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Abstract. In this paper, we study the Brezis-Nirenberg problem on bounded
smooth domains of R3. Using the algebraic topological argument of Bahri-

Coron[3] as implemented in [9] combined with the Brendle[5]-Schoen[14]’s bub-

ble construction, we solve the problem for non-contractible bounded smooth
domains.

1. Introduction and statement of the results. In their seminal paper [6],
Brezis and Nirenberg initiated the study of nonlinear elliptic equations of the form

−∆u+ qu = u
m+2
m−2 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1)

where Ω is a bounded domain (with domain meaning open and connected) of Rm
with a connected and smooth boundary ∂Ω (with smooth boundary meaning Ω
the closure of Ω is a smooth m-dimensional manifold with smooth boundary ∂Ω),
m ≥ 3 and q is a bounded and smooth function defined on Ω. In this paper, we
revisit the Boundary Value problem (BVP) (1) in the 3-dimensional case, namely
when m = 3. Thus, we will be dealing with the BVP

−∆u+ qu = u5 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2)

where Ω is a bounded domain of R3 with a connected and smooth boundary. It
is well known that a necessary condition for the existence of positive solution to (2)
is that the first eigenvalue of −∆ + q under zero Dirichlet boundary condition is
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positive, see [7]. Moreover, we will assume that the Green’s function G of −∆ +
q under zero Dirichlet boundary condition defined by (11) is positive in Ω and
hence −∆+q under zero Dirichlet boundary condition verifies the strong maximum
principle. Thus the BVP (2) has a variational structure, since thanks to the strong
maximum principle and standard elliptic regularity theory solutions of (2) can be
found by looking at critical points of the Brezis-Nirenberg functional

Jq(u) :=
〈u, u〉q

(
∫

Ω
u6 dx)

1
3

, u ∈ H1,+
0 (Ω) := {u ∈ H1

0 (Ω) : u ≥ 0 and u 6= 0 in Ω},

(3)
where

〈u, u〉q =

∫
Ω

(|∇u|2 + qu2) dx (4)

and H1
0 (Ω) is the usual Sobolev space of functions which are L2-integrable on Ω

together with their first derivatives and with zero trace on ∂Ω.

Existence of solutions of (2) under a Positive Mass type assumption has been ob-
tained in an unpublished work by McLeod as discussed in the work of Brezis[7]. In
this work, we use the Barycenter Technique of Bahri-Coron[3] to remove the Posi-
tive Mass type assumption of McLeod and replace it by the non-contractibility of
the domain. Precisely, we prove the following theorem.

Theorem 1.1. Assuming that Ω ⊂ R3 is a non-contractible bounded domain with
a connected and smooth boundary, q is a smooth and bounded function defined
on Ω, the first eigenvalue of the operator −∆ + q under zero Dirichlet boundary
condition on ∂Ω is positive, and the Green’s function G of −∆ + q under zero
Dirichlet boundary condition on ∂Ω defined by (11) is positive in Ω, then the BVP
(2) has a least one solution.

Remark 1.2. We would like to make a comment about the non-contractibility as-
sumption in Theorem 1.1. It implies (a well-known result) that some homology with
Z2 coefficient and positive order d is non-zero (see Lemma 2.1 below and Remark
2.2) and that is what is needed for the application of the Barycenter Technique of
Bahri-Coron[3].

To prove Theorem1.1, we will use the Algebraic topogical argument of Bahri-
Coron[3] which is possible since as already observed by McLeod (see [7]), the prob-
lem under study is a Global one (for the definition of ”Gobal” for Yamabe type
problems, see [12]). Indeed, as in [12], we will follow the scheme of the Barycenter
technique as performed in the work [9] of the second author and Mayer (see also
[1], [10], and [12]). One of the main difficulty with respect to the works [9] and
[12] is the presence of the linear term ”qu” and the lack of conformal invariance.
Such a difficulty has already been encountered by Bahri-Brezis[4] on closed Rie-
mannian manifolds. To deal with such a difficulty, Bahri-Brezis[4] have used the
bubble construction of Bahri-Coron[3] recalling that their scheme of the Barycenter
Technique follows the original one of Bahri-Coron[3]. However, here we use the
Brendle[5]-Schoen[14]’ s bubble construction and have to deal with that difficulty
in a way different from the work of Bahri-Brezis[4].

2. Notations and preliminaries. In this section, we fix some notation and dis-
cuss some preliminaries. We start with fixing some notation. N denotes the set of
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non-negative integers and N∗ denotes set of the positive integers. For a ∈ R3 and
δ > 0, Ba(δ) = B(a, δ) denotes the Euclidean Ball with radius δ centered at a.
1A denotes the characteristic function of A. ∇ denotes the Euclidean gradient and
∆ denotes the Euclidean Laplacian. All integrations are with respect to dx the
standard Lebesque measure on R3 with x = (x1, x2, x3) the standard coordinate
system of R3. | · | and 〈·, ·〉 denote respectively the standard norm and scalar
product on R3. We also use | · | to denote the absolute value on R. For E ⊂ R3

and p ∈ N∗, Lp(E) denotes the usual Lebesgue space of order p with respect

to dx. For χ : R −→ R a smooth function, χ
′

and χ
′′

denotes respectively
the first derive and second derivative of χ. For a ∈ K ⊂ Ω , K compact, and
0 ≤ d1 < d2 ≤ ∞, we set {d1 ≤ |x− a| ≤ d2} = {x ∈ Ω : d1 ≤ |x− a| ≤ d2}. To
simplify notation, we write d1 ≤ |x − a| ≤ d2 instead of {d1 ≤ |x − a| ≤ d2}
if there is no possible confusion. Similarly, for 0 ≤ d1 < d2 ≤ ∞, we set
{d1 ≤ |y| ≤ d2} = {y ∈ R3 : d1 ≤ |y| ≤ d2}. To simplify notation, we write
d1 ≤ |y| ≤ d2 instead of {d1 ≤ |y| ≤ d2} if there is no possible confusion.

Next, we introduce the standard bubbles of the variational problem under study.
For a ∈ R3 and λ > 0, we denote by δa,λ the standard bubble on R3 with center
a and scaling parameter λ, namely

δa, λ(x) = c0

(
λ

1 + λ2|x− a|2

) 1
2

, x ∈ R3, (5)

where c0 > 0 is such that δa,λ satisfies

−∆δa,λ = δ5
a,λ on R3. (6)

The δa,λ’s verify the following relations∫
R3

|∇δa,λ|2 =

∫
R3

δ6
a,λ =

∫
R3

|∇δ0,1|2 =

∫
R3

δ6
0,1 (7)

and

S =

∫
R3 |∇δa,λ|2

(
∫
R3 δ6

a,λ)
1
3

, (8)

where

S = inf
u∈D1(R3), u 6=0

∫
R3 |∇u|2

(
∫
R3 u6)

1
3

(9)

with

D1(R3) = {u ∈ L6(R3) : |∇u| ∈ L2(R3)}.
We set

c3 =

∫
R3

(
1

1 + |y|2

) 5
2

. (10)

For a ∈ Ω, let G(a, x) be the unique solution of (see [7]){
−∆G(a, x) + qG(a, x) = 4πδa(x), x ∈ Ω

G(a, x) = 0, x ∈ ∂Ω.
(11)

G(a, x) satisfies the following estimates∣∣∣∣G(a, x)− 1

|x− a|

∣∣∣∣ ≤ C for x 6= a ∈ Ω, (12)
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and ∣∣∣∣∇(G(a, x)− 1

|x− a|

)∣∣∣∣ ≤ C

|x− a|
for x 6= a ∈ Ω. (13)

Moreover, under the assumption of Theorem 1.1, we have G > 0 in Ω. For
estimates of the form (12) and (13) in the fractional setting, see [11].

As observed in Remark 1.2, the non-contractibility of Ω implies that some homology
with Z2 coefficient of Ω is non-trivial. Indeed, denoting (respectively) by πk(Ω) and
Hk(Ω, F ) the k-th homotopy group of Ω and the k-th homology group of Ω with
coefficient in F (k ∈ N and F a field), we have :

Lemma 2.1. Assuming that Ω ⊂ R3 is a non-contractible bounded domain with a
connected and smooth boundary, then there exists n ∈ {1, 2, 3} such that

Hn(Ω,Z2) 6= 0.

Proof. We divide the proof in two parts.
A): Ω simply-connected or not simply-connected and not perfect funda-
mental group
Since Ω is a bounded and smooth domain of R3, then Ω has the homotopy type of
a CW-complex. Also, since Ω is a domain of R3, then it is open and connected.
Hence Ω is path connected. Thus by Whitehead theorem Ω non-contractible implies
Ω is weakly not-contractible. Hence there exists n ∈ {1, 2, 3} such that πn(Ω) 6= 0.
Without loss of generality, we can assume πk(Ω) = 0 for k < n by replacing n with
n0 := inf{0 ≤ k ≤ n/ πk(Ω) 6= 0}. To continue we will consider 3 cases depending
on if Ω is not simply connected (n = 1), Ω is simply connected and not 2-connected
(n = 2), and Ω is 2-connected and π3(Ω) 6= 0.
Case 1: n = 1.
Since Ω is path connected, then by Hurewicz Theorem, H1(Ω,Z) ' π1(Ω)ab, where
π1(Ω)ab is the abelianization of π1(Ω). Thus since π1(Ω) 6= 0, then Ω is not sim-
ply connected implying in this case that π1(Ω) is not perfect which is equivalent
to π1(Ω)ab 6= 0. Hence H1(Ω,Z) 6= 0, and using again the assumption Ω path-
connected (which implies H0(Ω,Z) = Z) combined with the Universal Coefficient
Theorem and Tor(Z,Z2) = 0, we get

H1(Ω,Z2) ' H1(Ω,Z)⊗ Z⊕ Tor(H0(Ω,Z),Z2) ' H1(Ω,Z)⊗ Z 6= 0.

where Tor(·, ·) is the first Tor functor. We observe that we could conclude the non
triviality of H1(Ω, Z2) just from H1(Ω,Z) 6= 0 and H1(Ω,Z2) ' H1(Ω,Z) ⊗ Z ⊕
Tor(H0(Ω,Z),Z2)
Case 2: n = 2.
In this case, we have Ω is 1-connected (πk(Ω) = 0 k < 2), then by Hurewicz
Theorem, H2(Ω,Z) ' π2(Ω). Thus π2(Ω) 6= 0 implies H2(Ω,Z) 6= 0. Using the
Universal Coefficient Theorem we obtain

H2(Ω,Z2) ' H2(Ω,Z)⊗ Z⊕ Tor(H1(Ω,Z),Z2).

