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Abstract— This letter shows how to design control bar-
rier functions for underactuated and fully-actuated Euler-
Lagrange systems subject to state and input constraints.
The proposed method uses passivity-based considerations
to limit the total energy available to the system and ensure
constraint satisfaction. The approach can handle multiple
state and input constraints regardless of relative degree.

Index Terms— Constrained control, control barrier func-
tions, Euler-Lagrange systems, Lyapunov methods,

[. INTRODUCTION

ONTROL barrier functions (CBFs) are safety certificates

that can be used to synthesize constrained control poli-
cies. While they have achieved good results in practice [1],
finding a CBF for general systems remains an open question.
In recent works [2]-[4], tools from the reference governor
literature have been used to construct CBFs. However, these
techniques rely on a prestabilizing controller, which may itself
be hard to find for general systems. In this letter, we focus on
Euler—Lagrange (EL) systems and show how to use energy-
based considerations to build CBFs.

Other works that have studied the design of valid CBFs
include [5], which uses sum of squares; [6], which uses finite-
horizon predictions; and [7], which relies on a backup policy
that stabilizes to a fixed point. Some works that use CBFs for
EL systems include [8], which addresses the lacking relative-
degree using the time to collision in their CBF expression;
[9], which achieves safe control of unknown EL systems by
decomposing the task in two and using a combination of
barrier Lyapunov functions (BLFs) and CBFs; and [10], which
proposes using input-to-state safe CBFs to safely achieve
formation control for multiple EL systems. These works do
not consider input constraints and only apply to fully-actuated
EL systems. While [11] constructs valid CBFs for EL systems
subject to interval state and input constraints, their results ap-
ply only to fully- and overactuated systems. Other constrained
control approaches specialized to EL systems include explicit
reference governors (ERGs) [12] and BLFs [13].
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In this letter, we consider the constrained control problem of
underactuated and fully-actuated EL systems subject to state
and input constraints. We recall how to design a passivity-
based prestabilizing controller and show that the virtual energy
of the closed-loop system is a Lyapunov function. Finally, we
construct Lyapunov-based dynamic safety margins (DSMs),
which were shown in [4] to be valid CBFs. The approach
in [1] also employs Lyapunov functions to construct valid
CBFs. While similar to our construction, they rely on control
Lyapunov functions and select the relevant CBF-condition
based on a switching internal state, resulting in a hybrid
system. Conversely, we prestabilize the system and perform
a dynamic extension on the applied reference.

The effectiveness of the constructed DSM-based CBFs is
studied in simulation examples and compared to the ERG [12]
and candidate exponential CBFs [14].

II. PRELIMINARIES
A. Control Barrier Functions

Modern control barrier functions provide certificates of
control invariance that can be used for optimization-based
constrained control [15]. Given a control-affine system

% = f(x) + g(x)u, (1)

where f:R"™ —R"™ and g:R"™ — R"*™ are locally Lipschitz
continuous functions, let the closed sets X C R"™ and &/ C R™
describe the state and input constraints, respectively.

Definition 1: [15] A continuously differentiable function
h : D — R is a control barrier function (CBF) if there exists
a class Ko, function « : [0,00) — [0, 00) such that

vx €C, sup[Lyh(x)+ Lyh(x)u] > —a(h(x)), (2

ueld
where L¢h and Lgh are the Lie derivatives of h along f and
g, respectively, and C = {x € D | h(x) > 0} C R™.
It has been shown [15] that the zero superlevel set C is control
invariant. Provided that C C X, this result certifies that the
solution to the following CBF-based program exists and is a
valid constrained control policy

: 2
min [Ja ~ £(x)| )

st. Lyh(x) + Lyh(x)u > —a(h(x)),



where x : R” — R™ is a nominal control policy with desired
performance properties. Note that, if I/ is a convex set, then (3)
is a convex program and can be solved efficiently. Although
simple to implement, the main drawback of CBFs is that they
are difficult to find in general. In [4], the authors showed how
to construct CBFs using DSMs.

B. Dynamic Safety Margins

Dynamic safety margins are a key component of explicit
reference governors [16]. In broad terms, they measure the
distance to constraint violation of a prestabilized system.

