Journal of Computational Physics 520 (2025) 113492

Contents lists available at ScienceDirect Comptational
Physics

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Check for

Adaptive hyperbolic-cross-space mapped Jacobi method on wdtes”
unbounded domains with applications to solving

multidimensional spatiotemporal integrodifferential equations

Yunhong Deng ?, Sihong Shao ", Alex Mogilner ¢, Mingtao Xia ©*

 School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
 CAPT, LMAM and School of Mathematical Sciences, Peking University, Beijing, 100871, China
¢ Courant Institute of Mathematical Science, New York University, New York, 10012, NY, USA

ARTICLE INFO ABSTRACT
Keywords: In this paper, we develop a new adaptive hyperbolic-cross-space mapped Jacobi (AHMJ) method
Spectral method for solving multidimensional spatiotemporal integrodifferential equations in unbounded domains.
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Hyperbolic cross space
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Spatiotemporal integrodifferential equations

By devising adaptive techniques for sparse mapped Jacobi spectral expansions defined in a
hyperbolic cross space, our proposed AHMJ method can efficiently solve various spatiotemporal
integrodifferential equations such as the anomalous diffusion model with reduced numbers of
basis functions. Our analysis of the AHMJ method gives a uniform upper error bound for solving
a class of spatiotemporal integrodifferential equations, leading to effective error control.

1. Introduction

There have been wide applications of unbounded-domain spatiotemporal integrodifferential to describe the evolution of physical
or biological quantities in different physical or biophysical models. For example, 2D or 3D unbounded-domain anomalous diffusion
equations incorporating fractional Laplacian operators are used in material science [2-4]. Additionally, unbounded-domain multidi-
mensional aggregation-diffusion equations, which include a convolutional term to model the nonlocal interaction among individuals,
are used to model swarming behavior and chemotaxis [5-8].

Spatiotemporal integrodifferential equations in unbounded domains present computational challenges for many existing methods.
For instance, mesh-based approaches like finite difference and finite element methods struggle with unbounded domains when applied
directly [9,10]. Truncating the unbounded domain into a bounded domain is necessary for using those mesh-based methods. Yet,
domain truncation requires devising artificial boundary conditions [11-13], which could be intricate to formulate.

Spectral methods could be an effective approach for solving unbounded-domain problems [14-21]. Some basis functions, such as
the Hermite functions and Laguerre functions, are inherently defined in unbounded domains. Thus, with basis functions defined in
unbounded domains, spectral methods can be directly applied to solve unbounded-domain spatiotemporal equations. Recently, novel
adaptive techniques for spectral methods [20-23] have been proposed to improve the efficiency of using spectral methods to solve
unbounded-domain spatiotemporal equations. By monitoring a frequency indicator and an exterior-error indicator, the adaptive
spectral method can automatically adjust the decaying rate, the displacement, and the expansion order of the spectral expansion to
accurately capture the dynamic behaviors of solutions in the unbounded domain.
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When using spectral methods to solve multidimensional spatiotemporal equations, the “curse of dimensionality” arises as the
number of basis functions needed could grow exponentially with dimensionality [9,24,25,15,26]. A sparse spectral method based on
a hyperbolic cross space [9,24,26] has been proposed to effectively reduce the number of basis functions needed when approximating a
multidimensional function. The hyperbolic-cross-space spectral methods have yielded good results in solving high-dimensional elliptic
equations [24,25,15] and high-dimensional parabolic equations [9,26]. Yet, when solving spatiotemporal equations, the behavior of
solutions to those unbounded-domain spatiotemporal equations may evolve over time and require adaptive adjustment of the basis
functions [20,21]. Previous adaptive Hermite methods [20,21,23] have primarily focused on using a dense spectral expansion without
any dimension reduction techniques. However, compared to sparse spectral methods with spectral expansion in a proper hyperbolic
cross space, full-tensor-product Hermite spectral expansions use much more basis functions without substantially improving accuracy
and could thus be computationally ineffective.

Furthermore, solutions to certain unbounded-domain multidimensional spatiotemporal equations such as the anomalous diffusion
equation [2-4] and the Patlak-Keller-Segel equation [27] decay algebraically at infinity. Solving those equations requires using basis
functions that can characterize algebraic decay at infinity such as the mapped Jacobi functions rather than the exponentially decaying
Hermite functions [16,19,17]. Yet, to our knowledge, there has been little research on how to develop adaptive sparse spectral methods
to effectively solve unbounded-domain spatiotemporal equations with algebraically decaying basis functions.

In this work, we develop an adaptive hyperbolic-cross-space mapped Jacobi (AHMJ) method to efficiently solve multidimensional
spatiotemporal integrodifferential equations in unbounded domains. Our main contributions are summarized as follows: i) devise
adaptive hyperbolic-cross-space techniques for properly adjusting basis functions over time in a spectral expansion defined in hy-
perbolic cross spaces [9,24,26] for solving unbounded-domain multidimensional spatiotemporal equations; ii) extend the adaptive
spectral techniques to mapped Jacobi spectral expansions [15-17,19]; iii) carry out an analysis on the error bound of applying the
proposed AHMJ method for solving integrodifferential spatiotemporal equations.

We study the following general nonlinear spatiotemporal equation of the weak form

du,v) +a(u,vit) = (fw:0),v), (x,1) € R? x[0,T],
(0.0) + a(u,v:1) = ( )

(1.1)
(u(x,0),0) = (up(x), ), Y(v,0) € L*([0,T]; H'(RY)) x H'(R).

Here, H!(R?) is the Sobolev space build on L*>(R¢) [28, Chapter 6], and (-,-) denotes the L? inner product w.r.t. the spatial variable
x (we also use (-,-) to denote the duality [29] between H!(R¢) and H~!(R?)):

(u,0) = / u(x)v(x) dx. (1.2
R4
a(u,v;t) is a bilinear form, f(u;t) is a nonlinear operator, and u,(x) denotes the initial value. We shall prove the following theorem
on the error bound for applying the AHMJ method.

Theorem 1.1. We assume that a(u, v; t) is a symmetric bilinear form satisfying the following continuous and coercive conditions: there exist
two constants C, ¢, > 0 such that

. 2 .
a(u,v:1) < Collull g lloll 1, coliul’?,, < auust). (1.3)

Furthermore, we assume that the nonlinear term f (u;t) satisfies the Lipschitz condition: there exists a constant L > 0 such that

Vu,v,¢ € L*(RY) = (f (1) — f(v:1).¢) < Lllu—vll 2|l 12 (1.4)

Then, the L? error of using the AHMJ method to solve the model problem Eq. (1.1) can be bounded by the sum of three separate error bounds:

Ju. ) = U], < B (1) + Egg (1) + Ef(D), (1.5)
where Uf,”;‘) (x,T) denotes the numerical solution of the AHMJ method and an implicit Runge-Kutta (IRK) scheme [30,22,31]. E4, Egg,
and E, denote the mapped Jacobi approximation error bound, the IRK time discretization scheme error bound, and the adaptive technique
error bound, respectively.

