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HIGHLIGHTS

e Spatial analysis reveals an uneven dis-
tribution of heat-related illness emer-
gency department (HRI-ED) visits in
Florida.

e Compared to temperature, socio-
economic factors shows a stronger as-
sociation with HRI-ED visit rates.

e Vulnerable population groups bear a
disproportionate health burden from
extreme heat.

e Socio-economic and rural-urban dispar-
ities exist in HRI risk factors, calling for
tailored heat resilience policies.
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ABSTRACT

Climate change has increased the frequency and severity of extreme heat events globally, adversely affecting
socio-economic conditions and public health. However, extreme heat has disparate effects on different popula-
tion groups and the socio-economic determinants of its health effects are not well understood. In this study, we
analyzed the spatial patterns of heat-related illness (HRI) visit rates at the zip-code level in Florida and applied
statistical methods to examine the relationships between HRIs and environmental and socio-economic variables.
Hierarchical regression analysis was used to evaluate the socio-economic effects on HRI visit rates under the
same heat conditions. This is a two-step approach: we first included heat indicators in the baseline model and
then added the socio-economic variables to assess their unique contributions in predicting HRI visits. Our
findings indicate that temperature can only explain a small fraction of the variance in HRI cases (R =0.04,p <
0.01), while socio-economic variables show stronger associations (R2 = 0.42, p < 0.01 in urban areas and R?=
0.20, p < 0.01 in rural areas). Notably, marginalized and disadvantaged populations (e.g., individuals in poverty,
those employed in construction, and those with disabilities) are positively associated with HRIs (p < 0.01). These
findings highlight the disproportionate impacts of heat-related health issues on disadvantaged groups, calling for
climate justice policy interventions. Additionally, a comparative analysis between rural and urban areas revealed
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different determinants of HRIs. Our study enhances the understanding of the socio-economic determinants and
disparities of HRIs in Florida, providing actionable insights for policymakers and health agencies to prioritize
emergency services and heat resilience planning.

1. Introduction

Rising temperatures and climate variability lead to an increasing
frequency of severe extreme heat waves worldwide (Margolis, 2021). In
this context, heat-related illness (HRI) has become a growing public
health concern (Schramm et al., 2021). Unlike acute natural hazards
such as hurricanes and flooding, extreme heat is a slow-developing
process, and its adverse effects are not always immediately obvious.
However, extreme heat can exacerbate pre-existing health conditions (e.
g., cardiovascular diseases, respiratory disorders, and diabetes), creating
dangerous situations for vulnerable populations (Conlon et al., 2020).
The death toll claimed by extreme heat is among the highest of all
extreme weather events (NWS, 2023). According to the World Health
Organization (2022), extreme heat has already caused over 166,000
fatalities from 1998 to 2017 and is estimated to cause approximately
38,000 additional deaths per year worldwide from 2030 to 2050. Given
the high fatalities and latent effects on public health, extreme heat is
often referred to as a “stealthy killer” (Arnott and Alvarez, 2022).

As the most vulnerable state to extreme heat in the U.S., Florida
experiences warm weather year-round, with high temperatures during
summers becoming the norm (Fig. 1). This increase in temperature
contributes to a rise in HRIs across the state (Fig. 2). Climate Central
(2019) projects that Florida will experience 130 hazardous heat days per
year by 2050, more than any other state in the U.S. Understanding the
health impacts of extreme heat enables early intervention for public
health and promotes overall well-being (Bakhsh et al., 2018). Florida’s
substantial elderly population, large number of immigrants, and low-
income groups are likely to bear a disproportionate burden from
extreme heat (Harduar Morano et al., 2016). In recent years, rapid urban
development has intensified the urban heat island effect in Florida cities,
while rural areas, still heavily reliant on agricultural industries, remain
inherently vulnerable to heat. These diverse socio-economic conditions
between rural and urban areas can result in varied health outcomes
under extreme heat.

The relationship between human health and extreme weather

conditions is a complex issue that involves health, social, and environ-
mental dimensions (Clarke et al., 2022; Ebi et al., 2021; Hass et al.,
2021; Robinson, 2021). Extensive research has established the funda-
mental links between extreme heat and public health outcomes
(Dialesandro et al., 2021; Errett et al., 2023; Kovats and Hajat, 2008).
However, the current literature presents several knowledge gaps that
deserve further investigation. First, although studies have identified
various risk factors for heat-related health outcomes (Faurie et al., 2022;
Varghese et al., 2020), the spatial heterogeneity of these factors across
different geographic and socio-economic contexts is not fully under-
stood. More specifically, the interactions between heat exposure, resil-
ience, and public health vary across different demographic groups (e.g.,
elderly residents, low-income households, and outdoor workers) and
geographic settings (e.g., urban and rural areas), and these spatial and
social disparities require further investigation. Second, the confounding
effects of socio-economic conditions often obscure the causal links be-
tween heat and health. Systematic approaches are needed to disentangle
the effects of the various factors and identify actionable levers to
enhance heat resilience. Third, while different heat metrics have been
proposed and applied in previous studies (Kodera et al., 2019; Perkins,
2015), there is no consensus on the optimal heat indicator for assessing
heat-related health outcomes. The spatial variation in how different
indicators—such as ambient temperature (AT), land surface tempera-
ture (LST), and heat events—relate to HRI has yet to be thoroughly
investigated. Finally, the State of Florida is unique in its year-round
warm temperatures, geographic disparities, high penetration of air-
conditioning, and large vulnerable populations. A comprehensive
investigation in Florida could provide valuable insights not only for the
state but also for other regions with similar socio-environmental
conditions.