Applying Hurewicz Theorem as in the case n = 1 gives H1(Ω,Z) = 0, since π1(Ω) =
0. Thus we have Tor(H1(Ω,Z),Z2) = 0. Hence, we obtain

H2(Ω,Z2) ' H2(Ω,Z)⊗ Z 6= 0.

Similar to the case n = 1 here also we could conclude the non-triviality of H2(Ω, Z2)
just from H2(Ω,Z) 6= 0 and H2(Ω,Z2) ' H2(Ω,Z)⊗ Z⊕ Tor(H1(Ω,Z),Z2).
Case 3: n = 3.
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In this case, we have Ω is 2-connected (πk(Ω) = 0 k < 3), then by Hurewicz
Theorem, H3(Ω,Z) ' π3(Ω). So π3(Ω) 6= 0 implies H3(Ω,Z) 6= 0. Using the
Universal Coefficient Theorem we get

H3(Ω,Z2) ' H2(Ω,Z)⊗ Z⊕ Tor(H2(Ω,Z),Z2).

Applying Hurewicz Theorem as in the case n = 2 gives H2(Ω,Z) = 0. Therefore we
have Tor(H2(Ω,Z),Z2) = 0. Hence, we obtain

H3(Ω,Z2) ' H3(Ω,Z)⊗ Z 6= 0.

Similar to the cases n = 1, 2, here also we could conclude the non-triviality of
H3(Ω,Z2) just fromH3(Ω,Z) 6= 0 andH3(Ω,Z2) ' H3(Ω,Z)⊗Z⊕Tor(H2(Ω,Z),Z2).
B): Ω not simply connected and perfect fundamental group
In this part, we present an argument which works also for part A). We decide to
present both cases separately, since for part A), the argument we presented use only
elementary algebraic topology, while the one we are going to present use more ad-
vanced tools and results in algebraic topology and surface theory. Moreover, we will
emphasize the role of the smoothness and boundedness of Ω and more importantly
of the assumption dimension of Ω m = 3. To better point out the role of m = 3, we
will carry the argument with m ≥ 3 until the assumption m = 3 is needed which
will be only at the conclusion of the argument. We argue by contradiction. Indeed
assuming that

Hk(Ω, Z2) = 0 for 1 ≤ k ≤ m− 1. (14)

we are going to look for a contradiction. Observe the restriction k ≤ m − 1 which
leads to a stronger conclusion as discussed in Remark 2.2 below. Coming back
to our proof, we have since Ω is a smooth m-dimensional compact manifold with
smooth boundary, then by Lefschetz duality (Poincare duality for smooth compact
manifolds with boundary), we get

Hk(Ω, ∂Ω,Z2) ' Hm−k(Ω,Z2) for 1 ≤ k ≤ m− 1. (15)

with Hk(·,Z2) denoting the kth-cohomology with Z2 coefficients. Moreover, since
Z2 is a field, the by the duality between Z2-homology and Z2-cohomology,

Hk(Ω,Z2) ' Hk(Ω,Z2)
′

for 1 ≤ k ≤ m− 1. (16)

with ()
′

denoting the dual. Furthermore, we have the following part of the long
exact sequence for relative homology of the pair (Ω, ∂Ω)

...→ Hk+1(Ω, ∂Ω,Z2)→ Hk(∂Ω,Z2)→ Hk(Ω,Z2)→ Hk(Ω, ∂Ω,Z2)→ .. (17)

Thus combining (14)-(17), we get

Hk(∂Ω,Z2) = 0, 1 ≤ k ≤ m− 2. (18)

On the other hand, recalling that ∂Ω is a closed (m − 1)-dimensional connected
smooth manifold, we have

Hk(∂Ω,Z2) ' Z2, k ∈ {0,m− 1}. (19)

Therefore, combining (18) and (19) we have the Z2- homology of ∂Ω is the Z2-
homology of a (m − 1)-sphere. Now come to play the condition m = 3. Indeed, if
m = 3, then by the classification of closed surfaces ∂Ω is an embedded 2-sphere in
R3. Hence the generalized Schoenflies Theorem implies Ω is contractible leading to
a contradiction to the assumption Ω is non-contractible. .
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Remark 2.2. We would like to emphasize that from the proof given when Ω has
non trivial fundamental group with trivial abelianization (Part B)), under the as-
sumption that Ω ⊂ R3 is a bounded domain with smooth and connected boundary,
we always have Hd(Ω,Z2) 6= 0 for some d ∈ {1, 2}.

Now, let χ : R→ [0, 1] be a smooth cut-off function satisfying

χ(t) =

{
1 if t ≤ 1
0 if t ≥ 2.

(20)

Using χ, for a ∈ Ω, and δ > 0 and small, we define

χaδ (x) = χ

(
|x− a|
δ

)
, x ∈ Ω. (21)

Moreover, using χaδ and the Green’s function G(a, ·), we define the Brendle[5]-
Schoen[14]’s bubble

ua,λ,δ = χaδδa,λ +(1− χaδ )
c0√
λ
G(a, x). (22)

For K ⊂ Ω compact, we set

%0 = %K0 :=
dis(K, ∂Ω)

4
> 0. (23)

Thus, for ∀a ∈ K and ∀0 < 2δ < %0 we have

ua,λ := ua,λ,δ ∈ H1
0 (Ω), and ua,λ > 0 in Ω. (24)

For ai, aj ∈ Ω and λi, λj > 0, we define

εij =

 1
λi
λj

+
λj
λi

+ λiλjG−2(ai, aj)

 1
2

. (25)

Moreover, for ai, aj ∈ K, 0 < 2δ < %0, and λi, λj > 0, we define

εij =

∫
Ω

u5
ai ,λi uaj ,λj (26)

and

eij =

∫
Ω

(−∆ + q)uai ,λi uaj ,λj . (27)

Using (6) and (11), we estimate the deficit of ua,λ being a solution of BVP (2).

Lemma 2.3. Let K ⊂ Ω be compact, m > 0 be a large integer, and θ > 0
be small. Then there exists C > 0 such that ∀a ∈ K, ∀0 < 2δ < %0 and
∀0 < 1

λ ≤ θδ
m, we have∣∣−∆ua,λ + qua,λ − u5

a,λ

∣∣ ≤ C [ 1

δ2
√
λ

1{δ≤|x−a|≤2δ} + δa,λ 1{|x−a|≤2δ}

]
+Cδ5

a,λ1{|x−a|≥δ|},

where %0 is as in (23).

Proof. First of all, to simplify notation, let us set χδ := χaδ ,

Ga(x) := G(a, x) and Ḡa = c0Ga.
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Then, we have

ua,λ = χδδa,λ +(1− χδ)
Ḡa√
λ

= χδ

(
δa,λ −

Ḡa√
λ

)
+
Ḡa√
λ
.

This implies

(−∆ + q)ua,λ = (−∆ + q)

[
χδ

(
δa,λ−

Ḡa√
λ

)]
+

(−∆ + q) Ḡa√
λ

.

Clearly the lemma is true for x = a. Now, since for x 6= a, we have

(−∆ + q) Ḡa = 0,

then for x 6= a we get

(−∆ + q)ua,λ = −∆χδ

[
δa,λ−

Ḡa√
λ

]
− 2∇χδ∇

[
δa,λ−

Ḡa√
λ

]
− χδ∆δa,λ +qχδδa,λ .

This implies (for x 6= a)

(−∆ + q)ua,λ − u5
a,λ =

4∑
i=1

Ji

with

J1 = −∆χδ

[
δa,λ−

Ḡa√
λ

]
,

J2 = −2

〈
∇χδ,∇

[
δa,λ−

Ḡa√
λ

]〉
,

J3 = qχδδa,λ ,

and

J4 = −χδ∆δa,λ−u5
a,λ .

Now, we are going to estimate separately each Ji’s. For J1, we first write

J1 = −∆χδ

[
δa,λ−

c0√
λ|x− a|

+
c0√

λ|x− a|
− Ḡa√

λ

]
. (28)

Next, using (5) and (12), we derive∣∣∣∣δa,λ− c0√
λ|x− a|

∣∣∣∣ ≤ C√
λ
, (29)

and ∣∣∣∣ c0√
λ|x− a|

− Ḡa√
λ

∣∣∣∣ ≤ C√
λ
. (30)

For ∆χδ, we have

∇χδ = χ
′
(
|x− a|
δ

)
(x− a)

δ|x− a|
. (31)

This implies

∆χδ = χ
′′
(
|x− a|
δ

)
1

δ2
+ 2χ

′
(
|x− a|
δ

)
1

δ|x− a|
. (32)
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Thus, recalling the definition of χ (see (20)), we have (32) implies

|∆χδ| ≤
C

δ2
1{δ≤|x−a|≤2δ}. (33)

Hence, combining (28), (29), (30), and (33), we get

|J1| ≤
C

δ2
√
λ

1{δ≤|x−a|≤2δ}. (34)

To estimate J2, we first write

J2 = −2

〈
∇χδ, ∇

[
δa,λ−

c0√
λ|x− a|

+
c0√

λ|x− a|
− Ḡa√

λ

]〉
. (35)

Next, using (5) and (13), we derive∣∣∣∣∇ [δa,λ− c0√
λ|x− a|

]∣∣∣∣ ≤ C√
λ|x− a|

, (36)

and ∣∣∣∣∇ [ c0√
λ|x− a|

− Ḡa√
λ

]∣∣∣∣ ≤ C√
λ|x− a|

. (37)

On the other hand, using (31) and recalling (20), we obtain

|∇χδ| ≤
C

δ
1{δ≤|x−a|≤2δ}. (38)

Hence, combining (35)-(38), we get

|J2| ≤
C

δ2
√
λ

1{δ≤|x−a|≤2δ}. (39)

For J3, since q is bounded then using (20) and (21), we clearly obtain

|J3| ≤ Cδa,λ 1{|x−a|≤2δ}. (40)

Finally to estimate J4, we observe that for |x− a| ≤ δ,

χδ(x) = 1.