In Section 3, we prove that the mapped Jacobi method error bound E ; in Eq. (1.5) is determined by the hyperbolic-cross-space

mapped Jacobi approximation error u — zrf,’j/o u; Egg and E 4 are determined by the implementation of the time discretization scheme
and the implementation of adaptive techniques, respectively. Given a smooth function, Epy can be maintained small if some appro-
priate high-order time discretization schemes are implemented. Therefore, we can control E; and E, by choosing an appropriate
hyperbolic cross space and properly implementing the adaptive techniques for the sparse spectral expansion approximation. Theo-
rem 1.1 indicates the error in implementing our AHMJ method to solve multidimensional spatiotemporal integrodifferential equations
can be well controlled.

The rest of this paper is organized as follows: Section 2 analyzes the model problem Eq. (1.1) and gives the numerical scheme for

applying the AHMJ method to numerically solve it; Section 3 carries out a numerical analysis of the model problem Eq. (1.1) and
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Table 1
Definitions of the main variables and notations used in this study.
Symbol Definition
Jnﬂ'x" (x) J,,ﬁ'x" x)=J, (ﬁ(x - xo)) is the n'™ order mapped Jacobi
function [16,19]
x x :=(x;,,x,) € R? is the d-dimensional spatial variable
n n :=(ny,,n,) is the d-dimensional index
p B :=(p,,,p,) is the d-dimensional scaling factor f, is the
scaling factor in the i dimension
X Xy :=(Xqy, ", X,) is the d-dimensional displacement of the
basis functions. x,, is the displacement in the i dimension
TP (x) JP0(x) = Hflzl J,f"x"‘ (x,) is the tensorial mapped Jacobi
function; here n :=(n,...,n;)
Yy, Yy, :=={neN’:|n|,,In|J < N'7} is the hyperbolic
cross index set [24,26], where |n|;, := H,,dzl max{1,n;}
Vlej:“ V,{,i::" =spaney {J,,ﬂ'x" (x)} is the hyperbolic cross

mapped Jacobi approximation space

the projection operator Jr/}i,'?;“ P LX(RY) - V,g:“ such that
(mhou =, 2f0u) =0, Yu€ LXRY)

L2([a,b];V)  the Bochner space {u : [a,b] = V; [ u(®|%dt < oo}

Bxy
Ny

X(tg, 1)) the Sobolev-Bochner space [29, page 472]
{ue L?(tg.,t,; H'(RY)) : due L?([ty.1,1: H'(RY)) }
Y(t,1,) the Sobolev-Bochner space L2([ty,#,1; H'(R?)) x H'(R?)

proves Theorem 1.1; Section 4 presents the AHMJ method and numerical results; Section 5 concludes our paper. A summary of the
main variables and notations is given in Table 1.

2. Model problem analysis and the numerical scheme

In this section, we prove the existence and uniqueness of a solution to the model problem Eq. (1.1). Then, we introduce the sparse
hyperbolic-cross-space mapped Jacobi approximation and present the AHMJ method to solve the model problem Eq. (1.1).

2.1. Analysis on the model problem Eq. (1.1)

The following theorem establishes the existence and the uniqueness of a weak solution u(x,?) € X(0,7) to the model problem
Eq. (1.1), where X (#(,?;) is the Bochner—Sobolev space defined in Table 1. The norm of u(x, ¢) in the Bochner-Sobolev X (¢,,?;) space
is defined by

sl

lll ) 2= / (ogull?,_, + llull?,, )dr + lluC-, 1113 - @1

To

Theorem 2.1. Assume that the continuous and coercive conditions in Egs. (1.3) and (1.4) are satisfied. If we additionally assume that L < c,
then there exists a unique solution u(x,t) € X(0,T) to the model problem Eq. (1.1).

The proof of Theorem 2.1 is given in Supplement [1, S 1]. Actually, a wide range of spatiotemporal integrodifferential equations
can be cast into the model problem Eq. (1.1). As an example, consider an a(u, v; t) containing convolutional operator:

a(u, U;t) = (G * Vu, Vv) +s((u, v)+ (Vu,VU)), 2.2)

where (G * u)(x) := /[R” G(x—y)u(y)dy is a spatial convolutional operator. The following proposition shows under which assumptions
on the convolutional kernel G does a(u, v;?) in Eq. (2.2) satisfy the conditions in Theorem 1.1.

Proposition 1. Assume that the convolution kernel G(x) in Eq. (2.2) satisfies:

1. G(x) € L'(RY).
2. the Fourier transform % (G)(x) >0, Vx € R?.

Then the bilinear form a(u, v;t) defined in Eq. (2.2) satisfies the continuous condition and coercive conditions in Theorem 1.1.
The proof of Proposition 1 is given in Supplement [1, S 2]. The assumptions on the convolutional kernel G in Lemma 1 can be

met by many commonly used convolutional kernels which are radial symmetric functions, such as the Gaussian potential kernel [32]
and the Morse potential kernel [33].
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2.2. Hyperbolic-cross-space mapped Jacobi approximation

Now, we introduce the mapped Jacobi functions [15,16,19,17] defined in R. We denote {, A0 (g } 0 o o be the set of Jacobi poly-
nomials defined on the interval (-1, 1) with two fixed parameters a,, @, > —1 [14, Chapter 3.2]. F1x1ng al , @, the Jacobi polynomials
form a set of orthogonal basis functions w.r.t. the weight function w®*1"*2 := (1 — &)*1(1 + £)*2.

Given a one-to-one mapping / 5.r(%) from x € R to £ € (—1, 1), we can formulate a novel orthogonal basis in the unbounded domain
R, through the images of the Jacobi polynomials under the mapping & := Ay ,.(x),

d
/ Jm @y P G (:)ﬁdx =\ Yl nOmns (2.3)
R
where y,, := /_11 ( jff 1920102 d£, Here, we consider a family of mappings h p,-(x) in [15, Section 2.2] defined by

dhﬁ r( )
dx

)1+r/2

=p(1-hy, (0

Here, f is the scaling factor, and r > 0 is a non-negative integer. For r =0, 1, 4 ,.(x) can be computed explicitly as follows:

and hy,(0) =0. (2.4)

tanh(fx) logarithmic mapping r =0

hg (x) = __bx algebraic mapping r = 1. (2.5)
V1+ p2x2
Using the mapping hﬂ’,(x) defined in Eq. (2.4), we define the mapped Jacobi functions on the unbounded domain R as
TJh, ) = \/ﬂ I (R p(x = X0)) ey ay (Hp (X = X0)) (2.6)

where Hay (hﬂ ,(x) \/ w0 h 5 r(x)) h’ L(x) is the modified weight function. This modified weight function 4, 1o (x) makes the

mapped Jacobi functions {Jnﬁ aloaz . a complete and orthogonal basis of the Hilbert space L?(R) [16, Proposition 2. 2] For notational

simplicity, we omit a;, a, for the mapped Jacobi basis functions and the mapping parameter r in the subindex of J,, apayr(X), Le., we
use the notation J,,ﬂ 0(x) instead.

