cross-space frequency indicators, the 
rect-truncation-strategy frequency indicators ̃𝑥𝑖 and ̃𝑝 fail to take into account the features of the hyperbolic cross space and use 
wer basis functions in the calculation of the numerators in Eqs. (4.5) and (4.7). In Examples 4 and 5, we shall show that our AHMJ 
9

ethod is more robust and efficient than the ADMJ method.
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. 2. (a) The number of basis functions in the hyperbolic cross space 𝑉 𝜷,𝒙0
𝑁,𝛾

w.r.t. the dimensionality 𝑑 with different 𝛾 and a fixed 𝑁 = 20. (b) The number of basis 
ctions in 𝑉 𝜷,𝒙0

𝑁,𝛾
w.r.t. the expansion order 𝑁 with different 𝛾 and a fixed 𝑑 = 3. (c) The number of basis functions in 𝑉 𝜷,𝒙0

𝑁,𝛾
w.r.t. the hyperbolic cross index 𝛾 with 

erent 𝑁 and a fixed 𝑑 = 23.

Compared to the full-tensor-product space, the hyperbolic cross space contains fewer basis functions and can thus relieve com-
tational burden. When using mapped Jacobi spectral expansions in the hyperbolic cross space, the number of basis functions in 
𝜷,𝒙0
,𝛾

grows with the dimensionality 𝑑 (in the model problem Eq. (1.1)) and the expansion order 𝑁 (shown in Fig. 2 (a, b)). When 
and 𝑁 are fixed, the total number of basis functions will decrease with 𝛾 (shown in Fig. 2 (c)). Compared to using the full tensor 
oduct (𝛾 = −∞), choosing an appropriate 𝛾 can greatly reduce the total number of basis functions involved. Estimations on how 
e number of basis functions is determined by the dimensionality 𝑑, 𝑁 , and 𝛾 are given in [9].
Finally, for both the ADMJ method and the AHMJ method, the exterior-error indicators for adjusting the displacement 𝑥0 𝑖 for the 
sis functions in the 𝑖th direction are calculated in the same way as the exterior-error indicators [20]:

𝑥𝑖
𝐿
(𝑈𝜷,𝒙0
𝑁,𝛾

) ∶=
‖‖‖𝜕𝑥𝑖𝑈𝜷,𝒙0

𝑁,𝛾
⋅ 𝕀ℝ×⋯×(−∞,𝑥𝑖,𝐿)×⋯×ℝ

‖‖‖𝐿2‖‖‖𝜕𝑥𝑖𝑈𝜷,𝒙0
𝑁,𝛾

‖‖‖𝐿2

,

𝑥𝑖
𝑅
(𝑈𝜷,𝒙0
𝑁,𝛾

) ∶=
‖‖‖𝜕𝑥𝑖𝑈𝜷,𝒙0

𝑁,𝛾
⋅ 𝕀ℝ×⋯×(𝑥𝑖,𝑅,∞)×⋯×ℝ

‖‖‖𝐿2‖‖‖𝜕𝑥𝑖𝑈𝜷,𝒙0
𝑁,𝛾

‖‖‖𝐿2

,

(4.9)

here 𝕀𝐴 denotes the characteristic function of the set 𝐴. 𝑥𝑖,𝐿 = 𝑥𝛽𝑖,𝑥0𝑖
[𝑁3 ]

and 𝑥𝑖,𝑅 = 𝑥𝛽𝑖,𝑥0𝑖
[ 2𝑁+2

3 ]
are the [𝑁3 ]

th and [ 2𝑁+2
3 ]th nodes of the 

adrature nodes {𝑥𝜷,𝒙0𝑛 }𝑁
𝑛=0 in the 𝑥𝑖 direction. Hyperparameters for implementing the adaptive spectral methods and the details 

 the scaling, moving, and 𝑝-adaptive techniques (similar to the implementation of adaptive techniques in [23]) are given in S 7. 
e spatial fractional Laplacian operator (−Δ)𝛼∕2 defined as the following singular integral [19] will be often used in our numerical 
amples,

