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Abstract— This paper addresses the constrained control of
nonlinear systems subject to bounded disturbances and ar-
bitrary state and input constraints. This is done by defining
a robust discrete-time control barrier function (RDCBF) and
using it to synthesize a control policy. Given that RDCBFs
are certificates of robust control invariance, it is shown that
robust maximal output admissible sets can be used to construct
RDCBFs. By also specializing the approach to linear systems,
the paper provides a step-by-step algorithm for designing a
safe and recursively feasible RDCBF-based controller for linear
discrete-time systems subject to bounded disturbances and
polyhedral state and input constraints. Numerical examples
showcase the effectiveness of the proposed controller compared
to other robust constrained control approaches.

I. INTRODUCTION

Robust control barrier functions (RCBFs) provide a simple
yet effective framework for providing constraint-handling
capabilities in the presence of model uncertainties [1], [2]
or external disturbances [3], [4]. However, the literature
on RCBFs is mostly centered around existence-type proofs,
meaning that the systematic construction of a valid RCBF re-
mains an open research question. In [5], the authors propose
input-to-state safe (ISSf) CBFs and provide a constructive
approach to synthesize them from existing CBFs. While ISSf
CBFs certify the existence of a robust control invariant set,
they require a priori knowledge of both a valid CBF and
the ISS gains. Robust CBFs have been proposed for the
discrete-time domain [6]—[8] as an extension of the discrete-
time exponential CBFs introduced in [9]. In analogy to the
continuous-time case, these schemes assume the existence of
an RCBF but provide no guidance on how to obtain it.

In this work, we propose a new robust discrete-time CBF
(RDCBF) definition that yields necessary and sufficient con-
ditions for robust safety. Then, we propose an algorithm to
systematically construct RDCBFs using existing tools from
the command governor (CG) literature [10]. Specifically, we
extend our previous work on discrete-time CBFs [11] to
account for bounded disturbances. Then, we explore how
robust maximal output admissible sets (RMOASs) are large
robust control invariant sets for an augmented system. Fi-
nally, we use these sets to construct an RDCBF and formulate
the associated robustly safe control policy. This approach
is then specialized to the linear systems case subject to
polyhedral state and input constraints. For this special case,
we present a complete algorithm for constructing RDCBFs in
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closed form. Finally, examples showcase that the constructed
RDCBFs yield good performance when compared to other
constrained control methods such as robust model predictive
control (RMPC) [12] and Robust CG (RCG) [13].
Notation: Given two matrices A € R™"*P and B € R™*P,
let [A;B] £ [AT BT]T € R**™>P_ The symbol C denotes
set inclusion, but not necessarily strict inclusion. An infinite
sequence of vectors x;, € C is denoted by {x;} C C.

II. PRELIMINARIES

Given state and input domains X C R™ and U C R™,
consider a discrete-time system

Xk+1 = f(xkv uk)a (1)

where x; € X, u, € Uyand f : X xU —» X is a
continuous function. Let X C X be a closed set describing
state constraints and &/ C U be a compact! set describing
input constraints. Additionally, let x : X — U be a nominal
controller that achieves desirable performance in the absence
of constraints. As detailed in [11], DCBFs can be used to
generate an input sequence {uy} C U that mimics the
performance of the nominal controller x while also enforcing
constraint satisfaction {x,} C X.

Definition 1: [11] A continuous function h : X — R is
a discrete-time control barrier function (DCBF) if

sup {h(f(x,u))] >0, VxecC, 2)
ueld
where
C ={xeX]|h(x) >0} 3)
Lemma 1: [11] The set C C X given in (3) is control

invariant if and only if h is a DCBF.
Given a DCBF h such that C C X, the safety goal is achieved
with an optimization-based control policy 5:C —U

B(x) = argmin [u — x(x)|]?, (4)
uek(x)
where
Kx)={uecl] h(f(x,u)) > 0}. 5

Since K(x) # 0, ¥x € C, the optimization problem (4) is
always feasible and 3 is well-defined.

I As detailed in Remark 1, compactness of U makes DCBFs sufficient for
control invariance of C. Necessity holds even if I/ is unbounded.