Detailed theoretical properties of the mapped Jacobi functions can be found in [15-17,19]. Different from the generalized Hermite
functions which decay at an exponential rate of e_% B2 for large |x|, the decaying rate of the mapped Jacobi basis functions can be
tuned by choosing an appropriate r in the mapping Eq. (2.4). For example, when using the algebraic mapping (r = 1 in Eq. (2.4)),
the mapped Jacobi basis functions decay at a rate of |f#x|~! [16] for large |x|, which are suitable for approximating a function that
decays faster than |x|~! as |x| — oo [15].

We shall use sparse mapped Jacobi spectral expansions defined in the hyperbolic cross space Vﬂ 0 characterized by the hyperbolic
cross index set Yy, (defined in Table 1). The following two inverse inequalities hold for the rnapped Jacobi spectral expansions in

the hyperbolic cross space V,g y“.

B.xo B.xo
Lemma 2.2. For all UN € VN ,

3/2 As1 /2
2= <f;" N 2 (2.7)
If additionally restricting that r < 1 in Eq. (2.4), we have
B.x, 1/2 1/2 B.x
[xio R3], <5 uR| s 2.8)

where N, :=2N(N +a; +ar + D) +2(1 + a; + ay +r/2)%
The proof of Lemma 2.2 is given in Supplement [1, S 3].
2.3. Numerical scheme

Here, we describe the AHMJ method to solve the model problem Eq. (1.1). We define two function spaces, X fi,”;”(to,t]) and
400 (19, 1):
B.x . B.x 2 .yBXoy . B.x 2 Ly Px
Xy, o.1) i={UR € L3 ([, 1, Vi 70) 1 U0 € LA(to 1y 1 Vi) )

2.9)
Yﬁ 1y, 11) —LZ([tO, I: V""O)xvﬁi’;(’.
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Xy b.x 0(tO, 1) is a subspace of the Sobolev-Bochner space X (¢, ), which inherits the norm || - || X(igt) defined in Eq. (2.1). The space
Ylg y” (ty,t1) is equipped with the norm

S [CAO A /nvn e+ 1], (2.10)

To obtain a continuous-time mapped Jacobi approximation to the solution u(x, t) of the model problem Eq. (1.1), we wish to find

ORPGen = Y a0 I x) € X3*00,1), @.11)

neYy ,
such that V(vy, 0y ) € Yﬁ:’;o 0,7),
(0,087, vy ) +a(UR™,0n31) = (FAORT:0,0x), VI €10,TL, (0870¢,0),0y) = (), by)- (2.12)

We rearrange the coefficients in the hyperbolic-cross-space mapped Jacobi spectral expansion U B0 into a vector by arranging
the coefficients in dictionary order, i.e., we shall define the following order relation on the index set Y Nyt

n' <n?:3ieN?* such that n,.1 < ";2 and Vj < i, njl. =n/2.. (2.13)
Thus, the basis functions can be indexed by {1, ---,|Y Ny [}, and O ][:,:0 can be rewritten as
Yy ,l
O, = ’Z‘ @ (0750 x). (2.14)
Denoting
B0 = (@00 a0 o). 2.15)

ﬁﬁ,’x;’ (¢) satisfies the following ODE

d . . - -
< ﬁ]xro_i_Aﬁ (0 ﬂxo_Fﬁ( ﬂxo :1), V1€ [0,T], ﬁxo(o)_ (MO,Jﬁ >’ VHEYNYV- (2.16)

Additionally, when acting on ﬁf\;j}’, the i™ components of Aﬁ,ﬁf;}f;’ and F ﬁ(ﬁ]‘if’f;’) are calculated by

W,
B nmbxo\ _ Bxo gBxo. .\ =B B (-B.x _ P~ B.x
(AR Oag?), = 3 a( 7,037 0@ ™, (Fy(aygsn), = (£ (0350, 7,,™)- 217)
j=1
The ODE (2.16) on the mapped Jacobi expansion coefficients usually cannot be analytically solved. Instead, it can be numerically
solved using IRK schemes [31, Chapters 69-70]. To be specific, we divide the time interval [0,7'] into K subintervals [t,,?,,,] using
a uniform step size At, where t, = At for £ € {0,1,2,---, K}. Given the parameters (8, N,, x,,) within the time interval (t,,7,,)
and the numerical solution at time t =7,,

Yyl
URD )= Y ™ ap)Th™w), 2.18)
i=1

the ¢™-order IRK scheme for forwarding time from , to #,,, is

(1) = uly “(tf)+Ath G Wity + ¢y AD),

s=1

(2.19)
w, ﬁ"”(tf)+AtZaRK N(w,,zf+cRKAt)
r=1
- I I
where a7y, b%, and cy, are the IRK coefficients. G}, on the RHS is given by
GFw.n=Fw. - A% Hw (2.20)
N W 1) -= 5y W NWWs -
The numerical solution at ¢, is thus
YNyl

URR @ 1) = 2 w0 TE ). (2.21)

i=1
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Existence of the solution to the IRK system Eq. (2.19) is proved in [34].

Finally, it has been revealed that adaptively adjusting the parameters f,x,, and N over time is crucial for efficiently applying
spectral methods to solve spatiotemporal equations [20-23]. Suppose we use the IRK scheme Eq. (2.19) to forward time and get
Uﬂ - x‘”’ (x,t441) att,,; given the numerical solution U, ﬁf x‘)f (x,t,) at t, (the IRK scheme will not adjust the three parameters g, x,,
and N ). We then apply the adaptive hyperbolic-cross- space techniques for spectral methods (described in Section 4) to update the
parameters (., Ny, xo,) — (By11. Ngy1-X0441) and get the new numerical solution at ¢, ;:

Bry1-%0
yPe+1Xoe+1

Bew1:%0s+1 7 1Be-%or
Neviy TUN Xtes), (2.22)

X, —
(X Ter) 7y, Ly New

BearXorst s the projection operator defined in Table 1.

where 7
Ney
3. Analysis on the AHMJ method

In this section, we give an upper error bound of ||u(-,1) — U b. JCO( t)” , where u solves the model problem (1.1) and U ﬁ’;o(-, t) is
the numerical solution obtained by the AHMJ method descrlbed in Subsection 2.3, respectively. In Subsection 3.1, we analyze the
error bound on the mapped Jacobi approximation which solves the continuous-time problem Eq. (2.12). Next, we derive the error
bound for applying the IRK scheme, detailed in Subsection 3.2. Then, we carry out an analysis on the error bound for implementing
adaptive techniques in Subsection 3.3. Integrating the aforementioned error analysis, we shall eventually prove Theorem 1.1.

3.1. Continuous-time mapped Jacobi approximation error

In this subsection, we give the upper error bound of solving the continuous-time approximation Eq. (2.12) with a hyperbolic-
cross-space mapped Jacobi approximation.