Let v € R™ be a parametrization of the steady-state
manifold of a system and let 7 : R® x R™ — R™ be a
prestabilizing controller for (1) such that Vv € R™, the state
Z(v) is an asymptotically stable equilibrium point of

%= fo(xv) 2 () +g(x)m(x.v). Q)

The steady-state input required to maintain equilibrium is
denoted u(v) = 7(z(v), V).

Definition 2: A continuously differentiable function V :
R™ x R™ — R is a reference-dependent Lyapunov function
for the prestabilized system f, if, Vv € R™, there exists a
neighborhood of Z(v), denoted D, C R"™, wherein

V(z(v),v) =0, (5a)
V(x,v) >0, VxeD,\{z(v)}, (5b)
g—‘;fﬂ(x,v) <0, VxeD. (5¢)

DSMs can be designed using reference-dependent Lyapunov
functions. To do so, let us begin by defining two sets

V={veR"|zZ(v) e X, ulv) eU}, (6)
X, ={xeX|n(x,v)eU}, @)

called, respectively, the steady-state admissible reference set
and the reference-dependent state constraint set. We denote the
complement of the reference-dependent state constraint set by
XS =R™\ X, (ie., the unsafe set). Let us also define two
important values of a reference-dependent Lyapunov function:
The safety threshold value

*(v) £ V(x,v) — eAifnfm

inf
xeX\fﬂDv

Vix,v), (8

which identifies the largest constraint-admissible level set of
V', and the stability threshold value
T(v)2 inf V 9
(v) = nf Vixv), ©)
which identifies the largest invariant level set of V' contained
in the closure of D,,.
Theorem 1: [4] Let V be a reference-dependent Lyapunov
function that is strictly monotonically increasing in D, for any
v € R™. The function A : R"® x R™ — R,

A(x,v) = min (I'*(v),[(v)) = V(x,v), (10)

is a dynamic safety margin for 7.

As shown in [4], when differentiable, DSMs are valid CBFs
for the augmented system obtained by concatenating (1) and
the reference dynamics v = w, where w € R™ is a virtual

input. Moreover, DSMs are such that C = {(x,v) € R"xR™ |
A(x,v) > 0} C X xV. With this, we can obtain a constrained
control policy by solving the following optimization problem

: _ 2 _ 2
iy o e B 4nlw=p (V)] (11)
OA OA OA
= o= Tw>—
s.t. ™ (x)+ ™ g(x)u+ v "2 a(A(x,v)),

where n > 0 is a small scalar, « is a class K, function, and
p : R™ — R™ is a nominal control law for the reference
dynamics v = w. A suitable choice is p(v) = r — v, where
r € R™ is a desirable setpoint.

Similar to (3), if ¢ is convex, (11) is also convex and can
be solved efficiently. The constrained control policy obtained
by solving (11) guarantees safety x(¢) € X and respects the
input constraints /. Moreover, for any pair (x,v) such that
A(x,v) > 0, the input pair (m(x,v),0) is feasible.

Remark 1: If X and U are obtained by intersecting multiple
constraints, one can compute separate safety threshold values
I'Y and add them to the min in (10).

Remark 2: Instead of relying on differentiability of the min
function in (10), the control-sharing property of CBFs [17,
Definition 2] allows us to enforce as separate constraints
Ao(x,v) = T[(v) = V(x,v), Ai(x,v) = Ti(v) = V(x,v),
in (11) and retain feasibility. Moreover, if I' and I'’ are
nonsmooth, any smooth lower-bound can be substituted.

Although finding Lyapunov functions can be challenging
in general, this letter provides a closed-form solution by
specializing the results to Euler—Lagrange systems.

C. Euler-Lagrange Systems
Consider the Euler-Lagrange model presented in [18]

M(q)q+ C(q,q)q + G(q) + Rq = Bu, 12)

where q € R" is the vector of generalized coordinates,
u € R™ is the vector of inputs, M : R™ — R™* " is
the mass matrix, C : R" x R® — R"*" is the Coriolis
matrix, G : R™ — R" is the gravity vector, R € R"*"
is the Rayleigh dissipation coefficient, and B € R™*"™ is a
full column rank matrix relating the external inputs to the
generalized coordinates. In this work, we consider both fully
and underactuated (m < n) EL systems. They have the
following properties

Property 1: The mass matrix M is positive definite. That
is, Vq € R", M(q) > 0.