Thus

J4 = −χδ∆δa,λ−u5
a,λ = −∆δa,λ−δ5

a,λ = 0 (41)

on {|x− a| ≤ δ}. On the other hand on {|x− a| > δ}, we clearly have

|ua,λ | ≤ Cδa,λ . (42)

Therefore, (41) and (42) imply

|J4| ≤ δ5
a,λ 1{|x−a|≥δ}. (43)

Hence, the result follows from (34), (39), (40), and (43).
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3. PS-sequences and Deformation lemma. In this section, we recall the anal-
ysis of Palais-Smale (PS) sequence for Jq defined by (3), see [7]. We also introduce
the neighborhood of potential critical points at infinity of Jq and the associated
selection maps. As in other applications of the Barycenter technique of Bahri-
Coron[3], we also recall the associated Deformation lemma.

We start with the analysis of Palais-Smale (PS) sequence for Jq. By some argu-
ments which are classical by now see for example [7] ( see also [2], [8], [13], and
[15]), we have the following the profile decomposition for (PS)-sequences of Jq.

Lemma 3.1. Suppose that (uk) ⊂ H1,+
0 (Ω) is a PS-sequence for Jq, that is

∇Jq(uk) → 0 and Jq(uk) → c up to a subsequence, and
∫

Ω
u6
k = c

3
2 , then up to

a subsequence, we have have there exists u∞ ≥ 0, an integer p ≥ 0, a sequence of
points ai,k ∈ Ω, i = 1, · · · , p, and a sequence of positive numbers λi,k, i = 1, · · · p,
such that
1)

−∆u∞ + qu∞ = u5
∞.

2)

||uk − u∞ −
p∑
i=1

uai,k,λi,k ||q −→ 0.

3)

Jq(uk)
3
2 −→ Jq(u∞)

3
2 + pS

3
2 .

4)
For i 6= j = 1, · · · , p,

λi,k
λj,k

+
λj,k
λi,k

+ λi,kλj,kG
−2(ai,k, ajk) −→ +∞

5)
For i = 1, · · · , p,

λi,kdist(ai,k, ∂Ω) −→ +∞,
where || · ||q is the norm associated to the scalar product 〈·, ·〉q defined by (4).

We discuss now the neighborhoods of potential critical points at infinity of Jq. To
introduce the latter, we first fix

ε0 > 0 and ε0 ' 0. (44)

Furthermore, we choose
ν0 > 1 and ν0 ' 1. (45)

Then for p ∈ N∗, and 0 < ε ≤ ε0, we define V (p, ε) the (p, ε)-neighborhood of
potential critical points at infinity of Jq by

V (p, ε) = {u ∈ H1,+
0 (Ω) : ∃a1, · · · , ap ∈ Ω, α1, · · · , αp > 0, λ1, · · · , λp > 0,

λi ≥
1

ε
for i = 1 · · · , p, λidist(ai, ∂Ω) ≥ 1

ε
for i = 1 · · · , p,

‖u−
p∑
i=1

αiuai,λi‖q ≤ ε,
αi
αj
≤ ν0 and εi,j ≤ ε for i 6= j = 1, · · · , p}.
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For the sets V (p, ε) (see [3] and [7]), for every p ∈ N∗ there exists 0 < εp ≤ ε0

such that for every 0 < ε ≤ εp, we have{
∀u ∈ V (p, ε) the minimization problem minBpε ‖u−

∑p
i=1 αiuai,λi‖q

has a solution (ᾱ, A, λ̄) ∈ Bpε ,which is unique up to permutations,
(46)

where Bpε is defined as

Bpε = {(ᾱ = (α1, · · · , αp), A = (a1, · · · , ap), λ̄ = (λ1, · · · , λp)) ∈ Rp+ × Ωp × Rp+

λi ≥
1

ε
, λidist(ai, ∂Ω) ≥ 1

ε
, i = 1, · · · , p, αi

αj
≤ ν0 and εi,j ≤ ε, i 6= j = 1, · · · , p},

with R+ = [0,∞) and Rp+ the cartesian product of p copies of R+.
Denoting by σp the permutation group of order p ∈ N∗, we define the selection map
sp via

sp : V (p, ε) −→ (Ω)p/σp : u −→ sp(u) = [A] and A is given by (46),

where [A] is the class of A under the action of σp.

To finish this section we state the Deformation Lemma needed for the application
of the algebraic topological argument of Bahri-Coron[3]. To do that, we first set

Wp := {u ∈ : Jq(u) ≤ (p+ 1)
2
3S}, (47)

for p ∈ N.

With the latter notation, as in [3], [9], and [12], we have Lemma 3.1 implies the
following Deformation Lemma (see [4] and [3]).

Lemma 3.2. Assuming that Jq has no critical points, then for every p ∈ N∗,
up to taking εp given by (46) smaller, we have that for every 0 < ε ≤ εp, the
topological pair (Wp, Wp−1) retracts by deformation onto (Wp−1 ∪ Ap, Wp−1)
with V (p, ε̃) ⊂ Ap ⊂ V (p, ε) where 0 < ε̃ < ε

4 is a very small positive real
number and depends on ε.

4. Self-action estimates. In this section, we derive some sharp estimates needed
for application of the Barycenter technique of Bahri-Coron[3]. We start with the
numerator of Jq. Indeed, we have

Lemma 4.1. Assuming that K ⊂ Ω is compact, m > 0 is a large integer, and
θ > 0 is small, then there exists C > 0 such that ∀a ∈ K, ∀0 < 2δ < %0, and
∀0 < 1

λ ≤ θδ
m, we have∫

Ω

(−∆ + q)ua,λ ua,λ≤
∫

Ω

u6
a,λ +

C

λ

(
1 + δ +

1

λ2δ3

)
.

Proof. Setting

I =

∫
Ω

(−∆ + q)ua,λ ua,λ ,

we get

I =

∫
Ω

u6
a,λ +

∫
Ω

[
(−∆ + q)ua,λ−u5

a,λ
]
ua,λ︸ ︷︷ ︸

I1

.
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To continue, let us estimate I1. Using Lemma 2.3, we get

|I1| ≤
∫

Ω

∣∣(−∆ + q)ua,λ−u5
a,λ
∣∣ua,λ

≤ C

δ2
√
λ

∫
Ω

ua,λ1{δ≤|x−a|≤2δ}

+ C

∫
Ω

δa,λ ua,λ 1{|x−a|≤2δ}

+ C

∫
Ω

δ5
a,λ ua,λ 1{|x−a|≥δ}.

To obtain our goal, we are going to estimate the three parts of the right hand side
the latter formula. For the first term, we have∫

Ω

ua,λ 1{δ≤|x−a|≤2δ} ≤ C
∫
δ≤|x−a|≤2δ

[
λ

1 + λ2|x− a|2

] 1
2

≤ C
∫
δ≤|x−a|≤2δ

1√
λ|x− a|

≤ C√
λ

∫ 2δ

δ

r dr

≤ C δ2

√
λ
.

For the second term, we obtain∫
Ω

δa,λ ua,λ 1{|x−a|≤2δ} ≤ C
∫
|x−a|≤2δ

[
λ

1 + λ2|x− a|2

]
≤ 1

λ

∫ 2δ

0

dr

≤ C δ
λ
.

Finally for the last term, we get∫
Ω

δ5
a,λ ua,λ 1{|x−a|≥2δ} ≤ C

∫
|x−a|≥2δ

δ6
a,λ

≤ C
∫
|x−a|≥2δ

[
λ

1 + λ2|x− a|2

]3

≤ C

λ3

∫
{|x−a|≥2δ}

1

|x− a|6

≤ C

λ3

∫ +∞

2δ

r−4 dr

≤ C

λ3δ3
.

Thus, collecting all we have

|I1| ≤ C
[

1

λ
+
δ

λ
+

1

λ3δ3

]
.
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Hence, we obtain∫
Ω

(−∆ + q)ua,λ ua,λ≤
∫

Ω

u6
a,λ +

C

λ

(
1 + δ +

1

λ2δ3

)
,

thereby ending the proof.

We turn now to the denominator of Jq and obtain the following estimate.

Lemma 4.2. Assuming that K ⊂ Ω is compact, m > 0 is a large integer, and
θ > 0 is small, then there exists C > 0 such that ∀a ∈ K, ∀0 < 2δ < %0, and
∀0 < 1

λ ≤ θδ
m, we have ∫

Ω

u6
a,λ =

∫
R3

δ6
a,λ +O

(
1

λ3δ3

)
.

Proof. We have∫
Ω

u6
a,λ =

∫
|x−a|≤δ

u6
a,λ +

∫
δ<|x−a|≤2δ

u6
a,λ +

∫
|x−a|>2δ

u6
a,λ .

Now, we estimate each term of the right hand side of the latter formula. For the
first term, we obtain ∫

|x−a|≤δ
u6
a,λ =

∫
|x−a|≤δ

δ6
a,λ

=

∫
R3

δ6
a,λ−

∫
|x−a|>δ

δ6
a,λ

=

∫
R3

δ6
a,λ +O

(
1

λ3δ3

)
.