Theorem 3.1. Suppose fff,i’;fo” (x,1) e Xﬁ‘;’tw(tf, tp41) solves

(AT o) +a(UR oyst) = (FOR 750,08 ), Vi€ ltptpa],
: 3.1)

(U”f X0 (x,1), 0y ) = (U, 1), 5 ), Y(on, Oy ) € Y"’” T tptean),

where U (x,1,) is the initial condition at t =t,. Then, there exist two constants, C, and c, that only depend on a(u,v;t) and f(u;1), such
that

“u(-,zm)—uﬂf e (., t/+])|| <exp ((L - co)At “u( t,) - U, zf)”

Bexor (3-2)

Craexpl(ey An)|u— I :
+ Cexplcy Ar)|\u TN,y X ter)

where u(x,t) is the analytical solution to the model problem Eq. (1.1).

The proof of Theorem 3.1 is given in Supplement [1, S 4]. Specifically, the second term on the RHS of Eq. (1.1) is the error bound
for applying the mapped Jacobi method approximation in space. We shall use

BrXop
eXoe,

eg(ltstrsr)) :=CMexp(cJAt)||u—7rN’f’r (3.3)

||X(tf,t[+1)

to denote this mapped Jacobi approximation error bound.
3.2. Implicit Runge-Kutta scheme error

Next, we discuss the error bound for implementing the IRK scheme Eq. (2.19) to forward time from ¢, to ¢, to solve Eq. (3.1).
Given Uf]’x"(x, t,) at t, as the numerical solution at 7,, we have
¥

st ) =R ot o < ot = 0RO ot

+ ”Uﬁt’ x()f( try)) = Uﬂf xor( lf+])|| (3.9

L2’

Bexor
Ney
from applying the IRK scheme. The analysis of the IRK scheme has been carried out in [35,34], which is presented in Theorem 3.2.

~Bg.xg . . . . ~Br.xop .
where UNN ?(x,14,,) is the solution of the continuous-time problem Eq. (3.1). UNN “(otpp) = U (-,thrl)HL2 is the error

Theorem 3.2. Let U/ Be. x”" (x,1,,1) be the numerical solution to Eq. (3.1) obtained by the IRK scheme in Eq. (2.19). Suppose that the IRK
scheme in Eq. (2.19) saﬂsﬁes
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1. [34, section 4] The IRK scheme has a stage order q and a quadrature order at least q + 1.
2. [34, algebraic stability] The weights (b‘;e K)Z=1 are positive, and the matrix M := (a’3 b, +a*l b5 — bk

xq i o
i_defini rRk PRk T 9k PRK K),S | € R4 is positive
semi-definite.

We assume that the time step At satisfies:

q9 4

¢ 2
Ats—owhere C3b=22(a;fk) b;{K/b;KA (3.5)
4V2L(Cy + L)C,, oy

Then, there exists a constant Cgy that depends on the bilinear form a(u, v;t), the nonlinear operator f(u;t), and the IRK coefficients, such
that

% Gty = U )| o < Crarr ol T 00 (3.6)

Ng.y Ney ”X(rf,rm)’
where ﬁfé’:w(x, t) is the solution to Eq. (3.1).

The proof of Theorem 3.2 is in Supplement [1, S 5]. Combining the error estimation of the mapped Jacobi spectral method in
Theorem 3.1 and the IRK scheme in Theorem 3.2, we have:

lut0) = U3 )| o < exp (L = cat)uC,t)=UC 10|, + e testeaa D+ | ON2 Cotpad=URT ot
<exp ((L —cp)At Hu(.,zf)—U(-,tf)HL2 +eg(totpn D +epgtoto D,
3.7)
where e;([t,,1,,1]) and egg([t;.1,,]) are the mapped Jacobi approximation error bound defined in Eq. (3.3) and the IRK scheme

error bound when advancing time from ¢, to t,,, respectively:

eriltptri]) = Cry Aol VO 00 (3.8)

Ney wa,zm)'
3.3. Adaptive techniques error

Finally, we analyze the error bound for adjusting the scaling factor B,, displacement x,, and the expansion order N, of the
mapped Jacobi spectral expansion in Eq. (2.22). We adopt the posterior estimation of the adaptive technique error of adjusting the
parameters (B, N,x,) introduced in [23], which gives

Brxor ﬁf+1’x0f 1
[R5 ot = U )|, Seattrn), (3.9)
where
eq(tpry) i=ep(toyp) +e(top) +e(toy) (3.10)

Here, the moving error bound e,,, the scaling error bound e, and the coarsening error bound e, are given by:

d
enltoy) 1= Z ’x0f+l,i = X0z,
Py

Ney
d
e (i) im 2 - Be.i BerritBe 29, pPeoen. i, I)H (3.11)
ST ~ Brivi 2Pp; MO Ny 2
eutys)) i= HUﬁ{H X0t Y Pes1:Xors1 B+ Xor (4 )”
£+1 der) TNy Ny Tt 2
By, and xg,; denote the i™ component of B, and x,,, respectively. Invoking the inverse inequalities (Lemma 2.2), we have
d B
1/2 X,

nliran < 3 |x0f+1, S|\ BNy GNUR T ot

= (3.12)

d
Berri+Bei N2 be xW
e <tf+1><_2 N U ) o

Here, Ny, '=2N,(Ny+a; +apy+ 1) +2(1 +a; + o + r/2)*. Specifically, if B, = B,.,, then e (t,, ) = 0; if xy, = xy,,,, then
em(lf+1) = 0; if Nf > Nf+1, then ec(tf+1) =0.
Finally, by combining Egs. (3.7) and (3.9), the single-step error bound of the AHMJ method and the IRK scheme can be obtained:

)’+11

E(t;,1) <exp ((L - CO)At)E(tf) +eg(ltptpp D) tepx(tpstpp D) +eq(toy)s (3.13)

7
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where E(t;) := |lu(-,t,) — Uﬂf xo’( tz)|l ;2. By iterating the single-time-step error bound in Eq. (3.13) from ty =0 to tx =T, we give
the error analysis in Theorem 3 3.

Theorem 3.3 (Restated Theorem 1.1). Let Uf]”;o(x, t) be the numerical solution of the AHMJ method and the implicit Runge- Kutta scheme
in Eq. (2.19), then

Hu(-,T) U”K K, T)” < E;(T)+ Egg(T) + E4(T). (3.14)

The mapped Jacobi approximation error E 5, the IRK scheme error Epy and the adaptive techniques error E 4 are given by

K
E(T) := Cyqexp(cyAD) Z (exp (L= )T =10)) - Ju=7h 2

Ney HX(:H,:/))’ (315
K
Epg(T) 1= Cpyx Ar*! ;(exp (L= )T —1,)) - ”a(qH)Uf';;Wonf,l,w)’ (3.16)
K
EL(T) :=; (exp (L= c)(T —1,)) - (em(tf)+es(tf)+ec(t/))), (3.17)
=1

where e,,, e; and e, are defined in Egs. (3.11).