Property 2: For any q,q € R", the matrix difference
M(q, q) — 2C(q,q) is skew-symmetric.
EL systems (12) are control-affine systems (1) when we assign
x = [q; q]. With this notation, x € R?" instead of R™.

IIl. CONSTRUCTING CBFs FOR EL SYSTEMS

In this letter, we make use of Theorem 1 to construct a DSM
for EL systems, which is also a CBF. To this end, we need
two pieces: A reference-dependent Lyapunov function that is
strictly monotonically increasing, and its safety and stability
threshold values (or smooth lower-bounds for them).



A. Reference-dependent Lyapunov Function

This section is dedicated to presenting a passivity-based
prestabilizing controller 7 and an associated reference-depen-
dent Lyapunov function V. Moreover, we show it is strictly
monotonically increasing. While most results in this subsection
are well-understood in the literature, they are rarely presented
in the context of parameterized equilibrium manifolds.

To simplify the presentation, we assume without loss of
generality that the actuated and unactuated channels are inde-
pendent. That is, the generalized coordinates are q = [q,; q,],
where q, € R and q, € R"™™. As a consequence, we can
further assume without loss of generality that B = [I,,, 0] T
Given this distinction in the generalized coordinates, the
steady-state manifold of (12) is

S2{qeR"| (I, — BB")G(q) =0}, (13)

which collects all coordinates whose unactuated channels are
critical points of the unactuated Gravity vector field. With this,
we can always define an injective mapping ¢ : R™ — S such
that for any parameter v € R™, hereafter called a reference,
the state-input triplet (g, g, u) = (g(v),0, BT G(g(v))) is an
equilibrium point of (12). The following assumption ensures
the image of ¢ is a set of stable equilibria with respect to the
unactuated dynamics. This limits the approach to minimum-
energy configuration targets (e.g., cart-pendulum system with
downward mass).

Assumption 1: The mapping g : R™ — S, with g(v) =
[Ga(V); @u(v)], is smooth and any point in its image is a strict
local minima of the potential function associated to G along
the unactuated coordinates. That is, Vv € R™, there exists an
open neighborhood of g, (v), denoted Q% C R™ ™, such that,

Vg e R™ x (Q9\ {qu(v)}),

_ T
(a—q(v) (I. - BBT)G(q) > 0. (14)
We consider the end gravity-compensated PD controller

(q,4,v)=B"G(q(v))-KpB' (q-4(v))~KpB'q, (15)
where we require

Kp > —B'RB, (16)

and Kp = K; be such that Vv € R™, there exists an open
neighborhood of ,(v), denoted Q% C R™, wherein Vq €

(Qv \{da(v)}) x R,

(a—a(v)) BBT (G(a) - G(a(v)))
+(a—q(v)) ' BEpBT (q - q(v)) > 0.

This requirement, along with Assumption 1, ensures any point
in the image of ¢ is a strict local minima of the closed-loop
potential function. The following remark provides a sufficient
condition on Kp for (17) to hold when the actuated gravity
vector field is differentiable and independent.

Remark 3: Let v.€ R™ be given. If there exists a dif-
ferentiable function G, : R™ — R™ such that Vq € R",
Ga(q,) = B'G(q), and

a7

9Ga(7a(v))

Kp > — ) (18)

then there exists an open neighborhood of §,(v), denoted
Q% CR™, wherein Vg€ (9% \ {G,(v)}) xR™™, (17) holds.
With this, let us define the quantities

®(q,v) = G(q) - BB'G(q(v)) + BKpB' (q - q(v)),

¥(q,q) = (R+ BKpB )4,
and note that the precompensated system can be written as
M(q)d +C(a,q)qg = —®(q,v) — ¥(q,q).

Let O, £ Q¢ x Q¥. It can be shown that the functions ¢ and
U have the following properties Vv € R™,

19)

®(q(v),v) =0

va € O\ (@)}, (a—a(v)) @(q,v) >0
0 0G| [Kp

%=t |0

Vg€ Qy, VqeR", ¢ ¥(q,q) >0

Given these properties, the following holds.
Proposition 1: For all v € R™, the system (19), with output
y = B4, is output strictly passive.
Proof: Let v € R™ be given and let

(20)
2y

Vq € R", 8} is symmetric  (22)

(23)

qa
Viaav) = 5a Maa+ [ eev)Tde @9

aw)
be a storage function in the set Dy, £ 0, x R™. Note that V
is positive definite by Property 1 and (21). Property 2 yields

V(q,q,v) = —q' ¥(q,q) and it follows that

0=V(q.av)+4q (R+BEKpB')4
> V(q,q,v)+y (BTRB+Kp)y.

