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ABSTRACT. In this paper, we study the Brezis-Nirenberg problem on bounded
smooth domains of R3. Using the algebraic topological argument of Bahri-
Coron|[3] as implemented in [9] combined with the Brendle[5]-Schoen[14]’s bub-
ble construction, we solve the problem for non-contractible bounded smooth
domains.

1. Introduction and statement of the results. In their seminal paper [6],
Brezis and Nirenberg initiated the study of nonlinear elliptic equations of the form

m—+42
—Au+qu=um-—2 in Q,
u>0 in Q, (1)
u=20 on 01},

where Q is a bounded domain (with domain meaning open and connected) of R™
with a connected and smooth boundary 9Q (with smooth boundary meaning
the closure of €2 is a smooth m-dimensional manifold with smooth boundary 0%2),
m >3 and ¢ is a bounded and smooth function defined on €. In this paper, we
revisit the Boundary Value problem (BVP) (1) in the 3-dimensional case, namely
when m = 3. Thus, we will be dealing with the BVP

—Au+ qu =ud in Q,
u>0 in Q, (2)
u=0 on 012,

where € is a bounded domain of R?® with a connected and smooth boundary. It
is well known that a necessary condition for the existence of positive solution to (2)
is that the first eigenvalue of —A + ¢ under zero Dirichlet boundary condition is
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positive, see [7]. Moreover, we will assume that the Green’s function G of —A +
g under zero Dirichlet boundary condition defined by (11) is positive in Q and
hence —A+¢ under zero Dirichlet boundary condition verifies the strong maximum
principle. Thus the BVP (2) has a variational structure, since thanks to the strong
maximum principle and standard elliptic regularity theory solutions of (2) can be
found by looking at critical points of the Brezis-Nirenberg functional

<u7u>q 1, 1 .
Jq(u) := W, ue Hyt(Q):={uec HY(Q): u>0 and u#0 in Z}),

where
(u,u), = /Q(|Vu|2 + qu?) dzx (4)

and H}(€2) is the usual Sobolev space of functions which are L?-integrable on
together with their first derivatives and with zero trace on 0f2.

Existence of solutions of (2) under a Positive Mass type assumption has been ob-
tained in an unpublished work by McLeod as discussed in the work of Brezis[7]. In
this work, we use the Barycenter Technique of Bahri-Coron[3] to remove the Posi-
tive Mass type assumption of McLeod and replace it by the non-contractibility of
the domain. Precisely, we prove the following theorem.

Theorem 1.1. Assuming that Q C R3 is a non-contractible bounded domain with
a connected and smooth boundary, ¢ is a smooth and bounded function defined
on €2, the first eigenvalue of the operator —A + ¢ under zero Dirichlet boundary
condition on 02 is positive, and the Green’s function G of —A + ¢ under zero
Dirichlet boundary condition on 9 defined by (11) is positive in §2, then the BVP
(2) has a least one solution.

Remark 1.2. We would like to make a comment about the non-contractibility as-
sumption in Theorem 1.1. It implies (a well-known result) that some homology with
Zs coefficient and positive order d is non-zero (see Lemma 2.1 below and Remark
2.2) and that is what is needed for the application of the Barycenter Technique of
Bahri-Coron|[3].

To prove Theoreml.1, we will use the Algebraic topogical argument of Bahri-
Coron[3] which is possible since as already observed by McLeod (see [7]), the prob-
lem under study is a Global one (for the definition of ”Gobal” for Yamabe type
problems, see [12]). Indeed, as in [12], we will follow the scheme of the Barycenter
technique as performed in the work [9] of the second author and Mayer (see also
[1], [10], and [12]). One of the main difficulty with respect to the works [9] and
[12] is the presence of the linear term ”qu” and the lack of conformal invariance.
Such a difficulty has already been encountered by Bahri-Brezis[4] on closed Rie-
mannian manifolds. To deal with such a difficulty, Bahri-Brezis[4] have used the
bubble construction of Bahri-Coron[3] recalling that their scheme of the Barycenter
Technique follows the original one of Bahri-Coron[3]. However, here we use the
Brendle[5]-Schoen[14]” s bubble construction and have to deal with that difficulty
in a way different from the work of Bahri-Brezis[4].

2. Notations and preliminaries. In this section, we fix some notation and dis-
cuss some preliminaries. We start with fixing some notation. N denotes the set of
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non-negative integers and N* denotes set of the positive integers. For a € R? and
0 >0, By(0) = B(a,0) denotes the Euclidean Ball with radius ¢ centered at a.
14 denotes the characteristic function of A. V denotes the Euclidean gradient and
A denotes the Euclidean Laplacian. All integrations are with respect to dx the
standard Lebesque measure on R3 with = = (21,22, 23) the standard coordinate
system of R3. |-| and (-,-) denote respectively the standard norm and scalar
product on R®. We also use |-| to denote the absolute value on R. For E C R3
and p € N*, LP(F) denotes the usual Lebesgue space of order p with respect
to dx. For x : R — R a smooth function, X/ and XN denotes respectively
the first derive and second derivative of y. For a € K C 2, K compact, and
0§d1<d2§oo,weset {d1§|1‘7a|§d2}:{1'€ﬂl d1§‘$7a|§d2} To
simplify notation, we write d; < |z — a] < dy instead of {d; < |z —a|] < do}
if there is no possible confusion. Similarly, for 0 < d; < dy < o0, we set
{di < ly| < do} = {y € R®: dy < |y| < do}. To simplify notation, we write
dy < |y| < dy instead of {d; < |y| < ds} if there is no possible confusion.

Next, we introduce the standard bubbles of the variational problem under study.
For a € R® and A > 0, we denote by dq,» the standard bubble on R? with center
a and scaling parameter )\, namely

SIS

A
O = —_— R3, 5
(@) CO<1+A2|x—a|2> e (5)
where cg > 0 is such that J,  satisfies
—Af,x =0, on R’ (6)

The 04,5’s verify the following relations

[wssl= [ s0u= [ 1vaal = [ 4, g
R3 R3 R3 R3

and
_ J V00 )
(Jps 52,>\)§
where )
5|V
S=  inf M 9)
weD!(R3), u#0 (fR3 u%)s
with
D'R3) ={uec L5(R?) : |Vu| € L*(R%)}.
We set

For a € Q, let G(a,z) be the unique solution of (see [7])

{—AG(a, x) + qG(a,x) = 4mdq (), x e

11
G(a,z) =0, x € 0L (11)

G(a,x) satisfies the following estimates

’G(aw)— <C for z#a€c, (12)

|z —a
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and
1

|z —al

V<G(a,x)— )‘g xCa| for z#aef. (13)

Moreover, under the assumption of Theorem 1.1, we have G > 0 in . For
estimates of the form (12) and (13) in the fractional setting, see [11].

As observed in Remark 1.2, the non-contractibility of €2 implies that some homology
with Zs coefficient of € is non-trivial. Indeed, denoting (respectively) by 4 (€2) and
Hi(Q, F) the k-th homotopy group of © and the k-th homology group of © with
coefficient in F' (k € N and F a field), we have :

Lemma 2.1. Assuming that 2 C R? is a non-contractible bounded domain with a
connected and smooth boundary, then there exists n € {1,2,3} such that

Proor. We divide the proof in two parts.

