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• Spatial analysis reveals an uneven dis
tribution of heat-related illness emer
gency department (HRI-ED) visits in 
Florida.

• Compared to temperature, socio- 
economic factors shows a stronger as
sociation with HRI-ED visit rates.

• Vulnerable population groups bear a 
disproportionate health burden from 
extreme heat.

• Socio-economic and rural-urban dispar
ities exist in HRI risk factors, calling for 
tailored heat resilience policies.
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A B S T R A C T

Climate change has increased the frequency and severity of extreme heat events globally, adversely affecting 
socio-economic conditions and public health. However, extreme heat has disparate effects on different popula
tion groups and the socio-economic determinants of its health effects are not well understood. In this study, we 
analyzed the spatial patterns of heat-related illness (HRI) visit rates at the zip-code level in Florida and applied 
statistical methods to examine the relationships between HRIs and environmental and socio-economic variables. 
Hierarchical regression analysis was used to evaluate the socio-economic effects on HRI visit rates under the 
same heat conditions. This is a two-step approach: we first included heat indicators in the baseline model and 
then added the socio-economic variables to assess their unique contributions in predicting HRI visits. Our 
findings indicate that temperature can only explain a small fraction of the variance in HRI cases (R2 = 0.04, p <
0.01), while socio-economic variables show stronger associations (R2 = 0.42, p < 0.01 in urban areas and R2 =

0.20, p < 0.01 in rural areas). Notably, marginalized and disadvantaged populations (e.g., individuals in poverty, 
those employed in construction, and those with disabilities) are positively associated with HRIs (p < 0.01). These 
findings highlight the disproportionate impacts of heat-related health issues on disadvantaged groups, calling for 
climate justice policy interventions. Additionally, a comparative analysis between rural and urban areas revealed 
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different determinants of HRIs. Our study enhances the understanding of the socio-economic determinants and 
disparities of HRIs in Florida, providing actionable insights for policymakers and health agencies to prioritize 
emergency services and heat resilience planning.

1. Introduction

Rising temperatures and climate variability lead to an increasing 
frequency of severe extreme heat waves worldwide (Margolis, 2021). In 
this context, heat-related illness (HRI) has become a growing public 
health concern (Schramm et al., 2021). Unlike acute natural hazards 
such as hurricanes and flooding, extreme heat is a slow-developing 
process, and its adverse effects are not always immediately obvious. 
However, extreme heat can exacerbate pre-existing health conditions (e. 
g., cardiovascular diseases, respiratory disorders, and diabetes), creating 
dangerous situations for vulnerable populations (Conlon et al., 2020). 
The death toll claimed by extreme heat is among the highest of all 
extreme weather events (NWS, 2023). According to the World Health 
Organization (2022), extreme heat has already caused over 166,000 
fatalities from 1998 to 2017 and is estimated to cause approximately 
38,000 additional deaths per year worldwide from 2030 to 2050. Given 
the high fatalities and latent effects on public health, extreme heat is 
often referred to as a “stealthy killer” (Arnott and Alvarez, 2022).

As the most vulnerable state to extreme heat in the U.S., Florida 
experiences warm weather year-round, with high temperatures during 
summers becoming the norm (Fig. 1). This increase in temperature 
contributes to a rise in HRIs across the state (Fig. 2). Climate Central 
(2019) projects that Florida will experience 130 hazardous heat days per 
year by 2050, more than any other state in the U.S. Understanding the 
health impacts of extreme heat enables early intervention for public 
health and promotes overall well-being (Bakhsh et al., 2018). Florida’s 
substantial elderly population, large number of immigrants, and low- 
income groups are likely to bear a disproportionate burden from 
extreme heat (Harduar Morano et al., 2016). In recent years, rapid urban 
development has intensified the urban heat island effect in Florida cities, 
while rural areas, still heavily reliant on agricultural industries, remain 
inherently vulnerable to heat. These diverse socio-economic conditions 
between rural and urban areas can result in varied health outcomes 
under extreme heat.

The relationship between human health and extreme weather 

conditions is a complex issue that involves health, social, and environ
mental dimensions (Clarke et al., 2022; Ebi et al., 2021; Hass et al., 
2021; Robinson, 2021). Extensive research has established the funda
mental links between extreme heat and public health outcomes 
(Dialesandro et al., 2021; Errett et al., 2023; Kovats and Hajat, 2008). 
However, the current literature presents several knowledge gaps that 
deserve further investigation. First, although studies have identified 
various risk factors for heat-related health outcomes (Faurie et al., 2022; 
Varghese et al., 2020), the spatial heterogeneity of these factors across 
different geographic and socio-economic contexts is not fully under
stood. More specifically, the interactions between heat exposure, resil
ience, and public health vary across different demographic groups (e.g., 
elderly residents, low-income households, and outdoor workers) and 
geographic settings (e.g., urban and rural areas), and these spatial and 
social disparities require further investigation. Second, the confounding 
effects of socio-economic conditions often obscure the causal links be
tween heat and health. Systematic approaches are needed to disentangle 
the effects of the various factors and identify actionable levers to 
enhance heat resilience. Third, while different heat metrics have been 
proposed and applied in previous studies (Kodera et al., 2019; Perkins, 
2015), there is no consensus on the optimal heat indicator for assessing 
heat-related health outcomes. The spatial variation in how different 
indicators—such as ambient temperature (AT), land surface tempera
ture (LST), and heat events—relate to HRI has yet to be thoroughly 
investigated. Finally, the State of Florida is unique in its year-round 
warm temperatures, geographic disparities, high penetration of air- 
conditioning, and large vulnerable populations. A comprehensive 
investigation in Florida could provide valuable insights not only for the 
state but also for other regions with similar socio-environmental 
conditions.