(−Δ)𝑠∕2𝑢(𝒙) ∶= 𝐶𝑑,𝑠 p.v.∫
ℝ𝑑

𝑢(𝒙) − 𝑢(𝒚)|𝒙− 𝒚|𝑠 d𝒚, 𝐶𝑑,𝑠 =
𝛼2𝑠−1Γ( 𝑠+𝑑2 )

𝜋𝑑∕2Γ( 2−𝑠2 )
, (4.10)

here p.v. stands for the Cauchy principal value. In [17], an efficient method for computing 
(
(−Δ)𝑠∕2 𝜷,𝒙0

𝒎 ,  𝜷,𝒙0
𝒏

)
is given. In 

amples 1, 3, 4, and 5, we use the modified mapped Chebyshev functions (𝛼1 = 𝛼2 = −1
2 in Eq. (2.6)). In Example 2, we use the 

odified mapped Legendre functions (𝛼1 = 𝛼2 = 0 in Eq. (2.6)). In this study, the error denotes the following relative 𝐿2 error:

𝑒(𝑡) ∶= 𝐸(𝑡)‖𝑢(⋅, 𝑡)‖𝐿2
=

‖‖‖𝑢(⋅, 𝑡) −𝑈𝜷,𝒙0
𝑁,𝛾

(⋅, 𝑡)‖‖‖𝐿2‖𝑢(⋅, 𝑡)‖𝐿2
. (4.11)

It has been shown in [22] that a four-stage eighth-order IRK scheme in [37] could be sufficient in solving many spatiotemporal 
uations with a moderate time step Δ𝑡 = 0.1 since the time discretization error is of order 𝑂(Δ𝑡8) = 𝑂(10−8). On the other hand, 
too-small time step Δ𝑡 might lead to additional computational cost (too many time steps needed) without improving accuracy 
hile a too-large time step Δ𝑡 could lead to inaccurate implementation of the adaptive techniques (shown in [22]). Thus, we use 
e four-stage eighth-order IRK scheme in [37] and a timestep Δ𝑡 = 0.1 in all examples. The time discretization error is 𝑂(10−8) and 
uch smaller than spectral expansion approximation error in space. The IRK scheme is solved based on the Newton iteration solver 
upled with the Douglas-Rachford splitting method in [38,31,30]. The runtime and memory usage is recorded using Matlab R2023b 
 a desktop with 24-core Intel® i9-13900 KF CPU @ 3.00 GHz. Hyperparameters, settings, and implementation details of our AHMJ 
ethod for each example are provided in Supplement [1, S 7].
First, we compare the performance of the AHMJ method versus the adaptive Hermite method [23] for solving a 1D spatiotemporal 
10

tegrodifferential equation where the solution exhibits algebraic decay at infinity.
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. 3. (a) The errors of the non-adaptive mapped Jacobi method, the scaled-only mapped Jacobi method, and the AHMJ method as well as the adaptive Hermite 
thod. (b) The frequency indicator of the adaptive Hermite method, the frequency indicators of the non-adaptive mapped Jacobi method, the scaled-only mapped 
cobi method, and the AHMJ method (c) The scaling factor 𝛽 of the scaled-only mapped Jacobi method, and the AHMJ method as well as the adaptive Hermite 
thod. (d) The expansion order of the AHMJ method and the adaptive Hermite method.

ample 1. Consider the following 1D fractional reaction-diffusion equation

𝜕𝑡𝑢+ (−Δ)1∕2𝑢+ 𝑢(1 − 𝑢2) = 𝑓 (𝑥, 𝑡), 𝑢(𝑥,0) = 1
(1 + 𝑥2)6

, (4.12)

here 𝑓 (𝑥, 𝑡) is the source term given in Eq. (F.5) in Supplement [1, S 6]. Eq. (4.12) admits an analytical solution

𝑢(𝑥, 𝑡) = (1 + 𝑡)12(
(1 + 𝑡)2 + 𝑥2

)6 . (4.13)

We set 𝑟 = 1 in Eq. (2.5) so that the mapped Jacobi basis functions  𝛽,𝑥0
𝑛 decay algebraically at a rate of |𝛽𝑥|−1 at infinity [16]. 