A): Q simply-connected or not simply-connected and not perfect funda-
mental group

Since  is a bounded and smooth domain of R3, then € has the homotopy type of
a CW-complex. Also, since ) is a domain of R?, then it is open and connected.
Hence 2 is path connected. Thus by Whitehead theorem €) non-contractible implies
2 is weakly not-contractible. Hence there exists n € {1,2,3} such that m, () # 0.
Without loss of generality, we can assume 7 (2) = 0 for k < n by replacing n with
ng := inf{0 < k < n/ 1 (Q) # 0}. To continue we will consider 3 cases depending
on if © is not simply connected (n = 1), Q2 is simply connected and not 2-connected
(n =2), and € is 2-connected and w5(§2) # 0.

Case 1: n=1.

Since § is path connected, then by Hurewicz Theorem, H;(f2,7Z) ~ 71 ()%, where
71 (2)? is the abelianization of (). Thus since 71(2) # 0, then Q is not sim-
ply connected implying in this case that m(f2) is not perfect which is equivalent
to m1(Q)%® # 0. Hence Hy(f2,Z) # 0, and using again the assumption (2 path-
connected (which implies Hyo(Q2,Z) = Z) combined with the Universal Coefficient
Theorem and Tor(Z,Zs) = 0, we get

Hl(Q7 Zg) ~ Hl(Q, Z) ® 7 S¥) TOT(H()(Q, Z), ZQ) ~ Hl(Q7 Z) ® VA 7& 0.
where Tor(-,-) is the first Tor functor. We observe that we could conclude the non
triviality of Hy(Q, Zs) just from Hy(2,Z) # 0 and H1(Q,Zs) ~ H1(Q,Z)QZ @
TOT(H()(Q, Z), ZQ)
Case 2: n = 2.
In this case, we have ) is 1-connected (mx(Q2) = 0 k < 2), then by Hurewicz
Theorem, Hy(Q,7Z) ~ m2(Q). Thus m2(Q) # 0 implies H2(Q,Z) # 0. Using the
Universal Coefficient Theorem we obtain

HZ(Qa ZQ) =~ HQ(sz) RL® Tor(Hl(Q,Z)sz)'

Applying Hurewicz Theorem as in the case n = 1 gives H1(2,7Z) = 0, since () =
0. Thus we have Tor(H;(2,Z),Z2) = 0. Hence, we obtain

HQ(Q,ZQ) >~ HQ(Q,Z) Q7 7& 0.

Similar to the case n = 1 here also we could conclude the non-triviality of Ha (€2, Z3)
just from Ho(Q,7Z) # 0 and Ho(Q,Z2) ~ Ho(QZ) R Z & Tor(H1(Q,Z), Zs).
Case 3: n = 3.
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In this case, we have ) is 2-connected (mx(Q2) = 0 k < 3), then by Hurewicz
Theorem, H3(Q,Z) ~ mw3(2). So m3(2) # 0 implies H3(Q,Z) # 0. Using the
Universal Coefficient Theorem we get

H3(2,Zs) ~ H2(Q,Z) @ Z ® Tor(H2(Q2, Z), Zs).

Applying Hurewicz Theorem as in the case n = 2 gives H5(2,Z) = 0. Therefore we
have Tor(H3(2,7Z),Zs) = 0. Hence, we obtain

Hg(Q,ZQ) ~ Hg(Q,Z) L 7é 0.

Similar to the cases n = 1,2, here also we could conclude the non-triviality of
Hg(Q, ZQ) just from H3(Q, Z) 7é 0 and I‘[g(Q7 Zg) >~ Hg(Q, Z)@Z@TOT(HQ(Q, Z), ZQ)
B): Q not simply connected and perfect fundamental group
In this part, we present an argument which works also for part A). We decide to
present both cases separately, since for part A), the argument we presented use only
elementary algebraic topology, while the one we are going to present use more ad-
vanced tools and results in algebraic topology and surface theory. Moreover, we will
emphasize the role of the smoothness and boundedness of {2 and more importantly
of the assumption dimension of 2 m = 3. To better point out the role of m = 3, we
will carry the argument with m > 3 until the assumption m = 3 is needed which
will be only at the conclusion of the argument. We argue by contradiction. Indeed
assuming that

Hp(Q,Z5)=0 for 1<k<m-—1. (14)

we are going to look for a contradiction. Observe the restriction & < m — 1 which
leads to a stronger conclusion as discussed in Remark 2.2 below. Coming back
to our proof, we have since {2 is a smooth m-dimensional compact manifold with
smooth boundary, then by Lefschetz duality (Poincare duality for smooth compact
manifolds with boundary), we get

Hip(Q,00Q,Z) ~ H™ F(Q,Zy) for 1<k<m—1. (15)

with H*(-,Z5) denoting the kth-cohomology with Z, coefficients. Moreover, since
Zs is a field, the by the duality between Zs-homology and Zs-cohomology,

H*(Q,72) ~ Hy(, Zs) for 1<k<m-—1. (16)

with ()/ denoting the dual. Furthermore, we have the following part of the long
exact sequence for relative homology of the pair (2, 99)

e = Hk+1(Q,aQ,ZQ) — Hk(éQ,ZQ) — Hk(Q,ZQ) — Hk(Q,aQ,Z2> - .. (17)
Thus combining (14)-(17), we get
He(09,Z2) = 0,1 <k <m—2. (18)

On the other hand, recalling that 0 is a closed (m — 1)-dimensional connected
smooth manifold, we have

Hk(aﬂ,ZQ) ~ Zg,k S {O,m — 1} (19)

Therefore, combining (18) and (19) we have the Zy- homology of 9 is the Zs-
homology of a (m — 1)-sphere. Now come to play the condition m = 3. Indeed, if
m = 3, then by the classification of closed surfaces 0f2 is an embedded 2-sphere in
R3. Hence the generalized Schoenflies Theorem implies €2 is contractible leading to
a contradiction to the assumption (2 is non-contractible. W .
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Remark 2.2. We would like to emphasize that from the proof given when ) has
non trivial fundamental group with trivial abelianization (Part B)), under the as-
sumption that Q C R3 is a bounded domain with smooth and connected boundary,
we always have Hg(Q,Z2) # 0 for some d € {1,2}.

Now, let x : R — [0, 1] be a smooth cut-off function satisfying

1 ift<1
x() = { 0 ift>2. (20)
Using x, for a € 2, and ¢ > 0 and small, we define
T —a
G =x(“51). zcn (21)

Moreover, using x§ and the Green’s function G(a,-), we define the Brendle[5]-
Schoen[14]’s bubble

&
Ug, N\, = ngstu)\ +(1 - Xg)iG(a7 'T) (22)

VA

For K C € compact, we set

dis(K, 09}
00 = 0F = % > 0. (23)
Thus, for Va € K and V0 < 26 < gy we have
Ug,\ 1= Ug N5 € H}(Q), and Ugx >0 in Q. (24)

For a;,a; € 2 and A;, A\; > 0, we define

1
) x;
% + TZ + )\i)\jG—Q(ai, aj)

Moreover, for a;,a; € K, 0 <2 < gg, and A;, A; > 0, we define

€ij = / uii’Ai Uaj A, (26)
Q

and

eij = / (A + q)ta;; Ua o, - (27)

Q
Using (6) and (11), we estimate the deficit of wu,  being a solution of BVP (2).
Lemma 2.3. Let K C Q be compact, m > 0 be a large integer, and 6 > 0
be small. Then there exists C > 0 such that Va € K, V0 < 2§ < gy and
V0 < % < #5™, we have
1
| = Augy + quap —uj z| < C [Ml{agm—ﬂgzs} + daox L{jo—a|<25}
+C0 A jz—al2s1}
where gg is as in (23).
Proor. First of all, to simplify notation, let us set xs := x§,
Gu(7) := G(a,z) and G, = coG,.
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Then, we have

E

Ugx = Xs0a:x +(1 — X5)

SN
X5 a,\ \/X \/X

S

This implies

o) aspe.