Theorem 3.3 gives the upper error bound when using the AHMJ method to solve the spatiotemporal integrodifferential Eq. (1.1).
Theorem 3.3 greatly extends error analysis of using adaptive spectral methods in [23, Theorem1] on solving linear equations to solving
a class of spatiotemporal integrodifferential equations in unbounded domains. Specifically, the mapped Jacobi approximation error
bound E; only depends on the spectral expansion approximation to the analytical solution u(x, ), and the adaptive technique error
bound E, depends on the implementing the adaptive techniques for the sparse spectral expansion. The application of the IRK scheme
does not influence these error bounds E;(T') and E 4 (T). Additionally, the error bound for using the IRK scheme Epy only depends
on the high-order temporal derivative of the mapped Jacobi approximation Uﬁ X0 (x,1). Through the error analysis in Theorem 3.3,
we can control the error of the AHMJ method by separately analyzing and controlhng the three error bounds E;, E4, and Egg.

4. Numerical results

In this section, we first present the AHMJ method. To be specific, we introduce two hyperbolic-cross-space frequency indicators
(F,, and F,) tailored for hyperbolic cross space to properly adjust the scaling factors in each dimension and adjust the expansion

order N of the hyperbolic cross space Vlfj’:o.
First, for a hyperbolic-cross-space mapped Jacobi spectral expansion U 11\3[!;0 e Vlg’:o, we define the hyperbolic-cross-space fre-
quency indicator in the i dimension as

B.xo B.xo 77B.X0
||UN,y - NyiUN,y

12

T, (UﬁxO) _ = , Vie{l,,d}). (4.1
oy, Nl
Here, ng‘x;’i denotes the projection operator onto the space spanned by basis functions whose indices fall into the following index set
. . 3 3 -7 1—
YNyi= {" : ‘("1"" >3 M ) mix (IS S ,nd))m <N } (4.2)
(ny, -, %ni, ---,n,) indicates that the i component of n is multiplied by a factor % (following the common %-rule [36,20D). F,, thus

measures the high-frequency components in the i direction of Uf]’xo. F. can help us adjust f;, the scaling factor in the /™ dimension.
r i

Next, we define the hyperbolic-cross-space expansion order frequency indicator 7, for Uf,”;” € V]e':o:

”Uﬂsx[) ﬂ X0 Uﬁ »X0

I L2

Ny ~ TN N

FpUR) = —— x: LAY (4.3)
U2

Here, 770 denotes the projection operator onto the space spanned by basis functions whose indices fall into the following index set

N.y.p
- 1-
YNy ::{"3 |"|mix'|'l|my§(§N) y}. 4.4)

F, measures the overall high-frequency components in Uf, y” For one-dimensional spectral expansions, the hyperbolic-cross-space

frequency indicators F, and P coincide with the frequency indicators introduced in [20,21].
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direct-truncation-strategy

Fig. 1. (a, b, ¢) The basis functions that are used to our proposed hyperbolic-cross-space frequency indicators 7, F,, and F, defined in Egs (4.1) and (4.3). The red
dots are the indices of the mapped Jacobi basis functions used in the calculation of the numerators of Eq. (4.1) and (4.3). The red and yellow dots are the indices of the
mapped Jacobi basis functions used in the calculation of the denominators of Egs. (4.1) and (4.3). (d, e, f) The basis functions used to calculate the direct-truncation-
strategy frequency indicators 7, ' y» and T‘ defined in Egs (4.5) and (4.7). The red dots are the indices of the mapped Jacobi basis functions used in the calculation
of the numerators of Eq. (4.5), and (4.7). The red and yellow dots are the indices of the mapped Jacobi basis functions used in the calculation of the denominators of
Eq. (4.5), and (4.7). Here, we take N =20,y = —1 for the hyperbolic space V,g’;” (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

Previous adaptive techniques for applying Hermite functions to solve multidimensional spatiotemporal equations use a “direct
truncation” strategy [22] to calculate the direct-truncation-strategy frequency indicators in the i direction, and such strategies are
mainly applied to the case of using the full-tensor-product spectral expansions instead of the sparse spectral expansions. As a compar-
ison, we implement previous adaptive techniques for our sparse mapped Jacobi functions to solve multidimensional spatiotemporal
equations, which we refer to as the ADMJ method. Specifically, the ADMJ method calculates the direct-truncation-strategy frequency
indicator in the i™ direction for adjusting f; using the following formula

”Uﬁ»xo _ ﬁ,ﬂ»xo ﬂ"()”L2

P (UR0) 1= — ﬂj‘;y‘ . Vie(l,-.d). (4.5)
’ (1% [PE:
Here, ﬁﬁ’xyoi denotes the projection operator onto the space spanned by basis functions whose indices fall into the following index set
¥ . . 2
T, .:{nGYN!y ‘n < 3N}. 4.6)

The direct-truncation-strategy expansion order frequency indicator 7:’” for adjusting the expansion order N is defined as

| Bxo _ ~ﬁ X0 U‘B X0

- Il 2
}’p(Uf,’T/‘)) = — ﬂ]\;y L (4.7)
| (1% ebaIP%:
Here, ifif’?p denotes the projection operator onto the space spanned by basis functions whose indices fall into the following index set
¥ 2 .
YN, p :={n€YN7y:nl-§§N, Vl:{]’...’d}}. (4.8)

We plot the basis functions that we use to calculate the hyperbolic-cross-space frequency indicators ¥, and 7, in Fig. 1 (a, b, ¢).
Additionally, we plot the basis functions that we use to calculate the direct-truncation-strategy frequency indicators ¥, and 7, in
Fig. 1 (d, e, f). When y = —co in the index set Yy ,, our hyperbolic-space frequency indicators T’x, and 7, coincide with the direct-
truncation-strategy frequency indicators ¥, and F,. When y > co, compared to our hyperbolic-cross-space frequency indicators, the
direct-truncation-strategy frequency 1nd1cators Fx and F fail to take into account the features of the hyperbolic cross space and use
fewer basis functions in the calculation of the numerators in Egs. (4.5) and (4.7). In Examples 4 and 5, we shall show that our AHMJ
method is more robust and efficient than the ADMJ method.
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Fig. 2. (a) The number of basis functions in the hyperbolic cross space Vle‘:” w.r.t. the dimensionality d with different y and a fixed N = 20. (b) The number of basis

functions in Vlej” w.r.t. the expansion order N with different y and a fixed d = 3. (c) The number of basis functions in V,f‘;“ w.r.t. the hyperbolic cross index y with
different N and a fixed d =23.

Compared to the full-tensor-product space, the hyperbolic cross space contains fewer basis functions and can thus relieve com-
putational burden. When using mapped Jacobi spectral expansions in the hyperbolic cross space, the number of basis functions in
Vﬂ 0 grows with the dimensionality d (in the model problem Eq. (1.1)) and the expansion order N (shown in Fig. 2 (a, b)). When
d and N are fixed, the total number of basis functions will decrease with y (shown in Fig. 2 (c)). Compared to using the full tensor
product (y = —o0), choosing an appropriate y can greatly reduce the total number of basis functions involved. Estimations on how
the number of basis functions is determined by the dimensionality d, N, and y are given in [9].