For the second term, we derive∫
δ<|x−a|≤2δ

u6
a,λ ≤ C

∫
δ≤|x−a|≤2δ

(
λ

1 + λ2|x− a|2

)3

≤ C

λ3

∫ 2δ

δ

r−4 dr

≤ C

λ3δ3
.

For the last term, using (12) we get∫
|x−a|≥2δ

u6
a,λ =

∫
|x−a|≥2δ

(
1√
λGa

)6

=
C

λ3

∫
|x−a|≥2δ

G6
a

≤ C

λ3

∫
|x−a|≥2δ

1

|x− a|6

≤ C

λ3δ3
.

Therefore, we have ∫
Ω

u6
a,λ =

∫
R3

δ6
a,λ +O

(
1

λ3δ3

)
.
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Finally, we derive the Jq-energy estimate of ua,λ needed for the application of the
Barycenter technique of Bahri-Coron[3].

Corollary 4.3. Assuming that K ⊂ Ω is compact, m > 0 is a large integer, and
θ > 0 is small, then there exists C > 0 such that ∀a ∈ K, ∀0 < 2δ < %0, and
∀0 < 1

λ ≤ θδ
m, we have

Jq(ua,λ) ≤ S
(

1 + C

[
1

λ
+
δ

λ
+

1

δ3λ3

])
.

Proof. It follows from the properties of δa,λ (see (7)-(9)), Lemma 4.1 and Lemma
4.2.

5. Interaction estimates. In this section, we derive sharp inter-action estimates
needed for the algebraic topological argument for existence. Recalling (25), (26)
and (27), we start with the following one relating εij , eij and εji. For this, we
start with the following auxiliary estimate.

Lemma 5.1. Assuming that K ⊂ Ω is compact, m > 0 is a large integer, and
θ > 0 is small, then there exists C > 0 such that ∀ai, aj ∈ K, ∀0 < 2δ < %0, and
∀0 < 1

λi
, 1
λj
≤ θδm, we have

∫
Ω

uai ,λi

∣∣∣(−∆ + q)uaj ,λj −u5
aj ,λj

∣∣∣ ≤ C (δ +
1

λ2
jδ

2

)(
λi
λj

+ λiλj |ai − aj |2
)−1

2

.

Proof. Using Lemma 2.3, we have

∣∣∣(−∆ + q)uaj ,λj −u5
aj ,λj

∣∣∣︸ ︷︷ ︸
Lj

≤C

[
1

δ2
√
λj

1δ≤|x−aj |≤2δ + δaj ,λj 1|x−aj |≤2δ

]

+ Cδ5
aj ,λj 1|x−aj |≥δ.

(48)

On the set {|x− aj | ≤ 2δ}, we have

δ2
aj ,λj (x) ≥ c20

(
λj

1 + 4λ2
jδ

2

)
≥ c20
λjδ2

[
1 +O(

1

λ2
jδ

2
)

]
≥ 1

2

c20
λjδ2

.

This implies

1√
λjδ
≤
√

2

c20
δaj ,λj .

Thus, we get

Lj ≤ C
(

1 +
1

δ

)
δaj ,λj 1|x−a|≤4δ + Cδ5

aj ,λj 1|x−a|≥ δ2
,
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where Lj is as in (48). Hence, we obtain

∫
Ω

uai ,λi Lj ≤C
(

1 +
1

δ

)∫
|x−aj |≤4δ

(
λj

1 + λ2
j |x− aj |2

) 1
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

︸ ︷︷ ︸
I1

+ C

∫
|x−aj |≥ δ2

(
λj

1 + λ2
j |x− aj |2

) 5
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

︸ ︷︷ ︸
I2

.

(49)

Now, we estimate I1 as follows.

I1 =

∫
|x−aj |≤4δ

(
λj

1 + λ2
j |x− aj |2

) 1
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

=

∫
(2|x−ai|≤ 1

λj
+|ai−aj |)∩(|x−aj |≤4δ)

(
λj

1 + λ2
j |x− aj |2

) 1
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

︸ ︷︷ ︸
I1
1

+

∫
(2|x−ai|> 1

λj
+|ai−aj |)∩(|x−aj |≤4δ)

(
λj

1 + λ2
j |x− aj |2

) 1
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

︸ ︷︷ ︸
I2
1

.

To continue, we first estimate I1
1 . Indeed, using triangle inequality we have

I1
1 ≤ C

∫
|x−ai|≤8δ

(
λj

1 + λ2
j |ai − aj |2

) 1
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

≤ C

√
λj
λi(

1 + λ2
j |ai − aj |2

) 1
2

∫
|x−ai|≤8δ

1

|x− ai|
.

This implies

I1
1 = O

(
δ2

(
λi
λj

+ λiλj |ai − aj |2
)−1

2

)
. (50)

For I2
1 , we derive

I2
1 ≤ C

∫
|x−aj |≤4δ

(
λj

1 + λ2
j |x− aj |2

) 1
2
(

λi
1 + λ2

j |ai − ai|2

) 1
2 (

λj
λi

)

≤ C

√
λi
λj

(
λj
λi

)
(
1 + λ2

j |ai − aj |2
) 1

2

∫
|x−aj |≤4δ

1

|x− aj |
.
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Thus for I2
1 , we obtain

I2
1 = O

(
δ2

(
λi
λj

+ λiλj |ai − aj |2
)−1

2

)
. (51)

Hence, combining (50) and (51), we get

I1 = O

(
δ2

(
λi
λj

+ λiλj |ai − aj |2
)−1

2

)
. (52)

Next, let us estimate I2. For this, we first write

I2 =

∫
|x−aj |≥ δ2

(
λj

1 + λ2
j |x− aj |2

) 5
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

=

∫
{2|x−ai|≤ 1

λj
+|ai−aj |}∩(|x−aj |≥ δ2 )

(
λj

1 + λ2
j |x− aj |2

) 5
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

︸ ︷︷ ︸
I1
2

+

∫
(2|x−ai|> 1

λj
+|ai−aj |)∩(|x−aj |≥ δ2 )

(
λj

1 + λ2
j |x− aj |2

) 5
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

︸ ︷︷ ︸
I2
2

.

Setting D = {2|x−ai| ≤ 1
λj

+ |ai−aj |}∩{|x−aj | ≥ δ
2}, we estimate I1

2 as follows

I1
2 ≤

C

λ
−5
2
j

∫
D

(
1

1 + λ2
j |ai − aj |2

) 3
2 (

λi
1 + λ2

i |x− ai|2

) 1
2

(
1

1 + λ2
j |ai − aj |2

)

≤ C
(

1√
λi

)(
1

λ2
jδ

2

)
λ

5
2
j(

1 + λ2
j |ai − aj |2

) 3
2

∫
2|x−ai|≤ 1

λj
+|ai−aj |

1

|x− ai|

≤ C

(√
λj
λi

)(
1

δ2

)
1(

1 + λ2
j |ai − aj |2

) 3
2

(
1 + λ2

j |ai − aj |2
)2( 1

λ2
j

)

≤ C

(√
λj
λi

)(
1

λ2
jδ

2

)
1(

1 + λ2
j |ai − aj |2

) 1
2

.

This implies

I2
1 = O

(
1

λ2
jδ

2

(
λi
λj

+ λiλj |ai − aj |2
)−1

2

)
. (53)
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Next, we estimate I2
2 as follows

I2
2 ≤ C

λj√
λi

∫
|x−aj |≥ δ2

(
1

1 + λ2
j |ai − aj |2

) 1
2
(

λj
1 + λ2

j |x− aj |2

) 5
2

≤ C λj√
λi

(
1

1 + λ2
j |ai − aj |2

) 1
2

1

λ
5
2
j

∫
|x−aj |≥ δ2

1

|x− aj |5

≤ C

(√
λj
λi

)(
1

λ2
jδ

2

)
1(

1 + λ2
j |ai − aj |2

) 1
2

.

This gives

I2
2 = O

(
1

λ2
jδ

2

(
λi
λj

+ λiλj |ai − aj |2
)−1

2

)
. (54)

Therefore, using (53) and (54), we obtain

I2 = O

(
1

λ2
jδ

2

(
λi
λj

+ λiλj |ai − aj |2
)−1

2

)
. (55)

Hence, combining (49), (73) and (55), we get∫
Ω

uai ,λi Lj ≤ C

(
δ +

1

λ2
jδ

2

)(
λi
λj

+ λiλj |ai − aj |2
)−1

2

,

thereby ending the proof of the lemma.

Clearly Lemma 5.1 implies the following sharp interaction-estimate relating eij ,
εij , and εij (for their definitions, see (25)-(27)).

Corollary 5.2. Assuming that K ⊂ Ω is compact, m > 0 is a large integer,
θ > 0 is small, and µ0 > 0 is small, then ∀ai, aj ∈ K, ∀0 < 2δ < %0, and
∀0 < 1

λj
≤ 1

λi
≤ θδm such that εij ≤ µ0, we have

eij = εij +O

(
δ +

1

λ2
i δ

2

)
εij .

Next, we present a lemma that provides a sharp inter-action estimate relating εij
and εij . Indeed, we have.

Lemma 5.3. Assuming that K ⊂ Ω is compact, m > 0 is a large integer θ > 0 is
small, and µ0 is small, then ∀ai, aj ∈ K, ∀0 < 2δ < %0, and ∀0 < 1

λi
≤ 1

λj
≤ θδm

such that εij ≤ µ0, we have

εij =c60c3εij

[(
1 +O

(
δ +

1

λ2
jδ

2

))(
1 + oεij (1) +O(ε2

ij(δ
−2 + log ε−1

ij ))
)]

+ c60c3εij

[
O

(
ε2
ij

1

δ6

)]
.

Proof. By definition, we have

uai ,λi = χδδai ,λi +(1− χδ)
c0√
λ
Gai ,
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with χδ := χaiδ . On the other hand, by definition of the standard bubble δa,λ, we
have

χδδai ,λi = c0χδ

 λi

1 + λ2
iG
−2
ai
|x−ai|2
G−2
ai

 1
2

.