Clearly the lemma is true for x = a. Now, since for x # a, we have

(_A+q) éa = 07

(-84 @)t = (A4 0) s (B -

then for = # a we get

G
—A+q) Ugyn = —AX5 [Gasn ——=| —2VXsV |Sasn —
( (J) A X&[ A \[\} X6 { A

- X(SA(SCL’)\ JFQX(S(SaaA .

4

This implies (for z # a)

4
(—A + q) Ug,\ — ’U,Z)\ = Z Jz
=1

with
G
J = _A 5(1, T >
1 X5 [ A ﬁ}
Ga
J2 =-2 <VX<57V |:5a7)\ \/X:| > )
J3 = qX55a7)\ ;
and

Ji = —X6A0u,n —ul,» .

Now, we are going to estimate separately each J;’s. For Ji, we first write
Co 4 Co Ga
VNz—al  VAz—a] VAL

Jl = 7AX5 |:§aa)\ -

Next, using (5) and (12), we derive

Co C
6&7)\_m Sﬁa
and ~
’CO_Ga -
VAlz—a| VAT VA
For Axgs, we have
]z —a T—a
Vo= (55 S

This implies

v (e —al\ 1 o |z — al 1
AX52X< ) e T ) S
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Thus, recalling the definition of x (see (20)), we have (32) implies
C
|Axs| < 52 Lo<lo—al<20}-
Hence, combining (28), (29), (30), and (33), we get

|J1| < ml{ag\x—(ug%}-

To estimate .Jo, we first write

Co Co G7@
Jy = —2{ Vx5, V |8ur— + — ey,
’ < X { g VANz —al  VAz —al \f)\]>

Next, using (5) and (13), we derive

Co C
V [0y — < ,
‘ { ’ ﬁwa” Vi — dl
and -
Vm Al am
VAlz —al VA VAlz - al

On the other hand, using (31) and recalling (20), we obtain

C
Vsl < 5 1{s<te—al<25)-

Hence, combining (35)-(38), we get

C
|Jo| < ml{ag\x—ag%}-

For Js, since ¢ is bounded then using (20) and (21), we clearly obtain
|<]3| < Cbasn 1{|m—a|§25}'

Finally to estimate Jy, we observe that for |z —a| <4,

xs(z) =1.
Thus
Ji = —X6A08a,\ —upn = —Abs,x —0g,x =0
on {|z —a] < d}. On the other hand on {|z — a| > 0}, we clearly have
[uan | < Cdasn .

Therefore, (41) and (42) imply

| T4l < 023 L{ja—a>6)-

Hence, the result follows from (34), (39), (40), and (43). m

(33)

(34)
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3. PS-sequences and Deformation lemma. In this section, we recall the anal-
ysis of Palais-Smale (PS) sequence for J, defined by (3), see [7]. We also introduce
the neighborhood of potential critical points at infinity of J, and the associated
selection maps. As in other applications of the Barycenter technique of Bahri-
Coron[3], we also recall the associated Deformation lemma.

We start with the analysis of Palais-Smale (PS) sequence for J,. By some argu-
ments which are classical by now see for example [7] ( see also [2], [8], [13], and
[15]), we have the following the profile decomposition for (PS)-sequences of J,.

Lemma 3.1. Suppose that (u) C Hé"”(Q) is a PS-sequence for J,, that is
VJg(ur) = 0 and Jg(ux) — ¢ up to a subsequence, and [, uf = 3, then up to
a subsequence, we have have there exists wuo, > 0, an integer p > 0, a sequence of
points a; ;, € Q, i =1,---,p, and a sequence of positive numbers \; 5, i =1,---p,
such that

1)

—Aloo + quoe =

2)
P
g — oo — Zuai‘k,/\qu — 0.
i=1
3)
3 3 3
Jg(ug)2 — Jy(uso)? +pS2.
4)
For 17&]: 17 » Dy
Aik | Ak _9
— 4 +>\ik)\jkG (aik7ajk)—>+oo
>\j,k )\i,k, 5 s s
5)
Fori=1,---,p,
i kdist(a; i, O2) — +o0,
where || -] is the norm associated to the scalar product (-,-), defined by (4).

We discuss now the neighborhoods of potential critical points at infinity of J;. To
introduce the latter, we first fix

g0 >0 and ep~0. (44)

Furthermore, we choose

vo>1 and vy ~1. (45)
Then for p € N*, and 0 < € < gg, we define V(p,e) the (p,e)-neighborhood of
potential critical points at infinity of J, by

V(p,s):{uEHé’Jr(Q): Jar, - ,ap €Q, ai,cc,a, >0, A, Ay >0,

1 1
A > - for i=1---,p, Ndist(a;,00) > - for i=1---,p,

p
||'LL - Z QiUay, N,
i=1

o .
¢<e —<wand g;<e for i#j=1,p}
J
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For the sets V(p,e) (see [3] and [7]), for every p € N* there exists 0 < ¢, < &
such that for every 0 < e <¢p, we have

{Vu € V(p,e) the minimization problem minge [u — Y7 g, z, |lq (46)

has a solution (&, A, 5\) € BP, which is unique up to permutations,
where B? is defined as
B? = {(64: (ala"' 7ap)aA: (alv"’ ,ap)aX: ()‘1)"' 7)‘1?)) ER{;— x QP x Rﬁ-

1 1 ;
A > =, Adist(a;, 09) > = i=1,--,p, <y and g, <eitj=1---,p}

9 9 &%}
with Ry = [0,00) and RE the cartesian product of p copies of R .
Denoting by o, the permutation group of order p € N*, we define the selection map
sp Via

sp:Vip,e) — (Q)P/op : u — sp(u) = [A] and A is given by (46),

where [A] is the class of A under the action of g,,.

To finish this section we state the Deformation Lemma needed for the application
of the algebraic topological argument of Bahri-Coron[3]. To do that, we first set

W, i={uc: J(u) < (p+1)38}, (47)

for pe N.

With the latter notation, as in [3], [9], and [12], we have Lemma 3.1 implies the
following Deformation Lemma (see [4] and [3]).

Lemma 3.2. Assuming that J; has no critical points, then for every p € N*,
up to taking e, given by (46) smaller, we have that for every 0 < ¢ < ¢, the
topological pair (W,, W,_1) retracts by deformation onto (W,_1 U A,, W,_1)
with V(p, &) C A, C V(p, ) where 0 < & < § is a very small positive real
number and depends on e.