Since BT RB+Kp > 0, we conclude that the system is output
strictly passive. [ ]

Let us generalize the definition of zero-state observability
[19] to systems with parametrized equilibria.

Definition 3: The system (19) with output function
hx(q,q,v) is said to be steady-state observable if, for any
v € R™, no solution g(t),q(t) can stay identically in S, =
{(q,9) € R" X R" | hz(q,q,v) = hx(q(v),0,v)}, other
than the steady-state solution q(¢) = g(v), q(t) = 0.

With these ingredients, the following Lemma is a trivial
extension of [19, Lemma 6.7] applied to (19)

Lemma 1: If the system (19) with output y = BT is
steady-state observable, then Vv € R™, the equilibrium point
(a,q) = (q(v),0), is asymptotically stable. Also, the storage
function (24) is a reference-dependent Lyapunov function.

The following result shows that the reference-dependent
Lyapunov function V' defined in (24) is monotonically increas-
ing by arguing that its gradient does not vanish.

Proposition 2: Given any v € R™, let D, £ 9, x R™,
Then, (q,q) € Dy \ {(q(v),0)} is a regular point of
V(,-,v):R" x R" > R.

Proof: Let v € R™ be given and, for a contradiction, let

(q,¢) € Dy \{(q(v),0)} be such that {‘?TZ ‘g—‘ﬂ = 0. Since



oV

96 = q' M(q) =0 and M(q) is nonsingular, it follows that
q = 0. Noting that
1

Se=3la Ba o a B v o) ey
we have that (q— q(v))Té(q, v) = 0, which contradicts (21)
because q € Qy \ {g(v)}. [

Remark 4: The presented results apply to more general
EL systems as long as there exists a prestabilizing controller
achieving the closed-loop form of (19), and for which prop-
erties (20)-(23) hold. The aircraft example presented in the
numerical section of this letter is one such system.

B. Safety and Stability Threshold Values

The expressions for the safety (8) and stability (9) threshold
values appear difficult to compute at first glance. However,
they usually amount to evaluating V' at the boundary of the
constraints X, for I'* and at unstable equilibria for I'. In
the most general case, the optimization problems must be
solved on a case-by-case basis. However, in the special case
of polyhedral state and input constraints, the structure of EL
systems can be leveraged to obtain analytical expressions for
I'* [12]. Let the state and input constraint sets be

X = {(q,q) € R*" | W,q + W;q < z},
U ={ucR™ | Myu<b},

(25)
(26)
where z € R"* and b € R"«. Let e; be the i-th column of

I, +n,. The i-th reference-dependent state constraint set is
Xy ={e] Hla; q] <e/d(v)}, where

Wy
—MUKDBT ’

W,

—MUKPBT (27)

|

o(v) = {b - MUBTG(@(v)Z) - MuKPBTQ(V):| 9

and the i-th steady-state admissible reference set is V; = {v €
R™ | e/ w(v) > 0}, where w(v) = §(v) — H[g(v); 0]. Let
V' be lower-bounded by a quadratic function. That is, Vi €
{1,...,ns +ny}

Vv eV, Y(q,9) €Dy, V(q,q,v) <V(q,q,v), (29)

where V is given as

K«ano:%(q—ﬂVDTQWMq—qw»-+§qlﬁq (30)

with M > 0 and ®(v) = 0, Vv € R™.

Proposition 3: [12, Proposition 3] If X and U are given
as in (25) and (26), respectively, and the reference-dependent
Lypunov function satisfies (29), then the i-th (i € {1,...,n,+
n, }) safety threshold value satisfies

T T
i) > g le S s ),
2e/ HQ  (v)HTe;
where Q(v)=diag (®(v), M).
Remark 5: Note that, without any loss of generality, the
polyhedral state and input constraint can be reference-

dependent, i.e. Wy(v), Wy(v), z(v), My(v), b(v). This is

€2y

useful for performing planar embedding of convex obstacles,
see for example [12, Eq. (28)].