Next, for |x− ai| ≤ 2δ, we have

1 + λ2
iG
−2
ai

|x− ai|2

G−2
ai

= 1 + λ2
iG
−2
ai (1 +O(δ))

= 1 + λ2
iG
−2
ai +O

(
λ2
iG
−2
ai δ
)

=
(
1 + λ2

iG
−2
ai

) [
1 +O

(
λ2
iG
−2
ai δ

1 + λ2
iG
−2
ai

)]
=
(
1 + λ2

iG
−2
ai

)
[1 +O(δ)] .

So, for χδδai ,λi we have

χδδai ,λi = c0χδ

[
λi(

1 + λ2
iG
−2
ai

)
[1 +O(δ)]

] 1
2

= c0χδ [1 +O(δ)]

[
λi

1 + λ2
iG
−2
ai

] 1
2

.

(56)
We have also

c0(1− χδ)
[

λi

1 + λ2
iG
−2
ai

] 1
2

= (1− χδ)
c0√
λi
Gai

[
1

1 + λ−2
i G2

ai

] 1
2

.

Since on {|x− ai| ≥ δ}, we have

1

1 + λ−2
i G2

ai

= 1 +O

(
G2
ai

λ2
i

)
= 1 +O

(
1

λ2
i δ

2

)
,

then we get

c0(1− χδ)
[

λi

1 + λ2
iG
−2
ai

] 1
2

= (1− χδ)
c0√
λi
Gai

(
1 +O

(
1

λ2
i δ

2

))
.

This implies

(1− χδ)
c0√
λi
Gai = c0(1− χδ)

[
λi

1 + λ2
iG
−2
ai

] 1
2
(

1 +O

(
1

λ2
i δ

2

))
. (57)

Thus, combining (56) and (57), we get

uai ,λi = c0

[
(1 +O(δ))χδ + (1− χδ)

(
1 +O

(
1

λ2
i δ

2

))][
λ

1 + λ2
iG
−2
ai

] 1
2

.

Hence, we obtain

uai,λi = c0

[
1 +O(δ) +O

(
1

λ2
i δ

2

)][
λ

1 + λ2
iG
−2
ai

] 1
2

. (58)

Now, we are going to use (58) to achieve our goal. First of all, we write∫
Ω

u5
aj ,λj uai ,λi =

∫
B(aj ,δ)

u5
aj ,λj uai ,λi +

∫
Ω−B(aj ,δ)

u5
aj ,λj uai ,λi .
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For the second term in the right hand side of the latter formula, we have

∫
Ω−B(aj ,δ)

u5
aj ,λj uai ,λi ≤ C

∫
Ω−B(aj ,δ)

(
1

λj

) 5
2
(

1

δ

)5

uai ,λi

≤ C
(

1

λj

) 5
2
(

1

δ

)5 ∫
Ω−B(aj ,δ)

uai ,λi

≤ C
(

1

λjδ2

) 5
2

[∫
Ω−(B(aj ,δ)∪B(ai,δ))

uai ,λi

]

+ C

(
1

λjδ2

) 5
2

[∫
(Ω−B(aj ,δ))∩B(ai,δ)

uai ,λi

]

≤ C
(

1

λj

) 5
2
(

1

δ

)6
1√
λi

+ C

(
1

λj

) 5
2
(

1

δ

)5 ∫
B(ai,δ)

(
λi

1 + λ2
i |x− ai|2

) 1
2

≤ C
(

1

λj

) 5
2
(

1

δ

)6
1√
λi

+ Cδ2

(
1

λj

) 5
2
(

1

δ

)5
1√
λi

≤ C
(

1

λj

) 5
2
(

1

δ

)6
1√
λi

(
1 + δ3

)
.

Thus, we get

∫
Ω

u5
aj ,λj uai ,λi =

∫
B(aj ,δ)

u5
aj ,λj uai ,λi +O

 1

λ
5
2
j

√
λiδ6

 . (59)
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For the first term in the right hand side of (59), using (58) we have

∫
B(aj ,δ)

u5
aj ,λj uai ,λi = c60

∫
B(aj ,δ)

(
λj

1 + λ2
j |x− aj |2

) 5
2

[1 +O(δ)]

[
λi

1 + λ2
iG
−2
ai

] 1
2

+ c60

∫
B(aj ,δ)

(
λj

1 + λ2
j |x− aj |2

) 5
2

O

(
1

λ2
i δ

2

)[
λi

1 + λ2
iG
−2
ai

] 1
2

= c60 [1 +O(δ)]

∫
B(aj ,δ)

(
λj

1 + λ2
j |x− aj |2

) 5
2 [

λi

1 + λ2
iG
−2
ai

] 1
2

+ c60O

(
1

λ2
i δ

2

)∫
B(aj ,δ)

(
λj

1 + λ2
j |x− aj |2

) 5
2 [

λi

1 + λ2
iG
−2
ai

] 1
2

= c60
1√
λj

∫
B(0,λjδ)

(
1

1 + |y|2

) 5
2

 λi

1 + λ2
iG
−2
ai

(
y
λj

+ aj

)
 1

2

+ c60
O (δ)√
λj

∫
B(0,λjδ)

(
1

1 + |y|2

) 5
2

 λi

1 + λ2
iG
−2
ai

(
y
λj

+ aj

)
 1

2

+ c60

O
(

1
λ2
i δ

2

)
√
λj

∫
B(0,λjδ)

(
1

1 + |y|2

) 5
2

 λi

1 + λ2
iG
−2
ai

(
y
λj

+ aj

)
 1

2

= c60

∫
B(0,λjδ)

(
1

1 + |y|2

) 5
2

 1
λj
λi

+ λiλjG
−2
ai

(
y
λj

+ aj

)
 1

2

+O (δ)

∫
B(0,λjδ)

(
1

1 + |y|2

) 5
2

 1
λj
λi

+ λiλjG
−2
ai

(
y
λj

+ aj

)
 1

2

+O

(
1

λ2
i δ

2

)∫
B(0,λjδ)

(
1

1 + |y|2

) 5
2

 1
λj
λi

+ λiλjG
−2
ai

(
y
λj

+ aj

)
 1

2

.

Recalling that λi ≤ λj , then for εij ∼ 0, we have

1) Either ε−2
ij ∼ λiλjG−2

ai (aj),

2) or ε−2
ij ∼

λj
λi

.
To continue, let

A =

({∣∣∣∣ yλj
∣∣∣∣ ≤ ε G−1

ai (aj)

}
∩B(0, δλj)

)
∪
({∣∣∣∣ yλj

∣∣∣∣ ≤ ε

λi

}
∩B(0, δλj)

)
,
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with ε > 0 very small. Then by Taylor expansion on A, we have[
λj
λi

+ λiλjG
−2
ai

(
y

λj
+ aj

)]−1
2

=

[
λj
λi

+ λiλjG
−2
ai (aj)

]−1
2

+

(
−1

2
∇G−2

ai (aj)λiy

)[
λj
λi

+ λiλjG
−2
ai (aj)

]−3
2

+O

[(
λi
λj

)
|y|2
] [

λj
λi

+ λiλjG
−2
ai (aj)

]−3
2

.

Thus, we have∫
B(aj ,δ)

u5
aj ,λj uai ,λi = c60

[
1 +O(δ) +O

(
1

λ2
i δ

2

)]( 4∑
i=1

Ii

)
, (60)

with

I1 =

[
λj
λi

+ λiλjG
−2
ai (aj)

]−1
2
∫
A

(
1

1 + |y|2

) 5
2

,

I2 = −1

2

[
λj
λi

+ λiλjG
−2
ai (aj)

]−3
2
∫
A

(
1

1 + |y|2

) 5
2 [
∇G−2

ai (aj)λiy
]
,

I3 =

[
λj
λi

+ λiλjG
−2
ai (aj)

]−3
2
∫
A

(
1

1 + |y|2

) 5
2

O

[(
λi
λj

)
|y|2
]
,

and

I4 =

∫
B(0,λjδ)−A

(
1

1 + |y|2

) 5
2
[
λj
λi

+ λiλjG
−2
ai

(
y

λj
+ aj

)]−1
2

.

Now, let us estimate I1. We have

I1 =

[
λj
λi

+ λiλjG
−2
ai (aj)

]−1
2

[
c3 +

∫
R3−A

(
1

1 + |y|2

) 5
2

]
,

where c3 is as in (10). On the other hand, we estimate∫
R3−A

(
1

1 + |y|2

) 5
2

≤
∫
R3−B(0,δλj)

(
1

1 + |y|2

) 5
2

+

∫
R3−B(0,λjεG

−1
ai

(ai,aj))

(
1

1 + |y|2

) 5
2

if ε−2
ij ∼ λiλjG−2

ai (aj), and∫
R3−A

(
1

1 + |y|2

) 5
2

≤
∫
R3−B(0,δλj)

(
1

1 + |y|2

) 5
2

+

∫
R3−B(0,ε

λj
λi

)

(
1

1 + |y|2

) 5
2

if ε−2
ij ∼

λj
λi
. We also have∫

R3−B(0,δλj)

(
1

1 + |y|2

) 5
2

= O

(
1

λ2
jδ

2

)
.
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Moreover, if ε−2
ij ∼ λiλjG−2

ai (aj), then∫
R3−B(0,λjεG

−1
ai

(aj))

(
1

1 + |y|2

) 5
2

= O

(
1

λ2
jε

2G−2
ai (aj)

)

= O

(
1

λjλiG
−2
ai (aj)

)
= O

(
ε2
ij

)
.

Furthermore if ε−2
ij ∼

λj
λi

, then∫
R3−B(0,ε

λj
λi

)

(
1

1 + |y|2

) 5
2

= O
(
ε2
ij

)
.

This implies∫
R3−A

(
1

1 + |y|2

) 5
2

= O

(
ε2
ij +

1

λ2
jδ

2

)
= O

(
ε2
ij + ε2

ij

1

δ2

)
= O

(
ε2
ij

1

δ2

)
.