4. Self-action estimates. In this section, we derive some sharp estimates needed
for application of the Barycenter technique of Bahri-Coron[3]. We start with the
numerator of J;. Indeed, we have

Lemma 4.1. Assuming that K C Q is compact, m > 0 is a large integer, and
6 > 0 is small, then there exists C' > 0 such that Va € K, V0 < 2§ < gg, and
V0 < % < 05™, we have

C 1
6
/Q(_A'F‘I)Uamuaaﬁ/gua»)\ +X (1"‘5"‘)\253)~

PROOF. Setting
I = / (_A + q)uaa)\ Ua s\ 5
Q

we get
I:/u27A+/ [(_A+q)uaaA —Uiv\}ua?»
Q Q

I
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To continue, let us estimate I;. Using Lemma 2.3, we get
|Il‘ < / |(7A + q)uaa)\ 7“;0\ | Ua s\
Q
< / |
= Ug AL {5<|z—al<25
B2V Jo Ol al<E)
+ C’/ Oarsx Uasx L{|z—a|<25}
Q

+C/ 62 A Ugon L{jz—a|>6}-
Q

To obtain our goal, we are going to estimate the three parts of the right hand side
the latter formula. For the first term, we have

/ - §
uav)\l 6<|z—al<L26 < C/ |: :l
Q (o< <26} 6<|z—al<28 1+)\2|x—a\2

1

cof 1
s<le—al<25 VAlz — al
C 20
< — rdr
<Al
2

<C—.
VAN

For the second term, we obtain

A
§aa as 1 r—a SC
fsrtiazose [ et

< f/ dr
AJo
)
<C-.
A
Finally for the last term, we get
/ Soatian 1jz—a>206y < C N
Q |lz—a|>25

[rr=ar]
—a|>25 1+)\2|x7a|2

IN
Q
\

C/
S 3 6
A3 {lx—a|>26} |‘Tfa’|
S%/ i

C
= N

Thus, collecting all we have

1 46 1
< — — J—
|11|C[A+A+A353}
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Hence, we obtain

C 1
A a asx < St~ (1404 —=
/S:l( q)u AU a)\_/Qu(m)\ 2\ ( ) )\253)7

thereby ending the proof. B

We turn now to the denominator of .J, and obtain the following estimate.

Lemma 4.2. Assuming that K C € is compact, m > 0 is a large integer, and
6 > 0 is small, then there exists C > 0 such that Va € K, V0 < 2§ < gg, and

V0 < % < 06™, we have
1
6 6
Ug s\ = (5a,)\+0 <>
fea= [ 8240 (55
PROOF. We have

6 6 6 6
/ U/a,)\:/ ’Lta,)\—f—/ uaa)\+/ Ugs -
Q |z—a|<s 6<|z—al<28 |lzr—a|>28

Now, we estimate each term of the right hand side of the latter formula. For the
first term, we obtain

For the second term, we derive

A 3
6
W< C / ()
/5<;c—a|§26 ¢ 5<|o—al<2s \1 + A%|z —al?

26
< %/ r~4dr
5

< C
— 363
For the last term, using (12) we get

1 6
/ US»\ = / < >
lo—a|>20 le—al>26 \VAGq

— g GS
=3 o
|z—a|>26

< C / 1
A3 |z—a|>26 |1’ - a’|6

C

= 343

1
6 6
Ug s\ = 5a,>\+0 <>
fea= ], RE

Therefore, we have
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Finally, we derive the J,-energy estimate of u,,\ needed for the application of the
Barycenter technique of Bahri-Coron|[3].

Corollary 4.3. Assuming that K C Q is compact, m > 0 is a large integer, and
0@ > 0 is small, then there exists C > 0 such that Va € K, V0 < 2§ < pg, and
V0 < % < 05™, we have

5 1
Jq(ua,,\)§8<l+0{ + — +53A3D

PrROOF. It follows from the properties of d, x (see (7)-(9)), Lemma 4.1 and Lemma
4.2. 1

5. Interaction estimates. In this section, we derive sharp inter-action estimates
needed for the algebraic topological argument for existence. Recalling (25), (26)
and (27), we start with the following one relating €;;, e;; and e;;. For this, we
start with the following auxiliary estimate.

Lemma 5.1. Assuming that K C € is compact, m > 0 is a large integer, and
6 > 0 is small, then there exists C' > 0 such that Va;,a; € K, V0 < 26 < g¢, and
V0 < %, )% < 06™, we have

i J

/ uai ’)\i
Q

Proor. Using Lemma 2.3, we have

1

1 A =
<6+)\262> ( + i) |a1—aj|2> :

(_A + Q)uaj 7Aj _uaJ 7/\3

1
‘(—A-FQ)%]-’AJ- —ugj’xj <C l62\/»15<x ajl<26 + 0a;5x; Lz aj<25]

4
b (48)
+ C03; 2 Loy 26

On the set {|z — a;| < 26}, we have

2 2 Aj C%
da, (@) 2 60 | 75 | 2 2;02
J

This implies

Thus, we get

1
Lj < c (1 + ) 5aj7)\j 1|z—a\§46 + 062j7)\j 1|‘/L’—a‘2%7

]
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where L; is as in (48). Hence, we obtain

1 1
1 A ’ Ai z

nLi<o(1+= ! -
/Quaw\l T ( +5)/|xaj|<46 <1+)\§|$_aj|2> <1+/\12|33_ai|2>

I

1

by : A :
C J : .
+ /zaj|>g <1+)\§|$—aj|2> <1+)\?|x—ai|2>

I

Now, we estimate I as follows.

1
2 3
5L :/ /\j ( A )
lo—a|<as \ L+ Nz —a;? 1+ Az — aqf?

y ) (o)
(2fz-ail < 5 +lai—a; ) (lv—a;| <16) L+ M|z — a;? L+ A |z — a;f?

h

1
y o) (i)
(2lz—ai]> 35 +lai—a; )N (|lz—a;|<45) 1+ /\§|$ —a;]? L+ X |2 — a;?

i

N|=

SIS

To continue, we first estimate I7. Indeed, using triangle inequality we have
1
5 1
\j ’ i 2
I < C/ 2 : 2 ( 2 - 2)
lz—a;|<ss \ 1+ AF|a; — ajl L+ Az — ai

N 1
<c 2 / :
(14 22Ja; — ay[2) Jlo—aslzss |2 = ail

>

This implies
1 2 (A 2 =
Il =0 0 )\—+)\i)\j|a7;faj| . (50)
J

For I#, we derive

[N

)\.
<o .
! |lx—aj;| <46 <1+/\?|x—a3|2>

by ey
1—|—/\?|ai—ai|2 /\1
Xi (A
x (%)

1
- :
(1+ A2la; — a;?)? /|zaj|<45 |z — ay]

<C
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Thus for IZ, we obtain

112 =0 ((52 <;\\l + )\1)\3|a1 — aj|2) > . (51)
J

Hence, combining (50) and (51), we get

11 =0 (52 <i\\z + /\1/\j|az - Clj2> > . (52)
J

Next, let us estimate I. For this, we first write

2 1
A ’ Ai 2
I2:/ T 2
le—a;|>3 \ 1+ Ajlz —a;[? 14+ Mz — a;)?

1
3
B /{2|xai<§j+|aiaj|}m(za 1>$) (1 + )‘ ‘CE - aa|2> 1+ )\2|x G |2>

2

2

o )
(2lz—ai|> 5= +lai—a; DN (le—a;1> 5) <1 + >\2|$ - a;|2> I+ >\2|9C —a;]?

