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Abstract: We used the transfer matrix method to investigate the conditions supporting the existence

of directional bulk waves in a two-dimensional (2D) phononic crystal. The 2D crystal was a square

lattice of unit cells composed of rectangular subunits constituted of two different isotropic continuous

media. We established the conditions on the geometry of the phononic crystal and its constitutive

media for the emergence of waves, which, for the same handedness, exhibited a non-zero amplitude

in one direction within the crystal’s 2D Brillouin zone and zero amplitude in the opposite direction.

Due to time-reversal symmetry, the crystal supported propagation in the reverse direction for the

opposite handedness. These features may enable robust directional propagation of bulk acoustic

waves and topological acoustic technology.

Keywords: phononic crystal; directional waves; topological acoustics

1. Introduction

Unconventional topological features can endow waves in acoustic metamaterials
and phononic crystals with exotic properties [1]. Breaking time-reversal symmetry of
the equations governing the propagation of acoustic waves in a medium may lead to
conditions for which a bulk wave or an edge/interface wave (localized at a surface or
interface) propagates in only one direction. These one-way propagating waves are robust
against backscattering due to obstacles, such as defects in the medium, as a reflected
wave is not supported by the medium. In this scenario, physically realizing one-way
propagation of acoustic waves requires the use of active media in which one injects energy
to break time-reversal symmetry. Examples of such an approach include media subjected
to spatiotemporal modulation of their physical properties [2–7] or media supporting time-
reversal symmetry-breaking elements such as circulators [8] or gyroscopes [9].

A less demanding approach to achieving some form of immunity to backscattering of
acoustic waves is to employ media structured in such a way that leads to breaking inversion
or parity symmetry [10,11]. Conditions in these media arise for the existence of edge waves
propagating in opposite directions at surfaces or interfaces that are orthogonal to each
other, and hence support a form of resilience against back reflections. The conversion
of an incident wave impinging on an obstacle to a reflected wave (propagating in the
opposite direction) is more difficult in these media than in conventional materials, as it
requires an obstacle shape that couples the two otherwise orthogonal waves. Immunity to
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backscattering is therefore possible for a range of defects; however, this approach does not
lead to robust immunity to backscattering.

An interesting opportunity in this context arises when we combine broken inver-
sion/parity symmetry with Fabry–Pérot resonances, leading to directional bulk waves that
are more robust to backscattering [12,13]. These waves, called DRAK (Deymier, Runge,
Alù, Khanikaev) modes, exhibit non-zero amplitudes when propagating in one direction
but zero amplitude when propagating in the opposite direction for the same handedness.
So far, DRAK modes have been studied in continuous or discrete one-dimensional super-
lattices. These superlattices are composed of periodic arrays of alternating layers of two
different materials. The DRAK mode arises when a Fabry–Pérot resonance [14] of one
type of layer becomes incompatible with the translational periodicity of the superlattice,
that is, the resonance becomes incompatible with the Bloch wave character of waves in
periodic media. While scattering of orthogonal edge modes does not offer robust immunity
against backscattering [15,16], DRAK modes have been shown to exhibit robust immunity
to backscattering by general scattering potentials [13].

The current paper extends previous work on DRAK modes in 1D superlattices to 2D
phononic crystals. Here, we derive conditions for the existence of DRAK modes in the 2D
Brillouin zone of a square lattice of unit cells composed of rectangular subunits constituted
of two different continuous media. This work demonstrates that DRAK modes may not
be limited to one-way propagation in low dimensionality phononic structures but also to
propagation in composite structures with dimensionality higher than one.

We introduce the 2D model system in Section 2. In Section 3, we use the transfer matrix
method [17] to establish relations between the amplitudes of the constitutive subunits of
the phononic crystal. Section 4 illustrates some of the conditions which may lead to DRAK
modes in the 2D Brillouin zone of the phononic crystal. Finally, some conclusions are
drawn in Section 5 regarding the relevance of this work in the context of reducing reflection
loss in acoustic devices.

2. Model System

We consider a two-dimensional (2D) phononic crystal composed of two different types
of materials (Figure 1). The phononic crystal is periodic in the x and y directions. The
square unit cell is constituted of four subunits labelled 1l and 1u for material 1 and 2l and
2u for material 2. The upper scripts “l” and “u” stand for lower and upper quadrants of
the unit cell. The length of the edges of the subunits are labeled d1 and d2. The length
of the edge of the unit cell is L = d1 + d2. The origin of a unit cell in the (x,y) system of
coordinates is given by (nL, mL), where n and m are integers.

The interfaces between subunits belonging to the different unit cells (nL, mL) and

((n − 1)L, mL) are labelled (I) and (II). The interfaces between subunits belonging to the unit
cells (nL, mL) and (nL, (m − 1)L) are labelled (III) and (IV). Interfaces between subunits
within the same unit cell (nL, mL) are indicated by (V), (VI), (VII), and (VIII).

We consider elastic shear waves polarized in the direction perpendicular to the
phononic crystal plane and seek solutions for the displacement field, u, taking the general
form of Bloch waves.