A small difference between (31) and its counterpart in [12]
is that our lower-bound for the i-th safety threshold value I}
becomes negative when evaluated at inadmissible references
v € R™\ V;. Finally, we can apply Theorem 1 to conclude

A(q,q,v) =

min (f‘(v),z’{ V), D (V)) -V(q,q,v), ((32)

is a DSM for 7 and, if differentiable, a CBF with respect to
the augmented system. Thus, (11) can be used to obtain an
admissible constrained control policy that is always feasible
and guarantees safety (q(t),q(t)) € X. In the event A is not
differentiable, recall Remark 2.

IV. EXAMPLES

In this section, we present two carefully selected exam-
ples: The mass-spring system features high relative degree
constraints and underactuated dynamics. The aircraft example
features inputs that enter nonlinearly and a non-quadratic
Rayleigh dissipation function. We compare the performance
of the proposed DSM-CBF with candidate exponential CBFs
[14] and the ERG [12]. For an additional example, the reader is
referred to the overhead crane system in the numerical section
of [4], which uses the formalisms detailed in this letter.

A. Mass-spring System
Consider the EL system with two masses and a simple

spring depicted in Fig. 1. Picking generalized coordinates
q = [21;x2], the mass matrix and gravity vector are

fwm:mlﬁJ,G@:km_ﬁy (33)
with m; = mo = 1 and k = 4. Also, the dissipation coefficient
is R = 0 and the Coriolis matrix is C(q,q) = 0. The
system is underactuated (m = 1) with B = [1;0]. Let us
define the equilibrium mapping g(v) = [v; v] and consider the
passivity-based controller (15) with Kp = 0.2 and Kp = 0.
The reference-dependent Lyapunov function is

. 1 5,1 5,1 1
V(g,q,v)= §m1x% + §m2m§ + 51{:(951—352)2 + §Kp($1—1})2.
It can be shown that D, = R? for all v € R. We consider
constraints s < Zmax and |u] < Umax, Tmax = Umax = 3. The
safety threshold values can be obtained analytically

. .1 kKp
Fl(v) - 9 (k + KP) (xmax U)|xmax U| (34)
2
miu
T* — max )
3(0) = ST ) (35)

Here, I'j(v) can be interpreted as the minimum potential
energy required to violate the constraint xo < Tyax given
a reference v. Indeed, x5 is connected to x; by a spring
of stiffness k, whereas x; is connected to v by means of a
(virtual) spring of stiffness K p. The constant that appears in
(34) is nothing more than the stiffness of a spring % in series
with a spring K p. Therefore, A;(q, q,v) = I'f (v)-V(q,q,v)
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Fig. 1. Mass-spring system.

are valid, control-sharing CBFs for the augmented system.
The nominal controller x has the same form as 7 but with
more aggressive gains K% =3 and K7 = 1. The candidate
exponential CBF is h(q,q) = Zmax — 22 and has relative-
degree 4. We follow the procedure in [14] to implement and
tune it. The simulation results are shown in Fig. 2. The pro-
posed DSM-CBF approach outperforms the other approaches
when the system is initialized in the origin. When the initial
conditions are switched to x1(0) = z2(0) = —13, the
candidate exponential CBF approach becomes infeasible about
4 seconds into the simulation. This highlights the dangers of
using candidate CBFs that are tuned for a specific scenario.
In contrast, the DSM-CBF is formally guaranteed to remain
feasible for any initial conditions that are feasible.

B. Fixed-wing Aircraft Longitudinal Dynamics

Consider the longitudinal dynamics of the fixed-wing air-
craft shown in Fig. 3. The generalized coordinate is the attack
angle ¢ = «, and evolves according to

J& + dy L(a) cos o + p|é| & = daucos v, (36)

where J = 4.5 x 10 kgm? is the moment of inertia of the
aircraft, d; =8 m and dy = 40 m are the lever-arm of the
main wing and the elevator airfoil, respectively. The term p =
2 x 10" Nms? is the aerodynamic damping factor. The lift
curve L(«) is approximated with a third-order polynomial