2

Setting D = {2|z —a;| < + +|az—aj|}ﬂ{|x a;| > $}, we estimate I3 as follows

3
ne 9 ! 2 (o )é !
2= A2 Jp \ 1+ Na; — a2 1+ X2z — a,)? L+ A3la; — a;]?
j
5
c<1)< ! ) A / !
2 3
VAL A\ ) (14 X2 a; — ay2) ® 2le-ail< o tai—a| |2 = ail
Aj ( 1 ) 1 ( ne [ 1
V| | = 1—|—)\|aZ a;il?)" | —
< AZ’) 6 (1+A2]a; — ay]? )% A}
Ai A 62 (14 A3a; — ay]? )%

This implies

IN

IN

C
C

IN
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Next, we estimate [2 as follows
/ 1
2
r—a;|>$ 1+)\\az—a3|

(NI

IN

2 Aj Aj ’
o L+ A3z —a 2
1
Aj I
A

1 2 1/ 1
14+ Mla; — a;? )\J% le—ay|>8 | — a;]°

|
Y ) AN (14 e g

1 [\ E
I§—0<A252( + Nidjlai — aﬂ) ) (54)

Therefore, using (53) and (54), we obtain

1 [\ =
12—0<A252( + Nidjla; — aj|2> ) (55)

Hence, combining (49), (73) and (55), we get

C
C

IN

IN

Nl=

‘|

This gives

1

1 i e
/Q““”*fLJ‘SC<5+A252> ( AN las — aj2> ,

thereby ending the proof of the lemma. B

Clearly Lemma 5.1 implies the following sharp interaction-estimate relating e;;,
€5, and g;; (for their definitions, see (25)-(27)).

Corollary 5.2. Assuming that K C € is compact, m > 0 is a large integer,
6 > 0 is small, and po > 0 is small, then Va;,a; € K, V0 < 20 < po, and
V0 < )% <s L - < 00™ such that ;; < pp, we have

1
e; —elj+0(5+)\252)

Next, we present a lemma that provides a sharp inter-action estimate relating e;;
and €;;. Indeed, we have.

Lemma 5.3. Assuming that K C Q is compact, m > 0 is a large integer 6 > 0 is

small, and 4 is small, then Va;,a; € K, V0 < 26 < g, and V0 < & < 5L < 65™
i J

such that e;; < po, we have

<1+O<6+A2152>> (1+0c,(1) +O(eF;,(67% +loge;;1)))

1
+ 6803&]‘ |:O <€$J(56>:| .

PrROOF. By definition, we have

6
€ij :COC3Eij

C
uai;)\i = Xﬁéai;)\i +(1 - X(S)TOXG(M?
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with xs5 := x§*. On the other hand, by definition of the standard bubble 4, x, we
have

2

i

2 ~v—2lz—a;|?
14+ 2262 ol
aj

X50a;0 = COX5

Next, for |z — a;| < 2§, we have

_ .12
;f'“”Gi_a;' — 1+ X2G.2 (1+0(5))

=1+ MG, +0 (NG, )

NGL20
_ 2G2 Py
_(1+Aﬁ%i)b**)(1+xﬁ%f>]
(1462 [+ 0.

1+ XG

So, for x50a,,x; We have

Ai
(1+X2Ga2) [1+0(9)]

1 1
VRE
X50a; 0 = COXo }

= coxs [1 + O(0)] [H_)\QG_Q

(56)
‘We have also

Co

NoOE
co(1 —xs) |:1_’_)\2(;2:| =(1- X(;)WGC“

Since on {|z — a;| > §}, we have

1 G? 1
- =1 %) =1
e~ 1o (58) 1o ()

then we get

) z co 1
(1 = xs) [1 T A%Ga?] = (=) =G (1 o (A%cﬂ)) ‘

This implies

Co i 3 1
(1_X6)TiGai :CO(l_Xﬁ) |:1+)\12G%2] <1+O()\$52)> (57)

Thus, combining (56) and (57), we get

1

S TR ) [y

Hence, we obtain

1 A 2
Ugy Ny = CO [1 +0()+0 ()\?52>} {1 +/\12G;2} . (58)

Now, we are going to use (58) to achieve our goal. First of all, we write

5 _ 5 5
/ uaja)\j ua”)\i - / uaj 1Aj uaia)\i +/ uaj 7)\]' ua,:aki .
Q B(a;,0) Q—B(a;,0)
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For the second term in the right hand side of the latter formula, we have

. 1\? /1\°
/ Uaj,)\]. ’U/aia)\i S C ()\> (5> uai;)\i
Q—B(a;,0) Q-B(a;,8) \Aj

1\? /1\°
<C () () / Ua; X
)\j ) Q—DB(a;,0)
1 \2
< C( ) / Ua;s;
/\j62 [Q—(B(aj,g)UB(a'iaé)) g
1 \?
—‘rC( > / Uassh;
)\j52 [(Q—B(aj,é))ﬂB(ai»5) ’
% 6
<(5) () v
)\j 4] )\i
1 % ]_ 5 )\z
(%) ) fuo (Fr=ar)
1)? 1\ 1 1)1\
< s L 2 7 _
—O(A) (5) el (M) <5>
1\? /1\% 1
<Cc(=— = 1+6%).
_C<>\j> (5> = (1+5)

Thus, we get

1
5 5
/ Uqyox; Uaixi = / Ug,5x; Uagon, TO | —5——
@ B(a;,0) A7 VA6

1
2

oy

1
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For the first term in the right hand side of (59), using (58) we have

1+ /\2Gm ]

5 6
UL x; Uy sn; = C [14+0(6
/13(%5) 7 O/B(aj,5)<1+/\ |$—ag|2>
Aj 1
wd o) © )
0 B(a;,s) <1+)\2|x—a3|2> )\12(52
)\.
— [1+0(5)]/ s
0 Bla,6) \ 1+ Aj|z —a;]?

1 A
6 J
0 (A?P) /ij,zn (1 + Az — aﬂ) [1 + /\QGal

1 1 2 \i
VA IBops N1+ [yl? 1+ 22G;2 (% + aj)
J

e

2

i

[1+)\2G

e
et
2l

]

o

L 00 () N
CO 5
VA IBoae \1+ 1yl 14+ A2G,2 (% 4 aj)

ot
N|=

g

1
+c60<k?62>/ ( ! )
0
VA Teoae NI 14262 (AA +aj)

S o N vy
0 B(0,);06) 1+ ‘y|2 ;\\—J + Al)\jG;? ()\i + aj)

M

1 2 1
L0 (5r) |
W o W) | a6 (£ +a)

[N

#0(575) e (52) :
AZ62 B8 \ 1+ |y|? % 4 )\i)\jG;f (/\% 4 aj)

Recalling that A\; < A;, then for €;; ~ 0, we have
1) Either 5&2 ~ AN Gg 2 (ay),

2) or &, LRSS

To contlnue let
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with € > 0 very small. Then by Taylor expansion on A, we have

[;\\Z + AN GLP <§\JJ + aj)] = [i\\z + /\i/\jG;?(aj)]

2

-3
-1 s 2
+ <2VGai2(aj))\iy) |:/\J + )\i)\jG;iz (aj)}

Ai o [N vy a2 ]
+ 0 |:<)‘J> |y } |:>\i + A G, (ag)] .