Within a medium of type 1, the displacement field is written as

ul
1(x, y) = eiqxnL

(

Al
+eik

(1)
x (x−nL) + Al

−e−ik
(1)
x (x−nL)

)

×eiqymL

(

Bl
+eik

(1)
y (y−mL) + Bl

−e−ik
(1)
y (y−mL)

)
(1a)

ul
1(x, y) = eiqxnL

(

Al
+eik

(1)
x (x−nL) + Al

−e−ik
(1)
x (x−nL)

)

×eiqymL

(

Bu
+eik

(1)
y (y−mL−d1) + Bu

−e−ik
(1)
y (y−mL−d1)

)
(1b)
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For medium 2, we have

ul
2(x, y) = eiqxnL

(

Cl
+eik

(2)
x (x−nL−d1) + Cl

−e−ik
(2)
x (x−nL−d1)

)

×eiqymL

(

Dl
+eik

(2)
y (y−mL) + Dl

−e−ik
(2)
y (y−mL)

)
(2a)

uu
2 (x, y) = eiqxnL

(

Cu
+eik

(2)
x (x−nL) + Cu

−e−ik
(2)
x (x−nL)

)

×eiqymL

(

Du
+eik

(2)
y (y−mL−d1) + Du

−e−ik
(2)
y (y−mL−d1)

)
(2b)

In Equations (1) and (2), qx and qy are wave numbers in the x and y directions, and

the displacements ul,u
1,2 are time-dependent and multiplied by the factor eiωt, where ω is the

wave angular frequency. The waves’ displacement in media 1 and 2, assumed homogeneous

and isotropic, obey the equation of motions of the form ρj
∂2uj

∂t2 = µj

(

∂2

∂x2 +
∂2

∂y2

)

uj with

j = 1, 2, where ρj is the mass density and µj is the stiffness. Considering the ansatz

uj = u0je
ik
(j)
x eik

(j)
y eiωt, the wave numbers k

(j)
x > 0, k

(j)
y > 0 satisfy the dispersion relations in

media 1 and 2, ω = cj

√

(

k
(j)
x

)2
+

(

k
(j)
y

)2
where cj =

√

µj

ρj
is the speed of shear waves in

medium j.

tt𝑢ଵ௟ (𝑥, 𝑦) = 𝑒௜௤ೣ௡௅ ቀ𝐴ା௟ 𝑒௜௞(ೣభ)(௫ି௡௅) + 𝐴௟ି 𝑒ି௜௞(ೣభ)(௫ି௡௅)ቁ× 𝑒௜௤೤௠௅ ቀ𝐵ା௟ 𝑒௜௞೤(భ)(௬ି௠௅) + 𝐵௟ି 𝑒ି௜௞೤(భ)(௬ି௠௅)ቁ
𝑢ଵ௟ (𝑥, 𝑦) = 𝑒௜௤ೣ௡௅ ቀ𝐴ା௟ 𝑒௜௞(ೣభ)(௫ି௡௅) + 𝐴௟ି 𝑒ି௜௞(ೣభ)(௫ି௡௅)ቁ× 𝑒௜௤೤௠௅ ቀ𝐵ା௨𝑒௜௞೤(భ)(௬ି௠௅ିௗభ) + 𝐵௨ି𝑒ି௜௞೤(భ)(௬ି௠௅ିௗభ)ቁ

𝑢ଶ௟ (𝑥, 𝑦) = 𝑒௜௤ೣ௡௅ ቀ𝐶ା௟ 𝑒௜௞(ೣమ)(௫ି௡௅ିௗభ) + 𝐶 ௟ି 𝑒ି௜௞(ೣమ)(௫ି௡௅ିௗభ)ቁ× 𝑒௜௤೤௠௅ ቀ𝐷ା௟ 𝑒௜௞೤(మ)(௬ି௠௅) + 𝐷௟ି 𝑒ି௜௞೤(మ)(௬ି௠௅)ቁ
𝑢ଶ௨(𝑥, 𝑦) = 𝑒௜௤ೣ௡௅ ቀ𝐶ା௨𝑒௜௞(ೣమ)(௫ି௡௅) + 𝐶௨ି𝑒ି௜௞(ೣమ)(௫ି௡௅)ቁ× 𝑒௜௤೤௠௅ ቀ𝐷ା௨𝑒௜௞೤(మ)(௬ି௠௅ିௗభ) + 𝐷௨ି𝑒ି௜௞೤(మ)(௬ି௠௅ିௗభ)ቁ𝑞௫ 𝑞௬𝑢ଵ,ଶ௟,௨ 𝑒௜ఠ௧ ω

𝜌௝ డమ௨ೕడ௧మ = 𝜇௝ ቀ డమడ௫మ + డమడ௬మቁ 𝑢௝𝑗 = 1,2 𝜌௝ 𝜇௝ ff tz𝑢௝ = 𝑢଴௝𝑒௜௞(ೣೕ)𝑒௜௞೤(ೕ)𝑒௜ఠ௧ 𝑘௫(௝) > 0 𝑘௬(௝) > 0 𝜔 = 𝑐௝ටቀ𝑘௫(௝)ቁଶ + ቀ𝑘௬(௝)ቁଶ 𝑐௝ = ටఓೕఘೕ

Figure 1. Schematic illustration of the unit cell of the model 2D periodic phononic crystal.

Al
+, Al

−, Bl
+, Bl

−, Au
+, Au

−, Bu
+, Bu

−, Cl
+, Cl

−, Dl
+, Dl

−, Cu
+, Cu

−, Du
+, Du

− are 16 unknown
amplitudes to be determined using displacement and stress continuity conditions at the
eight interfaces.