This study attempts to address the above-mentioned issues by 
analyzing the spatial patterns of HRIs and the associations of HRIs with 
various heat indicators and socio-economic conditions in the State of 
Florida. The correlation between HRIs and common heat indicators (e. 
g., LST, AT, and heat events) is analyzed across geographic space to 
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Fig. 1. Annual average summer temperature trend for Florida, 1990–2020 (NOAA, 2023). The solid gray line represents the annual average temperature (◦F), with 
notable peaks around 1998, 2010, and 2019 reaching approximately 81.5 ◦F. The gray dashed line is the linear trend line of annual average temperatures, indicating 
a gradual increase in summer temperatures over the 30 years.
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reveal the optimal heat indicator in various locations. Hierarchical 
regression analysis was applied to isolate the influence of socio- 
economic conditions on HRIs under various heat exposures. Addition
ally, we compared the associations between rural and urban areas to 
reveal geographic disparities in heat health impacts. Specifically, this 
study aims to address the following questions: (1) What is the spatial 
pattern of HRI rates in Florida, and are there significant spatial clusters 
of either high or low HRI visit rates? (2) Which temperature variable can 
best represent the impacts of extreme heat in Florida? (3) In addition to 
temperature, do socio-economic factors influence the occurrence of 
HRIs? Is there an uneven distribution of HRIs among different popula
tion groups and between rural and urban communities?

2. Related work

Extensive research has shown the adverse effects of extreme heat on 
human health (Ebi et al., 2021; Shindell et al., 2020; Weilnhammer 
et al., 2021). A comprehensive report by the Florida Department of 
Health (2015) documented the significant adverse health impacts of 
extreme heat exposure, including HRIs, cardiovascular diseases, mental 
and behavioral disorders, respiratory conditions, and endocrine and 
renal dysfunctions. The health impacts of extreme heat can be observed 
from a variety of outcomes, including hospital admissions (Karlsson and 
Ziebarth, 2018), emergency department (ED) visits (Sun et al., 2021), 
and mortality. Existing evidence indicates that heat can significantly 
increase the risk of mortality (Song et al., 2021). Zhao et al. (2024) show 
that between 1990 and 2019, about 1 % of deaths during the warm 
season were caused by heatwaves, accounting for 236 deaths per 10 
million residents globally. This study also found that the risk of heat- 
related mortality varies geographically, and the highest mortality rate 
was in Southern and Eastern Europe. A study of 170 million German 
hospital admissions from 1999 to 2008 shows that extreme heat may 
cause a 12 % increase in mortality and a 6 % increase in hospital ad
missions (Karlsson and Ziebarth, 2018). Additionally, ED visits often 
serve as an early indicator of heat wave impacts, reflecting a broad 
spectrum of health issues caused by heat (Schramm et al., 2021). Sun 
et al. (2021) found that extreme heat was associated with a 7.8 % in
crease in excess ED visits for any cause and 66.3 % for HRI-related ED 
visits. Notably, this study also found that extreme heat causes an in
crease in ED visits for renal diseases and mental disorders.

Various heat indicators are used to measure the heat experienced by 
populations from multiple perspectives. AT typically measures the air 
temperature at 2 m above ground level. Faurie et al. (2022) found that a 
1 ◦C increase in AT leads to an 18 % rise in HRI cases. LST primarily 
reflects the heat absorption and emission at the ground level and is 

commonly used to study urban heat island effects and their impact on 
residents’ health (Hsu et al., 2021). Wang et al. (2021) revealed a strong 
correlation between LST and heat-related morbidity rates in Maricopa 
County, Arizona. The duration of heat is another important indicator, as 
prolonged heat may have stronger impacts on health than single hot 
days (Di Napoli et al., 2019). Anderson and Bell (2011) show that heat 
wave mortality risk increased by 0.38 % for every 1-day increase in heat 
wave duration. Additionally, the observation time and aggregation 
methods of temperature may also influence the relationship between 
heat and health outcomes. Xu et al. (2018) indicate that the mean 
temperature was slightly better than the maximum temperature in 
predicting heatwave impact on morbidity. Barnett et al. (2010) used 
Poisson regression to analyze the association between five temperature 
measures (e.g., maximum, minimum, mean, with/without humidity, 
and heat index) and mortality, revealing significant variations in the 
optimal temperature measure across age groups, seasons, and cities, 
with no single temperature indicator being superior to others in all 
conditions.

While high temperatures are a direct cause of heat illness, socio- 
economic conditions may influence the resilience of individuals and 
communities to extreme heat (Jung et al., 2021; Uejio et al., 2011; Wu 
et al., 2024). Published evidence shows that different communities and 
population groups exhibit varied health outcomes in extreme heat 
(Mitchell and Chakraborty, 2014). Particularly, minorities and disad
vantaged population groups are often disproportionately affected by 
extreme heat (Fletcher et al., 2012; Hansen et al., 2013). Cultural 
isolation can further exacerbate these disparities, as individuals from 
certain racial and ethnic backgrounds may be less likely to access cooler 
public spaces or live in environments with adequate cooling infra
structure (Wilson, 2020). Kovach et al. (2015) found that rural areas 
with many outdoor workers and urban areas with high population 
density and low green space have higher HRI risk. Li et al. (2022) used 
spatial error/lag models and demonstrated that neighborhoods with a 
history of redlining experienced significantly higher rates of heat-related 
outpatient visits and hospital admissions. Other socio-economic condi
tions, such as education (Conlon et al., 2020), income (Fletcher et al., 
2012), occupation (Kim et al., 2017; Stoecklin-Marois et al., 2013), age 
(Mac and McCauley, 2017), gender (Beckmann and Hiete, 2020), 
neighborhood safety (Royé, 2017; Uejio et al., 2011), and air condi
tioning usage, are also factors that influence heat resilience (O’Neill 
et al., 2005; Sera et al., 2020).

Fig. 2. Trends in heat-related emergency department (HRI-ED) visits in Florida, 2005–2019 (Florida Department of Health, 2023). The figure shows a steady increase 
in HRI-ED visits in Florida, with counts rising from approximately 5.4 million in 2005 to 8.8 million in 2019, representing a nearly 63 % increase over the 15- 
year period.
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3. Study area and data

3.1. Study area

Due to its unique geographic location, Florida has been historically 
vulnerable to climate change and extreme heat events (NOAA, 2023). 
Moreover, Florida has consistently been characterized by high humidity 
levels, which limit a person’s ability to perform evaporative cooling, 
thus exacerbating the HRI risk (NOAA, 2016). Florida’s unique de
mographic characteristics increase its vulnerability to extreme heat. 
Florida ranked 2nd in the ratio of elderly adults (Statista Research 
Department, 2023) and has 620,000 people aged 65 and older, or under 
5 years old, living below the poverty line—far above the average among 
the lower 48 states (Climate Central, 2015). These population groups are 
particularly vulnerable to extreme heat due to relatively lower physical 
capacity, limited access to resources, pre-existing health conditions, and 
restricted access to healthcare (Abrahamson et al., 2009; Nitschke et al., 
2013). Additionally, Florida has the third-largest Hispanic and Latino 
population, as well as a sizable African American and Asian population 
(U.S. Census Bureau, 2020). It is noteworthy that Florida has one of the 
largest immigrant populations in the U.S. and is renowned as a preferred 
retirement destination (American Immigration Council, 2015). 
Furthermore, Florida’s economy heavily relies on agriculture, tourism, 
and construction—sectors where workers are particularly vulnerable to 
illnesses from prolonged exposure to high temperatures (Moyce et al., 
2016; Naseem, 2021). Due to its specific geographic and socio-economic 
conditions, Florida faces unique challenges in combating the adverse 
impacts of extreme heat.