Finally, for both the ADMJ method and the AHMJ method, the exterior-error indicators for adjusting the displacement x; for the
basis functions in the i direction are calculated in the same way as the exterior-error indicators [20]:

B.xq
Xi UNJ : I]Rx-ux(—oo,x,»_,_)x-"XR

€x1 ((]I3 X0 L2
B.xo ’
e (4.9)
B.xo 1 ) )
g (Uﬁxo N.y RX-X(x; g,00)X--XR 12
9 B.xo ’
i Ny |12
where [, denotes the characteristic function of the set A. x; xf ’NX]O’ and x; xlj ’2;‘1'2 are the [%]th and [2N3—+2]th nodes of the
¥ [=—=1
3 3

quadrature nodes {xf 0y fl\’: o in the x; direction. Hyperparameters for implementing the adaptive spectral methods and the details

of the scaling, moving, and p-adaptive techniques (similar to the implementation of adaptive techniques in [23]) are given in S 7.
The spatial fractional Laplacian operator (—A)*/2 defined as the following singular integral [19] will be often used in our numerical
examples,

_ a2s~IT (ke
_A)/2 =C, p. /M - 2 1
O = G | T T sy o
R

where p.v. stands for the Cauchy principal value. In [17], an efficient method for computing ((—A)“/ 2J£’x°,Jnﬁ’x°) is given. In
Examples 1, 3, 4, and 5, we use the modified mapped Chebyshev functions (@; = a, = —% in Eq. (2.6)). In Example 2, we use the
modified mapped Legendre functions (¢; = a, =0 in Eq. (2.6)). In this study, the error denotes the following relative L? error:

B _|uen-viPen],
e(t) := = . (4.11)
G, DIl 2 -, Dl 2
It has been shown in [22] that a four-stage eighth-order IRK scheme in [37] could be sufficient in solving many spatiotemporal
equations with a moderate time step A7 = 0.1 since the time discretization error is of order O(Ar®) = O(1078). On the other hand,
a too-small time step At might lead to additional computational cost (too many time steps needed) without improving accuracy
while a too-large time step At could lead to inaccurate implementation of the adaptive techniques (shown in [22]). Thus, we use
the four-stage eighth-order IRK scheme in [37] and a timestep Az = 0.1 in all examples. The time discretization error is O(10~%) and
much smaller than spectral expansion approximation error in space. The IRK scheme is solved based on the Newton iteration solver
coupled with the Douglas-Rachford splitting method in [38,31,30]. The runtime and memory usage is recorded using Matlab R2023b
on a desktop with 24-core Intel® i9-13900 KF CPU @ 3.00 GHz. Hyperparameters, settings, and implementation details of our AHMJ
method for each example are provided in Supplement [1, S 7].
First, we compare the performance of the AHMJ method versus the adaptive Hermite method [23] for solving a 1D spatiotemporal
integrodifferential equation where the solution exhibits algebraic decay at infinity.

10
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Fig. 3. (a) The errors of the non-adaptive mapped Jacobi method, the scaled-only mapped Jacobi method, and the AHMJ method as well as the adaptive Hermite
method. (b) The frequency indicator of the adaptive Hermite method, the frequency indicators of the non-adaptive mapped Jacobi method, the scaled-only mapped
Jacobi method, and the AHMJ method (c) The scaling factor f of the scaled-only mapped Jacobi method, and the AHMJ method as well as the adaptive Hermite
method. (d) The expansion order of the AHMJ method and the adaptive Hermite method.

Example 1. Consider the following 1D fractional reaction-diffusion equation

1
O+ (=M 2u+u(l —u?) = f(x,1), u(x,0)= ————, 4.12
-+ (—4) (1=u) = £, u0) = g (4.12)
where f(x,?) is the source term given in Eq. (F.5) in Supplement [1, S 6]. Eq. (4.12) admits an analytical solution
14+¢ 12
u(x, = — 4 F0 (4.13)

((1+t)2+x2)6.

We set r =1 in Eq. (2.5) so that the mapped Jacobi basis functions Jnﬂ’xo decay algebraically at a rate of |fx|~! at infinity [16].
The initial scaling factor f = 0.6 for the mapped Jacobi methods, and f§ = 2.5 for the Hermite method. We set the initial expansion
order N =50 and the initial displacement x; = 0.

As shown in Fig. 3 (a), the AHMJ method outperforms the adaptive Hermite method. This is because the algebraic decaying
property of the mapped Jacobi functions matches the algebraic decay of the analytical solution Eq. (4.13) as |x| — oco. On the other
hand, the Hermite functions decay at a rate of exp(—f#%x?/2) at infinity, and thus they cannot capture the solution’s behavior when
|x| is large. Also, from Fig. 3 (a), our AHMJ method gives a much more accurate numerical solution than using a fixed scaling
factor, which verifies the effectiveness of the scaling technique. From Fig. 3 (b), the frequency indicators of the AHMJ method and
the scaled-only mapped Jacobi method (in this manuscript, “scaled-only” refers to the AHMJ method with the p-adaptive technique
deactivated by disallowing the expansion order N to increase or decrease) are well controlled as a result of properly adjusting the
scaling factors (shown in Fig. 3 (c)). The analytical solution Eq. (4.12) does not become more or less oscillatory over time, and the
expansion order N for the ADHJ method remains almost unchanged (shown in Fig. 3 (d)) because the p-adaptive technique is rarely
activated. However, the expansion order N of the adaptive Hermite method is activated when 7 is small which may be because the
adaptive Hermite method cannot maintain a small frequency indicator only by scaling when ¢ is small (Fig. 3 (b)).

In the next example, we further compare the performance of the AHMJ method with the adaptive Hermite method [23] in solving
a Keller-Segel equation that describes the dynamics of insect swarms in [39,33].

Example 2. Consider the following Keller-Segel equation

du+2- V- %Au +V - (uV(Ix] ) =0, u(x,0)= % cosh™2 (%) , (4.14)
which admits an analytical solution:
u(x,t)= % cosh™2 (xTT2I> . (4.15)

11
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Fig. 4. (a) The numerical solution versus the analytic solution. The analytic solution translates rightward over time. (b) The errors of the AHMJ, the non-adaptive
mapped Jacobi, the adaptive Hermite, and the non-adaptive Hermite methods. (c) The displacement of the basis function for the AHMJ method as well as the
displacement for the adaptive Hermite method. (d) The exterior-error indicators of the AHMJ, the non-adaptive mapped Jacobi, the adaptive Hermite, and the non-
adaptive Hermite methods. The exterior-error indicator of the AHMJ method and the exterior-error indicator of the adaptive Hermite method are well controlled.