III. ROBUST DCBF-BASED CONTROL

In this section, we extend the DCBF definition to systems
subject to bounded disturbances. To this end, consider

Xk+1 = f(xkv Uug, dk)v (6)

where f : X x U x R? — X is a continuous function and
d; € D is a bounded disturbance, with D C R? compact.
The constraint sets X’ and U/ are as defined above. Based on
[14], a set C C X is robust control invariant if

vxel, Jueld: f(x,ud)el, vdeD. (7)

With this characterization of robust control invariance, we
have the following definition

Definition 2: A continuous function A : X — R is a robust
discrete-time control barrier function (RDCBF) if

sup inf [h(f(x, u, d))} >0, VxeC, (8)
ucy deD
where C is defined as in (3).

Theorem 1: The set C defined in (3) is robust control
invariant if and only if & is an RDCBF.

Proof: Let C C X be robust control invariant. Given
x € C, there exists u € U such that f(x,u,d) € C, vd € D.
This implies infgep h(f(x, u, d)) > 0. Thus, (8) holds, and
h is an RDCBF.

Now, let h be an RDCBF and let x € C be given. By
continuity of h, f and compactness of D, we have that the
map u — infaep [A(f(x,u,d))] is continuous. Since U
is compact, the supremum of this map is attained at some
u € U and this input vector is such that f(x,u,d) € C for
all d € D. Since x € C was arbitrary, we have that (7) holds
and we conclude that C is robust control invariant. [ ]

Remark 1: 1If the input constraint set U/ is closed, but not
bounded, h being a (R)DCBF is necessary, but not sufficient,
for (robust) control invariance of C = {x € X : h(x) > 0}.
To illustrate this, consider the linear, scalar system xy41 =
uy, and the continuous function

h(z) = {—x—ml,

—e~ s

<0,
z > 0,

with C = (—o0, —1]. Given x € C and U = [0, 00), which is
closed but not bounded, we note that

sup[h(u)] = max (— 1,sup—e~ ") = 0.

ueU u>0
Thus, h is a DCBF even though C is clearly not control
invariant. Nevertheless, the loss of sufficiency is not an issue
for this paper since its main focus is using C to construct h,
as opposed to the other way around. Thus, all the remaining
results in this paper are applicable when the assumptions on
U are relaxed from being a compact set to a closed set.

Similar to the DCBF case, given an RDCBF h such that

C C X, we can define the optimization-based robust control
policy 3 : C — U as in (4) with the new feasible set

K(x) ={uel|h(f(x,u,d)) >0, ¥d € D}. (9)

Again, h being an RDCBF guarantees that K(x) # 0,
Vx € C, so [ is well-defined. By construction, the closed-
loop system controlled with 3 is robustly safe, satisfying
xp € X for all £ € N even in spite of the unknown
disturbance sequence {d;} C D. Note that, given x € C,
verifying u € K(x) for the robust case (9) is much more
difficult than in the nominal case (5) because we must verify
the condition for all possible d € D. The next remark
addresses this shortcoming.

Remark 2: The following conditions greatly reduce the
complexity of the set K(x):

(a) The system (6) is control-and-disturbance-affine

f(x,u,d) = fo(x) + fu(x)u+ fa(x)d, (10)

with f, : X > R"”, f, : X—=>R” xR and f4: X —
R™ x R? continuous functions;

(b) the RDCBF h : X — R is linear.

If the assumptions in Remark 2 hold, K(x) is equivalent to

K(x)={ue U\h(f$(x))—|—h(fu(x)u)+h(fd(x)é(x)) >0},
where ¢ : X — R is defined as

0(x) = ar(;ger%in h(fa(x)d).

Y

Note that, given the function §(x), the optimization problem
(4) is reduced to a quadratic program (QP).

Remark 3: While the term (x) given in (11) may seem
troublesome, it is in fact decoupled from the optimization
problem defining 3 (4). Additionally, the linearity assump-
tion on h implies that (i) if D is convex, (11) is a convex
program, (ii) if D is polyhedral, (11) is a linear program, and
(i) if the system is linear in d, i.e. f4(x) = E € R™ x RY,
(11) can be computed offline and § is a constant function.

Thanks to Theorem 1, finding an RDCBF for arbitrary
state and input constraint sets is equivalent to finding a
constraint-admissible, robust control invariant set C C X. Of
course, larger sets C are preferred to increase performance.
This realization leads us to consider the robust maximal
output admissible set (RMOAS) [10] as a candidate for C.

IV. RDCBF CONSTRUCTION USING THE RMOAS

This section shows how the established theory of output
admissible sets [10], [15] can be used to find a suitable C
and an associated RDCBF.