The various components of stress in the subunits are obtained from Equations (1a,b)
and (2a,b) as follows. For medium 1, we get

c2
1

∂ul
1(x,y)
∂x = ρ1c2

1eiqxnLik
(1)
x

(

Al
+eik

(1)
x (x−nL) − Al

−e−ik
(1)
x (x−nL)

)

×eiqymL

(

Bl
+eik

(1)
y (y−mL) + Bl

−e−ik
(1)
y (y−mL)

)
(3a)
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ρ1c2
1

∂ul
1(x,y)
∂y = ρ1c2

1eiqxnL

(

Al
+eik

(1)
x (x−nL) + Al

−e−ik
(1)
x (x−nL)

)

×eiqymLik
(1)
y

(

Bl
+eik

(1)
y (y−mL)

− Bl
−e−ik

(1)
y (y−mL)

)
(3b)

ρ1c2
1

∂uu
1 (x,y)
∂x = ρ1c2

1eiqxnLik
(1)
x

(

Au
+eik

(1)
x (x−nL−d1) − Au

−e−ik
(1)
x (x−nL−d1)

)

×eiqymL

(

Bu
+eik

(1)
y (y−mL−d1) + Bu

−e−ik
(1)
y (y−mL−d1)

)
(3c)

ρ1c2
1

∂uu
1 (x,y)
∂y = ρ1c2

1eiqxnL

(

Au
+eik

(1)
x (x−nL−d1) + Au

−e−ik
(1)
x (x−nL−d1)

)

×eiqymLik
(1)
y

(

Bu
+eik

(1)
y (y−mL−d1) − Bu

−e−ik
(1)
y (y−mL−d1)

)

.

(3d)

For medium 2, we have

ρ2c2
2

∂ul
2(x,y)
∂x = ρ2c2

2eiqxnLik
(2)
x

(

Cl
+eik

(2)
x (x−nL−d1) − Cl

−e−ik
(2)
x (x−nL−d1)

)

×eiqymL

(

Dl
+eik

(2)
y (y−mL) + Dl

−e−ik
(2)
y (y−mL)

)
(4a)

ρ2c2
2

∂ul
2(x,y)
∂y = ρ2c2

2eiqxnL

(

Cl
+eik

(2)
x (x−nL−d1) + Cl

−e−ik
(2)
x (x−nL−d1)

)

×eiqymLik
(2)
y

(

Dl
+eik

(2)
y (y−mL)

− Dl
−e−ik

(2)
y (y−mL)

)
(4b)

ρ2c2
2

∂uu
2 (x,y)
∂x = eiqxnLik

(2)
x

(

Cu
+eik

(2)
x (x−nL) − Cu

−e−ik
(2)
x (x−nL)

)

×eiqymL

(

Du
+eik

(2)
y (y−mL−d1) + Du

−e−ik
(2)
y (y−mL−d1)

)
(4c)

ρ2c2
2

∂uu
2 (x,y)
∂y = eiqxnL

(

Cu
+eik

(2)
x (x−nL) + Cu

−e−ik
(2)
x (x−nL)

)

×eiqymLik
(2)
y

(

Du
+eik

(2)
y (y−mL−d1) − Du

−e−ik
(2)
y (y−mL−d1)

)

.

(4d)

where ρjc
2
j = µj is the stiffness of medium j.

3. Conditions of Continuity

3.1. Interfaces (II) and (VII)

To begin solving for the modal amplitudes, we write the conditions of continuity of dis-
placement and stress at interfaces (II) and (VII). At interface (II), continuity of displacement
takes the form ul

1 in unit cell {n,m} = ul
2 in unit cell {n − 1,m}, or:

(

Al
+ + Al

−

)

(

Bl
+eik

(1)
y (y−mL) + Bl

−e−ik
(1)
y (y−mL)

)

= e−iqx L

(

Cl
+eik

(2)
x d2 + Cl

−e−ik
(2)
x d2

)

×

(

Dl
+eik

(2)
y (y−mL) + Dl

−e−ik
(2)
y (y−mL)

)
(5a)

To obtain Equation (5), we have used the fact that L − d1 = d2.
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The condition of continuity of stress at interface (II) takes the form

Fx

(

Al
+ − Al

−

)

(

Bl
+eik

(1)
y (y−mL) + Bl

−e−ik
(1)
y (y−mL)

)

= e−iqx L

(

Cl
+eik

(2)
x d2 − Cl

−e−ik
(2)
x d2

)

×

(

Dl
+eik

(2)
y (y−mL) + Dl

−e−ik
(2)
y (y−mL)

)
(5b)

At interface (VII), for displacement we obtain ul
1 in unit cell {n,m} = ul

2 in unit cell {n,m}

(

Al
+eik

(1)
x d1 + Al

−e−ik
(1)
x d1

)(

Bl
+eik

(1)
y (y−mL) + Bl

−e−ik
(1)
y (y−mL)

)

=
(

Cl
+ + Cl

−

)

×

(

Dl
+eik

(2)
y (y−mL) + Dl

−e−ik
(2)
y (y−mL)

)
(6a)

Continuity of stress at interface (VII) leads to

Fx

(

Al
+eik

(1)
x d1 − Al

−e−ik
(1)
x d1

)(

Bl
+eik

(1)
y (y−mL) + Bl

−e−ik
(1)
y (y−mL)

)

=
(

Cl
+ − Cl

−

)

×

(

Dl
+eik

(2)
y (y−mL) + Dl

−e−ik
(2)
y (y−mL)

)
(6b)

In Equations (5b) and (6b), we have introduced the quantity Fx =
ρ1c2

1k
(1)
x

ρ2c2
2k

(2)
x

by redefining

A+ = Al
+

(

Bl
+eik

(1)
y (y−mL) + Bl

−e−ik
(1)
y (y−mL)

)

(7a)

A− = Al
−

(

Bl
+eik

(1)
y (y−mL) + Bl

−e−ik
(1)
y (y−mL)

)

(7b)

C+= Cl
+

(

Dl
+eik

(2)
y (y−mL) + Dl

−e−ik
(2)
y (y−mL)

)

(7c)

C−= Cl
−

(

Dl
+eik

(2)
y (y−mL) + Dl

−e−ik
(2)
y (y−mL)

)

(7d)

In Equation (7a–d), we assume that the quantities in parentheses are not zero. Note
that the parentheses in Equation (7a,b) are the same, as are those in Equation (7c,d).