The solution of Eq. (4.15) decays exponentially at infinity. Therefore, we set r =1 in Eq. (2.5) such that the mapped Jacobi basis
functions J,,ﬂ 0 decay at a rate of exp(—|fx|) to numerically solve Eq. (4.14). As a comparison, we also apply the adaptive Hermite
method [23] to solve Eq. (4.14). The initial scaling factor # = 0.4 for the mapped Jacobi methods, and the initial scaling factor g = 1.2
for the Hermite methods. We set the initial expansion order N = 50 and the initial displacement x;, = 0 for the mapped Jacobi and
Hermite methods. Also, the analytical solution corresponds to a pulse moving rightward with constant speed over time (Fig. 4 (a)),
requiring properly adjusting the displacement x, of the mapped Jacobi spectral expansion.

The AHMJ method can achieve high accuracy compared to the non-adaptive Hermite method and the non-adaptive mapped Jacobi
methods (Fig. 4 (b)). Failure to adjust x, will lead to a large right exterior-error indicator (shown in Fig. 4 (c)), indicating a large
error for the spectral expansion approximation as x — oco. For both the adaptive Hermite and the AHMJ method, they can accurately
capture the change in the displacement x, (Fig. 4 (d)), again verifying the effectiveness of the moving technique. From Eq. (4.15),
the solution is decaying at a rate of exp(—|x|/2) when x — +o0. As the Hermite functions vanish faster than the analytic solution at
infinity, the error of the adaptive Hermite method is slightly larger than the error of the AHMJ method (Fig. 4 (b)).

From Examples 1 and 2, the AHMJ method is more appropriate than the adaptive Hermite method if the solution decays
algebraically or decays at a rate of exp(—p|x|) as |x| = oco. Next, we shall apply the AHMJ method to solve multidimensional spa-
tiotemporal integrodifferential equations.

Example 3. Consider the following 2D fractional advection-diffusion equation
du+v-Vu+ (=) Putu(l —w) = £(x,,1), v=cos(5),sin(£)),
r0) 1 (4.16)
ux,y,V)=——"""—5—,
Y (1 + x2 + y2)7

where f(x,y,1) is the source term given in Eq. (F.7) in Supplement [1, S 6]. Eq. (4.16) has an analytical solution
(t+ 1t
((t+ 12+ (x —cos <£) t)2 +(y- sin(f) t)2)7.
3 3
The analytical solution u(x, ¢) in Eq. (4.17) decays at a rate of |x?>+?|~7 at infinity. Thus, we set r = 1 in Eq. (2.12) for the mapped

Jacobi basis functions so that the basis functions also decay algebraically at infinity. We set the initial hyperbolic cross index set as
N =45 and y = -5, the initial scaling factor f = (0.9,0.9), and the initial displacement x; = (0,0). The analytic solution u(x, y,?)

(4.17)

u(x, y,t) =

12
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Fig. 5. (a) The errors of the non-adaptive mapped Jacobi, the ADMJ, and the AHMJ methods. (b) The frequency indicators of the non-adaptive, the ADMJ, and the
AHMJ methods. (c) The scaling factors of the ADMJ method and the AHMJ method. (d) The displacements x, y, of the ADMJ method and the AHMJ method. Here,
the reference displacement is the center of the analytical solution Eq. (4.17) (x(7), y(1)) = (cos( % )t, sin( % )1). (e, f) The left and right exterior-error indicators (Eq. (4.9))
of the ADMJ method and the AHMJ method. (g) The runtime (in seconds) for each method over different time steps. (h) Memory usage (in GB) for each method over
different time steps.

translates at a velocity v = (cos(%), sin(%)) and also diffuses over time, so both the scaling technique and the moving technique are
required to capture the diffusive and translative behavior of the solution.

The AHMJ method and the ADMJ method can achieve a much smaller error compared to the non-adaptive mapped Jacobi method
(shown in Fig. 5 (a)) because both the ADMJ method and the AHMJ method can adaptively adjust the scaling factors f,, §, as well
as the displacements x, y, in both directions (Fig. 5 (c, d)). From (Fig. 5 (e, f)), both the ADMJ method and the AHMJ method can
maintain the frequency indicators as well as the left- and right-exterior-error indicators small. In contrast, the non-adaptive mapped
Jacobi method fails to do so and results in a large frequency indicator as well as a right-exterior-error indicator. Though the errors of
the ADMJ method and the AHMJ method are close to each other, the AHMJ method gives more accurate displacements x, y. This
could result from the fact that the AHMJ method can more accurately adjust the scaling factors f,, §, using the hyperbolic frequency
indicators in Eq. (4.1). From Fig. 5 (g, h), all methods have roughly the same runtime as well as memory usage. Additionally, since
the total number of basis functions stays unchanged, the runtime and memory usage are almost unchanged across different time
steps. Thus, using the AHMJ method indeed improves accuracy and does not require extra computational costs compared to using
the non-adaptive method or the ADMJ method.

Next, we compare the performance of the proposed AHMJ method with the ADMJ method in numerically solving a 3D fractional
diffusion equation.

13
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Fig. 6. (a) The errors of the non-adaptive, scaled-only mapped Jacobi method, the ADMJ method, and the AHMJ method. (b) The scaling factors f,, f,, and f of the
scaled-only mapped Jacobi method, ADMJ method, and the AHMJ method, respectively. (c) The expansion order N is generated by the ADMJ method and generated
by the AHMJ method. Our proposed AHMJ method can maintain the error small over time without using a too large number of basis functions, while the previous
ADMJ method terminates prematurely because the number of basis functions increases too fast, leading to memory overflow.

Example 4. Consider the following 3D fractional diffusion equation

(222
du+ (=AY *u= f(x,y,2,0,u(x,y,2,0) =sin (x+6y/5+2z/2)exp (W) , (4.18)
where f(x,y,z,t) is the source term given in Eq. (F.9) in Supplement [1, S 6]. Eq. (4.21) admits an analytical solution
sin (x +6y/5+z/2 —(x24+ 2 4+ 22
WX, y,2,1) = (x+6y/5+2/2) Yy Hz) (4.19)
Br+1)3/2 6t +2

As the analytical solution decays exponentially at infinity, we set r = 0 in Eq. (2.5) for the mapped Jacobi basis functions so that
the basis functions decay at a rate of exp(—|fx|) for large |x|. We set the initial hyperbolic cross index set as N =25 and y = -10,
the initial scaling factor g = (0.4,0.37,0.3), and the initial displacement x, = (0,0,0). The analytical solution u(x, y, z,t) in Eq. (4.19)
decays more slowly at infinity over time in x, y, and z directions, which requires properly decreasing the scaling factors g, f,,p,
in all directions. By conducting a change of variable X, = Z_ | the analytic solution Eq. (4.19) can be

X ~ y =
= j=—2—,and Z, =
i T e T Ve

rewritten as

M(i;,f’,,z;,l): (4.20)

sin (V31 + 1(X, +67,/5 + Z,/2)) ( —~(R+ 7+ zf))
exp .

(Bt +1)3/2 2

Thus, after appropriately decreasing f,, f,, and p_, the factor sin (\/ 3t+1(x,+63,/5+2,/ 2)) in Eq. (4.20) becomes more oscillatory
in the scaled new variables %,, j,, Z, and requires incorporating higher-order basis functions to capture such oscillatory behavior.