L(Oé) = ko + klOl — /{53043, (37)

with kg = 2.5x 105 N, k; = 8.6x10° N/rad and k3 = 4.35 x
107 N/rad3. The stall angle ag is the angle of maximum
lift and corresponds to as = +1/k1/(3k3) =~ 0.258rad =~
14.8deg. This system is more complex than (12) in two ways:
The Rayleigh dissipation function F(&) = ud?|&|/3 is not
quadratic; and the input u does not enter the system linearly.
Nonetheless, Properties 1 and 2 hold. Defining the equilibrium
mapping &(v)=v, we consider the prestabilizing controller

(o, &,v) = %L(v) — Kp(a—v) — Kpa, (38)

with Kp = 4.5 x 10° and Kp = 0. Defining quantities
®(a,v) = dy cosar(L(cr) — L(v)) + do Kp(a — v) cos a,
U(a, &) = (plé| + do Kp cos ),

the system can be written as (19) with M(«) = J and

C(a,&) = 0. Moreover, it can be shown that for any

v € (—ag,ags), ® and U satisfy properties (20)—(23) with
Q, = (—as, ag). Therefore,

V(a, é,v) = %J@Z +/ (¢, v)dE = %JdQ + P(a,v),

v

Nominal

Candidate CBF

/ ERG
DSM-CBF

| |

Nominal

Candidate CBF

! ERG
DSM-CBF

| |

t(s)

Fig. 2. Simulation results for the mass-spring system. The only
difference between the top and bottom figures is the initial position
of the masses. This change makes the candidate CBF approach fail
while our proposed DSM-CBF remains resilient. The dashed blue line is
the reference v of the prestabilized system. The DSM-CBF guarantees
safety by temporarily pushing v away from the constraints to enlarge the
Lyapunov level sets.

is a reference dependent Lyapunov function, where the closed-
loop potential function P is

P(a,v) = (dik1 + daKp) (cosa — cosv + (o — v) sin )
— 3diks ((0® — 2) cosa — (v* — 2) cosv)

— diks ((@® — 6a — v®) sina + 6vsinv) .

The stability threshold value can be computed as follows

T(v) = {P(O‘S’“)’

if v € [0, as),

if v € (—ag,0). G5

P (70453 U)a
We consider the constraints o < «g and © > Upin Wwith
Umin = 0. Due to the limitation Q, = (—ag,ag), the state
constraint is enforced intrinsically by the stability threshold
value and doesn’t need additional consideration. For the input
constraint, the reference-dependent state constraint set is

d
X, = {(, &) | Kpa+ Kpé < d—lL(v) + Kpv — Upmin }-
2

With this, it follows that V C [—0.03, ag) for any upmin > 0.
It can be shown that (29) holds for M = J and

a0 = (3 )~ 109

+ dng) cos ag.
asg — v
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Fig. 3. Fixed-wing aircraft longitudinal dynamics model from [12].

It follows by Proposition 3 that the safety threshold value for
the input constraint satisfies Vv € V,

(%L(v) — Upin) %L(’U) — Umin
2K20 7 (v) + 2K3J !
We conclude that the following are valid CBFs
Aq(a, é,v) = Plag,v) — V(a,é,v),

Ay(a, &,v) = P(—ag,v) — V(a, &,v),
Az(a, é,v) = rr (v) = V(v &,0).

I"(v) < *(v) =

The nominal controller x has the same form as 7 but with
more aggressive gains K% = 4.5 x 10 and K% = 4.5 x
10*. The candidate exponential CBF is hi(a,¢) = ag — a,
and it has relative degree 2. We follow the procedure in [14]
to implement and tune it. The simulation results are shown
in Fig. 4. While all approaches achieve safety, the candidate
CBF requires careful tuning to work. In fact, considering more
aggressive gains for the candidate CBF approach renders the
underlying optimization problem infeasible.

V. CONCLUSION

In this letter, we designed control barrier functions for
Euler-Lagrange systems. To achieve this, we rely on passivity-
based controllers for Euler-Lagrange systems with param-
eterized equilibrium manifolds. Then, we used the associ-
ated storage functions to design dynamic safety margins. We
showed that for linear constraints, when the storage function
can be lower-bounded by a quadratic function, the DSMs
have a closed form. The resulting DSM-based CBFs can
be used to enforce multiple state and input constraints with
arbitrary relative degree. Numerical simulations compare the
performance of DSM-CBFs to candidate CBFs and ERGs.
Future work includes assessing the robustness of the DSM-
based CBFs in the presence of noise and disturbances, as well
as generalizing the approach to general classes of systems.
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