3.2. Data

In this study, three types of data are collected for the analyses. First, 
we use HRI-ED visit rates at the zip-code level to represent the health 
outcomes of extreme heat. The zip-code level is the finest spatial reso
lution available for HRI data in Florida. Additionally, socio-economic 
and demographic variables at the zip-code level are widely available 
from Census and American Community Survey (ACS) data, allowing us 
to study the association between HRI and socio-economic conditions. 
Unlike heat fatalities, which only represent extreme outcomes of heat 
hazards, HRI-ED visits include a more extensive array of health out
comes, including heat exhaustion, dehydration, respiratory ailments, 
and cardiovascular complications, and thus can be considered a more 
comprehensive measure of health outcomes of extreme heat. HRI-ED 
visit cases were defined based on International Classification of Dis
eases 9th revision Clinical Modification (ICD-9-CM) codes: 992.0–992.9, 
E900.0, E900.1, and E900.9. Cases were classified if at least one of the 
HRI codes was found in the primary diagnosis field or in one of the 
secondary diagnosis fields (Florida Department of Health, 2023). The 
HRI-ED visit rate data at the zip-code level (from May to September) in 
2019 was obtained from the Florida Agency for Health Care Adminis
tration (https://www.floridatracking.com/healthtracking). The data 
have been age-adjusted to ensure equitable comparisons among groups 
with varying age distributions (CDC, 2022). The HRI-ED visit rates are 
the total number of HRI-ED visits per 100,000 population. In total, 984 
out of 992 zip codes that have HRI-ED data were used in our analyses. 
Geographic and socio-economic disparities between rural and urban 
areas significantly influence HRI (Choi et al., 2021). Rural communities 
face multiple challenges, particularly structural barriers such as limited 
access to cooling centers, inadequate emergency services, and under
developed public health infrastructure (Zeng et al., 2022). In contrast, 
urban populations encounter distinct challenges, including heightened 
temperatures from the heat island effect and different patterns of 
occupational exposure (Spector et al., 2019), leading to varying HRI 
patterns across these settings. Rural and urban zip codes were defined 
using the U.S. Census Bureau’s urban definition (U.S. Census Bureau, 
2023), which requires at least 2000 housing units or a minimum 

population of 5000. Zip codes with their centroids within the Census- 
defined urban boundaries were defined as urban zip codes, while 
those outside were classified as rural. In total, 554 zip codes were 
classified as urban and 430 as rural.

Second, we included four temperature indicators as proxies to 
represent the heat hazard, including LST, AT, number of heat days 
(NHD), and the number of heat events (NHE). As a common indicator of 
heat hazard, LST measures the heat absorbed and emitted by the surface 
(Johnson et al., 2011). In this study, we used LST images derived from 
Landsat 8 satellites. A total of 153 images at a 30 m resolution were 
collected from Google Earth Engine to calculate the average LST from 
May 1 to September 30, 2019 (Malakar et al., 2018). Open-source codes 
developed by Ermida et al. (2020) were applied to mask cloud and 
shadow-affected pixels in the Landsat images. Then, the average LST 
was calculated from the cloud-free images.

AT, which measures the temperature of the surrounding air, is widely 
used in heat-related studies as it directly affects human thermal comfort 
and physiological responses (Avashia et al., 2021). The AT at 2 m height 
was obtained from NASA’s Daymet Version 4 dataset (Thornton et al., 
2022), which provides gridded estimates of daily AT at a spatial reso
lution of 1 km. In this study, 153 images of AT from May 1 to September 
30 were used to calculate average AT.

NHD is the sum of days that exceed a given heat threshold, while 
NHE captures sequences of consecutive heat days, emphasizing the cu
mulative effects of sustained heat conditions (Kim et al., 2017). Both 
NHD and NHE were determined using the maximum heat index data 
acquired from the Centers for Disease Control and Prevention (CDC). 
This index is calculated from both temperature and humidity (NOAA, 
2022), offering a comprehensive perspective on extreme heat experi
enced by humans (Perkins, 2015; Steadman, 1984). In this study, an 
extreme heat day is defined as a day when the maximum heat index in a 
specific census tract exceeds the 90th percentile, a relative threshold 
calculated from the historical heat index for May to September between 
1991 and 2019. The 90th percentile threshold is commonly used in 
defining extreme heat events (Keellings and Waylen, 2014). Following 
this standard, a heat event is defined as three or more consecutive 
extreme heat days. Thus, NHD is the total number of heat days, while 
NHE is the total number of heat events during the period from May 1 to 
September 30, 2019. The heat index is calculated using Forcing File A of 
Phase 2 of the North American Land Data Assimilation System (NLDAS- 
2), and the gridded raw data are then aggregated to the U.S. county or 
census tract level (LDAS, 2024). In this study, we used areal interpola
tion to resample NHD and NHE from census tracts to zip codes. Areal 
interpolation calculates a weighted average of values from census tracts, 
where the weights correspond to the proportion of census tracts that 
overlap specific zip codes (Netrdová et al., 2020).