Thus, we have

4
1
/B( ; ui),j?)\j Ua, x, = Cg [1 +0(0)+0 (/\252>:| <ZIZ> ) (60)
.. % i=1

with
h= [A ““JG“_2<“J>Y/A (1+1y|2>2’
-3 5
b=y ¥ e [ () Iveenal,
-3 5 ;
ne[eee)] " [ (5e) o|(5) ]
and

-

>
)
8]

[ V]
VRS
Rl

_|_

Q@
N——
m“

L oNEn
L)
B(0,x,5)—A \ 1+ [y]? i

Now, let us estimate I;. We have
1 3
C3 “r/ ()
ri—a \ 1+ |yl?

where c3 is as in (10). On the other hand, we estimate
1 3 1 3
Lo (50) = s, (557)
rs—a \1+ [yl R3—B(0,6%,) \ 1+ (Yl

5
/ (r5m)
+ -
B3 B(0,)\;eGy (asay)) \ 1+ [Y[?
if .2 ~ A\iA;Go2(a;), and

/ ( : ) / ( :
3 <
ri—a \1+ [yl R3—B(0,6),)

—1

L= {)\j + /\z‘)\jG:LQ(%‘)}

Ai

—_
_l’_
=3
[ V)
N———
ol

X
2~ 3. We also have

1 5
/R?’B(O,(S)\j) (1 + |y|2) a

if €4

@)
/N
Qx,‘ _
<,
[\v]
~
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Moreover, if £;% ~ A\;A;G;2(a;), then

5
1 2 1
I (=) -l
R3—B(0,\;¢Ga;' (a;)) L+ |yl Aje*Ga; (a;)

e -2 N
Furthermore if sijz ~ 3%, then

1
LV oo@).
/RS—B(O,eiJi') (1 + |y|2) (=)
This implies

LN (o DN (s a1\ (a1
/RBA<1+|Q|2> O<€”+)\§62>O<€ij+5ij62)0<€”62 .

Thus, we get

. 2 1
I, = [iﬂ + AiAjG;?wj)] [CS +0 (5%‘ 52”

1
= €ij (1 + Osij(l)) |:Cg -+ O <€%J62>:| .
Hence, we obtain
1

I = C3E; |:1 + OGU(l) +0 (&‘12]52>:| . (61)

By symmetry, we have
I, =0. (62)

Next, to estimate I3 we first observe that

/ > _ / ly|®
5 = 5
A (1+[yl?)? B(0.eA;Ga;' (a;)-B(0,1) (1 + |y[?)2

ly|?
+/ N — 3 to
B(0,e51)-B(0,1) (1 + [y[2)?

=0 (log(e)\ngil(aj)) + log(ei\\i)) +0(1).

X2

Thus, we have

Iy =¢}; (i;) (1+o0c,(1)) [0 (log(ex\jG;_l(aj)) + 10g(e§\j)> + 0(1)}

=< (14 02, (1) |0 (1os0A G2l + w1 ) + 00

?

Hence, we obtain
I3 = O (g} log(e;;1)) - (63)
Finally, we estimate I as follows.
If 5%2 ~ i—z, then
2 -2
Iy < C’a'/ (1> S <Oy <)‘]) < e} (64)
= BON5—A N+ Y2 T AN -
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If 5;2 ~ A\iXjG 2 (a;), then we argue as follows. In case |a; — a;| > 24, since

G, (y + aj) <ot
Aj

for y € B(0,\;6), then we have

I <c/ ( L ) L
1= BON0—A NLH Y2/ AA0

C 1
<
o \/ )\2)\]5 <>\32G(;2(a])>

._ ¢ Gyt (ay)
T AN Gal (a5) VAN G ag)6
< Cefjeijg.

Thus, when |a; —a;| > 26 we get

1

In case |a; —a;| < 2§, we first observe that
B(0,2j0)\AC A1 UA,
with
A= {eNGLl (a)) < Jyl < BAGL (a))}
and
Ay = {EXNG ] a)) < [yl < Ajo},
where 0 < ¢ < E. Thus, we have
I < Ip + 1,

with

ol |
-

and

1 3 Aj Y
11: g N2 2 .
=], (o) [ o (500
1 2 [N, _ Y =
- () B (o))
4 A, 1+ |y|2 )\z )~ a; )\j a;

lot
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We estimate I} as follows:

-1
Il < C1+XG2(a)] " / L{+mjc;af (g+aj>}
<E\j Ga (aj) % J

1 1

B0 VA _ El
< O AG )] ? (Aa) /<E)\ Gallay) {IJFA?GMZ (j\la +aj>}
NN y 217
< C[1+X26G;2(0))] " (A]> /<Ew y R v ]
. Y a; a;)

1 1
() ==
Ai 2|<BExGitay) L1+ 127

<O+ A6 a )] N (AN G.72(ay))
< Ce; ()‘i)‘jG;?(aj)) ’

where E is a positive constant. So we obtain

I; =0 (s}). (67)

ij
For IZ, we have

5 —1
1 ENDY Y =z
B[ () e (2 4)
P \L+ [y Ai e \ ), T
5 —1
1 2 [\ =
<C () [HAM»G;?(CL»)}
> EX; Gl (ay) N1+ [yl Ai e

by k3 1
<C |2+ 200G %(a; — |-
<C |:/\l +>\1>\JGai (CL]):| (A?GJ(%))

This implies

Thus, combining (66)-(68), we derive that if |a; — a;| < 26, then
I4=0(e})). (69)
Now, using (65) and (69), we infer that in case 51_]2 ~ AN\ G2 (ag),
1
_ 3
I, =0 <5i7j5> . (70)

Finally combining (64) and (70), we get

1

Collecting all we obtain
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Therefore using (59) and (71), we arrive to

1
/ u2j7>\j Uayhs = €5 {1 +0 (5 + )\252>} [eaesj (1+ 02, (1))]
Q
1 _ _
+c§ [1 +0 (5 + )\252)] [C35ij0(5?,j(5 2+ log Eijl))]

1

AF V66

Thus, we have

1
/ u2j7)\j Uq;sh; = Cg |:1 + @) <5 + )\252>:| [CgEij (1 + Ogi,j (1))]
Q %
1 _ _
+c§ [1 +0 |0+ )\252)] [0352‘j0(5?’j(5 24 loggijl))]

(
+o(g?).

) 66

Therefore, we obtain

Q
1
+ 080382'7]' |:<]. + O ( )\262>> O( (5 2 + IOgE )):| (72)
1
~0(5)

Hence by switching the index ¢ and j, the result follows from (26), (72), and the
symmetry €;; = €;; . B

We present now some sharp high-order inter-action estimates needed for the ap-
plication of the algebraic topological argument for existence. We start with the
following balanced high-order inter-action estimate.

Lemma 5.4. Assuming that K C € is compact, m > 0 is a large integer, 6 > 0

is small, and o is small, then Va;,a; € K, V0 < 20 < gg, and V0 < %, )\i < f5™
it N

such that €;; < p, we have

1
3 3 3 6
Auai7Ai Ugsh; = o <€i 6 IOg <E’l]5)> .

PrROOF. By symmetry, we can assume without loss of generality (w.l.o.g) that
A; < A;. Thus we have

1) Either Ei_jg ~ /\i/\jG;f(aj)

2) Or g, ~ Ve
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Now, if |a; — a;| > 2§, then we obtain

I:/QU?INMUE/J"AJ‘
A 3 A
sc/ ( s ) I
B(a;,5) 1+)‘z‘|$_ai|2 1—1—)\?G;j (2)
3
5

L ¢ N ‘+c< L)
AZ53 JB(ag) \ 1+ ATE —ag)? 6% \ A,

<C o 1
= w2 |~ =
B(0,A;6) Y )\7; + )\i)\jGaj (ai +

L
Lo (A
5\ ik

3 3
1 2 C 1 2
TTe) T
B8 \1+ [yl 0% \ i
1\? 2

N

e

Nl
W

) (73)

Y
g

nlw

Now, we estlmate I; as follows.
If 5*2 ~ f then we get

I < C¢}; [log(Aid) + C.