This study attempts to address the above-mentioned issues by
analyzing the spatial patterns of HRIs and the associations of HRIs with
various heat indicators and socio-economic conditions in the State of
Florida. The correlation between HRIs and common heat indicators (e.
g., LST, AT, and heat events) is analyzed across geographic space to
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Fig. 1. Annual average summer temperature trend for Florida, 1990-2020 (NOAA, 2023). The solid gray line represents the annual average temperature (°F), with
notable peaks around 1998, 2010, and 2019 reaching approximately 81.5 °F. The gray dashed line is the linear trend line of annual average temperatures, indicating

a gradual increase in summer temperatures over the 30 years.
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reveal the optimal heat indicator in various locations. Hierarchical
regression analysis was applied to isolate the influence of socio-
economic conditions on HRIs under various heat exposures. Addition-
ally, we compared the associations between rural and urban areas to
reveal geographic disparities in heat health impacts. Specifically, this
study aims to address the following questions: (1) What is the spatial
pattern of HRI rates in Florida, and are there significant spatial clusters
of either high or low HRI visit rates? (2) Which temperature variable can
best represent the impacts of extreme heat in Florida? (3) In addition to
temperature, do socio-economic factors influence the occurrence of
HRIs? Is there an uneven distribution of HRIs among different popula-
tion groups and between rural and urban communities?

2. Related work

Extensive research has shown the adverse effects of extreme heat on
human health (Ebi et al., 2021; Shindell et al., 2020; Weilnhammer
et al.,, 2021). A comprehensive report by the Florida Department of
Health (2015) documented the significant adverse health impacts of
extreme heat exposure, including HRIs, cardiovascular diseases, mental
and behavioral disorders, respiratory conditions, and endocrine and
renal dysfunctions. The health impacts of extreme heat can be observed
from a variety of outcomes, including hospital admissions (Karlsson and
Ziebarth, 2018), emergency department (ED) visits (Sun et al., 2021),
and mortality. Existing evidence indicates that heat can significantly
increase the risk of mortality (Song et al., 2021). Zhao et al. (2024) show
that between 1990 and 2019, about 1 % of deaths during the warm
season were caused by heatwaves, accounting for 236 deaths per 10
million residents globally. This study also found that the risk of heat-
related mortality varies geographically, and the highest mortality rate
was in Southern and Eastern Europe. A study of 170 million German
hospital admissions from 1999 to 2008 shows that extreme heat may
cause a 12 % increase in mortality and a 6 % increase in hospital ad-
missions (Karlsson and Ziebarth, 2018). Additionally, ED visits often
serve as an early indicator of heat wave impacts, reflecting a broad
spectrum of health issues caused by heat (Schramm et al., 2021). Sun
et al. (2021) found that extreme heat was associated with a 7.8 % in-
crease in excess ED visits for any cause and 66.3 % for HRI-related ED
visits. Notably, this study also found that extreme heat causes an in-
crease in ED visits for renal diseases and mental disorders.

Various heat indicators are used to measure the heat experienced by
populations from multiple perspectives. AT typically measures the air
temperature at 2 m above ground level. Faurie et al. (2022) found that a
1 °C increase in AT leads to an 18 % rise in HRI cases. LST primarily
reflects the heat absorption and emission at the ground level and is
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commonly used to study urban heat island effects and their impact on
residents’ health (Hsu et al., 2021). Wang et al. (2021) revealed a strong
correlation between LST and heat-related morbidity rates in Maricopa
County, Arizona. The duration of heat is another important indicator, as
prolonged heat may have stronger impacts on health than single hot
days (Di Napoli et al., 2019). Anderson and Bell (2011) show that heat
wave mortality risk increased by 0.38 % for every 1-day increase in heat
wave duration. Additionally, the observation time and aggregation
methods of temperature may also influence the relationship between
heat and health outcomes. Xu et al. (2018) indicate that the mean
temperature was slightly better than the maximum temperature in
predicting heatwave impact on morbidity. Barnett et al. (2010) used
Poisson regression to analyze the association between five temperature
measures (e.g., maximum, minimum, mean, with/without humidity,
and heat index) and mortality, revealing significant variations in the
optimal temperature measure across age groups, seasons, and cities,
with no single temperature indicator being superior to others in all
conditions.

While high temperatures are a direct cause of heat illness, socio-
economic conditions may influence the resilience of individuals and
communities to extreme heat (Jung et al., 2021; Uejio et al., 2011; Wu
et al., 2024). Published evidence shows that different communities and
population groups exhibit varied health outcomes in extreme heat
(Mitchell and Chakraborty, 2014). Particularly, minorities and disad-
vantaged population groups are often disproportionately affected by
extreme heat (Fletcher et al., 2012; Hansen et al., 2013). Cultural
isolation can further exacerbate these disparities, as individuals from
certain racial and ethnic backgrounds may be less likely to access cooler
public spaces or live in environments with adequate cooling infra-
structure (Wilson, 2020). Kovach et al. (2015) found that rural areas
with many outdoor workers and urban areas with high population
density and low green space have higher HRI risk. Li et al. (2022) used
spatial error/lag models and demonstrated that neighborhoods with a
history of redlining experienced significantly higher rates of heat-related
outpatient visits and hospital admissions. Other socio-economic condi-
tions, such as education (Conlon et al., 2020), income (Fletcher et al.,
2012), occupation (Kim et al., 2017; Stoecklin-Marois et al., 2013), age
(Mac and McCauley, 2017), gender (Beckmann and Hiete, 2020),
neighborhood safety (Royé, 2017; Uejio et al., 2011), and air condi-
tioning usage, are also factors that influence heat resilience (O’Neill
et al., 2005; Sera et al., 2020).
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Fig. 2. Trends in heat-related emergency department (HRI-ED) visits in Florida, 2005-2019 (Florida Department of Health, 2023). The figure shows a steady increase
in HRI-ED visits in Florida, with counts rising from approximately 5.4 million in 2005 to 8.8 million in 2019, representing a nearly 63 % increase over the 15-

year period.
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3. Study area and data
3.1. Study area