Finally, we selected 21 variables to represent the socio-economic and 
demographic conditions of communities. The selection of these vari
ables was based on a comprehensive literature review on socio- 
economic indicators of heat resilience (Harlan et al., 2006; Johnson 
and Wilson, 2009; Reid et al., 2009). Median household income and the 
ratio of the population in poverty represent economic capital, which 
affects individuals’ ability to afford air conditioning (Ortiz et al., 2022), 
access healthcare services (Wu et al., 2024), cooling centers (Gao et al., 
2022), and healthy work environments (Xiang et al., 2015). Housing 
density can differentiate rural and urban environments, which exhibit 
different built environments, availability of green spaces (Yu et al., 
2024), and prevalent occupations (Pramanik et al., 2022; Uejio et al., 
2011). The ratio of population without a high school diploma represents 
educational attainment (Cheng and Sha, 2024). Higher education levels 
are often associated with better knowledge and awareness of health risks 
in extreme heat. Compared to renters, homeowners have greater control 
of their homes and are thus more willing to invest in heat mitigation 
(Klinenberg, 2002). People working in agriculture, construction, trans
portation, and material moving are more likely to be exposed to outdoor 
heat environments (Sabrin et al., 2021). People without a vehicle have 
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higher exposure to extreme heat in transportation (Gu et al., 2024). 
Additionally, we included age, racial, and ethnic variables to investigate 
potential disparities in the health impacts of extreme heat across 
different population groups. Populations with limited English profi
ciency often include new immigrants who may face challenges in 
accessing information about heat risks (Song et al., 2021). These socio- 
economic variables were obtained at the zip-code level from various 
American Community Survey (ACS) 5-Year Estimates (https://data.cens 
us.gov/) from 2019 by the U.S. Census Bureau.

4. Analysis

4.1. Data processing

The abovementioned variables at different spatial resolutions were 
aggregated or interpolated to the zip-code level. The LST was aggregated 
to zip-codes in two steps: (1) computing the mean LST raster from daily 
LST rasters for the period between May 1 and September 30; (2) 
aggregating the mean LST raster in zip-codes using the zonal statistics. 
The same procedure was applied to calculate the average AT in zip 
codes. Areal interpolation was used to convert NHD and NHE from 
census tracts to zip codes (Matisziw et al., 2008). The entire analytical 
workflow of this study is illustrated in Fig. 3.

4.2. Exploratory data analysis

We applied both global and local Moran’s I to examine the spatial 
patterns of HRI-ED visit rates in Florida. As a common indicator of 
spatial autocorrelation, Moran’s I measures the degree to which similar 
or dissimilar values are clustered in space. The Moran’s I statistic offers a 
numerical representation of spatial autocorrelation ranging from −1 to 1 
(Griffith, 1987). When calculating Moran’s I, we utilized the “queen” 
contiguity rule to define neighborhoods in the weight matrix. Global 
Moran’s I provides an overall measure of spatial autocorrelation for the 
entire dataset, indicating the general trend in the study area. In contrast, 
local Moran’s I represents spatial autocorrelation in the neighborhoods 
of individual spatial units, helping identify local clusters of high and low 
spatial autocorrelation.

4.3. Association analysis

We conducted four types of statistical analyses to examine the re
lations between HRI-ED visits and environmental and socio-economic 
variables. First, we analyzed the correlation between HRI-ED visit 
rates and the four temperature variables, including LST, AT, NHD, and 
NHE. Logarithmic transformation was applied to the raw data to address 
the non-normality and skewness problems of the variables (Zhang et al., 
2008). We used Spearman’s correlation coefficient to compare the 

correlations between the heat indicators and HRI-ED visit rates. Corre
lation strengths were interpreted using the following thresholds (Evans, 
1996): |ρ| < 0.20 (very weak), 0.20 ≤ |ρ| < 0.40 (weak), 0.40 ≤ |ρ| <
0.60 (moderate), 0.60 ≤ |ρ| < 0.80 (strong), and |ρ| ≥ 0.80 (very 
strong). The most correlated heat indicator was selected to represent 
extreme heat in the following analysis.

Second, we performed Geographically Weighted Pearson Correlation 
(GWPC) analysis to investigate the spatial variation of the correlations 
between HRI-ED visit rates and the four heat indicators. Unlike Spear
man’s correlation, which describes the correlation for the entire study 
area, the GWPC reveals local variability and identifies hotspots of the 
correlations (Kalogirou, 2014). Building upon these correlation ana
lyses, the heat indicators most correlated with HRI-ED visits in different 
areas were highlighted. In addition, we calculated the corresponding 
local t-test statistics to assess the significance of the correlations at each 
location (Kalogirou, 2012).

Third, we applied hierarchical regression analyses to analyze the 
relations between socio-economic variables (independent variables) and 
HRI-ED visits (dependent variable). Hierarchical regression is often used 
to control for confounding factors (Hood et al., 2016). In this study, we 
hypothesized that HRI is influenced by both extreme heat and socio- 
economic conditions. Thus, we applied the hierarchical regression an
alyses to isolate the contribution of the socio-economic variables to the 
HRI-ED visits while controlling for heat intensity (control variables).

Finally, we conducted multivariate regression analyses between all 
the variables (heat indicators and socio-economic variables) and HRI-ED 
visits. The multivariate regression analysis examined the overall vari
ability of HRI-ED visits that can be explained by the selected variables. 
The goodness-of-fit of the model implied the predictive power of the 
selected variables for HRIs. Variance Inflation Factors (VIF) were 
calculated for the independent variables to examine their collinearity. 
All variables and their descriptive statistics used in the statistical ana
lyses are summarized in Tables S1 and S2 in the Supplementary Infor
mation (SI).

5. Results

5.1. Exploratory data analysis

The four heat indicators (LST, AT, NHD, and NHE) show different 
spatial distributions. As illustrated in Figs. 4(A & B), LST exhibits a clear 
urban heat island effect, with higher values observed in urban areas, 
such as Miami, Tampa, Clearwater, Sarasota, Orlando, Tallahassee, and 
Jacksonville. In contrast, lower LST is evident in vegetated areas. 
Compared to LST, AT shows a different spatial distribution (Figs. 4(C & 
D)), with high values primarily distributed in inland areas. The AT in 
coastal areas, particularly along the east coast, is generally lower. As 
illustrated in Figs. 4(E & F), northwest and southeast Florida 

Fig. 3. The analytical workflow of the study.
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experienced high NHD during the summer of 2019, while central Florida 
generally had fewer NHD. As illustrated in Figs. 4(G & H), the spatial 
pattern of NHE is quite similar to that of NHD.