A. Robust Maximal Output Admissible Set

To apply RMOAS results, we need the following assump-
tion

Assumption 1: The disturbance set admits 0 € D. Fur-
thermore, in the absence of disturbances, the equilibrium
points of (6) can be parameterized using continuous functions
z:V —Xand @:V — U such that

#(v) = f(2(v),u(v),0),

Moreover, there exists a control law 7 : X x V — U and
functions ¢ € KL and v € X such that, Vv € V, Vxg € X|

Ik —2(v) ]| < max (o (Ixo— V)], k), ¥ (dmar) ), Vk € N

Vv € V. (12)



where dmax = supgep [|d|| and x;, satisfies the prestabilized
dynamics

Xk+1 = f‘n’(xkav7dk) £ f(XkaW(XkaV)7dk)- (13)
Since v € V can be interpreted as a reference for the presta-
bilizing control law, we define the steady-state admissible
reference set

V={veV]|z(v)e X, ulv)elU}. (14)

Let 7 be a prestabilizing controller as in Assumption 1. For
each reference v € V, the input constraint set ¢/ induces
state constraints on the prestabilized system f,. Combining
these with the original state constraint set X', we define the
reference-dependent state constraint set

Xy ={xeX|n(x,v)elU}. (15)

By continuity of 7 on V, it follows that X, is closed in X.
Then, the robust maximal output admissible set (RMOAS)
is defined as follows.

Definition 3: The RMOAS of the prestabilized system f,
given in (13) is

Ou = lim O, (16)
k—o0

where O, satisfies the set recursion

Op+1={(x,v) € O (f,r(x,v7 d),v) €0y, vd € D},
17

with Op £ {(x,v) € X x V| x € X, }.
Note that Op1 C Oy for all k£ € N. Thus, if there exists
a k* € N such that Ops«y11 = O+, then Oy, = O+ and
we say O is finitely determined [10]. Since this property
is important for tractable computation, we study under what
conditions O, is finitely determined.

As a consequence of Assumption 1, for each v € V, there
exists [16] a robust forward invariant set F, such that

B(f(v)v'Y(dmaX)) ={xeX:|x=2(v)|| <¥(dmx)} C Fv.

That is, x € F, implies that f,(x,v,d) € F,, ¥d € D.
Now, we make the following assumption about the constraint
sets.

Assumption 2: The set X' is compact and there exists v €
V such that F, C A.

Proposition 1: Under Assumptions 1 and 2, there exists
a compact subset V¢ C V such that the RMOAS inner
approximation

O 2 00N (X x V) £,

is finitely determined

Proof: By construction, (x,v) € O, implies that,
given X9 = x and any sequence {dy,...,d,} C D, the
solution to Xp41 = fr(Xg,Vv,dy) satisfies x5, € X, for all
k € {0,...,n}. By Assumption 2, there exists a compact set
V¢ C V such that Vv € V¢, F, C Xy. Define

(18)

a= max |x—z(V)|, (19)

(x,v)exX x Ve

and note that ¢ < oo by compactness of X x V¢ and
continuity of Z. Let us pick k* € N such that o(a,k*) <

"Y(dmaX)-

Now, let (x,v) € O5. = O N (X x V) and let
{do,...,dg+41} C D be given. We immediately have that
x, € Xy for all k& € {0,...,k*}, with xo = x. Let us
examine Xy~ against the ISS condition of Assumption 1:

[%k+ 41— Z(v)[| < max (o ([x — Z(v)[l, k" + 1) ,7(dmax))
< max (o(a,k* + 1), 7(dmax))
S 'Y(dmax)-

This implies

X1 € B(Z(v),7(dmax)) C Fv C X (20)

Thus, (x,v) € Oj 41, yielding that Of. C Oj. ., and we
conclude Oj.. = Of,. Furthermore, note that any v € V¢ #
0 is such that (Z(v),v) € O%, # 0. [ ]
Although the systematic construction of Oy (or OF) for
general nonlinear systems remains an open research ques-
tion, methods for computing polyhedral RMOAS have been
proposed for linear systems [10], piecewise affine systems
[17], and systems governed by DC functions [18].