Due to its unique geographic location, Florida has been historically
vulnerable to climate change and extreme heat events (NOAA, 2023).
Moreover, Florida has consistently been characterized by high humidity
levels, which limit a person’s ability to perform evaporative cooling,
thus exacerbating the HRI risk (NOAA, 2016). Florida’s unique de-
mographic characteristics increase its vulnerability to extreme heat.
Florida ranked 2nd in the ratio of elderly adults (Statista Research
Department, 2023) and has 620,000 people aged 65 and older, or under
5 years old, living below the poverty line—far above the average among
the lower 48 states (Climate Central, 2015). These population groups are
particularly vulnerable to extreme heat due to relatively lower physical
capacity, limited access to resources, pre-existing health conditions, and
restricted access to healthcare (Abrahamson et al., 2009; Nitschke et al.,
2013). Additionally, Florida has the third-largest Hispanic and Latino
population, as well as a sizable African American and Asian population
(U.S. Census Bureau, 2020). It is noteworthy that Florida has one of the
largest immigrant populations in the U.S. and is renowned as a preferred
retirement destination (American Immigration Council, 2015).
Furthermore, Florida’s economy heavily relies on agriculture, tourism,
and construction—sectors where workers are particularly vulnerable to
illnesses from prolonged exposure to high temperatures (Moyce et al.,
2016; Naseem, 2021). Due to its specific geographic and socio-economic
conditions, Florida faces unique challenges in combating the adverse
impacts of extreme heat.

3.2. Data

In this study, three types of data are collected for the analyses. First,
we use HRI-ED visit rates at the zip-code level to represent the health
outcomes of extreme heat. The zip-code level is the finest spatial reso-
lution available for HRI data in Florida. Additionally, socio-economic
and demographic variables at the zip-code level are widely available
from Census and American Community Survey (ACS) data, allowing us
to study the association between HRI and socio-economic conditions.
Unlike heat fatalities, which only represent extreme outcomes of heat
hazards, HRI-ED visits include a more extensive array of health out-
comes, including heat exhaustion, dehydration, respiratory ailments,
and cardiovascular complications, and thus can be considered a more
comprehensive measure of health outcomes of extreme heat. HRI-ED
visit cases were defined based on International Classification of Dis-
eases 9th revision Clinical Modification (ICD-9-CM) codes: 992.0-992.9,
E900.0, E900.1, and E900.9. Cases were classified if at least one of the
HRI codes was found in the primary diagnosis field or in one of the
secondary diagnosis fields (Florida Department of Health, 2023). The
HRI-ED visit rate data at the zip-code level (from May to September) in
2019 was obtained from the Florida Agency for Health Care Adminis-
tration (https://www.floridatracking.com/healthtracking). The data
have been age-adjusted to ensure equitable comparisons among groups
with varying age distributions (CDC, 2022). The HRI-ED visit rates are
the total number of HRI-ED visits per 100,000 population. In total, 984
out of 992 zip codes that have HRI-ED data were used in our analyses.
Geographic and socio-economic disparities between rural and urban
areas significantly influence HRI (Choi et al., 2021). Rural communities
face multiple challenges, particularly structural barriers such as limited
access to cooling centers, inadequate emergency services, and under-
developed public health infrastructure (Zeng et al., 2022). In contrast,
urban populations encounter distinct challenges, including heightened
temperatures from the heat island effect and different patterns of
occupational exposure (Spector et al., 2019), leading to varying HRI
patterns across these settings. Rural and urban zip codes were defined
using the U.S. Census Bureau’s urban definition (U.S. Census Bureau,
2023), which requires at least 2000 housing units or a minimum
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population of 5000. Zip codes with their centroids within the Census-
defined urban boundaries were defined as urban zip codes, while
those outside were classified as rural. In total, 554 zip codes were
classified as urban and 430 as rural.

Second, we included four temperature indicators as proxies to
represent the heat hazard, including LST, AT, number of heat days
(NHD), and the number of heat events (NHE). As a common indicator of
heat hazard, LST measures the heat absorbed and emitted by the surface
(Johnson et al., 2011). In this study, we used LST images derived from
Landsat 8 satellites. A total of 153 images at a 30 m resolution were
collected from Google Earth Engine to calculate the average LST from
May 1 to September 30, 2019 (Malakar et al., 2018). Open-source codes
developed by Ermida et al. (2020) were applied to mask cloud and
shadow-affected pixels in the Landsat images. Then, the average LST
was calculated from the cloud-free images.

AT, which measures the temperature of the surrounding air, is widely
used in heat-related studies as it directly affects human thermal comfort
and physiological responses (Avashia et al., 2021). The AT at 2 m height
was obtained from NASA’s Daymet Version 4 dataset (Thornton et al.,
2022), which provides gridded estimates of daily AT at a spatial reso-
lution of 1 km. In this study, 153 images of AT from May 1 to September
30 were used to calculate average AT.

NHD is the sum of days that exceed a given heat threshold, while
NHE captures sequences of consecutive heat days, emphasizing the cu-
mulative effects of sustained heat conditions (Kim et al., 2017). Both
NHD and NHE were determined using the maximum heat index data
acquired from the Centers for Disease Control and Prevention (CDC).
This index is calculated from both temperature and humidity (NOAA,
2022), offering a comprehensive perspective on extreme heat experi-
enced by humans (Perkins, 2015; Steadman, 1984). In this study, an
extreme heat day is defined as a day when the maximum heat index in a
specific census tract exceeds the 90th percentile, a relative threshold
calculated from the historical heat index for May to September between
1991 and 2019. The 90th percentile threshold is commonly used in
defining extreme heat events (Keellings and Waylen, 2014). Following
this standard, a heat event is defined as three or more consecutive
extreme heat days. Thus, NHD is the total number of heat days, while
NHE is the total number of heat events during the period from May 1 to
September 30, 2019. The heat index is calculated using Forcing File A of
Phase 2 of the North American Land Data Assimilation System (NLDAS-
2), and the gridded raw data are then aggregated to the U.S. county or
census tract level (LDAS, 2024). In this study, we used areal interpola-
tion to resample NHD and NHE from census tracts to zip codes. Areal
interpolation calculates a weighted average of values from census tracts,
where the weights correspond to the proportion of census tracts that
overlap specific zip codes (Netrdova et al., 2020).