The conditions of continuity given by Equations (5a,b) and (6a,b) can be arranged in
matrix form:









α11 β11 −1 −1
Fxα11 −Fxβ11 −1 1

1 1 −e−iqx Lα22 −e−iqx Lβ22

Fx −Fx −e−iqx Lα22 e−iqx Lβ22

















A+

A−

C+

C−









= 0 (8)

We introduced the notation α11 = 1
β11

= eik
(1)
x d1 and α22 = 1

β22
= eik

(2)
x d2 .

We can solve for the amplitudes A+, A−, C+, C− using the transfer matrix approach.
For this we rewrite a part of Equation (8) as

(

1 1
Fx −Fx

)(

A+

A−

)

= e−iqx L

(

α22 β22

α22 −β22

)(

C+

C−

)

(9)

Equation (9) can be reformulated as

e+iqx L

(

A+

A−

)

=
1

2Fx

(

(Fx + 1)α22 (Fx − 1)β22

(Fx − 1)α22 (Fx + 1)β22

)(

C+

C−

)

(10)
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The remaining part of Equation (8) gives:

(

1 1
1 −1

)(

C+

C−

)

=

(

α11 β11

Fxα11 −Fxβ11

)(

A+

A−

)

(11)

This latter equation results in:

(

C+

C−

)

=
1

2

(

(1 + Fx)α11 (1 − Fx)β11

(1 − Fx)α11 (1 + Fx)β11

)(

A+

A−

)

(12)

Combining Equations (12) and (10) yields:

e+iqx L

(

A+

A−

)

=
1

2Fx

(

(Fx + 1)α22 (Fx − 1)β22

(Fx − 1)α22 (Fx + 1)β22

)

1

2

(

(1 + Fx)α11 (1 − Fx)β11

(1 − Fx)α11 (1 + Fx)β11

)(

A+

A−

)

(13)

or

(

A+

A−

)

n+1

=
1

2Fx

(

(Fx + 1)α22 (Fx − 1)β22

(Fx − 1)α22 (Fx + 1)β22

)

1

2

(

(1 + Fx)α11 (1 − Fx)β11

(1 − Fx)α11 (1 + Fx)β11

)(

A+

A−

)

n

(14)

where we have used the Bloch wave definition

(

A+

A−

)

n

= e+iqxnL

(

A+

A−

)

.

Calculating the transform matrix relating the A+, A− amplitudes between two adja-
cent unit cells leads to

(

A+

A−

)

n+1

=

(

T11 T12

T21 T22

)(

A+

A−

)

n

(15)

The components of the transfer matrix are defined as

T11 = T∗
22 =

1

4Fx
α11

[

(Fx + 1)2α22 − (Fx − 1)2β22

]

(16a)

T12 = T∗
21 =

−1

4Fx
β11(Fx + 1)(Fx − 1)[α22 − β22] (16b)

The “*” in Equation (16a,b) stands for the complex conjugate.
Using the Bloch theorem, we are seeking eigenvalues of the transfer matrix taking the

form λ = eiqx L, and λ satisfies the second order equation:

λ2
− λ(T11 + T∗

11) + T11T∗
11 − T12T∗

21 = 0

There exist two solutions given by

λ =
T11 + T∗

11

2
±

1

2

√

(

T11 − T∗
11

)2
+ 4T12T∗

21 (17)

We now investigate the condition sin k
(2)
x d2 = 0, which corresponds to a Fabry–Pérot

resonance [12,14] of medium 2l in the x direction. This condition is satisfied if k
(2)
x d2 = pπ,

where p is an integer. There are two cases to consider, even and odd multiples of π.
To solve for the amplitudes, we rewrite Equation (15) in the form of an eigenvalue

problem:
(

T11 − e+iqx L T12

T21 T22 − e+iqx L

)(

A+

A−

)

n

= 0 (18)

where e+iqx L is an eigenvalue, then we get

(

T11 − e+iqx L
)

A+ = −T12 A− (19)
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We can solve for the amplitudes:

A+ = −T12 (20a)

A− = T11 − eiqx L (20b)

We first consider the case when p is odd. Under this condition, α22 = β22 = −1 and
T12 = T∗

21 = 0. At the Fabry–Pérot resonance, A+ = 0. Provided that the dispersion

relation of the superlattice satisfies cos qxL = − cosk
(1)
x d1, we have T11 = −α11 and also

A− = −isin k
(1)
x d1 − isin qxL. A− = 0 when qxL = k

(1)
x d1 + lπ where the integer l is odd.

Note that this mode may be outside the first Brillouin zone. We recall that k
(1)
x d1 > 0. Due

to the periodicity in the wave vector space, qxL is therefore located on the negative side

of the first Brillouin zone, qxL ∈ [−π, 0] and we can rewrite qxL = −k
(1)
x d1 < 0. When

A+ = A− = 0, Equation (12) ensures that C+ = C− = 0.
We now consider the case when p is even. Under this condition, α22 = β22 = +1 and

T12 = T∗
21 = 0. At the Fabry–Pérot resonance, we still have, A+ = 0. Provided that the

dispersion relation of the superlattice satisfies cos qxL = cos k
(1)
x d1, we have T11 = +α11

and A− = isin k
(1)
x d1 − isin qxL = 0 when qxL = k

(1)
x d1 + lπ, where the integer l is even.

qxL is therefore located on the positive side of the first Brillouin zone, qxL ∈ [0, π]. Due

to the periodicity in the wave vector space, we can rewrite qxL = k
(1)
x d1 > 0. Again,

A+ = A− = 0, implying that C+ = C− = 0.