B. Augmenting the System and RDCBFs

Having identified the RMOAS of the prestabilized system
fx» let us consider the augmented system

{Xkﬂ} _ [f(xkvuk’dk)] 7

21
Vi1 Wi @h

where the augmented state is (xx,vy) € X x V and the
augmented input is (uy, wy) € U x V. The augmented state
constraint set is X X V and the augmented input constraint
set is U x V. We have the following results:

Lemma 2: The RMOAS O, C X x V and the inner
approximation OS, C X x V¢ are robust control invariant
sets for the augmented system (21).

Proof: Let (x,v) € O and note that x € X, which
implies that 7(x, v) € U. The augmented input (7(x,v), V)
is such that (f(x,7(x,v),d),v) € Ou, ¥d € D. Thus,
O« 1is robust control invariant. The same argument holds
for OF,. ]

Remark 4: Projecting the RMOAS O, and the inner
approximation O onto the state-space yields robust control
invariant sets for the original system (6). These projec-
tions are denoted, respectively, by Proj, O, C X and
Proj, 05, C X.

Corollary 1: Any continuous function h : X x V — R
such that O = {(x,v) € X XV | h(x,v) > 0} is an
RDCBEF. The result also holds for OF_.

Proof: See Lemma 2 and Theorem 1. |
Having found an RDCBF h for the augmented system, we
can implement RDCBF-based control as follows. Let r €
V be a desired reference and let kK : X x V — U be a
nominal controller that steers the system to Z(r) without
taking constraints into account. The safe control policy [ :
C xV — U xV becomes

B(x,v) = argmin |lu— k(x,1)|?+nllw —r||? (22)

(u,w)€eK(x,v)



where 1 > 0, and
K(x,v)={(u,w) € U x V:h(f(x,u,d),w) > 0,vd € D}.

Remark 5: Although the additional term 7||w—r||? in (22)
is not necessary for safety, its inclusion makes the objective
function strictly convex, which is helpful for numerical
solvers. In practice, we observed that, as n — oo, the
performance of the constructed RDCBF degrades to that of
the RCG.

V. RDCBF DESIGN FOR LINEAR SYSTEMS

This section specializes the previous results to linear
systems subject to polyhedral state and input constraints
and bounded disturbances. The construction of the RMOAS
differs from that in [10] because they consider the RMOAS
as a subset of the state-space (O, C R™), while we augment
the RMOAS to include references (Oo C R™™). This
augmentation is a nontrivial extension that leads to better-
performing RDCBFs. Consider the discrete-time, linear sys-
tem

X1 = Axy, + Buy, + Edy, (23)

where x; € R”, u, € R™, di € D, with D C R? compact.
In this case, we assume the state X C R™ and input/ C R™
constraint sets are polytopes (bounded polyhedra) containing
the origin and described by

X={xeR" | Wx <z}, U={u e R™ | Mu < b}.
(24)
With this setup, we will construct an RDCBF-based con-
strained control law by retracing all the steps laid out in
previous sections. Sample MATLAB code for generating the
proposed control law can be found on GitHub?.

A. Design the Prestabilizing Controller

Assumption 1 implies that the pair (A, B) is stabilizable.
Furthermore, we assume that B is full column rank. With
this, ker [A — I, B] admits a basis in the form G =
[G.; Gy] with G, € R™*™ and G,, € R™*™. Assumption 1
also ensures that it is possible to design a gain K € R™*"
such that A — BK is Schur. We consider a prestabilizing
policy

(X, V) = Gu,v — K(x — Gzv), (25)

where v € R™ is the reference and Z(v) = G,v is
the equilibrium point of the undisturbed system associated
to v. The dynamics of the prestabilized system are then
captured by the closed-loop matrices A, = A — BK and
B, = B(G, + KG,).

Remark 6: As detailed in [19], Assumption 2 can be
relaxed by defining a set of system outputs y = Cx+Du and
a compact output constraint set ) that captures all the state
X and input U constraints, such that the pair (A,,C — DK)
is observable and 0 € Int ()’). In this work, as is customary
in the CBF literature, we present the result directly in state-
input space and abstain from defining system outputs.