Finally, we selected 21 variables to represent the socio-economic and
demographic conditions of communities. The selection of these vari-
ables was based on a comprehensive literature review on socio-
economic indicators of heat resilience (Harlan et al., 2006; Johnson
and Wilson, 2009; Reid et al., 2009). Median household income and the
ratio of the population in poverty represent economic capital, which
affects individuals’ ability to afford air conditioning (Ortiz et al., 2022),
access healthcare services (Wu et al., 2024), cooling centers (Gao et al.,
2022), and healthy work environments (Xiang et al., 2015). Housing
density can differentiate rural and urban environments, which exhibit
different built environments, availability of green spaces (Yu et al.,
2024), and prevalent occupations (Pramanik et al., 2022; Uejio et al.,
2011). The ratio of population without a high school diploma represents
educational attainment (Cheng and Sha, 2024). Higher education levels
are often associated with better knowledge and awareness of health risks
in extreme heat. Compared to renters, homeowners have greater control
of their homes and are thus more willing to invest in heat mitigation
(Klinenberg, 2002). People working in agriculture, construction, trans-
portation, and material moving are more likely to be exposed to outdoor
heat environments (Sabrin et al., 2021). People without a vehicle have
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higher exposure to extreme heat in transportation (Gu et al., 2024).
Additionally, we included age, racial, and ethnic variables to investigate
potential disparities in the health impacts of extreme heat across
different population groups. Populations with limited English profi-
ciency often include new immigrants who may face challenges in
accessing information about heat risks (Song et al., 2021). These socio-
economic variables were obtained at the zip-code level from various
American Community Survey (ACS) 5-Year Estimates (https://data.cens
us.gov/) from 2019 by the U.S. Census Bureau.

4. Analysis
4.1. Data processing

The abovementioned variables at different spatial resolutions were
aggregated or interpolated to the zip-code level. The LST was aggregated
to zip-codes in two steps: (1) computing the mean LST raster from daily
LST rasters for the period between May 1 and September 30; (2)
aggregating the mean LST raster in zip-codes using the zonal statistics.
The same procedure was applied to calculate the average AT in zip
codes. Areal interpolation was used to convert NHD and NHE from
census tracts to zip codes (Matisziw et al., 2008). The entire analytical
workflow of this study is illustrated in Fig. 3.

4.2. Exploratory data analysis

We applied both global and local Moran’s I to examine the spatial
patterns of HRI-ED visit rates in Florida. As a common indicator of
spatial autocorrelation, Moran’s I measures the degree to which similar
or dissimilar values are clustered in space. The Moran’s I statistic offers a
numerical representation of spatial autocorrelation ranging from —1 to 1
(Griffith, 1987). When calculating Moran’s I, we utilized the “queen”
contiguity rule to define neighborhoods in the weight matrix. Global
Moran’s I provides an overall measure of spatial autocorrelation for the
entire dataset, indicating the general trend in the study area. In contrast,
local Moran’s I represents spatial autocorrelation in the neighborhoods
of individual spatial units, helping identify local clusters of high and low
spatial autocorrelation.

4.3. Association analysis

We conducted four types of statistical analyses to examine the re-
lations between HRI-ED visits and environmental and socio-economic
variables. First, we analyzed the correlation between HRI-ED visit
rates and the four temperature variables, including LST, AT, NHD, and
NHE. Logarithmic transformation was applied to the raw data to address
the non-normality and skewness problems of the variables (Zhang et al.,
2008). We used Spearman’s correlation coefficient to compare the
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correlations between the heat indicators and HRI-ED visit rates. Corre-
lation strengths were interpreted using the following thresholds (Evans,
1996): |p| < 0.20 (very weak), 0.20 < |p| < 0.40 (weak), 0.40 < |p| <
0.60 (moderate), 0.60 < |p| < 0.80 (strong), and |p| > 0.80 (very
strong). The most correlated heat indicator was selected to represent
extreme heat in the following analysis.

Second, we performed Geographically Weighted Pearson Correlation
(GWPC) analysis to investigate the spatial variation of the correlations
between HRI-ED visit rates and the four heat indicators. Unlike Spear-
man’s correlation, which describes the correlation for the entire study
area, the GWPC reveals local variability and identifies hotspots of the
correlations (Kalogirou, 2014). Building upon these correlation ana-
lyses, the heat indicators most correlated with HRI-ED visits in different
areas were highlighted. In addition, we calculated the corresponding
local t-test statistics to assess the significance of the correlations at each
location (Kalogirou, 2012).

Third, we applied hierarchical regression analyses to analyze the
relations between socio-economic variables (independent variables) and
HRI-ED visits (dependent variable). Hierarchical regression is often used
to control for confounding factors (Hood et al., 2016). In this study, we
hypothesized that HRI is influenced by both extreme heat and socio-
economic conditions. Thus, we applied the hierarchical regression an-
alyses to isolate the contribution of the socio-economic variables to the
HRI-ED visits while controlling for heat intensity (control variables).

Finally, we conducted multivariate regression analyses between all
the variables (heat indicators and socio-economic variables) and HRI-ED
visits. The multivariate regression analysis examined the overall vari-
ability of HRI-ED visits that can be explained by the selected variables.
The goodness-of-fit of the model implied the predictive power of the
selected variables for HRIs. Variance Inflation Factors (VIF) were
calculated for the independent variables to examine their collinearity.
All variables and their descriptive statistics used in the statistical ana-
lyses are summarized in Tables S1 and S2 in the Supplementary Infor-
mation (SI).

5. Results
5.1. Exploratory data analysis

The four heat indicators (LST, AT, NHD, and NHE) show different
spatial distributions. As illustrated in Figs. 4(A & B), LST exhibits a clear
urban heat island effect, with higher values observed in urban areas,
such as Miami, Tampa, Clearwater, Sarasota, Orlando, Tallahassee, and
Jacksonville. In contrast, lower LST is evident in vegetated areas.
Compared to LST, AT shows a different spatial distribution (Figs. 4(C &
D)), with high values primarily distributed in inland areas. The AT in
coastal areas, particularly along the east coast, is generally lower. As
illustrated in Figs. 4(E & F), northwest and southeast Florida
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Fig. 3. The analytical workflow of the study.
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Fig. 4. Spatial distribution of the heat indicators. (A) LST in 30-m resolution raster; (B) LST aggregated in zip-codes; (C) AT in 1-km resolution raster; (D) AT
aggregated in zip-codes; (E) original NHD in census tracts; (F) NHD interpolated in zip-codes; (G) original NHE in census tracts, and (H) NHE interpolated in

zip-codes.

experienced high NHD during the summer of 2019, while central Florida
generally had fewer NHD. As illustrated in Figs. 4(G & H), the spatial
pattern of NHE is quite similar to that of NHD.