In Fig. 6 (a), our proposed AHMJ method exhibits an improved performance compared to the non-adaptive and scaled-only mapped
Jacobi methods, successfully controlling the relative error below 1073, This is because our AHMJ method can properly decrease the
scaling factors f,, ﬁy, and g, in all three directions (Fig. 6 (b)) and increase N (Fig. 6 (c)).

On the other hand, the ADMJ method increases N too much (Fig. 6 (c)) and terminates before = 1 as a result of memory overflow.
The direct-truncation expansion order frequency indicator uses a too-small number of basis functions for calculating the numerator
of f‘p. Thus, f’p could be subjected to large fluctuations. Therefore, the ADMJ method can be less robust, which may lead to a drastic
increase in the total number of basis functions and memory overflow. In comparison, the proposed AHMJ method is more robust and
prevents N and the number of basis functions from increasing too fast (shown in Fig. 6 (c)).

Finally, we extend our adaptive hyperbolic-cross-space techniques to generalized Hermite spectral expansions for numerically
solving an unbounded domain spatiotemporal equation.

Example 5. Consider the following 4D equation in [26]

ou— Au+(xz+y2 +z2+w2)u=f(x,y,z, w,t),

(4.21)
u(x,y,z,w)=cos(x + y+ z + w) exp (—(x2 + y2 +22 4 wz)) s
where f(x,y,z,w,t) is the source term given in Eq. (F.11) in Supplement [1, S 6]. Eq. (4.21) admits an analytical solution
2202 2
u(x,y,z,w,t):Cos(x+y+z+w)ex x“+y +z7+w") . (4.22)
t+1)2 t+1

The analytical solution exhibits exponential decay at infinity, which is consistent with the decaying rate of the Hermite basis
functions. Therefore, we use the Hermite basis functions. We set the initial hyperbolic cross index set as N = 11 and y = —3, the initial
scaling factor g = (1.05,1.05,1.05,1.05), and the initial displacement x, = (0,0,0,0). The analytical solution Eq. (4.22) also requires
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Fig. 7. (a) The errors of the non-adaptive, scaled-only (the adaptive hyperbolic-cross-space Hermite method with the p-adaptive technique for adjusting the expansion
order N deactivated), and adaptive Hermite methods, as well as the adaptive hyperbolic-cross-space Hermite method. (b) The scaling factors f,, 8, ., and B, of the
scaled-only and adaptive Hermite methods as well as the adaptive hyperbolic-cross-space Hermite method. Since the analytic solution is homogeneous, the scaling
technique yields the same g, 8, 8., f,, in four directions for the adaptive Hermite methods. (c) The expansion order N and the number of basis functions generated
from the adaptive Hermite method and the adaptive hyperbolic-cross-space Hermite method. The adaptive Hermite method terminates prematurely as a result of a
too-large number of basis functions and memory overflow. (d) The runtime (in seconds) for each method over different time steps. (f) Memory usage (in GB) for each
method over different time steps. Here, the legend “adaptive hyperbolic-cross-space” denotes the adaptive hyperbolic-cross-space Hermite method.

both decreasing the scaling factors in all four directions and increasing the expansion order N . We shall apply our proposed hyperbolic-
cross-space frequency indicators ¥, and ¥, defined in Eqgs. (4.1) and (4.3) for adjusting the scaling factors and the expansion
order (denoted as adaptive hyperbolic-cross-space Hermite method) versus applying previous adaptive Hermite methods in [20,
22] (denoted as adaptive Hermite method), which use the direct-truncation-strategy frequency indicators f‘xi and 7-’p defined in
Egs. (4.5) and (4.7) for adjusting the scaling factors and the expansion order.

In Fig. 7 (a), the adaptive hyperbolic-cross-space Hermite method exhibits an improved accuracy compared to the non-adaptive
and scaled-only Hermite methods, successfully controlling the relative error below 10~*. The adaptive hyperbolic-cross-space Hermite
method can properly decrease the scaling factors §,, f,, f,, and f,, in all four directions (Fig. 7 (b)) and appropriately increase the
expansion order N (Fig. 7 (c)). The previous adaptive Hermite method increases N too fast (Fig. 7 (c)) and terminates prematurely
before 1 = 1 as a result of memory overflow. Again, from (Fig. 7 (c)), the previous direct-truncation strategy for adjusting the expansion
order is less robust and subjects to memory overflow as a result of a too-fast-increasing number of basis functions. For both the adaptive
Hermite method and the adaptive hyperbolic-cross-space Hermite method, we find that the moving technique will not be activated
because the function is origin-symmetric. From Fig. 7 (d, e), the runtime as well as memory usage will increase with the total number
of basis functions. Thus, our adaptive hyperbolic-cross-space Hermite method is necessary for numerically solving Eq. (4.21) till 1 =1
as it appropriately increases the expansion order N so that the computational cost does not increase too fast over time. Compared
to the previous adaptive Hermite method, our adaptive hyperbolic-cross-space Hermite method is more robust and prevents the
number of basis functions from increasing too fast while achieving high accuracy. In conclusion, our adaptive hyperbolic-cross-space
techniques can also be applied to generalized Hermite spectral expansions, and the resulting adaptive hyperbolic-cross-space Hermite
method is more robust and efficient than previous adaptive Hermite methods.

5. Conclusions

In this paper, we proposed an adaptive hyperbolic-cross-space mapped Jacobi (AHMJ) method for efficiently solving multidi-
mensional spatiotemporal integrodifferential equations in unbounded domains whose solutions decay algebraically at infinity. We
devised two hyperbolic-cross-space frequency indicators ¥, and 7, in Eqgs. (4.1) and (4.3) for efficiently implementing adaptive
techniques to sparse multidimensional spectral expansions defined in hyperbolic cross spaces [24,26]. Our AHMJ method is more
robust compared to previous adaptive techniques for spectral methods [20,21,23] and can effectively reduce the number of basis
functions needed while maintaining accuracy. Additionally, we provided an upper error bound for applying our AHMJ method to
solve a wide range of spatiotemporal integrodifferential equations. We showed that the error of implementing our AHMJ method can
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be effectively controlled as long as we chose an appropriate hyperbolic cross space and properly implemented the adaptive techniques
for the sparse spectral expansions.

A promising future direction is to figure out an appropriate strategy for modifying the hyperbolic cross space index y and to develop
adaptive techniques on the asymmetric hyperbolic cross space as presented in [9]. This could require further investigation on how to
tackle the heterogeneity of a multidimensional function. Furthermore, considering operator-splitting strategies for forwarding time,
which are easier to implement than high-order implicit Runge-Kutta schemes, could be prospective [40-42]. Also, it is prospective
to extend hyperbolic-cross-space adaptive techniques to generalized Laguerre functions in the semi-unbounded domain R* [43-45].
On the other hand, it could be helpful to consider adaptively adjusting the time step to further improve computational efficiency for
our AHMJ method, as was done in [46]. Finally, applying the proposed AHMJ method to solve inverse problems of reconstructing
spatiotemporal equations [47] is worth further research.
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