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Abstract—This paper introduces a neural network based ap-
proach for parameter identification of a half-bridge LLC Reso-
nant Converter. By using a set of measured inputs, the system
can characterize the component values, and difficult to measure
switch characteristics including the junction temperature or gate-
source capacitance. This capability is useful for reliability, health
monitoring and model based control applications. The range of
the Mean Absolute Error (MAE) obtained for all parameters
predictions was from 0.142% to 4.12%, with an average MAE
of 1.57% over all parameters.

Index Terms—Parameter identification, Digital twin, Neural
network, Resonant converters.

I. INTRODUCTION

The concept of a Digital Twin (DT) devises a digital mirror

of a physical system. Ideally, the system can update in real-

time, with high resolution and accuracy while only having

inputs equal to the physical system. When applied to power

converters, a DT reveals internal information of the parameters

and operation, while minimizing the need for sensor hardware.

Achieving this ideal DT is difficult and requires complex

models that take into account all the dynamics and physics

over the converter’s lifetime. Instead, some measurements of

the physical system can be taken and fed into a parameter

identification block. This block would characterize the con-

verter’s state as it changes, update simpler models, and then

make predictions. Having this system is perhaps most useful

in reliability prediction and lifetime estimation given how

difficult those processes are to model.

A variety of techniques have been used to create DTs

ranging from statistical modeling, to Machine Learning, or

real-time swarm optimization. DT models based on statis-

tical modeling techniques include a Bayesian Optimization

approach used in [1] for parameter identification of the re-

sistance, inductance, capacitance, parasitic resistances, and

MOSFET on-state resistance of buck and boost converters

in an online application. By characterizing the circuit in

real-time, the drift of components can be estimated which

could be applied for control or repair of converters. In [2],

Polynomial Chaos Expansion is used to transform state-space

models into stochastic models. Components are assumed to

be random variables defined by their tolerances. By modeling

the converter and controller, basic condition monitoring can be

done by flagging a deviation between the DT and real behavior.

An alternative series of solutions include meta-heuristic

optimization algorithms. These algorithms are used to search

large solution spaces but have no guarantees of convergence.

A population-based technique called Particle Swarm Opti-

mization (PSO) is used by [3]–[7]. PSO works by having a

population of guess solutions that work together to search a

solution space defined by an objective function. An individual

in this swarm balances between its own best solution, the

group’s best solution, and its current velocity in the search

space. Generally these papers try to characterize component

values of the converter for health monitoring or control.

PSO can constantly search for solutions as the real converter

data is gathered and compare them to the DT outputs. In

contrast to PSO, one paper uses a technique called Arithmetic

Optimization Algorithm (AOA) [8]. AOA makes use of simple

arithmetic operations (Addition, Subtraction, Multiplication,

and Division) to search over a space. It was shown in [8]

that AOA was faster compared to PSO for a Buck Converter

model.

Finally, a number of papers have implemented Machine

Learning approaches, namely Neural Network variants. An

Artificial Neural Network (ANN) is used in [9], [10]. The

former paper inputs four PI parameters into the ANN to

predict the error between reference and actual active and

reactive power. This can be used to tune the control parameters

to reduce control error. The latter paper uses an ANN to

tune a DT model for accurate predictions. The method of

Bayesian Regularized ANN (BR-ANN) and Random Forest

(RF) machine learning techniques were applied in [11]. The

BR-ANN was trained to predict transient behavior such as

settling time, overshoot, rise time, and steady state value.

The RF was used to predict steady state ripple through a

series of decision trees. To add a dynamic view to the ANN

model, methods such as Nonlinear AutoRegressive eXogenous

(NARX-ANN) in [12] or a NARX with a Recurrent Neural

Network (NARX-RNN) in [13] are used. These models take

in inputs over a window of time to predict the converter’s

outputs building a sense of time into the model itself.

Overall, both statistical and meta-heuristic approaches are

computationally demanding and often involve manual mod-

eling, which would have a high level of complexity for

incorporating non-linear switch parameters or modeling large
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topologies. The machine learning approaches do not experi-

ment with parameter identification at all, and introduce ex-

panded ANN models which may not be necessary. Therefore,

this paper introduces an application of machine learning in

power electronic converter parameter identification, with a

focus on identification of switch parameters using basic ANNs.