The HRI-ED visit rates in Florida show significant spatial heteroge-
neity (Fig. 5A). High HRI-ED visit rates are primarily concentrated in the
central and northeastern parts of the state, including the corridor be-
tween Tampa and Orlando (Lakeland urban area), Jacksonville and its
surrounding areas, as well as some suburban and rural counties in the
northern region. In contrast, low HRI-ED visit rates are mainly found in
the southern urban regions, such as Miami, Fort Lauderdale, and West
Palm Beach. Overall, urban areas tend to have lower HRI-ED visit rates,

while rural and peri-urban areas generally exhibit higher rates.

The global Moran’s I of 0.22 (p < 0.001) demonstrates statistically
significant spatial autocorrelation in HRI-ED visit rates in Florida. The
Local Moran’s I reveals High-High clusters (hotspots) of HRI-ED visit
rates in north and northeast Florida, which are areas with high HRI-ED
visit rates surrounded by neighborhoods with similarly high rates. As
shown in Fig. 5B, several hotspots of HRI-ED visit rates are detected in
central Florida, including the areas between Tampa and Orlando and
surrounding Gainesville. Another hotspot is in the panhandle region of
northwest Florida, including the counties of Santa Rosa, Jackson, and
Gulf. These areas are distinguished by high poverty rates and diminished
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codes in Florida, and (B) Anselin Local Moran’s I analysis for HRI-ED visit rates.
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median household incomes compared to the state average.

Conversely, the Low-Low clusters (coldspots), where low HRI areas
are surrounded by similarly low HRIs neighborhoods, are primarily
found around Orlando, Miami, and Naples, which are large metropolitan
areas that have relatively high population density and personal income.
Furthermore, High-Low and Low-High clusters are scattered in several
locations throughout Florida, which implies negative spatial autocor-
relation where HRI-ED visit rates are surrounded by dissimilar values
(Fig. 5B).

5.2. Association analysis

5.2.1. Relation between heat and HRI-ED visit rates

Fig. 6 shows that HRI-ED visit rates are significantly correlated (p <
0.001) with the four temperature variables in different directions. As
expected, HRI-ED visit rates are positively correlated with AT, indicating
that high air temperatures above the ground may increase the risk of
HRIs. However, HRI-ED visit rates are negatively correlated with LST
and NHD, implying that higher LST and NHD are associated with fewer
HRIs. The correlation between HRI-ED visits and NHE is not statistically
significant. These counterintuitive results suggest that the relation be-
tween HRI and the heat variables may be influenced by other factors.
The significant correlation between HRI and AT indicates that AT may
be a better measure of heat intensity in humans than the other three
variables. Considering the correlation analysis and the existing literature
(Good, 2016), we selected AT to represent heat hazard in the hierar-
chical regression analyses (Section 5.2.3).

The GWPC analysis reveals the spatial variation in the correlations
between HRI-ED visit rates and the heat indicators (Fig. 7). HRI-ED visit
rates and LST are positively correlated along the coast but negatively
correlated in inland areas and the Panhandle of northwest Florida. HRI-
ED visit rates and AT are positively correlated around Naples, Cape
Coral, and Ocala, while negatively correlated around Gainesville.
Notably, in the Panhandle, HRI-ED is negatively correlated with LST but
positively correlated with AT. In the areas surrounding Miami, HRI-ED is
positively correlated with LST but negatively correlated with AT. This
disparity suggests that, relative to AT, LST could play a more dominant
role in influencing HRI within these areas. Both NHD and NHE exhibit a
positive correlation with HRI-ED in the northwest and central regions, as
well as along the southeast coast. However, a negative correlation is
evident in several major cities, such as Jacksonville, Orlando, and
Miami, where higher NHD and NHE are associated with lower HRI-ED
visits. The varying relations between the heat indicators and HRI-ED
visit rates suggest that localized metrics should be used to measure

LsT -0.111 I*I‘O
-0.5
AT 0.140 -0.135
-0.0
NHD -0.114 0.131 -0.301 -—0.5
I-—I.O
NHE -0.042 0.044 -0.345
HRI-ED LST AT NHD

Fig. 6. Correlation coefficients between HRI-ED visit rates and four tempera-
ture variables.
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extreme heat in different regions. Detailed maps illustrating the signif-
icance level (p < 0.01) of the GWPC are provided in Fig. S1 in the SI.

To compare the correlations between HRI and the heat indicators, we
created a map (Fig. 8) to highlight the heat indicator with the highest
absolute GWPC correlation coefficient in each zip code. This map reveals
the heat indicators that exhibit the strongest correlation with HRI in
different areas. Specifically, LST is most correlated with HRI in the
Florida Panhandle, as well as in areas surrounding Sarasota, Lakeland,
and those near Port St. Lucie and Miami. AT displays a pronounced
correlation spanning from the northeastern region, covering Gainesville,
Lake City, and St. Augustine Beach, to the central region around Ocala
and further south to areas near Lake Okeechobee and West Palm Beach.
The strongest correlation for NHD is observed in the southwestern areas
around Cape Coral and Naples, as well as the central areas around
Tampa Bay, Palm Bay, and the Three Lakes Wildlife Management Area.
Finally, NHE emerges as the dominant heat indicator in the vicinity of
major cities such as Jacksonville, Orlando, and Tampa, as well as in the
central part of the Gulf Coast.