Zhttps://github.com/ROCC-Lab-CU-Boulder/Robust-CBF-for-DT-LTI

B. Closed Form RMOAS
Let € € [0, 1] and consider the set

VE—{VGR"LHVX ]\OA Gv<(l—¢ {E]}CV
(26)
Since B has full column rank, so does G, making the map
Z injective. Thus, V is bounded by compactness of X and
U. Tt then follows that the closed subset V¢ C V is also
compact. Next, let us define the recursions

Ar Bi
Lit1 = Ly s, Agy1 = ap — @y, 27)
0 I,
where
0 W@, (1-¢€)z
B 0 MG, |1 -eb
LO - %% 0 , Qg = z )
-MK M(G,+ KG,) b
and the i-th component of the vector ¢, is
[bu)i = maxe Ly[E; 0]d, (28)

where e; is the ¢-th canonical basis vector of appropriate

dimension such that [¢,]; = e ¢,. The following results

show that the RMOAS for linear systems has a closed form

representation, as opposed to the recursive form in Def. 3.
Lemma 3: Let € € [0,1]. Given any x € R", v € R™,

and k£ € N, the following statements are equivalent:

@) Liy1[x;v] < apqr.

(b) Lii[x;v] <ap — Lg[E;0/d, VdeD.

Proof: Let ¢ € N denote the dimension of the vector
ap and let x € R", v € R™ and k € N be given. Suppose
(a) holds and let i € {1,...,/} be given. Then, e/ aj,; =
ela; — [¢p.]; = e/ ay — maxgep e Li[E;0]d, which is a
lower-bound on e; (a, — Li[E;0]d) for any d € D. Since
1 € {1,...,¢} was arbitrary, the vector inequality in state-
ment (b) follows. Suppose now that (b) holds and consider
the vector inequality element-wise. Note that, for any ¢ €
{1,...,¢}, it follows from compactness of D that there exists
ad € Dsuch that e/ L;[F;0]d = maxgqep e, Ly[E;0]d =
[y Tt then follows that e Ly, 1[x;v] < e/ (ax — [@,]:),
for all 4. This implies Lyy1[x;v] < ap — ¢, = a1, and
(a) holds. |

Proposition 2: Let € € [0,1]. For any k € N,

O ={(x,v) | Li[x;v] <a;,i=0,...,k}. (29)
Proof: For the base case k = 0, Lo[x; v] < ag implies
that v € V¢, x € X and 7(x,Vv) € U, which further implies
that x € Ay So, the statement holds by definition of Of. For
the inductive step, assume the statement holds at k¥ € N and
consider the case k + 1. By definition, Of | = {(x,v) €
Oy, | (Axx + Byv + Ed,v) € Of,¥d € D}. From the
assumed description of O, we can write this set as

051 =05 {(x,V) | L1 [x; v] <ap— Ly [F;0]d, Vd € D},

Applying Lemma 3, the proof is complete by induction. B
Note that the previous results allow for ¢ = 0, and that
we make a slight abuse of notation by considering Of =



Oy. With this, the inner approximation Of can be made
arbitrarily close to Q. In the next section, we will see that
€ € [0,1] is related to the number of iterations needed to
describe OF.

C. Algorithmic Computation of RMOAS

Given € € (0, 1], Algorithm 1 iteratively computes Oj, and
checks redundancy of the new constraints in Oy, C Of.
The algorithm terminates at iteration k£* if all new constraints
are redundant, i.e. if Oy. = 0., = O. Nevertheless, it
should be noted that the algorithm may not converge for an
arbitrary choice of € € (0, 1). To systematically construct the
RMOAS, we recommend testing the algorithm with € = 1.
Notably, since V! = {0}, only two results are possible:

o If there exists a forward invariant set Fo C Xy, we
can apply Proposition 1 to show that the algorithm
converges. In this case, we recommend using a line
search method to identify for the smallest value € €
(0,1) such that OF is finitely determined Ve € [e, 1].

o If there is no forward invariant set Fy C Xy, we can
apply [10, Remark 6.2] to show that the algorithm
converges because Oéo = (). In this case, we can deduce
that the disturbance set D is too large for the presta-
bilized system. Although changing the prestabilizing
controller may help, it is possible that the problem is ill-
posed, meaning that the constraint set is incompatible
with the disturbances.

Algorithm 1 Compute k£* and OF
1: Initialize Kk =0, H = Ly and ¢ = ag
2: repeat
3 Of <« {zeR"™" | Hz<c}

4: Compute Ly, ag41 with (27)

5: Initialize empty L™, a*

6: for i € {1,...,length(ayy1)} do

7: if max,coe [e;rLkHz] > e;rakﬂ then
at

8: Lt e;rLkJrl]’ at « eiTamJ

9: end if

10 end for

11: if aT is not empty then

12: k+—k+1

13: H <+ [H; LT], c+ [c; a™]

14: end if

15: until at is empty

16: k* < k.