A case study of an LLC resonant converter operating with

variable frequency control is presented to verify the proposed

approach.

II. CONVERTER DESIGN

Solid State Transformers (SST) perform the task of regular

transformers but can have advantages in size, weight, and

power density [14]. Because of the solid state design, more

can be done than with just a traditional transformer such

as voltage or current regulation for compensation, or fault

current limitation [14]. At the core of any SST is an isolated

DC-DC converter. LLC resonant converters for SST improves

efficiency due to soft switching and adds more control flex-

ibility [15]. This circuit provides a number of opportunities

for interesting predictions useful for monitoring involving the

switches and resonant tank. Using a detailed switch model

enables experimentation with complex predictions about the

switch beyond just On-State resistance including the switch

capacitances and junction temperatures. Switch information

can be useful for health monitoring and control to extend the

lifetime of a converter. This will be an important concern

for SSTs if they see wide adoption as replacements for

conventional transformers.

Modeling the converter will follow the methods in [16]

leading to the simplified circuit in Fig. 1. This technique

mutates the transformer, rectifier and load resistor into a single

AC equivalent resistor at the output of the LLC tank. The gain

of the resonant tank can be finally expressed as (1).

G =
1

(

1−
(

ω0

ωs

)2

+ Ls

Lp

)

+ jQ

(

(

ω0

ωs

)2
Ls
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− 1

) (1)

where, ω0 is the resonant frequency, ωs is the switching

frequency, Q is the quality factor, Ls and Lp are series

and parallel resonant tank inductors, respectively. Here, Q =
ω0C/Req and ωs =

1√
CLp

A 1200V SiC Cascode JFET model is used [17] to gather

detailed switch data. This switch is rated 110A RMS for

junction temperatures around 120◦C. For simplicity, the con-

verter gain is chosen to be one along with the LLC resonant

tank gain. Due to the half-bridge design, a total converter

gain of one is achieved using a turns ratio of 1/2. The

converter parameters are designed to meet gain requirements

as determined by (1). Table I shows the complete converter

specifications and component values.

III. DATA COLLECTION

The converter simulation is parameterized following the

ranges in Table II. Everything else is kept constant including

Fig. 1: Simplified Converter with Equivalent Resistor

TABLE I: Converter Specifications

Parameter Value Unit

Voltage 800 V
Max Drain Current 110 A RMS

Converter Gain 1 V/V
Resonant Tank Gain 1 V/V

Power 39 kW
Frequency 100 kHz

Cs 239 nF
Ls 10.58 µH
Lp 105.8 µH
Req 3.325 Ω

the DC-Coupling capacitors, gate voltage, gate resistors, dead-

time and switch junction temperature. The loop inductors

referenced in the ranges table are located on the top and bottom

paths from DC-link capacitors to the switching leg.

The main circuit simulation is coupled with a switch thermal

model to estimate temperature rise due to losses. The switch

thermal model is represented by a 4R4C thermal circuit as

shown in Fig. 2. Switch power is injected as a current source

(left) and the case temperature a voltage source (right). Using

these, the network will reach a steady state where the final

junction temperature can be measured as the leftmost capacitor

voltage. The average switch losses are taken from the power

circuit simulations. A junction temperature of 140◦C was

chosen as an average of all scenarios for a conservative

estimate of device losses.

Simulations are run one at a time to avoid crashes or stalls.

To begin, a random configuration point is chosen from the

configuration space defined in Table II. These ranges are

subdivided by 32. Using the configuration point, the operating

frequency and initial conditions are found. One cycle is given

for the rough initial conditions to reach the true steady state,

then three cycles are run for the measurements. The power

circuit simulation is run, the output of which is used as

Fig. 2: RC Network Thermal Model
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TABLE II: Simulation Parameter Ranges