5.2.2. Hierarchical regression analysis

The hierarchical regression analysis was used to investigate the in-
fluence of the socio-economic variables on HRI-ED visit rates by setting
AT representing heat intensity as the control variable. In the analysis
results (Table 1), the baseline value indicates the amount of variance
explained by the control variable alone. The incremental R? value de-
notes the additional variance explained by other explanatory variables
after controlling for the heat indicator. The low baseline R? indicates
that AT only explains a limited variance of HRI-ED visit rates. The higher
incremental R? implies that, compared to AT, socio-economic variables
are more influential factors for HRI-ED visit rates. The VIF values for all
socio-economic variables were found to be <1.2, indicating no signifi-
cant multicollinearity between AT and the socio-economic variables (see
Table S3 in SI). As shown in Table 1, the percentages of population living
in poverty (POV), unemployed individuals (UNEMP), individuals
without a high school diploma (EDU), individuals employed in con-
struction (CONSTR) and agricultural occupations (AGR), percentage of
children (> 5 years old) (CHILD), individuals with disabilities
(DISABLE), and the Black population (Black) are positively correlated
with HRIs in both rural and urban areas (p < 0.01 for all, except rural
Black population: p < 0.05). These results imply that, under the same
heat intensity, the aforementioned variables have a strong positive effect
on HRI-ED visits. Conversely, the median household income (INC), the
percentages of White individuals (WHITE), and housing density (HDEN)
demonstrated a negative effect on HRI-ED visit rates in both urban and
rural areas (p-values: INC < 0.01; WHITE: urban < 0.01, rural < 0.05;
HDEN: urban < 0.01, rural < 0.05). Notably, several other variables
show urban-rural disparities. For example, the percentages of Asian
(ASIAN) and Hispanic/Latino population (HISP) are negatively corre-
lated (p < 0.01) with HRI-ED visit rates in urban areas. However, this
relation is insignificant in rural areas. The access to electricity displays a
significant negative relation (p < 0.01) with HRI-ED visit rates only in
rural areas. In urban areas, limited English proficiency (ENGLISH) is
negatively correlated, while lack of a vehicle (NOCAR) is positively
correlated with HRI-ED visit rates (p < 0.01).

5.2.3. Multivariate regression analysis

The Ordinary Least Squares (OLS) regression models show that AT
and the socio-economic variables can predict 42.2 % and 20.0 % of the
variance in HRI-ED visit rates in urban and rural areas respectively.
However, the significance of the Lagrange Multiplier (LM) test and
Moran’s I indicates the presence of spatial dependence in the residuals of
the OLS model. The increase in R? in the spatial lag model (from 0.422 to
0.456 in urban areas, and 0.200 to 0.250 in rural areas) demonstrates an
improvement in goodness-of-fit compared to the OLS models (Table 2).
The decrease in AIC also indicates that the spatial lag models provide a
better fit to the data than the OLS model. Therefore, we adopted the
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Fig. 7. Spatial distribution of four temperature indicators using GWPC. (A) LST, (B) AT, (C) NHD, and (D) NHE.

spatial lag model to quantify the relations in the dataset. It is worth
noting that both the OLS and spatial lag models exhibit a higher R? in
urban zip-codes than in rural zip-codes, implying that the selected var-
iables are more effective in predicting HRIs in an urban setting.

Fig. 9 illustrates the regression coefficients and their significance
levels for the spatial lag model in both rural and urban areas. The spe-
cific regression coefficients are detailed in Table S4 of the SI. Unem-
ployment (UNEMP), the disabled population (DISABLE), and people
without a high school diploma (EDU) have a positive effect (p < 0.05) on
HRI-ED visit rates in both urban and rural areas. Meanwhile, agricul-
tural (AGR) and construction workers (CONSTR), children (<5 years
old) (CHILD), and the Black population (BLACK) are positively associ-
ated (p < 0.05) with HRI-ED visits only in urban zip-codes, while these
relations are insignificant in rural areas. The percentage of the Hispanic
population (HISP) is negatively associated (p < 0.05) with HRIs in urban
areas, but the relation is not significant in rural areas. The median
household income (INC) negatively influences (p < 0.05) HRI-ED visits
only in rural zip codes.

6. Discussion

This paper provides a comprehensive assessment of the spatial pat-
terns and contributing factors of HRIs at the zip-code level in Florida.
The spatial autocorrelation analysis reveals significant clustering pat-
terns in the HRI-ED visit rates throughout Florida. The hotspots (High-

High clusters) of HRI were predominantly located in rural counties,
while the coldspots (Low-Low clusters) were concentrated in urban
areas. This finding is consistent with prior research showing that HRI is
more prevalent in rural areas (Fechter-Leggett et al., 2016). Several
factors might explain the observed pattern. For example, occupations
and lifestyles in rural areas might increase outdoor exposure (Lippmann
et al., 2013), while urban areas benefit more from the widespread use of
air conditioning in homes and public facilities (Scott and Timothy,
2003). Rural residents may have limited access to or knowledge of HRI
risks and prevention measures (Braveman et al., 2011). Their willing-
ness or ability to commute long distances to access cooling centers or
participate in community-led HRI prevention initiatives is also con-
strained in rural areas (O'Neill et al., 2009). Moreover, a study in North
Carolina found that rural areas experience higher rates of HRI (Kovach
et al., 2015).

The hotspots detected in central and northwest Florida show a sig-
nificant presence of labor-intensive outdoor occupations, particularly in
the agricultural industry (Harduar Morano et al., 2016). These areas are
distinguished by high poverty rates, low household incomes, and lower
education levels compared to the state average. Additionally, research
has revealed a notable Hispanic/Latino population residing in the
Panhandle region, with a majority engaged in service or construction/
extraction occupations (Bonauto et al., 2007). This unique demographic
composition may contribute to the hotspot of HRIs in northwest Florida.
Conversely, the two coldspots (Low-Low clusters) identified in Orlando
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and Miami can be attributed to the greater availability of cooling fa-
cilities in indoor environments (Hondula et al., 2015), higher education
and income levels, and abundant green spaces and shaded areas (Flocks
et al.,, 2011; Hwang et al., 2017). The regression analysis indicates that
the Hispanic population is negatively correlated with HRI-ED visit rates.
However, the underlying factors behind this correlation remain unclear.
Published evidence suggests that the unique social and spatial charac-
teristics, including high population density and vibrant public and retail
spaces, may mitigate the HRI risk in Hispanic communities (Klinenberg,
2002). These characteristics can enhance social cohesion and the
sharing of resources and information to cope with heat impacts, which in
turn foster communal resilience against HRIs (Harduar Morano et al.,
2016). Black population show a positive correlation with HRI-ED visit
rates in both hierarchical and multivariate regression analyses. This

Table 1
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result reveals the disproportionate health burden of extreme heat in
Black communities. Higher levels of poverty in Black communities can
limit access to healthcare and cooling resources, thereby increasing their
vulnerability to HRIs (O’Neill et al., 2005). Similar patterns have been
documented in numerous studies (Khatana et al., 2022; Madrigano et al.,
2018; Uejio et al., 2011).