So, for I we have

I < Ce}; log(Aid) + C + —£5; log(Ai;)

56 1]

C
< 576613 log( 2G2 ( ))

56 '
If si_jQ ~ Ai\jG % (a;), then we estimate

3
C/ 1\

< — [ — ; .
L< 5 ( mj) llog(Xid) + C)

So, for I we get

This implies
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Hence, for |a; — a;j| > 26, we obtain

3 —ls-1
I=0 (E”()g%])) . (74)

On the other hand, arguing as above, if |a; — a;| < 2§ then we have also
C( 1\ C [ 1\?
I<L+ =~ log\j)+ =+
=hts (AiAj o8(X) + 5 <AiAj)

C/ 1
sh+ 3 A

where I is as in (73). Thus, if 5:]2 ~ 2 then

C /A2 1 A
< J 7 2 )
I<h+ 5 </\i) — [log(/\j) + log()\J)}

This implies
C
I < 4+ —&log(e; ).

56U ij

Next, if 5;32 ~ \A\jGg%(a;) then we get

3
C 1 2 _ _
I<h+ 56 (W) [log(/\i/\jGaf(aj) + 10g(Gii (%‘)))] Gaf(aj)

C _
<I + EE% log(e;;1).

Now, to continue, we are going to estimate I;. For this, we start by defining the

following sets:
P 1
A =yl < ehiy | Ga; (a;) + 3z
J
9 1 9 1
Ay = S ehiy [Ga (a;) + 5 <yl < EXiy|Ga (ai) +
)\j )\j
o 1
A3 = E)\1 Gaj (az) + F S |y| S 4)\25 y
J

with 0 < e < F < oo. Clearly by the definition of I (see (73)), we have

I1§/ Lij+/ Lz’j+/ Lij,
Aq As As

where

(N

Lo (1N 1
T\ M a2 (e
A+ 20 Ga? (4 + £
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For fA L;;, we obtain
3
f e ], ( )
Li; < Ce3, -
Al ! 1+|y|2
)\
<C€” log AN\ Gaj a;) :

< Ce? log

For fA2 L;;, we get

Nl

M

Nl

>
_|_
y&
<
+
>~
—~
|
S
~
N
T

S

>«L>z
+
x|
<

IN
Q
7N 7N 7 N
gt
N—— N—— N———
[N
™
Sw
—
IN
les]]
ke
Q
e
B
-

< Ce, ' log (e ).

For L; i, we derive
Az Mgy

3
1 2 1
e ) (s
/,43 P A TP\ e Sy
MYE L1
SC(») I
J A 1Y

N

[N

Nl

Therefore, we obtain

I, < Ce. ; log(e;; .

This implies for |a; — a;| < 20, we have

&,
I:O((sﬁlog( )>

27
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Hence, combining with the estimate for |a; — a;| > 2§ (see (74)), we get
3 3 £ 151
— ] — —
/Quaw/\z‘ uaj7>\j =0 F 10g(€ij 1) ) .

Finally, we present a sharp unbalanced high-order inter-action estimate needed for
the application of the Barycenter technique of Bahri-Coron[3].

Lemma 5.5. Assuming that K C € is compact, m > 0 is a large integer, 6 > 0 is

small, and f is small, then Va;,a; € K, V0 < 20 < g, and V0 < )\i < )\i < 06™
i J

such that €;; < po, we have

B
«@ B _ )
‘/Quaiy)\i uaja)\j =0 56 3

where a4+ =6and o >3 > 3 > 1.

Proor. Let a = %a and B = %ﬁ Then we get & —1—/3’ = 3. Now, since \; < A,
then we have

1) Either Ei_jQ ~ )\i)\jG;f(aj)

2) Or 5%2 ~ ;‘—]

To continue, we write

a B _ a B a B
/ uai))‘iua]‘,)\]‘ _/ uai))‘iu(l]‘,)\]‘ +/ uahAiuaj,)\j
Q Ba, (8) Q- B., ()

Il I2

and estimate I; and I5. For Iy, we obtain

L= / UG A Ul +/ UGN Ul o
(2=Ba, (8))NBa, (5) Q—(Ba,; (6)UB,, (9))

N 3
o i) (2
=~ (fszai (5))ﬂBaj (5) 1 + )\?G;lg(x) 1 + )\?|1’ - a’j‘2
\i @ by ’
+ C/ e T
Q—(Ba, (6)UB, () \1+A;Ga.”(2) L4+ AjGa; (x)

L/ ( 1 >ﬁ+ c
AGNIBga S o) \ 1+ [yl? AGN g6

IN

e (1)253+ C
T a3 B \ A0 AGNI 56

Thus, we have for I

9
< ———0.
AGA] g6
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Next, for I; we derive

5 B
I —/ ( Ai )a Aj
te Bai((g) 1—|—)\12|x—a1|2 1+>\?G(;]2(ZE)

B
oo ) [
o) \LHIWP) | g \ihGa2 (ai + ;f)
Thus, if sif ~ i—; then
5 1\ 2673
I < Ce C
1=y [(m) ’
< C’sfj.
If Ei_jg ~ AAjGo2(a;) and |a; — a;| > 20, then we estimate
neo( ) 1L e
P82 Aib
i 118
1 1 1 1 2
<(C— < (C— _—
N (AMJ‘) T l(AiAjGwiZ(aj)> 1
1
B
S 067367’]
Now, if si_jQ ~ A\iX\jGg%(a;) and |a; — a;| < 20, then we get
B
1 ¢ 1
nef o (5wr) :
Bo(Xid) + |y‘ % + )\Z)\j a; + /\il _ aj‘
Next, we define
1 El
B = {2|ai —Clj| S )\Z S 2‘&2' —aj|}
and have
B

A N s = L g
)\—j+)\l)\J ai+ 5 —aj

1 « 1
<o)
! 5 \ 1+ [y ’2

1 : 1
Bons)—B \ 1+ A
0(Aid) v + /\i/\j

29
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For the second term, we have

Jrnor () 1 <c(5)
Bo(no)—B \ 1+ [y[? B _'2 R ¥

For the first term, we obtain

[ () :
B \1+[y? 2

%-ﬁ-/\z/\j ai—i—/'\%—aj

4 r B
< (rrar) |
- 1+ Ma; — a;? ly|<2X;|a;—aj]| i—]—k i—fly—k)\i(ai—aj)ﬁ

. r B

1 1
< (5mm=a7) oo 5707
1+)‘12|ai 7aj|2 |z|<4Xi|a;—aj] %+%|Z|2

<olsts) Lo ]
T\ E AN e a2 iianja-a LEH P

If \jla; — a;| is bounded, then we get

1 2
L <C<M+A4A.|a4_a,2>
N (VAL J

< Csfj.

If Ajla; — a;| is unbounded, then we estimate

1 H Y
I < C( ) (Ajlai —aj)*~*

)\.
)\72 + )\i)\j\ai - aj|2

1 OAH*B*% i B
(o] (N — al
14+ Aflai —a;[? Aj

1 ; 1 a3
(s ()
3+ Aidjlai — ag)? 1+ Ala; — a;

< C’afj.