17: O, < Of

Remark 7: The representation for O obtained in Algo-
rithm 1 is not necessarily minimal. In fact, the algorithm
can be made more efficient by replacing the computation of
Ly and ag41, in line 4, with the assignment

A, B, ~
Ligy1 < LT [ 0 I ] , Ayl At — ¢y, (30)

where (}k is computed as in (28) but replacing Ly — LT.
This is because when a constraint becomes redundant, it will

remain redundant in all future iterations. See [20, Proposition
V.1] for more details.

D. RMOAS-based RDCBF

We can now formulate a closed-form RDCBF that can be
used in (4) to synthesize a safe controller.

Theorem 2: Let € € (0,1] be such that O is finitely
determined. Consider the augmented system

|:Xk;+1] _ {AX}C + Buy + Edy

, 31
V41 Wi ( )

with augmented state constraint set X x R™ and augmented
input constraint set & x R™. Define the set Z = {1,...,¢} x
{0,...,k*}, where ¢ is the dimension of ay and k* is the
finite index of O . Then, the continuous function

h(x,v) = min ej(ak — Li[x;v])

(i,k)ET
is an RDCBF with C = O, C X x V<.
Proof: See Proposition 2 and Corollary 1. [ ]

E. Implementing RDCBF-based control

The following result shows that the RDCBF-based policy
in (22) reduces to a simple QP.

Lemma 4: The feasible set of the RDCBF-based policy
B(x,v) is a polyhedron
K(x,v) =UXR™N{Mp[u; w] <bg(x),k=0,...,k"},

Mk = Lk l:g I?n:| y bk(X) = ak—Lk |:§:| X_¢k' (32)
Proof:  Given (x,v) € O, note that K(x,v) # 0
because h is an RDCBE. Let (u,w) € K(x,v) = {(u,w) €
UxR™ | h(Ax + Bu+ Ed,w) > 0, ¥d € D}. Let
k € {0,...,k*} be given and note that Vd € D, Vi €
{1,...,0}, ] (a — Ly[Ax + Bu+ Ed; w]) > h(Ax +
Bu + Ed,w) > 0. Applying the definition of ¢, and
considering a vector inequality (stacking the ¢ rows), we
arrive at My [u; w] < by (x).

For the other direction, assume that (u, w) € U x R™ are
such that Mj[u; w] < bg(x) for all £ € {0,...,k*}. Let
d € D and (i, k) € Z be given and note that e/ My [u; w| =
e/ Li[Bu; w] < e!bi(x) = e (ax — Li[Ax; 0] — ¢,,).
Applying the definition of ¢, and rearranging, we obtain that
e/ (ay — Li[Ax + Bu+ Ed; w]) > 0. Thus, by definition
of h(x,v), we have that Vd € D, h(Ax+ Bu+Ed,w) > 0,
completing the proof. [ ]

VI. EXAMPLES

In this section, we present two examples to demonstrate
the performance of RDCBFs synthesized from the RMOAS
for robust constrained control. We compare our approach
with the robust MPC [12] and the robust command governor
(RCG) [13]. In all examples, we solve the optimization
problems in MATLAB using YALMIP [21] with MOSEK
[22]. Projections and set operations are computed with MPT3
[23]. All computations are performed in a laptop PC running
Windows 11 with an Intel i5 @ 1.60 GHz CPU and 16 GB
RAM.



TABLE I
OPTIMIZATION PROBLEM SOLVE TIMES

Double integrator F-16 pitch pointing
Avg [ms] | Max [ms] | Avg [ms] | Max [ms]
RDCBF 0.80 1.01 1.31 1.77
RMPC 1.41 1.93 - -
RCG 0.45 0.55 1.07 1.31
1.5F B
I e e S S
% OISﬁ RDCBF| ]
) RCG
- = = .RMPC
05 | | | |
0.5 1 15 2 25 3

0 05 1 15 2 2.5 3
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E ot - 1
= = =
2F ‘ ‘ ‘ ‘ ‘ 1
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t[s]
Fig. 1. Simulation example for the double integrator system. The red lines

represent the position X and input I/ constraints, whereas the dashed black
line is the desired reference.