When comparing the four heat indicators (LST, AT, NHD, and NHE),
only AT is positively correlated with HRIs, despite accounting for only a
small portion of the variance. Instead, the socio-economic variables
show stronger relations with HRIs. This finding implies that, compared
to the intensity of heat hazards, socio-economic disparities are more
important factors in differentiating HRI occurrences. These findings
align with previous research, which indicates the crucial role of socio-
economic resources in heat adaptation and vulnerability (Barreca
et al., 2016; Diboulo et al., 2012; Lindeboom et al., 2012). The negative
correlation between LST and HRI suggests that LST may not be the
optimal measure of heat intensity for human health. This result confirms
previous studies, which show that LST does not always reflect the
temperature individuals experience (Chakraborty et al., 2022). Instead,
the stronger relation (p < 0.05) suggests that AT may be a better indi-
cator of heat impacts on human health, as it represents the air temper-
ature people are exposed to (Good, 2016). NHD and NHE can be
influenced by the temperature thresholds used to define heat days (Hajat
et al., 2006). Studies have identified “morbidity displacement,” where
heat-related morbidity spikes during or after a heatwave but is followed
by a period of below-average illness rates (Anderson and Bell, 2011). In
southern regions, prolonged higher temperatures allow individuals to

Table 2
Model diagnostics for OLS and spatial lag regression in urban and rural areas.

Measurement OLS Spatial Lag

Urban Rural Urban Rural
Adjusted/Pseudo R* 0.422 0.200 0.456 0.250
Moran’s I of Residuals 0.081** 0.061%* 0.021** 0.003**
Akaike Information Criterion (AIC) 1351.87 1401.96 1344.1 1402.31
Lagrange Multiplier (SARMA) 9.826%* 3.283 Likelihood Ratio Test
Lagrange Multiplier (lag) 9.450* 3.382* 9.773**  3.425
Lagrange Multiplier (error) 6.041* 2.650
" p < 0.05.
" p <0.01.

Hierarchical regression of HRI-ED visit rates and socio-economic variables with AT as the control variable.

AT (control variable)

Urban zip code

Rural zip code

Category Variable (Baseline R?, Incremental R?) Coef. (Baseline R?, Incremental R %)
Socio-economic conditions POV (0.004, 0.100) 0.312** (0.002, 0.074)
INC (0.005, 0.174) —0.377* (0.003, 0.070)
UNEMP (0.003, 0.111) ; (0.001, 0.178)
EDU (0.004, 0.056) (0.002, 0.077)
AGR (0.004, 0.033) (0.002, 0.005)
CONSTR (0.004, 0.080) (0.002, 0.097)
Vulnerable population OLD (0.004, 0.006) (0.002, 0.001)
CHILD (0.004, 0.102) (0.002, 0.040)
FEMALE (0.004, 0.017) (0.002, 0.016)
DISABLE (0.004, 0.187) (0.002, 0.139)
Demographic conditions WHITE (0.004, 0.042) (0.002, 0.013)
ASIAN (0.004, 0.005) (0.002, 0.001)
HISP (0.004, 0.037) (0.002, 0.001)
BLACK (0.004, 0.095) (0.002, 0.030)
ENGLISH (0.004, 0.018) (0.002, 0.000)
Housing and transportation NOCAR (0.005, 0.035) (0.002, 0.015)
ELECT (0.004, 0.000) (0.002, 0.004)
HDEN (0.003, 0.000) (0.001, 0.009)
OWNER (0.003, 0.040) (0.001, 0.028)

* p < 0.05.
" p <0.01.
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Fig. 9. The regression coefficients of the spatial lag models between HRI rates and socio-economic variables in both rural and urban areas.

acclimate, reducing the incidence of HRIs (Bouchama and Knochel,
2002). Another potential issue to consider is the accuracy of common
temperature measures in capturing the actual intensity of heat experi-
enced by individuals. Research highlights the need for alternative
measures of heat hazards, such as the wet-bulb globe temperature,
which incorporates humidity and solar radiation (Heo et al., 2019), or
the Universal Thermal Climate Index (UTCI), which accounts for air
temperature, wind speed, humidity, and radiation (Brode et al., 2012).
Moreover, future research at different spatial scales (Bai et al., 2024)
could help to better understand how these heat-health relationships and
various temperature measures interact with socio-economic factors in
shaping heat vulnerability.