Thus, we get

I1 =

[
λj
λi

+ λiλjG
−2
ai (aj)

]−1
2
[
c3 +O

(
ε2
ij

1

δ2

)]
= εij

(
1 + oεij (1)

) [
c3 +O

(
ε2
ij

1

δ2

)]
.

Hence, we obtain

I1 = c3εij

[
1 + oεij (1) +O

(
ε2
ij

1

δ2

)]
. (61)

By symmetry, we have
I2 = 0. (62)

Next, to estimate I3 we first observe that∫
A

|y|2

(1 + |y|2)
5
2

≤
∫
B(0,ελjG

−1
ai

(aj))−B(0,1)

|y|2

(1 + |y|2)
5
2

+

∫
B(0,ε

λj
λi

)−B(0,1)

|y|2

(1 + |y|2)
5
2

+O(1)

= O

(
log(ελjG

−1
ai (aj)) + log(ε

λj
λi

)

)
+O(1).

Thus, we have

I3 = ε3
ij

(
λi
λj

)(
1 + oεij (1)

) [
O

(
log(ελjG

−1
ai (aj)) + log(ε

λj
λi

)

)
+O(1)

]
= ε3

ij

(
1 + oεij (1)

) [
O

(
log(λiλjG

−2
ai (aj)) + log(

λj
λi

)

)
+O(1)

]
.

Hence, we obtain
I3 = O

(
ε3
ij log(ε−1

ij )
)
. (63)

Finally, we estimate I4 as follows.

If ε−2
ij ∼

λj
λi

, then

I4 ≤ Cεij
∫
B(0,λjδ)−A

(
1

1 + |y|2

) 5
2

≤ Cεij
(
λj
λi

)−2

≤ Cε5
ij . (64)
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If ε−2
ij ∼ λiλjG−2

ai (aj), then we argue as follows. In case |ai − aj | ≥ 2δ, since

Gai

(
y

λj
+ aj

)
≤ Cδ−1

for y ∈ B(0, λjδ), then we have

I4 ≤ C
∫
B(0,λjδ)−A

(
1

1 + |y|2

) 5
2 1√

λiλjδ

≤ C√
λiλjδ

(
1

λ2
jG
−2
ai (aj)

)

≤ C

λiλjG
−2
ai (aj)

G−1
ai (aj)√

λiλjG
−1
ai (aj)δ

≤ Cε2
ijεij

1

δ
.

Thus, when |ai − aj | ≥ 2δ we get

I4 = O

(
ε3
ij

1

δ

)
. (65)

In case |ai − aj | < 2δ, we first observe that

B(0, λjδ) \ A ⊂ A1 ∪A2

with

A1 =
{
ελjG

−1
ai (aj) ≤ |y| ≤ EλjG−1

ai (aj)
}

and

A2 =
{
EλjG

−1
ai (aj) ≤ |y| ≤ λjδ

}
,

where 0 < ε < E. Thus, we have

I4 ≤ I1
4 + I2

4 , (66)

with

I1
4 =

∫
A1

(
1

1 + |y|2

) 5
2
[
λj
λi

+ λiλjG
−2
ai

(
y

λj
+ aj

)]−1
2

and

I2
4 =

∫
A2

(
1

1 + |y|2

) 5
2
[
λj
λi

+ λiλjG
−2
ai

(
y

λj
+ aj

)]−1
2

.
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We estimate I1
4 as follows:

I1
4 ≤ C

[
1 + λ2

jG
−2
ai (aj)

]−5
2

∫
|y|≤EλjG−1

ai
(aj)

[
λj
λi

+ λiλjG
−2
ai

(
y

λj
+ aj

)]−1
2

≤ C
[
1 + λ2

jG
−2
ai (aj)

]−5
2

(
λi
λj

) 1
2
∫
|y|≤EλjG−1

ai
(aj)

[
1 + λ2

iG
−2
ai

(
y

λj
+ aj

)]−1
2

≤ C
[
1 + λ2

jG
−2
ai (aj)

]−5
2

(
λi
λj

) 1
2
∫
|y|≤EλjG−1

ai
(aj)

[
1 + λ2

i

∣∣∣∣ yλj + ai − aj
∣∣∣∣2
]−1

2

≤ C
[
1 + λ2

jG
−2
ai (aj)

]−5
2

(
λi
λj

) 1
2
(
λj
λi

)3 ∫
|z|≤ĒλiG−1

ai
(aj)

[
1

1 + |z|2

] 1
2

≤ C
[
λi
λj

+ λiλjG
−2
ai (aj)

]−5
2 (

λ2
iG
−2
ai (aj)

)
≤ Cε5

ij

(
λiλjG

−2
ai (aj)

)
,

where Ē is a positive constant. So we obtain

I1
4 = O

(
ε3
ij

)
. (67)

For I2
4 , we have

I2
4 =

∫
A2

(
1

1 + |y|2

) 5
2
[
λj
λi

+ λiλjG
−2
ai

(
y

λj
+ aj

)]−1
2

≤ C
∫
|y|≥EλjG−1

ai
(aj)

(
1

1 + |y|2

) 5
2
[
λj
λi

+ λiλjG
−2
ai (aj)

]−1
2

≤ C
[
λj
λi

+ λiλjG
−2
ai (aj)

]−1
2

(
1

λ2
jG
−2
ai (aj)

)
.

This implies
I2
4 = O

(
ε3
ij

)
. (68)

Thus, combining (66)-(68), we derive that if |ai − aj | < 2δ, then

I4 = O
(
ε3
ij

)
. (69)

Now, using (65) and (69), we infer that in case ε−2
i,j ' λiλjG−2

ai (aj),

I4 = O

(
ε3
i,j

1

δ

)
. (70)

Finally combining (64) and (70), we get

I4 = O

(
ε3
ij

1

δ

)
.

Collecting all we obtain∫
B(aj ,λjδ)

u5
aj ,λj uai ,λi = c60

[
1 +O

(
δ +

1

λ2
i δ

2

)] [
c3εij

(
1 + oεi,j (1)

)]
+ c60

[
1 +O

(
δ +

1

λ2
i δ

2

)] [
c3εijO(ε2

i,j(δ
−2 + log ε−1

ij ))
]
.

(71)
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Therefore using (59) and (71), we arrive to∫
Ω

u5
aj ,λj uai ,λi = c60

[
1 +O

(
δ +

1

λ2
i δ

2

)] [
c3εij

(
1 + oεi,j (1)

)]
+ c60

[
1 +O

(
δ +

1

λ2
i δ

2

)] [
c3εijO(ε2

i,j(δ
−2 + log ε−1

ij ))
]

+O

 1

λ
5
2
j

√
λiδ6

 .

Thus, we have∫
Ω

u5
aj ,λj uai ,λi = c60

[
1 +O

(
δ +

1

λ2
i δ

2

)] [
c3εij

(
1 + oεi,j (1)

)]
+ c60

[
1 +O

(
δ +

1

λ2
i δ

2

)] [
c3εijO(ε2

i,j(δ
−2 + log ε−1

ij ))
]

+O

(
ε3
ij

1

δ6

)
.

Therefore, we obtain∫
Ω

u5
aj ,λj uai ,λi =c60c3εi,j

[(
1 +O

(
δ +

1

λ2
i δ

2

))(
1 + oεi,j (1)

)]
+ c60c3εi,j

[(
1 +O

(
δ +

1

λ2
i δ

2

))
O(ε2

i,j(δ
−2 + log ε−1

ij ))

]
+O

(
ε3
ij

1

δ6

)
.

(72)

Hence by switching the index i and j, the result follows from (26), (72), and the
symmetry εij = εji .

We present now some sharp high-order inter-action estimates needed for the ap-
plication of the algebraic topological argument for existence. We start with the
following balanced high-order inter-action estimate.

Lemma 5.4. Assuming that K ⊂ Ω is compact, m > 0 is a large integer, θ > 0
is small, and µ0 is small, then ∀ai, aj ∈ K, ∀0 < 2δ < %0, and ∀0 < 1

λj
, 1
λi
≤ θδm

such that εij ≤ µ0, we have∫
Ω

u3
ai ,λi u

3
aj ,λj = O

(
ε3
ijδ
−6 log

(
1

εijδ

))
.

Proof. By symmetry, we can assume without loss of generality (w.l.o.g) that
λj ≤ λi. Thus we have

1) Either ε−2
ij ∼ λiλjG−2

ai (aj)

2) Or ε−2
ij ∼

λi
λj

.
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Now, if |ai − aj | ≥ 2δ, then we obtain

I =

∫
Ω

u3
ai ,λi u

3
aj ,λj

≤ C
∫
B(ai,δ)

(
λi

1 + λ2
i |x− ai|2

) 3
2

(
λj

1 + λ2
jG
−2
aj (x)

) 3
2

+
C

λ
3
2
i δ

3

∫
B(aj ,δ)

(
λj

1 + λ2
j |x− aj |2

) 3
2

+
C

δ6

(
1

λiλj

) 3
2

≤ C
∫
B(0,λiδ)

(
1

1 + |y|2

) 3
2

 1

λi
λj

+ λiλjG
−2
aj

(
ai + y

λi

)
 3

2

︸ ︷︷ ︸
I1

+
C

δ3

(
1

λiλj

) 3
2
∫
B(0,λjδ)

(
1

1 + |y|2

) 3
2

+
C

δ6

(
1

λiλj

) 3
2

≤ CI1 +
C

δ3

(
1

λiλj

) 3
2

[log(λjδ) + C] +
C

δ6

(
1

λiλj

) 3
2

≤ CI1 +
C

δ6

(
1

λiλj

) 3
2

log(λj).

(73)

Now, we estimate I1 as follows.
If ε−2

ij ∼
λi
λj

, then we get

I1 ≤ Cε3
ij [log(λiδ) + C] .