3.2. Interfaces (I) and (VIII)

The conditions of continuity of displacement at (I):

(

Cu
+ + Cu

−

)

(

Du
+eik

(2)
y (y−mL−d1) + Du

−e−ik
(2)
y (y−mL−d1)

)

= e−iqx L

(

Au
+eik

(1)
x d2 + Au

−e−ik
(1)
x d2

)

×

(

Bu
+eik

(1)
y (y−mL−d1) + Bu

−e−ik
(1)
y (y−mL−d1)

) (21a)

The condition of continuity of stress at interface (I) takes the form of

(

Cu
+ − Cu

−

)

(

Du
+eik

(2)
y (y−mL−d1) + Du

−e−ik
(2)
y (y−mL−d1)

)

= e−iqx LFx

(

Au
+eik

(1)
x d2 − Au

−e−ik
(1)
x d2

)

×

(

Bu
+eik

(1)
y (y−mL−d1) + Bu

−e−ik
(1)
y (y−mL−d1)

) (21b)

At interface (VIII), for displacement we obtain
(

Cu
+eik

(2)
x d1 + Cu

−e−ik
(2)
x d1

)(

Du
+eik

(2)
y (y−mL−d1) + Du

−e−ik
(2)
y (y−mL−d1)

)

=
(

Au
+ + Au

−

)

×

(

Bu
+eik

(1)
y (y−mL−d1) + Bu

−e−ik
(1)
y (y−mL−d1)

) (22a)

The continuity of stress at interface (VIII) leads to
(

Cu
+eik

(2)
x d1 − Cu

−e−ik
(2)
x d1

)(

Du
+eik

(2)
y (y−mL−d1) + Du

−e−ik
(2)
y (y−mL−d1)

)

= Fx

(

Au
+ − Au

−

)

×

(

Bu
+eik

(1)
y (y−mL−d1) + Bu

−e−ik
(1)
y (y−mL−d1)

) (22b)

By redefining

C′
+ = Cu

+

(

Du
+eik

(2)
y (y−mL−d1) + Du

−e−ik
(2)
y (y−mL−d1)

)

(23a)

C′
− = Cu

−

(

Du
+eik

(2)
y (y−mL−d1) + Du

−e−ik
(2)
y (y−mL−d1)

)

(23b)
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A′
+= Au

+

(

Bu
+eik

(1)
y (y−mL−d1) + Bu

−e−ik
(1)
y (y−mL−d1)

)

(23c)

A′
−= Au

−

(

Bu
+eik

(1)
y (y−mL−d1) + Bu

−e−ik
(1)
y (y−mL−d1)

)

(23d)

we introduced the notation α12 = 1
β12

= eik
(1)
x d2 and α21 = 1

β21
= eik

(2)
x d1 .

The conditions of continuity given by Equations (21a,b) and (22a,b) can be arranged in
matrix form:









e−iqx Lα12 e−iqx Lβ12 −1 −1

e−iqx LFxα12 −e−iqx LFxβ12 −1 1
1 1 −α21 −β21

Fx −Fx −α21 β21

















A′
+

A′
−

C′
+

C′
−









= 0 (24)

Following Section 3.1, we introduce a transfer matrix such that

(

C′
+

C′
−

)

n+1

=

(

T′
11 T′

12
T′

21 T′
22

)(

C′
+

C′
−

)

n

(25)

The components of the transfer matrix are defined as

T′
11 = T′∗

22 =
1

4Fx
α21

[

(Fx + 1)2α12 − (Fx − 1)2β12

]

(26a)

T′
12 = T′∗

21 =
1

4Fx
β21(Fx + 1)(Fx − 1)[α12 − β12] (26b)

The Bloch theorem implies that:

C′
+ = −T′

12 (27a)

C′
− = T′

11 − eiqx L (27b)

In Section 3.1. we considered the resonant condition sin k
(2)
x d2 = 0. This condition is

not sufficient to lead to zero amplitudes (e.g., α12 − β12 = 0). Here, one needs to consider

the condition sin k
(1)
x d2 = 0. This is the condition k

(1)
x d2 = p′π, where p′ can be odd or even.

We first consider the case when p′ is odd. Under this condition, α12 = β12 = −1
and T′

12 = T′∗
21 = 0. At this resonance, C′

+ = 0. Provided that the dispersion relation

of the superlattice satisfies cos qxL = − cosk
(2)
x d1, we have T′

11 = −α21 and also C′
− =

−isin k
(2)
x d1 − isin qxL. C′

− = 0 when qxL = k
(2)
x d1 + l′π where the integer l′ is odd, that is

qx < 0 but not when qx > 0. When C′
+ = C′

− = 0, we also get A′
+ = A′

− = 0.
We now consider the case when p′ is even. Under this condition, α12 = β12 = +1

and T′
12 = T′∗

21 = 0. At the resonance we still have, C′
+ = 0. Provided that the dispersion

relation of the superlattice still satisfies cos qxL = cos k
(2)
x d1, we have T′

11 = +α21 and

C′
− = isin k

(2)
x d1 − isin qxL = 0 when qxL = k

(1)
x d1 + l′π where l′ is even, i.e., when qx > 0

but not when qx < 0. Again, when C′
+ = C′

− = 0, implying that A′
+ = A′

− = 0.

3.3. Interfaces (III) and (V)

At interface (III), the condition of continuity of displacement reads:

(B+ + B−) = e−iqy L

(

D+eik
(2)
y d2 + D−e−ik

(2)
y d2

)

(28a)
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At interface (V), displacement continuity yields

(

B+eik
(1)
y d1 + B−e−ik

(1)
y d1

)

= (D+ + D−) (28b)

The continuity of stress at interfaces (III) and (V) gives

Fy(B+ − B−) = e−iqy L

(

D+eik
(2)
y d2 − D−e−ik

(2)
y d2

)

(29a)

Fy

(

B+eik
(1)
y d1 − B−e−ik

(1)
y d1

)

= (D+ − D−) (29b)

where we have defined the quantity Fy =
ρ1c2

1k
(1)
y

ρ2c2
2k

(2)
y

.