The HRI-ED visit rates in Florida show significant spatial heteroge
neity (Fig. 5A). High HRI-ED visit rates are primarily concentrated in the 
central and northeastern parts of the state, including the corridor be
tween Tampa and Orlando (Lakeland urban area), Jacksonville and its 
surrounding areas, as well as some suburban and rural counties in the 
northern region. In contrast, low HRI-ED visit rates are mainly found in 
the southern urban regions, such as Miami, Fort Lauderdale, and West 
Palm Beach. Overall, urban areas tend to have lower HRI-ED visit rates, 

while rural and peri-urban areas generally exhibit higher rates.
The global Moran’s I of 0.22 (p < 0.001) demonstrates statistically 

significant spatial autocorrelation in HRI-ED visit rates in Florida. The 
Local Moran’s I reveals High-High clusters (hotspots) of HRI-ED visit 
rates in north and northeast Florida, which are areas with high HRI-ED 
visit rates surrounded by neighborhoods with similarly high rates. As 
shown in Fig. 5B, several hotspots of HRI-ED visit rates are detected in 
central Florida, including the areas between Tampa and Orlando and 
surrounding Gainesville. Another hotspot is in the panhandle region of 
northwest Florida, including the counties of Santa Rosa, Jackson, and 
Gulf. These areas are distinguished by high poverty rates and diminished 

Fig. 4. Spatial distribution of the heat indicators. (A) LST in 30-m resolution raster; (B) LST aggregated in zip-codes; (C) AT in 1-km resolution raster; (D) AT 
aggregated in zip-codes; (E) original NHD in census tracts; (F) NHD interpolated in zip-codes; (G) original NHE in census tracts, and (H) NHE interpolated in 
zip-codes.

Fig. 5. Spatial distribution of HRI-ED visit rates. (A) Age-adjusted rate of HRI-ED visits (visits per 100,000 population) in the summer of 2019 (May to Sept.) in zip- 
codes in Florida, and (B) Anselin Local Moran’s I analysis for HRI-ED visit rates.
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median household incomes compared to the state average.
Conversely, the Low-Low clusters (coldspots), where low HRI areas 

are surrounded by similarly low HRIs neighborhoods, are primarily 
found around Orlando, Miami, and Naples, which are large metropolitan 
areas that have relatively high population density and personal income. 
Furthermore, High-Low and Low-High clusters are scattered in several 
locations throughout Florida, which implies negative spatial autocor
relation where HRI-ED visit rates are surrounded by dissimilar values 
(Fig. 5B).

5.2. Association analysis

5.2.1. Relation between heat and HRI-ED visit rates
Fig. 6 shows that HRI-ED visit rates are significantly correlated (p <

0.001) with the four temperature variables in different directions. As 
expected, HRI-ED visit rates are positively correlated with AT, indicating 
that high air temperatures above the ground may increase the risk of 
HRIs. However, HRI-ED visit rates are negatively correlated with LST 
and NHD, implying that higher LST and NHD are associated with fewer 
HRIs. The correlation between HRI-ED visits and NHE is not statistically 
significant. These counterintuitive results suggest that the relation be
tween HRI and the heat variables may be influenced by other factors. 
The significant correlation between HRI and AT indicates that AT may 
be a better measure of heat intensity in humans than the other three 
variables. Considering the correlation analysis and the existing literature 
(Good, 2016), we selected AT to represent heat hazard in the hierar
chical regression analyses (Section 5.2.3).

The GWPC analysis reveals the spatial variation in the correlations 
between HRI-ED visit rates and the heat indicators (Fig. 7). HRI-ED visit 
rates and LST are positively correlated along the coast but negatively 
correlated in inland areas and the Panhandle of northwest Florida. HRI- 
ED visit rates and AT are positively correlated around Naples, Cape 
Coral, and Ocala, while negatively correlated around Gainesville. 
Notably, in the Panhandle, HRI-ED is negatively correlated with LST but 
positively correlated with AT. In the areas surrounding Miami, HRI-ED is 
positively correlated with LST but negatively correlated with AT. This 
disparity suggests that, relative to AT, LST could play a more dominant 
role in influencing HRI within these areas. Both NHD and NHE exhibit a 
positive correlation with HRI-ED in the northwest and central regions, as 
well as along the southeast coast. However, a negative correlation is 
evident in several major cities, such as Jacksonville, Orlando, and 
Miami, where higher NHD and NHE are associated with lower HRI-ED 
visits. The varying relations between the heat indicators and HRI-ED 
visit rates suggest that localized metrics should be used to measure 

extreme heat in different regions. Detailed maps illustrating the signif
icance level (p < 0.01) of the GWPC are provided in Fig. S1 in the SI.

To compare the correlations between HRI and the heat indicators, we 
created a map (Fig. 8) to highlight the heat indicator with the highest 
absolute GWPC correlation coefficient in each zip code. This map reveals 
the heat indicators that exhibit the strongest correlation with HRI in 
different areas. Specifically, LST is most correlated with HRI in the 
Florida Panhandle, as well as in areas surrounding Sarasota, Lakeland, 
and those near Port St. Lucie and Miami. AT displays a pronounced 
correlation spanning from the northeastern region, covering Gainesville, 
Lake City, and St. Augustine Beach, to the central region around Ocala 
and further south to areas near Lake Okeechobee and West Palm Beach. 
The strongest correlation for NHD is observed in the southwestern areas 
around Cape Coral and Naples, as well as the central areas around 
Tampa Bay, Palm Bay, and the Three Lakes Wildlife Management Area. 
Finally, NHE emerges as the dominant heat indicator in the vicinity of 
major cities such as Jacksonville, Orlando, and Tampa, as well as in the 
central part of the Gulf Coast.