e initial scaling factor 𝛽 = 0.6 for the mapped Jacobi methods, and 𝛽 = 2.5 for the Hermite method. We set the initial expansion 
der 𝑁 = 50 and the initial displacement 𝑥0 = 0.
As shown in Fig. 3 (a), the AHMJ method outperforms the adaptive Hermite method. This is because the algebraic decaying 
operty of the mapped Jacobi functions matches the algebraic decay of the analytical solution Eq. (4.13) as |𝑥| →∞. On the other 
nd, the Hermite functions decay at a rate of exp(−𝛽2𝑥2∕2) at infinity, and thus they cannot capture the solution’s behavior when | is large. Also, from Fig. 3 (a), our AHMJ method gives a much more accurate numerical solution than using a fixed scaling 
ctor, which verifies the effectiveness of the scaling technique. From Fig. 3 (b), the frequency indicators of the AHMJ method and 
e scaled-only mapped Jacobi method (in this manuscript, “scaled-only” refers to the AHMJ method with the 𝑝-adaptive technique 
activated by disallowing the expansion order 𝑁 to increase or decrease) are well controlled as a result of properly adjusting the 
aling factors (shown in Fig. 3 (c)). The analytical solution Eq. (4.12) does not become more or less oscillatory over time, and the 
pansion order 𝑁 for the ADHJ method remains almost unchanged (shown in Fig. 3 (d)) because the 𝑝-adaptive technique is rarely 
tivated. However, the expansion order 𝑁 of the adaptive Hermite method is activated when 𝑡 is small which may be because the 
aptive Hermite method cannot maintain a small frequency indicator only by scaling when 𝑡 is small (Fig. 3 (b)).

In the next example, we further compare the performance of the AHMJ method with the adaptive Hermite method [23] in solving 
Keller-Segel equation that describes the dynamics of insect swarms in [39,33].

ample 2. Consider the following Keller-Segel equation

𝜕𝑡𝑢+ 2 ⋅∇𝑢− 1
2
Δ𝑢+∇ ⋅

(
𝑢∇(|𝑥| ∗ 𝑢)) = 0, 𝑢(𝑥,0) = 1

8
cosh−2

(
𝑥

4

)
, (4.14)

hich admits an analytical solution:( )

11

𝑢(𝑥, 𝑡) = 1
8
cosh−2 𝑥− 2𝑡

4
. (4.15)



Y.

Fig

ma
dis
ad

fu
m
fo
He
re

m
er
ca
th
in

al
tio

Ex

w

Ja
𝑁

Journal of Computational Physics 520 (2025) 113492Deng, S. Shao, A. Mogilner et al.

. 4. (a) The numerical solution versus the analytic solution. The analytic solution translates rightward over time. (b) The errors of the AHMJ, the non-adaptive 
pped Jacobi, the adaptive Hermite, and the non-adaptive Hermite methods. (c) The displacement of the basis function for the AHMJ method as well as the 
placement for the adaptive Hermite method. (d) The exterior-error indicators of the AHMJ, the non-adaptive mapped Jacobi, the adaptive Hermite, and the non-
aptive Hermite methods. The exterior-error indicator of the AHMJ method and the exterior-error indicator of the adaptive Hermite method are well controlled.

The solution of Eq. (4.15) decays exponentially at infinity. Therefore, we set 𝑟 = 1 in Eq. (2.5) such that the mapped Jacobi basis 
nctions  𝛽,𝑥0

𝑛 decay at a rate of exp(−|𝛽𝑥|) to numerically solve Eq. (4.14). As a comparison, we also apply the adaptive Hermite
ethod [23] to solve Eq. (4.14). The initial scaling factor 𝛽 = 0.4 for the mapped Jacobi methods, and the initial scaling factor 𝛽 = 1.2
r the Hermite methods. We set the initial expansion order 𝑁 = 50 and the initial displacement 𝑥0 = 0 for the mapped Jacobi and 
rmite methods. Also, the analytical solution corresponds to a pulse moving rightward with constant speed over time (Fig. 4 (a)), 
quiring properly adjusting the displacement 𝑥0 of the mapped Jacobi spectral expansion.
The AHMJ method can achieve high accuracy compared to the non-adaptive Hermite method and the non-adaptive mapped Jacobi 
ethods (Fig. 4 (b)). Failure to adjust 𝑥0 will lead to a large right exterior-error indicator (shown in Fig. 4 (c)), indicating a large 
ror for the spectral expansion approximation as 𝑥 →∞. For both the adaptive Hermite and the AHMJ method, they can accurately 
pture the change in the displacement 𝑥0 (Fig. 4 (d)), again verifying the effectiveness of the moving technique. From Eq. (4.15), 
e solution is decaying at a rate of exp(−|𝑥|∕2) when 𝑥 → ±∞. As the Hermite functions vanish faster than the analytic solution at 
finity, the error of the adaptive Hermite method is slightly larger than the error of the AHMJ method (Fig. 4 (b)).