In Equations (28) and (29), we have defined:

B± = Bl
±

(

Al
+eik

(1)
x (x−nL) + Al

−e−ik
(1)
x (x−nl)

)

(30a)

D± = Du
±

(

Cu
+eik

(2)
x (x−nL) + Cu

−e−ik
(2)
x (x−nl)

)

(30b)

Equations (28) and (29) are reformulated in matrix form:









η11 δ11 −1 −1
Fyη11 −Fyδ11 −1 1

1 1 −e−iqy Lη22 −e−iqy Lδ22

Fy −Fy −e−iqy Lη22 e−iqy Lδ22

















B+

B−

D+

D−









= 0 (31)

where we used the notation η11 = 1
δ11

= eik
(1)
y d1 and η22 = 1

δ22
= eik

(2)
y d2 . Equation (31) is

isomorphic to Equation (8) but for the direction y.

We now investigate the condition sin k
(2)
y d2 = 0 which corresponds to a Fabry–Pérot

resonance of medium 2u in the y direction. This condition is satisfied if k
(2)
y d2 = rπ, where

r is an integer. There are two cases to consider, even and odd multiples of π.
Solving for the amplitudes, we first consider the case when r is odd. Under this

condition, η22 = δ22 = −1. At the Fabry–Pérot resonance, B+ = 0. Provided that the

dispersion relation of the superlattice satisfies cos qyL = − cosk
(1)
y d1, and also A− =

−isin k
(1)
y d1 − isin qyL. A− = 0 when qyL = k

(1)
y d1 + sπ where the integer s is odd, that is,

when qy < 0 but not when qy > 0. The condition B+ = B− = 0 leads to D+ = D− = 0.
We now consider the case when r is even. Under this condition, η22 = δ22 = +1. At

the Fabry–Pérot resonance we still have, B+ = 0. Provided that the dispersion relation

of the superlattice still satisfies cos qyL = cos k
(1)
y d1, B− = isin k

(1)
y d1 − isin qyL = 0 when

qyL = k
(1)
y d1 + sπ where s is even. This corresponds to a wave number in the negative

region of the Brillouin zone qy > 0. Again, when B+ = B− = 0, D+ = D− = 0.

3.4. Interfaces (IV) and (VI)

The conditions of displacement and stress continuity at interfaces (IV) and (VI) can be
arranged in matrix form:









e−iqy Lη12 e−iqy Lδ12 −1 −1

e−iqy LFxη12 −e−iqy LFxδ12 −1 1
1 1 −η21 −δ21

Fy −Fy −η21 δ21

















B′
+

B′
−

D′
+

D′
−









= 0 (32)
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Here, we introduced the notation η12 = 1
δ12

= eik
(1)
y d2 and η21 = 1

δ21
= eik

(2)
y d1 .

We have also defined

B′
± = Bu

±

(

Au
+eik

(1)
x (x−nL−d1) + Au

−e−ik
(1)
x (x−nl−d1)

)

(33a)

D′
± = Dl

±

(

Cl
+eik

(2)
x (x−nL−d1) + Cl

−e−ik
(2)
x (x−nl−d1)

)

(33b)

We can perform the same analysis as was done for the pair of interfaces (I) and (VIII)
but for propagation along the y direction.

We now investigate the resonant condition sin k
(1)
y d2 = 0. This condition is satisfied if

k
(1)
y d2 = r′π, where r′ is an integer. There are two cases to consider, even and odd multiples

of π.
Solving for the amplitudes, we first consider the case when r′ is odd. Under this

condition, η12 = δ12 = −1. At resonance, B′
+ = 0. Provided that the dispersion relation

of the superlattice satisfies cos qyL = − cosk
(2)
y d1, and also B′

− = −isin k
(2)
y d1 − isin qyL.

B′
− = 0 when qyL = k

(2)
y d1 + s′π where the integer s′ is odd. This corresponds to qy < 0

but not qy > 0. The condition B′
+ = B′

− = 0 leads to D′
+ = D′

− = 0.
We now consider the case when r′ is even. Under this condition, η12 = δ12 = +1. At

the resonance we still have, B′
+ = 0. Provided that the dispersion relation of the superlattice

still satisfies cos qyL = cos k
(2)
y d1, B′

− = isin k
(2)
y d1 − isin qyL = 0 when qyL = k

(2)
y d1 + s′π

where s is even, corresponding to the positive side of the Brillouin zone in the y direction,
that is, qy > 0 but not qy < 0. Again, B′

+ = B′
− = 0 implies that D′

+ = D′
− = 0.

Table 1 summarizes these findings.

Table 1. Resonant conditions resulting from continuity conditions at interfaces leading to zero

amplitudes. See the text for details.