Example 1: Let x = [z;&] and v = & be the state and
input vectors, respectively, of a double integrator system
sampled at 10 Hz. The system has the form of (23) with
matrices

B el o[

and sets X = {x : |z| < 1}, U = {u : |u] < 1.5},
and D = {d : |d| < 0.4}. The nominal controller is
k(x,7) = —24.84(x — r) — 11.874 and the prestabilizing
controller is m(x,v) = —2(z—v)—2.24. Using the linesearch
approach detailed in Subsection V-C, we found e = 0.25,
leading to the set V¢ = [—0.75,0.75]. The desired reference
is 7 = 1.1 and we use n» = 0.1. Figs. 1 and 2 compare the
performance of the RMOAS-based RDCBF to an RMPC [12]
and an RCG [13]. To ensure fairness, all three controllers
are designed to behave identically in the unconstrained case
X = R? and U = R. In the presence of constraints, the
RDCBF achieves closed-loop performance comparable to
RMPC, while having lower computational cost (Table I).
Since the desired reference was intentionally placed outside
the constraint set X', the RDCBF and RMPC successfully
steer the system close to the constraint boundary (without
ever violating it). The same is not true for the RCG, which
instead steers the system to a strictly steady-state admissible
equilibrium, associated to some v € V°.

Example 2: Let the constrained F-16 pitch dynamics de-
tailed in [11, Example 2] be augmented with the disturbance
matrix £ = [0.0157e2 0.0524e4 0.0524e5], where e; is
the i-th canonical basis vector in R5, and disturbance set

[ Proj. 0%
RDCBF
RCG

— — RMPC

a(t) [m/s]

0 0.2 0.4 0.6 0.8 1
z(t) [m]

Fig. 2. State-space trajectory generated by each approach. Also shown is
the projection of the RMOAS onto the state-space Proj, O, (see Remark
4). The RMPC is not restricted to the set Proj,O¢g, and can therefore be
more aggressive than the RDCBF. However, the difference between the two
is negligible compared to the difference in computational cost (see Table I).

D = {d € R® | |[d|l < 1}. Note that the state
vector is x = [0; ¢; «; 0¢; 0], collecting the pitch, pitch rate,
angle of attack, elevator deflection and flaperon deflection,
respectively. The input vector is u = [de.;dfc], collecting
the elevator and flaperon deflection commands, respectively.
The task is reaching a reference pitch angle 6, = 7/20
and a reference flight path angle ~, = 137/360, with
v = 6 — a. The constraint sets are X = {x : |a| <
47 /180, |6.| < 257/180, 10| < 207/180} and there are
no input constraints as they are virtual commands (i.e.,
U = R?). The gain matrices of the nominal and prestabilizing
controllers were obtained using an LQR with state penalty
Q = diag([10 0 10 0 0]) and input penalty R = 10731,
for the nominal controller s, but R = 10721, for the
prestabilizing controller 7. Using the linesearch approach
detailed in Subsection V-C, we found ¢ = 0.15. Fig.
3 compares the response obtained using the RDCBF and
RCG. As in the previous example, the RDCBF achieves
faster convergence than the RCG in exchange for a modest
increase in computational cost (Table I). This example does
not include an RMPC comparison because the algorithm
for computing the minimum disturbance invariant set [12]
was intractable for this 5-dimensional state. This highlights
that the proposed RDCBF scheme is easier to implement
than RMPC. In the absence of disturbances, [11, Example
2] showed that DCBFs achieve closed-loop performance
comparable to MPC.

VII. CONCLUSION

In this paper, we defined robust discrete-time control
barrier functions (RDCBFs) and showed that they can be
used to synthesize a constrained control policy that is robust
with respect to bounded disturbances. Next, we showed
how to synthesize RDCBFs by leveraging the theory of
robust maximal output admissible sets (RMOASs). We then
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Fig. 3. Simulation of the F-16 aircraft model. It can be seen that both the
RDCBF and RCG approaches successfully enforce the safety constraints
(dashed red lines) on the angle of attack « and control surfaces deflection
de, ¢ even in the presence of disturbances.

specialized the approach to linear systems and provided a
systematic algorithm to construct RDCBFs and implement
the derived control policy. Numerical simulations showed
that the proposed approach can achieve closed-loop perfor-
mance comparable to robust MPC, while having a lower
computational footprint and being substantially easier to
implement.
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