From Examples 1 and 2, the AHMJ method is more appropriate than the adaptive Hermite method if the solution decays 
gebraically or decays at a rate of exp(−𝛽|𝑥|) as |𝑥| →∞. Next, we shall apply the AHMJ method to solve multidimensional spa-
temporal integrodifferential equations.

ample 3. Consider the following 2D fractional advection-diffusion equation

𝜕𝑡𝑢+ 𝑣 ⋅∇𝑢+ (−Δ)1∕2𝑢+ 𝑢(1 − 𝑢) = 𝑓 (𝑥, 𝑦, 𝑡), 𝑣 =
(
cos( 𝜋3 ), sin(

𝜋

3 )
)
,

𝑢(𝑥, 𝑦,0) = 1
(1 + 𝑥2 + 𝑦2)7

,
(4.16)

here 𝑓 (𝑥, 𝑦, 𝑡) is the source term given in Eq. (F.7) in Supplement [1, S 6]. Eq. (4.16) has an analytical solution

𝑢(𝑥, 𝑦, 𝑡) = (𝑡+ 1)13(
(𝑡+ 1)2 +

(
𝑥− cos

(
𝜋

3

)
𝑡
)2 + (

𝑦− sin
(
𝜋

3

)
𝑡
)2)7 . (4.17)

The analytical solution 𝑢(𝒙, 𝑡) in Eq. (4.17) decays at a rate of |𝑥2 +𝑦2|−7 at infinity. Thus, we set 𝑟 = 1 in Eq. (2.12) for the mapped 
cobi basis functions so that the basis functions also decay algebraically at infinity. We set the initial hyperbolic cross index set as 
12

= 45 and 𝛾 = −5, the initial scaling factor 𝜷 = (0.9, 0.9), and the initial displacement 𝒙0 = (0, 0). The analytic solution 𝑢(𝑥, 𝑦, 𝑡)
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. 5. (a) The errors of the non-adaptive mapped Jacobi, the ADMJ, and the AHMJ methods. (b) The frequency indicators of the non-adaptive, the ADMJ, and the 
MJ methods. (c) The scaling factors of the ADMJ method and the AHMJ method. (d) The displacements 𝑥0, 𝑦0 of the ADMJ method and the AHMJ method. Here, 
 reference displacement is the center of the analytical solution Eq. (4.17) (𝑥(𝑡), 𝑦(𝑡)) = (cos( 𝜋

3
)𝑡, sin( 𝜋

3
)𝑡). (e, f) The left and right exterior-error indicators (Eq. (4.9)) 

the ADMJ method and the AHMJ method. (g) The runtime (in seconds) for each method over different time steps. (h) Memory usage (in GB) for each method over 
erent time steps.

nslates at a velocity 𝑣 = (cos( 𝜋3 ), sin(
𝜋

3 )) and also diffuses over time, so both the scaling technique and the moving technique are 
quired to capture the diffusive and translative behavior of the solution.
The AHMJ method and the ADMJ method can achieve a much smaller error compared to the non-adaptive mapped Jacobi method 

hown in Fig. 5 (a)) because both the ADMJ method and the AHMJ method can adaptively adjust the scaling factors 𝛽𝑥, 𝛽𝑦 as well 
 the displacements 𝑥0, 𝑦0 in both directions (Fig. 5 (c, d)). From (Fig. 5 (e, f)), both the ADMJ method and the AHMJ method can 
aintain the frequency indicators as well as the left- and right-exterior-error indicators small. In contrast, the non-adaptive mapped 
cobi method fails to do so and results in a large frequency indicator as well as a right-exterior-error indicator. Though the errors of 
e ADMJ method and the AHMJ method are close to each other, the AHMJ method gives more accurate displacements 𝑥0, 𝑦0. This 
uld result from the fact that the AHMJ method can more accurately adjust the scaling factors 𝛽𝑥, 𝛽𝑦 using the hyperbolic frequency 
dicators in Eq. (4.1). From Fig. 5 (g, h), all methods have roughly the same runtime as well as memory usage. Additionally, since 
e total number of basis functions stays unchanged, the runtime and memory usage are almost unchanged across different time 
ps. Thus, using the AHMJ method indeed improves accuracy and does not require extra computational costs compared to using 
e non-adaptive method or the ADMJ method.