Interfaces Resonance Dispersion Bloch Wave Number Amplitudes

(II) & (VII)

k
(2)
x d2 = pπ

p odd
cos qx L = − cosk

(1)
x d1

qx L = k
(1)
x d1 + lπ

l odd

A+ = A− = 0
C+ = C− = 0

qx < 0

k
(2)
x d2 = pπ

p even
cos qx L = cos k

(1)
x d1

qx L = k
(1)
x d1 + lπ

l even

A+ = A− = 0
C+ = C− = 0

qx > 0

(I) & (VIII)

k
(1)
x d2 = p′π

p′ odd
cos qx L = − cosk

(2)
x d1

qx L = k
(2)
x d1 + l′π

l′ odd

C′
+ = C′

− = 0,
A′
+ = A′

− = 0
qx < 0

k
(1)
x d2 = p′π

p′ even
cos qx L = cos k

(2)
x d1

qx L = k
(2)
x d1 + l′π

l′ even

C′
+ = C′

− = 0,
A′
+ = A′

− = 0
qx > 0

(III) & (V)

k
(2)
y d2 = rπ

r odd
cos qyL = − cosk

(1)
y d1

qyL = k
(1)
y d1 + sπ

s odd

B+ = B− = 0
D+ = D− = 0

qy < 0

k
(2)
y d2 = rπ

r even
cos qyL = cos k

(1)
y d1

qyL = k
(1)
y d1 + sπ

s even

B+ = B− = 0
D+ = D− = 0

qy > 0

(IV) & (VI)

k
(1)
y d2 = r′π

r′ odd
cos qyL = − cosk

(2)
y d1

qyL = k
(2)
y d1 + s′π

s′ odd

B′
+ = B′

− = 0
D′
+ = D′

− = 0
qy < 0

k
(1)
y d2 = r′π

r′ even
cos qyL = cos k

(2)
y d1

qyL = k
(2)
y d1 + s′π

s′ even

B′
+ = B′

− = 0
D′
+ = D′

− = 0
qy > 0



Crystals 2024, 14, 674 11 of 15

4. DRAK Modes

In this section, we identify sets of conditions which lead to directional modes, i.e.,
DRAK modes based on the findings of the previous section.

4.1. Case I

Within a medium of type 1, the displacement field can be written as

ul
1(x, y) = eiqxnLeiqymL

(

A+eik
(1)
x (x−nL) + A−e−ik

(1)
x (x−nL)

)

(34a)

uu
1 (x, y) = eiqxnLeiqymL

(

A′
+eik

(1)
x (x−nL−d1) + A′

−e−ik
(1)
x (x−nL−d1)

)

(34b)

In medium 2, we can write

uu
1 (x, y) = eiqxnLeiqymL

(

A′
+eik

(1)
x (x−nL−d1) + A′

−e−ik
(1)
x (x−nL−d1)

)

(35a)

uu
2 (x, y) = eiqxnLeiqymL

(

C′
+eik

(2)
x (x−nL) + C′

−e−ik
(2)
x (x−nL)

)

(35b)

For the amplitudes, we recall Equation (7a–d):

A± = Al
±

(

Bl
+eik

(1)
y (y−mL) + Bl

−e−ik
(1)
y (y−mL)

)

(36a)

C±= Cl
±

(

Dl
+eik

(2)
y (y−mL) + Dl

−e−ik
(2)
y (y−mL)

)

(36b)

C′
± = Cu

±

(

Du
+eik

(2)
y (y−mL−d1) + Du

−e−ik
(2)
y (y−mL−d1)

)

(36c)

A′
±= Au

±

(

Bu
+eik

(1)
y (y−mL−d1) + Bu

−e−ik
(1)
y (y−mL−d1)

)

(36d)

To find DRAK modes, we seek conditions for the displacement field
{

ul
1, uu

1 , ul
2, uu

2

}

,

that is, for the corresponding amplitudes, to vanish for wave vectors located on one side of
the 2D Brillouin zone and not the other. For this, we use Table 1.

Let us consider the resonant conditions for medium 2l corresponding to sin k
(2)
x d2 = 0.

For instance, we chose k
(2)
x d2 = pπ, with p being an odd integer. The dispersion relation

that must be satisfied is cos qxL = − cosk
(1)
x d1, with qxL = k

(1)
x d1 + lπ and l an odd integer.

Under these conditions we have A± = 0 and C± = 0 for qx < 0. This resonance implies
that ul

1(x, y) = ul
2(x, y) = 0.

We also consider the additional resonance of medium 1u, sin k
(1)
x d2 = 0, such that

k
(1)
x d2 = p′π with being p′ an odd integer. The corresponding dispersion relation that

must be satisfied by the wave vector is cos qxL = − cosk
(2)
x d1 with qxL = k

(2)
x d1 + l′π and

l′ odd. Under these conditions, we have C′
+ = C′

− = 0, and A′
+ = A′

− = 0, leading to
uu

1 (x, y) = uu
2 (x, y) = 0.

These conditions for the existence of a DRAK mode are independent of qy. The

motion associated with the joint resonances in the x direction of the subunits 2l and 1u

is incompatible with the translational periodicity of Bloch waves in that same direction,
leading to zero amplitudes.
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A DRAK mode will exist when the 2D dispersion relation of the phononic crystal,
ω(qx, qy), satisfies specific conditions. In the current case, these conditions are independent
of qy. When both resonances are satisfied, the wave number in the x direction is defined as

qxL = k
(1)
x d1 + lπ = k

(2)
x d1 + l′π

Which, using the resonant conditions for the wave number in the x direction, leads to

(

p′ − p
)d1

d2
=

(

l′ − l
)

(37)

Equation (37) determines the ratio of geometric parameters d1
d2

yielding the wave
number, qx, which corresponds to specific resonances.

We recall that the angular frequency of the Bloch waves is given by

ω = c1

√

(

k
(1)
x

)2
+

(

k
(1)
y

)2
= c2

√

(

k
(2)
x

)2
+

(

k
(2)
y

)2
(38)

At the specific frequency ω(qx, qy), the relation of Equation (38) imposes k
(1)
y and k

(2)
y

to take the values

k
(1)
y =

√

ω2

c2
1

−

(

p′π

d2

)2

(39a)

and

k
(2)
y =

√

ω2

c2
2

−

(

pπ

d2

)2

(39b)

These relationships can be used to determine the speeds of sound of the constitutive
materials which are compatible with the dispersion relation and the resonance conditions of
the 2D phononic crystal. For example, combining Equation (39a,b) and taking into account

that k
(1)
y > 0 and k

(2)
y > 0, we get c2

c1
<

p′

p .