So, for I we have

I ≤ Cε3
ij [log(λiδ) + C] +

C

δ6
ε3
ij log(λiλj)

≤ C

δ6
ε3
ij log(ε−2

ij G
2
ai(aj))

= O

(
ε3
ij log(ε−1

ij δ
−1)

δ6

)
.

If ε−2
ij ∼ λiλjG−2

ai (aj), then we estimate

I1 ≤
C

δ3

(
1

λiλj

) 3
2

[log(λiδ) + C] .

So, for I we get

I ≤ C

δ6

(
1

λiλj

) 3
2

log(λiλj).

This implies

I ≤ C

δ6
ε3
ij log(ε−2

ij G
2
ai(aj)).
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Hence, for |ai − aj | ≥ 2δ, we obtain

I = O

(
ε3
ij log(ε−1

ij δ
−1)

δ6

)
. (74)

On the other hand, arguing as above, if |ai − aj | < 2δ then we have also

I ≤ I1 +
C

δ3

(
1

λiλj

) 3
2

log(λj) +
C

δ6

(
1

λiλj

) 3
2

≤ I1 +
C

δ6

(
1

λiλj

) 3
2

log(λjλi),

where I1 is as in (73). Thus, if ε−2
i,j '

λi
λj

then

I ≤ I1 +
C

δ6

(
λj
λi

) 3
2 1

λ3
j

[
log(

λi
λj

) + log(λ2
j )

]
.

This implies

I ≤ I1 +
C

δ6
ε3
ij log(ε−1

ij ).

Next, if ε−2
i,j ' λiλjG−2

ai (aj) then we get

I ≤ I1 +
C

δ6

(
1

λiλjG
−2
ai (aj)

) 3
2 [

log(λiλjG
−2
ai (aj) + log(G2

ai(aj)))
]
G−3
ai (aj)

≤ I1 +
C

δ6
ε3
ij log(ε−1

ij ).

Now, to continue, we are going to estimate I1. For this, we start by defining the
following sets:

A1 =

{
|y| ≤ ελi

√
G−2
aj (ai) +

1

λ2
j

}

A2 =

{
ελi

√
G−2
aj (ai) +

1

λ2
j

≤ |y| ≤ Eλi

√
G−2
aj (ai) +

1

λ2
j

}

A3 =

{
Eλi

√
G−2
aj (ai) +

1

λ2
j

≤ |y| ≤ 4λiδ

}
,

with 0 < ε < E <∞. Clearly by the definition of I1 (see (73)), we have

I1 ≤
∫
A1

Lij +

∫
A2

Lij +

∫
A3

Lij ,

where

Lij =

(
1

1 + |y|2

) 3
2

 1

λi
λj

+ λiλjG
−2
aj

(
ai + y

λi

)
 3

2

.
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For
∫
A1
Lij , we obtain

∫
A1

Lij ≤ Cε3
ij

∫
A1

(
1

1 + |y|2

) 3
2

≤ Cε3
ij log

(√
λi
λj

√
λiλjG

−2
aj (ai) +

λi
λj

)
≤ Cε3

ij log(ε−1
ij ).

For
∫
A2
Li,j , we get

∫
A2

Lij ≤ C

 1(
λi
λj

)2

+ λ2
iG
−2
aj (ai)


3
2 ∫

A2

 1

λi
λj

+ λiλjG
−2
aj

(
ai + y

λi

)
 3

2

≤ C
(
λj
λi

) 3
2

ε3
ij

∫
|y|≤Eλi

√
G−2
aj

(ai)+
1

λ2
j

 1
λi
λj

+
λj
λi
|y + λi(ai − aj)|2

 3
2

≤ C
(
λj
λi

) 3
2

ε3
ij

∫
|y|≤Ēλi

√
G−2
aj

(ai)+
1

λ2
j

 1
λi
λj

+
λj
λi
|y|2

 3
2

≤ C
(
λj
λi

)3(
λj
λi

)−3

ε3
ij

∫
|y|≤Ēλj

√
G−2
aj

(ai)+
1

λ2
j

(
1

1 + |y|2

) 3
2

≤ Cε3
ij log(ε−1

ij ).

For
∫
A3
Li,j , we derive

∫
A3

Lij ≤
∫
A3

(
1

1 + |y|2

) 3
2

 1
λi
λj

+
λj
λi
|y|2

 3
2

≤ C
(
λi
λj

) 3
2
∫
A3

1

|y|6

≤ C
(
λi
λj

) 3
2

 1

λ2
iG
−2
aj (ai) +

(
λi
λj

)2


3
2

≤ Cε3
ij .

Therefore, we obtain

I1 ≤ Cε3
ij log(ε−1

ij ).

This implies for |ai − aj | < 2δ, we have

I = O

(
ε3
ij

δ6
log(ε−1

ij )

)
.
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Hence, combining with the estimate for |ai − aj | ≥ 2δ (see (74)), we get∫
Ω

u3
ai ,λi u

3
aj ,λj = O

(
ε3
ij

δ6
log(ε−1

ij δ
−1)

)
.

Finally, we present a sharp unbalanced high-order inter-action estimate needed for
the application of the Barycenter technique of Bahri-Coron[3].

Lemma 5.5. Assuming that K ⊂ Ω is compact, m > 0 is a large integer, θ > 0 is
small, and µ0 is small, then ∀ai, aj ∈ K, ∀0 < 2δ < %0, and ∀0 < 1

λi
≤ 1

λj
≤ θδm

such that εij ≤ µ0, we have∫
Ω

uαai ,λi u
β
aj ,λj = O

(
εβij
δ6

)
,

where α+ β = 6 and α > 3 > β > 1.

Proof. Let α̂ = 1
2α and β̂ = 1

2β. Then we get α̂ + β̂ = 3. Now, since λj ≤ λi,
then we have
1) Either ε−2

ij ∼ λiλjG−2
ai (aj)

2) Or ε−2
ij ∼

λi
λj

.

To continue, we write∫
Ω

uαai,λiu
β
aj ,λj

=

∫
Bai (δ)

uαai,λiu
β
aj ,λj︸ ︷︷ ︸

I1

+

∫
Ω−Bai (δ)

uαai,λiu
β
aj ,λj︸ ︷︷ ︸

I2

and estimate I1 and I2. For I2, we obtain

I2 =

∫
(Ω−Bai (δ))∩Baj (δ)

uαai ,λi u
β
aj ,λj +

∫
Ω−(Bai (δ)∪Baj (δ))

uαai ,λi u
β
aj ,λj

≤ C
∫

(Ω−Bai (δ))∩Baj (δ)

(
λi

1 + λ2
iG
−2
ai (x)

)α̂(
λj

1 + λ2
j |x− aj |2

)β̂

+ C

∫
Ω−(Bai (δ)∪Baj (δ))

(
λi

1 + λ2
iG
−2
ai (x)

)α̂(
λj

1 + λ2
jG
−2
aj (x)

)β̂

≤ C

λα̂i λ
3−β̂
j δα

∫
B0(λjδ)

(
1

1 + |y|2

)β̂
+

C

λα̂i λ
β̂
j δ

6

≤ C

λα̂i λ
3−β̂
j δα

(
1

λjδ

)2β̂−3

+
C

λα̂i λ
β̂
j δ

6
.

Thus, we have for I2

I2 ≤
C

λα̂i λ
β̂
j δ

6
. (75)
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Next, for I1 we derive

I1 =

∫
Bai (δ)

(
λi

1 + λ2
i |x− ai|2

)α̂(
λj

1 + λ2
jG
−2
aj (x)

)β̂

=

∫
B0(λiδ)

(
1

1 + |y|2

)α̂  1

λi
λj

+ λiλjG
−2
aj

(
ai + y

λi

)
β̂ .

Thus, if ε−2
ij ∼

λi
λj

then

I1 ≤ Cε2β̂
ij

[(
1

λiδ

)2α̂−3

+ C

]
≤ Cεβij .

If ε−2
ij ∼ λiλjG−2

ai (aj) and |ai − aj | ≥ 2δ, then we estimate

I1 ≤ C
(

1

λiλjδ2

)β̂ [(
1

λiδ

)2α̂−3

+ C

]

≤ C 1

δ3

(
1

λiλj

)β̂
≤ C 1

δ3

[(
1

λiλjG
−2
ai (aj)

) 1
2

]β
≤ C 1

δ3
εβij .

Now, if ε−2
ij ∼ λiλjG−2

ai (aj) and |ai − aj | < 2δ , then we get

I1 ≤ C
∫
B0(λiδ)

(
1

1 + |y|2

)α̂  1

λi
λj

+ λiλj

∣∣∣ai + x
λi
− aj

∣∣∣2

β̂

.

Next, we define

B =

{
1

2
|ai − aj | ≤

|y|
λi
≤ 2|ai − aj |

}
and have

I1 ≤ C
∫
B

(
1

1 + |y|2

)α̂  1

λi
λj

+ λiλj

∣∣∣ai + x
λi
− aj

∣∣∣2

β̂

+C

∫
B0(λiδ)−B

(
1

1 + |y|2

)α̂  1

λi
λj

+ λiλj

∣∣∣ai + x
λi
− aj

∣∣∣2

β̂

.
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For the second term, we have

∫
B0(λiδ)−B

(
1

1 + |y|2

)α̂  1

λi
λj

+ λiλj

∣∣∣ai + x
λi
− aj

∣∣∣2

β̂

≤ Cεβij
(

1

λiδ

)α−3

+ Cεβij

≤ Cεβij .
For the first term, we obtain

∫
B

(
1

1 + |y|2

)α̂  1

λi
λj

+ λiλj

∣∣∣ai + x
λi
− aj

∣∣∣2

β̂

≤ C
(

1

1 + λ2
i |ai − aj |2

)α̂ ∫
|y|≤2λi|ai−aj |

 1
λi
λj

+
λj
λi
|y + λi(ai − aj)|2

β̂

≤ C
(

1

1 + λ2
i |ai − aj |2

)α̂ ∫
|z|≤4λi|ai−aj |

 1
λi
λj

+
λj
λi
|z|2

β̂

≤ C

(
1

λj
λi

+ λiλj |ai − aj |2

)α
2 ∫
|z|≤4λj |ai−aj |

[
1

1 + |z|2

]β̂
.