Next, we compare the performance of the proposed AHMJ method with the ADMJ method in numerically solving a 3D fractional 
13

ffusion equation.
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. 6. (a) The errors of the non-adaptive, scaled-only mapped Jacobi method, the ADMJ method, and the AHMJ method. (b) The scaling factors 𝛽𝑥, 𝛽𝑦 , and 𝛽𝑧 of the 
led-only mapped Jacobi method, ADMJ method, and the AHMJ method, respectively. (c) The expansion order 𝑁 is generated by the ADMJ method and generated 
 the AHMJ method. Our proposed AHMJ method can maintain the error small over time without using a too large number of basis functions, while the previous 
MJ method terminates prematurely because the number of basis functions increases too fast, leading to memory overflow.

ample 4. Consider the following 3D fractional diffusion equation

𝜕𝑡𝑢+ (−Δ)3∕4𝑢 = 𝑓 (𝑥, 𝑦, 𝑧, 𝑡), 𝑢(𝑥, 𝑦, 𝑧,0) = sin
(
𝑥+ 6𝑦∕5 + 𝑧∕2

)
exp

(
−(𝑥2 + 𝑦2 + 𝑧2)

2

)
, (4.18)

here 𝑓 (𝑥, 𝑦, 𝑧, 𝑡) is the source term given in Eq. (F.9) in Supplement [1, S 6]. Eq. (4.21) admits an analytical solution

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =
sin

(
𝑥+ 6𝑦∕5 + 𝑧∕2

)
(3𝑡+ 1)3∕2

exp
(
−(𝑥2 + 𝑦2 + 𝑧2)

6𝑡+ 2

)
. (4.19)

As the analytical solution decays exponentially at infinity, we set 𝑟 = 0 in Eq. (2.5) for the mapped Jacobi basis functions so that 
e basis functions decay at a rate of exp(−|𝛽𝑥|) for large |𝑥|. We set the initial hyperbolic cross index set as 𝑁 = 25 and 𝛾 = −10, 
e initial scaling factor 𝜷 = (0.4, 0.37, 0.3), and the initial displacement 𝒙0 = (0, 0, 0). The analytical solution 𝑢(𝑥, 𝑦, 𝑧, 𝑡) in Eq. (4.19)
cays more slowly at infinity over time in 𝑥, 𝑦, and 𝑧 directions, which requires properly decreasing the scaling factors 𝛽𝑥, 𝛽𝑦, 𝛽𝑧
 all directions. By conducting a change of variable 𝑥̃𝑡 =

𝑥√
3𝑡+1

, 𝑦̃𝑡 =
𝑦√
3𝑡+1

, and 𝑧̃𝑡 =
𝑧√
3𝑡+1

, the analytic solution Eq. (4.19) can be 
written as

𝑢(𝑥̃𝑡, 𝑦̃𝑡, 𝑧̃𝑡, 𝑡) =
sin

(√
3𝑡+ 1(𝑥̃𝑡 + 6𝑦̃𝑡∕5 + 𝑧̃𝑡∕2)

)
(3𝑡+ 1)3∕2

exp

(
−(𝑥̃2

𝑡
+ 𝑦̃2

𝑡
+ 𝑧̃2

𝑡
)