5.2.2. Hierarchical regression analysis
The hierarchical regression analysis was used to investigate the in

fluence of the socio-economic variables on HRI-ED visit rates by setting 
AT representing heat intensity as the control variable. In the analysis 
results (Table 1), the baseline value indicates the amount of variance 
explained by the control variable alone. The incremental R2 value de
notes the additional variance explained by other explanatory variables 
after controlling for the heat indicator. The low baseline R2 indicates 
that AT only explains a limited variance of HRI-ED visit rates. The higher 
incremental R2 implies that, compared to AT, socio-economic variables 
are more influential factors for HRI-ED visit rates. The VIF values for all 
socio-economic variables were found to be <1.2, indicating no signifi
cant multicollinearity between AT and the socio-economic variables (see 
Table S3 in SI). As shown in Table 1, the percentages of population living 
in poverty (POV), unemployed individuals (UNEMP), individuals 
without a high school diploma (EDU), individuals employed in con
struction (CONSTR) and agricultural occupations (AGR), percentage of 
children (> 5 years old) (CHILD), individuals with disabilities 
(DISABLE), and the Black population (Black) are positively correlated 
with HRIs in both rural and urban areas (p < 0.01 for all, except rural 
Black population: p < 0.05). These results imply that, under the same 
heat intensity, the aforementioned variables have a strong positive effect 
on HRI-ED visits. Conversely, the median household income (INC), the 
percentages of White individuals (WHITE), and housing density (HDEN) 
demonstrated a negative effect on HRI-ED visit rates in both urban and 
rural areas (p-values: INC < 0.01; WHITE: urban < 0.01, rural < 0.05; 
HDEN: urban < 0.01, rural < 0.05). Notably, several other variables 
show urban-rural disparities. For example, the percentages of Asian 
(ASIAN) and Hispanic/Latino population (HISP) are negatively corre
lated (p < 0.01) with HRI-ED visit rates in urban areas. However, this 
relation is insignificant in rural areas. The access to electricity displays a 
significant negative relation (p < 0.01) with HRI-ED visit rates only in 
rural areas. In urban areas, limited English proficiency (ENGLISH) is 
negatively correlated, while lack of a vehicle (NOCAR) is positively 
correlated with HRI-ED visit rates (p < 0.01).

5.2.3. Multivariate regression analysis
The Ordinary Least Squares (OLS) regression models show that AT 

and the socio-economic variables can predict 42.2 % and 20.0 % of the 
variance in HRI-ED visit rates in urban and rural areas respectively. 
However, the significance of the Lagrange Multiplier (LM) test and 
Moran’s I indicates the presence of spatial dependence in the residuals of 
the OLS model. The increase in R2 in the spatial lag model (from 0.422 to 
0.456 in urban areas, and 0.200 to 0.250 in rural areas) demonstrates an 
improvement in goodness-of-fit compared to the OLS models (Table 2). 
The decrease in AIC also indicates that the spatial lag models provide a 
better fit to the data than the OLS model. Therefore, we adopted the 

Fig. 6. Correlation coefficients between HRI-ED visit rates and four tempera
ture variables.
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spatial lag model to quantify the relations in the dataset. It is worth 
noting that both the OLS and spatial lag models exhibit a higher R2 in 
urban zip-codes than in rural zip-codes, implying that the selected var
iables are more effective in predicting HRIs in an urban setting.

Fig. 9 illustrates the regression coefficients and their significance 
levels for the spatial lag model in both rural and urban areas. The spe
cific regression coefficients are detailed in Table S4 of the SI. Unem
ployment (UNEMP), the disabled population (DISABLE), and people 
without a high school diploma (EDU) have a positive effect (p < 0.05) on 
HRI-ED visit rates in both urban and rural areas. Meanwhile, agricul
tural (AGR) and construction workers (CONSTR), children (<5 years 
old) (CHILD), and the Black population (BLACK) are positively associ
ated (p < 0.05) with HRI-ED visits only in urban zip-codes, while these 
relations are insignificant in rural areas. The percentage of the Hispanic 
population (HISP) is negatively associated (p < 0.05) with HRIs in urban 
areas, but the relation is not significant in rural areas. The median 
household income (INC) negatively influences (p < 0.05) HRI-ED visits 
only in rural zip codes.

6. Discussion

This paper provides a comprehensive assessment of the spatial pat
terns and contributing factors of HRIs at the zip-code level in Florida. 
The spatial autocorrelation analysis reveals significant clustering pat
terns in the HRI-ED visit rates throughout Florida. The hotspots (High- 

High clusters) of HRI were predominantly located in rural counties, 
while the coldspots (Low-Low clusters) were concentrated in urban 
areas. This finding is consistent with prior research showing that HRI is 
more prevalent in rural areas (Fechter-Leggett et al., 2016). Several 
factors might explain the observed pattern. For example, occupations 
and lifestyles in rural areas might increase outdoor exposure (Lippmann 
et al., 2013), while urban areas benefit more from the widespread use of 
air conditioning in homes and public facilities (Scott and Timothy, 
2003). Rural residents may have limited access to or knowledge of HRI 
risks and prevention measures (Braveman et al., 2011). Their willing
ness or ability to commute long distances to access cooling centers or 
participate in community-led HRI prevention initiatives is also con
strained in rural areas (O’Neill et al., 2009). Moreover, a study in North 
Carolina found that rural areas experience higher rates of HRI (Kovach 
et al., 2015).

The hotspots detected in central and northwest Florida show a sig
nificant presence of labor-intensive outdoor occupations, particularly in 
the agricultural industry (Harduar Morano et al., 2016). These areas are 
distinguished by high poverty rates, low household incomes, and lower 
education levels compared to the state average. Additionally, research 
has revealed a notable Hispanic/Latino population residing in the 
Panhandle region, with a majority engaged in service or construction/ 
extraction occupations (Bonauto et al., 2007). This unique demographic 
composition may contribute to the hotspot of HRIs in northwest Florida. 
Conversely, the two coldspots (Low-Low clusters) identified in Orlando 

Fig. 7. Spatial distribution of four temperature indicators using GWPC. (A) LST, (B) AT, (C) NHD, and (D) NHE.
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and Miami can be attributed to the greater availability of cooling fa
cilities in indoor environments (Hondula et al., 2015), higher education 
and income levels, and abundant green spaces and shaded areas (Flocks 
et al., 2011; Hwang et al., 2017). The regression analysis indicates that 
the Hispanic population is negatively correlated with HRI-ED visit rates. 
However, the underlying factors behind this correlation remain unclear. 
Published evidence suggests that the unique social and spatial charac
teristics, including high population density and vibrant public and retail 
spaces, may mitigate the HRI risk in Hispanic communities (Klinenberg, 
2002). These characteristics can enhance social cohesion and the 
sharing of resources and information to cope with heat impacts, which in 
turn foster communal resilience against HRIs (Harduar Morano et al., 
2016). Black population show a positive correlation with HRI-ED visit 
rates in both hierarchical and multivariate regression analyses. This 

result reveals the disproportionate health burden of extreme heat in 
Black communities. Higher levels of poverty in Black communities can 
limit access to healthcare and cooling resources, thereby increasing their 
vulnerability to HRIs (O’Neill et al., 2005). Similar patterns have been 
documented in numerous studies (Khatana et al., 2022; Madrigano et al., 
2018; Uejio et al., 2011).