If λj |ai − aj | is bounded, then we get

I1 ≤ C

(
1

λj
λi

+ λiλj |ai − aj |2

)α
2

≤ Cεβij .

If λj |ai − aj | is unbounded, then we estimate

I1 ≤ C

(
1

λj
λi

+ λiλj |ai − aj |2

)α
2

(λj |ai − aj |)3−2β̂

≤ C
(

1

1 + λ2
i |ai − aj |2

)α̂+β̂− 3
2
(
λi
λj

)β̂

≤ C

(
1

λj
λi

+ λiλj |ai − aj |2

)β̂ (
1

1 + λ2
i |ai − aj |2

)α̂− 3
2

≤ Cεβij .
Thus, we have for I1, obtain

I1 ≤
C

δ3
εβij . (76)

On the other hand, using the estimate for I2 (see (75)), we get

I2 = O

(
εβij
δ6

)
. (77)
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Hence, combining (76) and (77), we have∫
Ω

uαai ,λi u
β
aj ,λj = O

(
εβij
δ6

)
.

6. Algebraic topological argument. In this section, we present the algebraic
topological argument for existence. We start by fixing some notation from algebraic
topology. For a topological space Z, H∗(Z) denotes the singular homology of Z
with Z2 coefficients. If Y is a subspace of Z, then H∗(Z, Y ) stands for the relative
homology with Z2 coefficients of the topological pair (Z, Y ). For a map f : Z → Y
with Z and Y topological spaces, f∗ denotes the induced map in homology. If
f : (Z, Y ) −→ (W,X) is a map with (Z, Y ) and (W,X) topological pairs, then
f∗ denotes the induced map in relative homology. Furthermore, we discuss some
algebraic topological tools needed for our application of the Barycentre technique
of Bahri-Coron[3]. We start with the following observation. Since Ω is a smooth
bounded domain of R3 which is non-contractble, then there exists n ∈ {1, 2, 3}
such that Hn(Ω) is not trivial, see Lemma 2.1 (see also Remark 2.2) or [3] (see
page 1 just after Theorem 1). Hence, as in [3] (see beginning of page 263), we have
there exists M a smooth compact connected n-dimensional manifold without
boundary and a continuous map

h : M −→ Ω (78)

such that if we denote by [M ] the class of orientation (modulo 2 ) of M , then
h∗([M ]) 6= 0. Moreover, we have clearly the existence of a compact smooth manifold
with boundary K0 such that

h(M) ⊂ K0 ⊂ Ω. (79)

We recall the space of formal barycenter of M that we need for our Barycenter
technique for existence. For p ∈ N∗, the set of formal barycenters of M of order
p is defined as

Bp(M) = {
p∑
i=1

αiδai : ai ∈M, αi ≥ 0, i = 1, · · · , p,
p∑
i=1

αi = 1}, B0(M) = ∅,

(80)
where δa for a ∈ M is the Dirac measure at a. we have the existence of Z2

orientation classes (see [3])

wp ∈ H(n+1)p−1(Bp(M), Bp−1(M)), p ∈ N∗. (81)

Now to continue, we fix δ small such that 0 < 2δ ≤ %0 where %0 as in (23) with
K is replaced by K0 and K0 is given by (79). Moreover, we choose m > 0 a large
integer and θ0 > 0 and small. After this, we let λ varies such that 0 < 1

λ ≤ θ0δ
m

and associate for every p ∈ N∗ the map

fp(λ) : Bp(M) −→ H1,+
0 (Ω)

defined by the formula

fp(λ)(σ) =

p∑
i=1

αiuh(ai),λ, σ =

p∑
i=1

αiδai ,

where h is as in (78) and uh(ai),λ is as (24) (with a replaced by h(ai)).
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As in Proposition 3.1in [9] and Proposition 6.3 in [12], using Corollary 5.2, Corollary
5.3, Corollary 4.3, Lemma 5.4, and Lemma 5.5, we have the following multiple-
bubble estimate.

Proposition 6.1. There exist C̄0 > 0 and c̄0 > 0 such that for every p ∈ N∗,
p ≥ 2 and every 0 < ε ≤ ε0, there exists λp := λp(ε) such that for every λ ≥ λp
and for every σ =

∑p
i=1 αiδai ∈ Bp(M), we have

1. If
∑
i 6=j εi,j > ε or there exist i0 6= j0 such that

αi0
αj0

> ν0, then

Jq(fp(λ)(σ)) ≤ p 2
3S.

2. If
∑
i 6=j εi,j ≤ ε and for every i 6= j we have αi

αj
≤ ν0, then

Jq(fp(λ)(σ)) ≤ p 2
3S
(

1 +
C̄0

λ
− c̄0

(p− 1)

λ

)
,

where εij is as in (25) with (ai, aj) replaced by (h(ai), h(aj)) and λi =
λj = λ, ε0 is as in (44) and ν0 is as in (45).

As in Lemma 4.2 in [9] and Lemma 6.4 in [12], we have the selection map s1 (see
(46)), Lemma 3.2 and Corollary 4.3 imply the following topological result.

Lemma 6.2. Assuming that Jq has no critical points, then there exists λ̄1 > 0
such that for every λ ≥ λ̄1,

f1(λ) : (B1(M), B0(M)) −→ (W1, W0)

is well defined and satisfies

(f1(λ))∗(w1) 6= 0 in Hn(W1, W0).

We would like to make a comment about Lemma 6.2 which provides a consequence
which does not require the use of homology and sufficient for the way we are going to
apply the Barycenter technique. The consequence is as follows: Lemma 6.2 implies
that the map f1(λ) : (B1(M), B0(M)) −→ (W1, W0) is not homotopic to a
constant map f̄1(λ) : (B1(M), B0(M)) −→ (W1, W0), for λ ≥ λ̄1.

Next, as in Lemma 4.3 in [9] and Lemma 6.5 in [12], we have the selection map sp
(see (46)), Lemma 3.2 and Proposition 6.1 imply the following recursive topological
result.

Lemma 6.3. Assuming that Jq has no critical points, then there exists λ̄p > 0
such that for every λ ≥ λ̄p,

fp+1(λ) : (Bp+1(M), Bp(M)) −→ (Wp+1, Wp)

and

fp(λ) : (Bp(M), Bp−1(M)) −→ (Wp, Wp−1)

are well defined and satisfy

(fp(λ))∗(wp) 6= 0 in H(n+1)p−1(Wp, Wp−1)

implies

(fp+1(λ))∗(wp+1) 6= 0 in H(n+1)(p+1)−1(Wp+1, Wp).
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As in the case of p = 1, we would like to make a remark about Lemma 6.3 which
provides an implication which use only homotopy and sufficient for our purpose. To
do that, we first observe that combing Lemma 6.2 and Lemma 6.3, we have that
(fp(λ))∗(wp) 6= 0 in H(n+1)p−1(Wp, Wp−1) for every p ≥ 1 and for every λ ≥ λ̄p.
Hence, as in the case p = 1, we have the map fp(λ) : (Bp(M), Bp−1(M)) −→
(Wp, Wp−1) is not homotopic to a constant map f̄p(λ) : (Bp(M), Bp−1(M)) −→
(Wp, Wp−1) for every p ≥ 1 and for every λ ≥ λ̄p.

Finally, as in Corollary 3.3 in [9] and Lemma 6.6 in [12], we clearly have that
Proposition 6.1 implies the following result.

Lemma 6.4. Setting

p0 := [1 +
C̄0

c̄0
] + 3

with C̄0 and c̄0 as in Proposition 6.1 and recalling (47), we have there exists

λ̂p0 > 0 such that ∀λ ≥ λ̂p0 ,

fp0(λ)(Bp0(M), Bp0−1(M)) ⊂ (Wp0−1,Wp0−2).

In the same spirit as the comments after Lemma 6.2 and Lemma 6.3, we have
that Lemma 6.4 implies the following remark using homotopy. The observation is:

Lemma 6.4 implies that the map Hp0(λ) (λ ≥ λ̂p0) defined by

Hp0(λ)(t, σ) = tf1(λ)(δa0)+(1−t)fp0−1(λ)(σ) = fp0(λ)(σt), (t, σ) ∈ [0, 1]×Bp0−1(M),

with σt := tδa0 + (1 − t)σ and seen as a map from [0, 1] × (Bp0−1(M), Bp0−2) is
into (Wp0−1,Wp0−2) and defines an homotopy in (Wp0−1,Wp0−2) between the map
fp0−1(λ) : (Bp0−1(M), Bp0−2(M)) −→ (Wp0−1, Wp0−2) and the constant map

f̄p0−1(λ) = f1(δa0) : (Bp0−1(M), Bp0−2(M)) −→ (Wp0−1, Wp0−2).

Proof of Theorem 1.1
As in [9] and [12], the theorem follows by a contradiction argument from Lemma
6.2 - Lemma 6.4. Indeed, assuming that Jq has no critical points, then on one hand
we have the map fp(λ) : (Bp(M), Bp−1(M)) −→ (Wp, Wp−1) is not homotopic
in (Wp, Wp−1) to a constant map f̄p(λ) : (Bp(M), Bp−1(M)) −→ (Wp, Wp−1)
for every p ≥ 1 and λ ≥ λ̄p, and on the other hand for p = p0 − 1, we have
the map fp0−1(λ) : (Bp0−1(M), Bp0−2(M)) −→ (Wp0−1, Wp0−2) is homotopic in
(Wp0−1, Wp0−2) to the constant map

f̄p0−1(λ) = f1(σa0) : (Bp0−1(M), Bp0−2(M)) −→ (Wp0−1, Wp0−2),

∀λ ≥ λ̂p0 . Hence, we reach a contradiction for λ ≥ max{λ̂p0 , λ̄p0−1}.
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