The regression analysis shows that urban and rural areas differ in
several factors for HRI-ED visits (Fig. 9). In urban areas, agricultural and
construction workers, children, and the Black population are positively
associated with HRIs, while these associations are not significant in rural
areas. The higher risk for agricultural and construction workers is
consistent with the study by Zeng et al. (2022), which indicates that the
urban heat island effect increases heat exposure for outdoor workers
(Moda et al., 2019). The higher HRI risk for children in urban areas is
partly due to spending more time in indoor, air-conditioned environ-
ments. When they engage in outdoor physical activities, their risk of HRI
increases significantly (Falk, 1998; Gilchrist et al., 2011). In contrast,
the lifestyle and living environment in rural areas may foster children’s
resilience to extreme heat. Additionally, the Black population, histori-
cally affected by residential segregation and socioeconomic inequalities,
often resides in older neighborhoods that lack cooling resources, which
increases their health risks (Hoffman et al., 2020). In rural areas, heat-
related risks are predominantly associated with income levels. Low-
income households often lack the financial means to purchase cooling
equipment or cover the high electricity bills required to operate them
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(Conor and Jeff, 2013). Furthermore, rural areas tend to suffer from
inadequate infrastructure and medical resources, making it difficult for
these families to access timely healthcare and support during heat
waves. Urban and rural populations, however, also share common risk
factors, including unemployment, low educational attainment, and
disabilities. Unemployment and low educational attainment are often
associated with lower income (Majeed and Baumann, 2023), which
limits their access to cooling equipment, increasing their exposure to
health risks during heat waves. People with disabilities face heightened
health risks in hot weather due to limited mobility, dependence on care,
and impaired physiological regulation, and this is particularly pro-
nounced in rural areas where medical services are less accessible and
emergency response systems are weaker (Junod et al., 2023). A signif-
icant positive association between heat risk and disability status was
also found in Los Angeles (Mitchell and Chakraborty, 2014). Taken
together, this indicates a higher incidence of HRIs in economically
disadvantaged and racially segregated zip code areas. The relation be-
tween socio-economic conditions and heightened HRI risks further
highlights the interwoven nature of social, economic, and environ-
mental systems. The high incidence of HRI is most commonly detected in
rural and inland areas, where the socially vulnerable neighborhoods and
labor-intensive industries are concentrated. This pattern demonstrates a
deep-seated issue of environmental justice, wherein the most vulnerable
segments of society are the hardest hit by the heat hazards. Overall,
these findings align with prior research on socio-economic disparities
and emphasize the critical role of economic status, race, and ethnicity in
explaining HRI inequality patterns, thereby raising urgent concerns
about climate justice and socio-economic disparities (Bonauto et al.,
2007; Lehnert et al., 2020).

To reduce the health risks associated with extreme heat in Florida,
policymakers can implement targeted measures to enhance the
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resilience of communities to high temperatures. In Florida’s diverse
communities, unemployed individuals and those with low education
levels often face financial barriers that limit their ability to protect
themselves during extreme heat events. Florida can leverage its unique
resources to implement cooling solutions for these population groups.
For instance, cities could mitigate urban heat island effects by expanding
green spaces along streets and in residential areas to create natural
shade corridors (Pereira et al., 2024). Additionally, public libraries,
which already function as hurricane shelters, could be upgraded to serve
as dual-purpose extreme weather shelters (Derakhshan et al., 2023). In
rural areas, setting up multi-language emergency hotlines could help
people who are immigrants and people with disabilities receive timely
assistance during extreme heat (Matthies et al., 2008). Heat protection
measures are particularly important for Florida’s outdoor workers in
tourism (with theme parks being a prime example) and agriculture (e.g.,
citrus harvesters). Tourist facilities should expand cooling areas and
provide shade for both visitors and staff, while agricultural operations
require portable shade and adjusted work schedules during periods of
extreme heat (Ebi et al., 2021). For children, schools should be equipped
with sufficient cooling systems, and educational programs should be
implemented to teach families how to protect themselves during
extreme heat events (Bernstein et al., 2022). Low-income rural house-
holds often struggle to cover air conditioning costs during extreme heat.
Meanwhile, a tiered subsidy system, tailored to household income and
heat vulnerability, could help ensure the most at-risk households receive
adequate support (Austin et al., 2024).

Our study acknowledges several limitations that should be addressed
in future research. First, the multivariate regression model explains 45.6
% of the variance in HRIs in urban areas and only 25.0 % in rural areas,
indicating that the selected variables do not capture all factors influ-
encing HRIs, particularly in rural settings. Future studies should incor-
porate a broader range of variables to identify other determinants of
HRIs. Second, although our linear regression models quantified the
contributions of various factors, they are limited in handling non-linear
and complex relationships. Once the primary drivers of HRIs are iden-
tified, future research should explore the use of machine learning al-
gorithms to enhance predictive accuracy, which could then be applied to
regions beyond Florida. Third, the HRI-ED visit data may not capture all
HRI instances. Individuals with mild symptoms or those facing health-
care access barriers might not seek emergency care. Instead, they may
opt for alternative non-emergency care options, such as community
clinics or self-treatment, which can lead to potential underreporting
(Harduar Morano et al., 2016). Nevertheless, these groups could
represent crucial target populations for future health policies and in-
terventions. Missing milder HRI cases potentially underestimates the
true burden of HRIs within the population and limits the applicability
and generalizability of the findings in informing broader public health
interventions. Furthermore, other conditions exacerbated by heat
exposure might not be classified as HRIs, further contributing to un-
derestimation (Hajat and Kosatky, 2010). Moreover, some ED visits
could involve non-Florida residents, such as tourists or out-of-state
workers, whose socio-economic conditions are not reflected in the ACS
data. Future research could benefit from integrating additional data
sources, such as community health surveys or questionnaires, to
improve data accuracy (He et al., 2021). Finally, our study used the HRI-
ED visit data in 2019, the latest pre-pandemic year, to avoid potential
distortion of COVID-19 on ED visits. Lockdown measures, work-from-
home arrangements, and concerns about visiting health facilities dur-
ing the pandemic likely deterred individuals from seeking care for HRIs.
Therefore, including data from post-COVID years would further
strengthen the robustness of the analysis.

7. Conclusions

Our zip-code level analysis of HRI-ED visits in Florida revealed that
socio-economic conditions are more strongly associated with HRI
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incidences than temperature alone. Vulnerable population groups (e.g.,
unemployed, lower educational attainment, and with disabilities) are
strongly correlated with HRI cases. The results highlight the need to
prioritize actions that mitigate the unequal consequences of extreme
heat events on marginalized communities. The multivariate regression
models demonstrate that the selected socio-economic and environ-
mental variables can predict a significant proportion of the HRI vari-
ance, indicating the potential transferability of these models for
predicting HRI risk in other regions or under hypothetical climate sce-
narios. Additionally, our analysis of rural versus urban disparities offers
insights into tailored strategies that could enhance heat resilience across
different community settings.
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