When comparing the four heat indicators (LST, AT, NHD, and NHE), 
only AT is positively correlated with HRIs, despite accounting for only a 
small portion of the variance. Instead, the socio-economic variables 
show stronger relations with HRIs. This finding implies that, compared 
to the intensity of heat hazards, socio-economic disparities are more 
important factors in differentiating HRI occurrences. These findings 
align with previous research, which indicates the crucial role of socio- 
economic resources in heat adaptation and vulnerability (Barreca 
et al., 2016; Diboulo et al., 2012; Lindeboom et al., 2012). The negative 
correlation between LST and HRI suggests that LST may not be the 
optimal measure of heat intensity for human health. This result confirms 
previous studies, which show that LST does not always reflect the 
temperature individuals experience (Chakraborty et al., 2022). Instead, 
the stronger relation (p < 0.05) suggests that AT may be a better indi
cator of heat impacts on human health, as it represents the air temper
ature people are exposed to (Good, 2016). NHD and NHE can be 
influenced by the temperature thresholds used to define heat days (Hajat 
et al., 2006). Studies have identified “morbidity displacement,” where 
heat-related morbidity spikes during or after a heatwave but is followed 
by a period of below-average illness rates (Anderson and Bell, 2011). In 
southern regions, prolonged higher temperatures allow individuals to 

Fig. 8. Heat indicators with the highest absolute correlation coefficient in each 
zip code.

Table 1 
Hierarchical regression of HRI-ED visit rates and socio-economic variables with AT as the control variable.

AT (control variable)

Urban zip code Rural zip code

Category Variable Coef. (Baseline R2, Incremental R2) Coef. (Baseline R2, Incremental R 2)

Socio-economic conditions POV 0.371** (0.004, 0.100) 0.312** (0.002, 0.074)
INC −0.428** (0.005, 0.174) −0.377** (0.003, 0.070)
UNEMP 0.273** (0.003, 0.111) 0.224** (0.001, 0.178)
EDU 0.185** (0.004, 0.056) 0.278** (0.002, 0.077)
AGR 0.162** (0.004, 0.033) 0.171** (0.002, 0.005)
CONSTR 0.237** (0.004, 0.080) 0.245** (0.002, 0.097)

Vulnerable population OLD 0.028 (0.004, 0.006) 0.018 (0.002, 0.001)
CHILD 0.186** (0.004, 0.102) 0.076** (0.002, 0.040)
FEMALE −0.021 (0.004, 0.017) −0.072 (0.002, 0.016)
DISABLE 0.461** (0.004, 0.187) 0.369** (0.002, 0.139)

Demographic conditions WHITE −0.202** (0.004, 0.042) −0.097* (0.002, 0.013)
ASIAN −0.131** (0.004, 0.005) −0.154 (0.002, 0.001)
HISP −0.296** (0.004, 0.037) −0.090 (0.002, 0.001)
BLACK 0.277** (0.004, 0.095) 0.117* (0.002, 0.030)
ENGLISH −0.250** (0.004, 0.018) −0.096 (0.002, 0.000)

Housing and transportation NOCAR 0.148** (0.005, 0.035) 0.110 (0.002, 0.015)
ELECT 0.122 (0.004, 0.000) −0.175** (0.002, 0.004)
HDEN −0.201** (0.003, 0.000) −0.193* (0.001, 0.009)
OWNER −0.107 (0.003, 0.040) −0.142 (0.001, 0.028)

* p < 0.05.
** p < 0.01.

Table 2 
Model diagnostics for OLS and spatial lag regression in urban and rural areas.

Measurement OLS Spatial Lag

Urban Rural Urban Rural

Adjusted/Pseudo R2 0.422 0.200 0.456 0.250
Moran’s I of Residuals 0.081** 0.061** 0.021** 0.003**
Akaike Information Criterion (AIC) 1351.87 1401.96 1344.1 1402.31
Lagrange Multiplier (SARMA) 9.826** 3.283 Likelihood Ratio Test
Lagrange Multiplier (lag) 9.450* 3.382* 9.773** 3.425
Lagrange Multiplier (error) 6.041* 2.650

* p < 0.05.
** p < 0.01.
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acclimate, reducing the incidence of HRIs (Bouchama and Knochel, 
2002). Another potential issue to consider is the accuracy of common 
temperature measures in capturing the actual intensity of heat experi
enced by individuals. Research highlights the need for alternative 
measures of heat hazards, such as the wet-bulb globe temperature, 
which incorporates humidity and solar radiation (Heo et al., 2019), or 
the Universal Thermal Climate Index (UTCI), which accounts for air 
temperature, wind speed, humidity, and radiation (Bröde et al., 2012). 
Moreover, future research at different spatial scales (Bai et al., 2024) 
could help to better understand how these heat-health relationships and 
various temperature measures interact with socio-economic factors in 
shaping heat vulnerability.

The regression analysis shows that urban and rural areas differ in 
several factors for HRI-ED visits (Fig. 9). In urban areas, agricultural and 
construction workers, children, and the Black population are positively 
associated with HRIs, while these associations are not significant in rural 
areas. The higher risk for agricultural and construction workers is 
consistent with the study by Zeng et al. (2022), which indicates that the 
urban heat island effect increases heat exposure for outdoor workers 
(Moda et al., 2019). The higher HRI risk for children in urban areas is 
partly due to spending more time in indoor, air-conditioned environ
ments. When they engage in outdoor physical activities, their risk of HRI 
increases significantly (Falk, 1998; Gilchrist et al., 2011). In contrast, 
the lifestyle and living environment in rural areas may foster children’s 
resilience to extreme heat. Additionally, the Black population, histori
cally affected by residential segregation and socioeconomic inequalities, 
often resides in older neighborhoods that lack cooling resources, which 
increases their health risks (Hoffman et al., 2020). In rural areas, heat- 
related risks are predominantly associated with income levels. Low- 
income households often lack the financial means to purchase cooling 
equipment or cover the high electricity bills required to operate them 