4.2. Case II

The displacement of the four subunits forming the unit cell given by Equation (7a–d)
can be rewritten as

ul
1(x, y) = eiqxnLeiqymL

(

B+eik
(1)
y (y−mL) + B−e−ik

(1)
y (y−mL)

)

(40a)

uu
1 (x, y) = eiqxnLeiqymL

(

B′
+eik

(1)
y (y−mL−d1) + B′

−e−ik
(1)
y (y−mL−d1)

)

(40b)

and

ul
2(x, y) = eiqxnLeiqymL

(

D′
+eik

(2)
y (y−mL) + D′

−e−ik
(2)
y (y−mL)

)

(41a)

uu
2 (x, y) = eiqxnLeiqymL

(

D+eik
(2)
y (y−mL−d1) + D−e−ik

(2)
y (y−mL−d1)

)

(41b)

The resonances associated with sin k
(2)
y d2 = 0 (subunit 2u) and sin k

(1)
y d2 = 0 (subunit

1u) may lead to B+ = B− = 0, D+ = D− = 0, B′
+ = B′

− = 0, and D′
+ = D′

− = 0 for qy < 0,
yielding displacements that vanish.

For instance, we may choose k
(2)
y d2 = rπ with r being an odd integer. The dispersion

relation that must be satisfied is cos qyL = − cosk
(1)
y d1, with qyL = k

(1)
y d1 + sπ and s an odd

integer. Under these conditions we have B± = 0 and D± = 0 for qy < 0. This resonance

implies that ul
1(x, y) = uu

2 (x, y) = 0.
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We also consider the additional resonance associated with sin k
(1)
y d2 = 0, such that

k
(1)
1 d2 = r′π with r′ an odd integer. The corresponding dispersion relation that must

be satisfied by the wave vector is cos qyL = − cosk
(2)
y d1 with qyL = k

(2)
y d1 + s′π, and

s′ odd. Under these conditions, we have B′
+ = B′

− = 0 and D′
+ = D = 0, leading to

uu
1 (x, y) = ul

2(x, y) = 0 for qy < 0.
These conditions for the existence of a DRAK mode are independent of qx. The

motion associated with these joint resonances in the y direction of the subunits 1u and 2u

is incompatible with the translational periodicity of Bloch waves in that same direction
leading to zero amplitudes.

A DRAK mode will exist when the 2D dispersion relation of the phononic crystal,
ω(qx, qy), satisfies some specific conditions. In the current case, these conditions are
independent of qx. When both resonances are satisfied, the wave number in the x direction
is defined as

qyL = k
(1)
y d1 + sπ = k

(2)
y d1 + s′π

Which, using the resonant conditions for the wave number in the y direction, leads to:

(

r′ − r
)d1

d2
=

(

s′ − s
)

(42)

Equation (42) determines the ratio of geometric parameters d1
d2

, yielding the wave
number, qy, which corresponds to specific resonances.

We recall that the angular frequency of Bloch waves is given by

ω = c1

√

(

k
(1)
x

)2
+

(

k
(1)
y

)2
= c2

√

(

k
(2)
x

)2
+

(

k
(2)
y

)2
(43)

At the specific frequency ω(qx, qy), the relation of Equation (42) imposes k
(1)
x > 0 and

k
(2)
x > 0 to take the values

k
(1)
x =

√

ω2

c2
1

−

(

r′π

d2

)2

(44a)

and

k
(2)
x =

√

ω2

c2
2

−

(

rπ

d2

)2

(44b)

Again, these relationships can be used to determine the speeds of sound of the con-
stitutive materials which are compatible with the dispersion relation and the resonance
conditions of the 2D phononic crystal.

5. Conclusions

We used the transfer matrix method to investigate the conditions leading to the
existence of one-way propagating bulk waves, called DRAK modes, in a two-dimensional
(2D) phononic crystal. The model system investigated here was a 2D phononic crystal
taking the form of a square lattice of unit cells composed of rectangular subunits constituted
of two different continuous media. We sought conditions where local resonances of the
Fabry–Pérot type of the subunits became incompatible with the translational periodicity
associated with the Bloch theorem. We established conditions on the geometry of the
phononic crystal and the physical properties of the constitutive media for the existence of
waves that exhibit a non-zero amplitude in one direction within the crystal’s 2D Brillouin
zone and zero amplitude in the opposite direction for the same handedness. Because
of time-reversal symmetry, we can expect a twin mode with a non-zero amplitude and
opposite handedness propagating in the reverse direction. This work extends previous
studies that have focused on DRAK modes in one-dimensional discrete and continuous
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superlattices. The existence of directional DRAK waves in 2D phononic structures opens
new avenues in the design of acoustic devices which may exhibit robust immunity to
scattering by obstacles such as defects, imperfections, or impedance mismatch between
different parts of the devices, expectedly making them less prone to back reflections for a
broader range of obstacles that do not couple modal handedness. Indeed, acoustic wave
devices such as bulk acoustic wave (BAW) and surface acoustic wave (SAW) devices find
many applications in radio frequency telecommunication [18,19] and sensors of various
physical quantities [20]. However, the performance of these devices is strongly affected
by loss such as return loss, which measures the amount of reflected signal caused by the
impedance mismatch between the transduction parts of the device and that of the delay
line part. DRAK modes may help overcome return loss in such acoustic devices beyond
what can be achieved with current technologies.

Future work will involve numerical studies of DRAK modes in more complex phononic
structures than the idealized “checkerboard” system studied here, as well as phononic struc-
tures with different symmetries or phononic structures more amenable to contemporary
fabrication techniques.
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