2

)
. (4.20)

us, after appropriately decreasing 𝛽𝑥, 𝛽𝑦, and 𝛽𝑧, the factor sin
(√

3𝑡+ 1(𝑥̃𝑡 +6𝑦̃𝑡∕5 + 𝑧̃𝑡∕2)
)
in Eq. (4.20) becomes more oscillatory 

 the scaled new variables 𝑥̃𝑡, 𝑦̃𝑡, ̃𝑧𝑡 and requires incorporating higher-order basis functions to capture such oscillatory behavior.
In Fig. 6 (a), our proposed AHMJ method exhibits an improved performance compared to the non-adaptive and scaled-only mapped 
cobi methods, successfully controlling the relative error below 10−3 . This is because our AHMJ method can properly decrease the 
aling factors 𝛽𝑥, 𝛽𝑦, and 𝛽𝑧 in all three directions (Fig. 6 (b)) and increase 𝑁 (Fig. 6 (c)).
On the other hand, the ADMJ method increases 𝑁 too much (Fig. 6 (c)) and terminates before 𝑡 = 1 as a result of memory overflow. 
e direct-truncation expansion order frequency indicator uses a too-small number of basis functions for calculating the numerator 
 ̃𝑝. Thus, ̃𝑝 could be subjected to large fluctuations. Therefore, the ADMJ method can be less robust, which may lead to a drastic 
crease in the total number of basis functions and memory overflow. In comparison, the proposed AHMJ method is more robust and 
events 𝑁 and the number of basis functions from increasing too fast (shown in Fig. 6 (c)).

Finally, we extend our adaptive hyperbolic-cross-space techniques to generalized Hermite spectral expansions for numerically 
lving an unbounded domain spatiotemporal equation.

ample 5. Consider the following 4D equation in [26]

𝜕𝑡𝑢−Δ𝑢+ (𝑥2 + 𝑦2 + 𝑧2 +𝑤2)𝑢 = 𝑓 (𝑥, 𝑦, 𝑧,𝑤, 𝑡),

𝑢(𝑥, 𝑦, 𝑧,𝑤) = cos(𝑥+ 𝑦+ 𝑧+𝑤) exp
(
−(𝑥2 + 𝑦2 + 𝑧2 +𝑤2)

)
,

(4.21)

here 𝑓 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) is the source term given in Eq. (F.11) in Supplement [1, S 6]. Eq. (4.21) admits an analytical solution

𝑢(𝑥, 𝑦, 𝑧,𝑤, 𝑡) = cos(𝑥+ 𝑦+ 𝑧+𝑤)
(𝑡+ 1)2

exp
(
−(𝑥2 + 𝑦2 + 𝑧2 +𝑤2)

𝑡+ 1

)
. (4.22)

The analytical solution exhibits exponential decay at infinity, which is consistent with the decaying rate of the Hermite basis 
nctions. Therefore, we use the Hermite basis functions. We set the initial hyperbolic cross index set as 𝑁 = 11 and 𝛾 = −3, the initial 
14

aling factor 𝜷 = (1.05, 1.05, 1.05, 1.05), and the initial displacement 𝒙0 = (0, 0, 0, 0). The analytical solution Eq. (4.22) also requires 
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. 7. (a) The errors of the non-adaptive, scaled-only (the adaptive hyperbolic-cross-space Hermite method with the 𝑝-adaptive technique for adjusting the expansion 
er 𝑁 deactivated), and adaptive Hermite methods, as well as the adaptive hyperbolic-cross-space Hermite method. (b) The scaling factors 𝛽𝑥, 𝛽𝑦 , 𝛽𝑧 , and 𝛽𝑤 of the 
led-only and adaptive Hermite methods as well as the adaptive hyperbolic-cross-space Hermite method. Since the analytic solution is homogeneous, the scaling 
hnique yields the same 𝛽𝑥, 𝛽𝑦, 𝛽𝑧, 𝛽𝑤 in four directions for the adaptive Hermite methods. (c) The expansion order 𝑁 and the number of basis functions generated 
m the adaptive Hermite method and the adaptive hyperbolic-cross-space Hermite method. The adaptive Hermite method terminates prematurely as a result of a 
-large number of basis functions and memory overflow. (d) The runtime (in seconds) for each method over different time steps. (f) Memory usage (in GB) for each 
thod over different time steps. Here, the legend “adaptive hyperbolic-cross-space” denotes the adaptive hyperbolic-cross-space Hermite method.