Thus, we have for I, obtain

IN

IA

C s
Il S 5f3€”

On the other hand, using the estimate for I (see (75)), we get

IQZO ﬁ .
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Hence, combining (76) and (77), we have

B
1)
/ng“*i g, n; = O 56 |-

6. Algebraic topological argument. In this section, we present the algebraic
topological argument for existence. We start by fixing some notation from algebraic
topology. For a topological space Z, H.(Z) denotes the singular homology of Z
with Zso coeflicients. If Y is a subspace of Z, then H,(Z,Y) stands for the relative
homology with Zs coefficients of the topological pair (Z,Y). Foramap f: Z =Y
with Z and Y topological spaces, f. denotes the induced map in homology. If
f:(2Y) — (W,X) isamap with (Z,Y) and (W, X) topological pairs, then
f« denotes the induced map in relative homology. Furthermore, we discuss some
algebraic topological tools needed for our application of the Barycentre technique
of Bahri-Coron[3]. We start with the following observation. Since € is a smooth
bounded domain of R?® which is non-contractble, then there exists n € {1,2,3}
such that H,(f2) is not trivial, see Lemma 2.1 (see also Remark 2.2) or [3] (see
page 1 just after Theorem 1). Hence, as in [3] (see beginning of page 263), we have
there exists M a smooth compact connected mn-dimensional manifold without
boundary and a continuous map

h : M—Q (78)

such that if we denote by [M] the class of orientation (modulo 2) of M, then
h«([M]) # 0. Moreover, we have clearly the existence of a compact smooth manifold
with boundary Ky such that

h(M) C Ko C Q. (79)

We recall the space of formal barycenter of M that we need for our Barycenter
technique for existence. For p € N*| the set of formal barycenters of M of order
p is defined as

p P
Bp(M)={>_ aibs, : a; €M, 0; >0, i=1,---,p, ¥ a; =1}, Bo(M) =10,
i=1 =1

(80)
where §, for a € M is the Dirac measure at a. we have the existence of Zs
orientation classes (see [3])

wy € Hig1ypo1 (By(M), By—r(M)),  p € N". (81)

Now to continue, we fix § small such that 0 < 26 < gy where gy as in (23) with
K isreplaced by Ky and Ky is given by (79). Moreover, we choose m > 0 a large
integer and 0y > 0 and small. After this, we let A varies such that 0 < % < g™
and associate for every p € N* the map

Fo(AN) : Bp(M) — Hy ()
defined by the formula

p p
FrMN(0) = citingayn: 0= @iba,,
i=1 i=1

where h is as in (78) and wup(q,),» is as (24) (with a replaced by h(a;)).
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As in Proposition 3.1in [9] and Proposition 6.3 in [12], using Corollary 5.2, Corollary
5.3, Corollary 4.3, Lemma 5.4, and Lemma 5.5, we have the following multiple-
bubble estimate.

Proposition 6.1. There exist Cy > 0 and ¢ > 0 such that for every p € N*,
p > 2 and every 0 < e < gp, there exists A, := A\,(¢) such that for every A > X,
and for every o = Y ¥_| a;8,, € B,(M), we have

aio
Xjg

1. If Z#j €;,; > € or there exist iy # jo such that > 1, then

2
Jo(fo(N) (o)) < p3S.
2. If Zi#j 5,57 < e and for every ¢ # j we have 3—] < vy, then

(W) < pis (1+ Co _ g0 = 1)) ,

A A
where &;; is as in (25) with (a;,a;) replaced by (h(a;),h(a;)) and \; =
Aj = A, g0 is asin (44) and v is as in (45).

As in Lemma 4.2 in [9] and Lemma 6.4 in [12], we have the selection map s; (see
(46)), Lemma 3.2 and Corollary 4.3 imply the following topological result.

Lemma 6.2. Assuming ‘that J, has no critical points, then there exists AL >0
such that for every A > \q,

fi(A) = (Bi(M), Bo(M)) — (W1, W)
is well defined and satisfies

(f1(A)«(w1) # 0 in H,(Wy, Wp).

We would like to make a comment about Lemma 6.2 which provides a consequence
which does not require the use of homology and sufficient for the way we are going to
apply the Barycenter technique. The consequence is as follows: Lemma 6.2 implies
that the map fi(A) : (Bi(M), Bo(M)) — (W3, Wy) is not homotopic to a
constant map fi(\) : (By(M), Bo(M)) — (W1, W), for A > A;.

Next, as in Lemma 4.3 in [9] and Lemma 6.5 in [12], we have the selection map s,
(see (46)), Lemma 3.2 and Proposition 6.1 imply the following recursive topological
result.

Lemma 6.3. Assuming that J; has no critical points, then there exists 5\1, >0
such that for every A > Ap,

fo+1(A) + (Bp1 (M), Bp(M)) — (Wpi1, W)
and
fo(A) © (Bp(M), Bp—1(M)) — (Wy, Wp_1)
are well defined and satisfy
(Fp(A)x(wp) #0 in - Hippayp—1(Wp, Wp1)
implies

(For1(M)s(wpi1) # 0 in Hipp1ypar)—1 (Wpia, W)
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As in the case of p = 1, we would like to make a remark about Lemma 6.3 which
provides an implication which use only homotopy and sufficient for our purpose. To
do that, we first observe that combing Lemma 6.2 and Lemma 6.3, we have that
(fo(A)«(wp) #0 in  Hepy1yp—1(Wp, Wp_1) for every p > 1 and for every A > X,
Hence, as in the case p = 1, we have the map f,(\) : (Bp(M), Bp—1(M)) —
(W,, Wp_1) is not homotopic to a constant map f,(A) : (Bp(M), B,—_1(M)) —
(W, W,_1) for every p > 1 and for every A > \,,.

Finally, as in Corollary 3.3 in [9] and Lemma 6.6 in [12], we clearly have that
Proposition 6.1 implies the following result.

Lemma 6.4. Setting

with Cy and & as in Proposition 6.1 and recalling (47), we have there exists
Ap, > 0 such that VA > A, ,

fpo ()‘)(Bpo (M)v Bpo*l(M)) - (WPO*l’ WP0*2)'

In the same spirit as the comments after Lemma 6.2 and Lemma 6.3, we have
that Lemma 6.4 implies the following remark using homotopy. The observation is:
Lemma 6.4 implies that the map Hp,(\) (A > Ap,) defined by

Hp, (A)(t,0) = 1f1(X) (0ag)+(1=1) fro—1 (M) (@) = fpo (A)(01), (£, 0) € [0,1]x By, -1 (M),
with oy := td,, + (1 — t)o and seen as a map from [0, 1] X (Bp,—1(M), Bp,—2) is

into (Wp,—1, Wp,—2) and defines an homotopy in (Wp,—_1, Wp,—2) between the map
fpo—1(A) : (Bpy—1(M), Bpy—2(M)) — (Wpy—1, Wp,—2) and the constant map

fTPO*l()‘) = fl((sao) : (B.Do*l(M)v BPO*Q(M)) - (WPO*l’ WPO*Q)'

PRrROOF of Theorem 1.1

As in [9] and [12], the theorem follows by a contradiction argument from Lemma
6.2 - Lemma 6.4. Indeed, assuming that J, has no critical points, then on one hand
we have the map f,(A\) : (Bp(M), Bp—1(M)) — (W, Wp_1) is not homotopic
in (W,, Wp_1) to a constant map f,(A) : (B,(M), Bp_1(M)) — (W,, W,_1)
for every p > 1 and A > ;\p, and on the other hand for p = py — 1, we have
the map fp,—1(A) : (Bpy—1(M), Bpy—2(M)) —> (Wpy—1, Wp,—2) is homotopic in
(Wpo—1, Wpy—2) to the constant map

fpo—lo‘) = fl(gao) : (Bpo—l(M)a BPo—Q(M)) - (Wpo—lv Wpo—Q)a

VA > \,,. Hence, we reach a contradiction for A > max{\,,, Ap,_1}. B
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