(Conor and Jeff, 2013). Furthermore, rural areas tend to suffer from 
inadequate infrastructure and medical resources, making it difficult for 
these families to access timely healthcare and support during heat 
waves. Urban and rural populations, however, also share common risk 
factors, including unemployment, low educational attainment, and 
disabilities. Unemployment and low educational attainment are often 
associated with lower income (Majeed and Baumann, 2023), which 
limits their access to cooling equipment, increasing their exposure to 
health risks during heat waves. People with disabilities face heightened 
health risks in hot weather due to limited mobility, dependence on care, 
and impaired physiological regulation, and this is particularly pro
nounced in rural areas where medical services are less accessible and 
emergency response systems are weaker (Junod et al., 2023). A signif
icant positive association between heat risk and disability status was 
also found in Los Angeles (Mitchell and Chakraborty, 2014). Taken 
together, this indicates a higher incidence of HRIs in economically 
disadvantaged and racially segregated zip code areas. The relation be
tween socio-economic conditions and heightened HRI risks further 
highlights the interwoven nature of social, economic, and environ
mental systems. The high incidence of HRI is most commonly detected in 
rural and inland areas, where the socially vulnerable neighborhoods and 
labor-intensive industries are concentrated. This pattern demonstrates a 
deep-seated issue of environmental justice, wherein the most vulnerable 
segments of society are the hardest hit by the heat hazards. Overall, 
these findings align with prior research on socio-economic disparities 
and emphasize the critical role of economic status, race, and ethnicity in 
explaining HRI inequality patterns, thereby raising urgent concerns 
about climate justice and socio-economic disparities (Bonauto et al., 
2007; Lehnert et al., 2020).

To reduce the health risks associated with extreme heat in Florida, 
policymakers can implement targeted measures to enhance the 

Fig. 9. The regression coefficients of the spatial lag models between HRI rates and socio-economic variables in both rural and urban areas.
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resilience of communities to high temperatures. In Florida’s diverse 
communities, unemployed individuals and those with low education 
levels often face financial barriers that limit their ability to protect 
themselves during extreme heat events. Florida can leverage its unique 
resources to implement cooling solutions for these population groups. 
For instance, cities could mitigate urban heat island effects by expanding 
green spaces along streets and in residential areas to create natural 
shade corridors (Pereira et al., 2024). Additionally, public libraries, 
which already function as hurricane shelters, could be upgraded to serve 
as dual-purpose extreme weather shelters (Derakhshan et al., 2023). In 
rural areas, setting up multi-language emergency hotlines could help 
people who are immigrants and people with disabilities receive timely 
assistance during extreme heat (Matthies et al., 2008). Heat protection 
measures are particularly important for Florida’s outdoor workers in 
tourism (with theme parks being a prime example) and agriculture (e.g., 
citrus harvesters). Tourist facilities should expand cooling areas and 
provide shade for both visitors and staff, while agricultural operations 
require portable shade and adjusted work schedules during periods of 
extreme heat (Ebi et al., 2021). For children, schools should be equipped 
with sufficient cooling systems, and educational programs should be 
implemented to teach families how to protect themselves during 
extreme heat events (Bernstein et al., 2022). Low-income rural house
holds often struggle to cover air conditioning costs during extreme heat. 
Meanwhile, a tiered subsidy system, tailored to household income and 
heat vulnerability, could help ensure the most at-risk households receive 
adequate support (Austin et al., 2024).

Our study acknowledges several limitations that should be addressed 
in future research. First, the multivariate regression model explains 45.6 
% of the variance in HRIs in urban areas and only 25.0 % in rural areas, 
indicating that the selected variables do not capture all factors influ
encing HRIs, particularly in rural settings. Future studies should incor
porate a broader range of variables to identify other determinants of 
HRIs. Second, although our linear regression models quantified the 
contributions of various factors, they are limited in handling non-linear 
and complex relationships. Once the primary drivers of HRIs are iden
tified, future research should explore the use of machine learning al
gorithms to enhance predictive accuracy, which could then be applied to 
regions beyond Florida. Third, the HRI-ED visit data may not capture all 
HRI instances. Individuals with mild symptoms or those facing health
care access barriers might not seek emergency care. Instead, they may 
opt for alternative non-emergency care options, such as community 
clinics or self-treatment, which can lead to potential underreporting 
(Harduar Morano et al., 2016). Nevertheless, these groups could 
represent crucial target populations for future health policies and in
terventions. Missing milder HRI cases potentially underestimates the 
true burden of HRIs within the population and limits the applicability 
and generalizability of the findings in informing broader public health 
interventions. Furthermore, other conditions exacerbated by heat 
exposure might not be classified as HRIs, further contributing to un
derestimation (Hajat and Kosatky, 2010). Moreover, some ED visits 
could involve non-Florida residents, such as tourists or out-of-state 
workers, whose socio-economic conditions are not reflected in the ACS 
data. Future research could benefit from integrating additional data 
sources, such as community health surveys or questionnaires, to 
improve data accuracy (He et al., 2021). Finally, our study used the HRI- 
ED visit data in 2019, the latest pre-pandemic year, to avoid potential 
distortion of COVID-19 on ED visits. Lockdown measures, work-from- 
home arrangements, and concerns about visiting health facilities dur
ing the pandemic likely deterred individuals from seeking care for HRIs. 
Therefore, including data from post-COVID years would further 
strengthen the robustness of the analysis.

7. Conclusions

Our zip-code level analysis of HRI-ED visits in Florida revealed that 
socio-economic conditions are more strongly associated with HRI 

incidences than temperature alone. Vulnerable population groups (e.g., 
unemployed, lower educational attainment, and with disabilities) are 
strongly correlated with HRI cases. The results highlight the need to 
prioritize actions that mitigate the unequal consequences of extreme 
heat events on marginalized communities. The multivariate regression 
models demonstrate that the selected socio-economic and environ
mental variables can predict a significant proportion of the HRI vari
ance, indicating the potential transferability of these models for 
predicting HRI risk in other regions or under hypothetical climate sce
narios. Additionally, our analysis of rural versus urban disparities offers 
insights into tailored strategies that could enhance heat resilience across 
different community settings.
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Diboulo, E., Sié, A., Rocklöv, J., 2012. Weather and mortality: a 10 year retrospective 
analysis of the Nouna Health and Demographic Surveillance System, Burkina Faso. 
Glob. Health Action 5, 6–13. https://doi.org/10.3402/gha.v5i0.19078.

Ebi, K.L., Vanos, J., Baldwin, J.W., Bell, J.E., Errett, N.A., 2021. Extreme weather and 
climate change: Population health and health system implications. In: Annual 
Review of Public Health, 42(Volume 42, 2021), pp. 293–315. https://doi.org/ 
10.1146/annurev-publhealth-012420-105026.
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