th decreasing the scaling factors in all four directions and increasing the expansion order 𝑁 . We shall apply our proposed hyperbolic-
oss-space frequency indicators 𝑥𝑖 and 𝑝 defined in Eqs. (4.1) and (4.3) for adjusting the scaling factors and the expansion 
der (denoted as adaptive hyperbolic-cross-space Hermite method) versus applying previous adaptive Hermite methods in [20,
] (denoted as adaptive Hermite method), which use the direct-truncation-strategy frequency indicators ̃𝑥𝑖 and ̃𝑝 defined in 
s. (4.5) and (4.7) for adjusting the scaling factors and the expansion order.
In Fig. 7 (a), the adaptive hyperbolic-cross-space Hermite method exhibits an improved accuracy compared to the non-adaptive 
d scaled-only Hermite methods, successfully controlling the relative error below 10−4 . The adaptive hyperbolic-cross-space Hermite 
ethod can properly decrease the scaling factors 𝛽𝑥 , 𝛽𝑦, 𝛽𝑧, and 𝛽𝑤 in all four directions (Fig. 7 (b)) and appropriately increase the 
pansion order 𝑁 (Fig. 7 (c)). The previous adaptive Hermite method increases 𝑁 too fast (Fig. 7 (c)) and terminates prematurely 
fore 𝑡 = 1 as a result of memory overflow. Again, from (Fig. 7 (c)), the previous direct-truncation strategy for adjusting the expansion 
der is less robust and subjects to memory overflow as a result of a too-fast-increasing number of basis functions. For both the adaptive 
rmite method and the adaptive hyperbolic-cross-space Hermite method, we find that the moving technique will not be activated 
cause the function is origin-symmetric. From Fig. 7 (d, e), the runtime as well as memory usage will increase with the total number 
 basis functions. Thus, our adaptive hyperbolic-cross-space Hermite method is necessary for numerically solving Eq. (4.21) till 𝑡 = 1
 it appropriately increases the expansion order 𝑁 so that the computational cost does not increase too fast over time. Compared 
 the previous adaptive Hermite method, our adaptive hyperbolic-cross-space Hermite method is more robust and prevents the 
mber of basis functions from increasing too fast while achieving high accuracy. In conclusion, our adaptive hyperbolic-cross-space 
chniques can also be applied to generalized Hermite spectral expansions, and the resulting adaptive hyperbolic-cross-space Hermite 
ethod is more robust and efficient than previous adaptive Hermite methods.

 Conclusions

In this paper, we proposed an adaptive hyperbolic-cross-space mapped Jacobi (AHMJ) method for efficiently solving multidi-
ensional spatiotemporal integrodifferential equations in unbounded domains whose solutions decay algebraically at infinity. We 
vised two hyperbolic-cross-space frequency indicators 𝑥𝑖 and 𝑝 in Eqs. (4.1) and (4.3) for efficiently implementing adaptive 
chniques to sparse multidimensional spectral expansions defined in hyperbolic cross spaces [24,26]. Our AHMJ method is more 
bust compared to previous adaptive techniques for spectral methods [20,21,23] and can effectively reduce the number of basis 
nctions needed while maintaining accuracy. Additionally, we provided an upper error bound for applying our AHMJ method to 
15

lve a wide range of spatiotemporal integrodifferential equations. We showed that the error of implementing our AHMJ method can 
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 effectively controlled as long as we chose an appropriate hyperbolic cross space and properly implemented the adaptive techniques 
r the sparse spectral expansions.
A promising future direction is to figure out an appropriate strategy for modifying the hyperbolic cross space index 𝛾 and to develop 
aptive techniques on the asymmetric hyperbolic cross space as presented in [9]. This could require further investigation on how to 
ckle the heterogeneity of a multidimensional function. Furthermore, considering operator-splitting strategies for forwarding time, 
hich are easier to implement than high-order implicit Runge-Kutta schemes, could be prospective [40–42]. Also, it is prospective 
 extend hyperbolic-cross-space adaptive techniques to generalized Laguerre functions in the semi-unbounded domain ℝ+ [43–45]. 
 the other hand, it could be helpful to consider adaptively adjusting the time step to further improve computational efficiency for 
r AHMJ method, as was done in [46]. Finally, applying the proposed AHMJ method to solve inverse problems of reconstructing 
atiotemporal equations [47] is worth further research.
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