Parameter Base Value Range

Cs 239 nF ±50%

Ls 10.58 µH ±50%

Lp 105.8 µH ±50%

Vin 800 V ±25%

Cs ESR 20 mΩ ±25%

CDC ESR 10 mΩ ±20%

Parameter Min Max

Power 1 kW 39 kW
Lloop 0.5 nH 20 nH

Ls ESR 10 mΩ 75 mΩ

Lp ESR 10 mΩ 75 mΩ

Rds−on 0 mΩ 50 mΩ

Cds 0 pF 350 pF
Cgs 0 pF 8550 pF
Tc -25 ◦C 200 ◦C

input to two thermal simulations. Measurements are taken

automatically though LTSpice and are limited to max, min,

RMS, or average values over the three cycles. Post-processing

can be done for custom measurements. In this case, slew rates

were taken with a discrete derivative over a larger window to

avoid massive spikes. This is repeated for as many simulations

as required.

IV. ANN MODELING

The type of machine learning architecture chosen was a

series of Fully Connected ANN’s, one each for every desired

output. Each network has a series of layers that take in an input

vector, pass it through the hidden layers, and finally compute

the output. The input and output layer sizes must equal the size

of the input and output vectors. The hidden layers were all set

to the same size, though the length and size of the hidden

layers was tuned manually. The output of each neuron also

has a non-linear activation function. Most of these networks

will use the Leaky-ReLU with the exception of Zero-Voltage

Switching (ZVS) using ReLU. To quantify the success of a

network during training the Mean Squared Error (MSE) cost

function is used. The Gradient Descent algorithm will adjust

the network’s weights based on their sensitivity to the loss

function. Other hyperparameters include the learning rate, and

number of epochs (full training iterations through the whole

training set). The full dataset is split in a 70/30 ratio between

train and test.

V. VERIFICATION

A. Verification Scores

After a network has been trained, the test set is used to

see how well the network performs on data it hasn’t yet

seen. Testing for regression accuracy uses scores that rely

on the prediction error such as RMS Error (RMSE) (2), or

Mean Absolute Error (MAE) (3). Another score used is the

Coefficient of determination or R-Squared (4). This score

informs of how well the predictions fit the real outputs by

measuring the variance in the predicted data compared to the

true data.

RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2 (2)

MAE =
1

N

N
∑

i=1

|yi − ŷi| (3)

R2 = 1−
∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − ȳ)2

(4)

Scoring is done differently for classification tasks. The

simplest score is Accuracy which is the ratio of correct

predictions to all predictions. Other scores include Precision

which is a score defined by the ratio of true positives to all

predicted positives (true and false positives). Another score

used is named Recall which is the ratio of true positives to

all actual positives (true positives and false negatives). In this

context, Precision will score how well the identifier can avoid

false predictions of ZVS occurring when it has really been

lost. Recall scores the identifier’s ability to avoid predicting

the loss of ZVS when it is still present. Precision may be a

more important score because missing the loss of ZVS would

increase the switch temperatures and exaggerate degradation.

Depending on the application, either Precision or Recall could

be more useful. For now, they help benchmark the identifier

agnostic of specific application scenarios.

B. Results

This sections presents the best results after training the

networks. For the following results a dataset of 108,750

random points was used. The dataset is split in a 70/30 ratio

for training and testing. Every regression network used the

MSE loss function, while every classification network used the

Binary-Cross Entropy loss function, and both have a learning

rate of 0.01 using the Adam optimizer. For a complete list of

results for each parameter see Table III. Moreover, the input

variables are defined in Table IV.

To visualize the results all the predictions were plotted

as a scatter plot where the horizontal axis holds the ground

truth values, and the vertical axis holds the predicted values.

Because the plots’ points overlap, it is hard to tell the dis-

tribution of predictions. This can be done using a series of

box plots. Note that the configuration ranges were subdivided

by 32, forming buckets. For each bucket the min, max, first

quartile, third quartile, and the median of the predictions were

found. These correspond to quantities a box plot uses. To

better visualize a series of box plots, the whiskers and box

widths are drawn as areas. The larger gray area represents

whiskers as a range from the min to max. The smaller blue

area represents the box width as the first to third interquartile

range. Furthermore, the median of each bucket was plotted as

a point. Ideally, the areas would both be very small. Moreover,

if the predictions match the ground truths exactly, the median

points should lie on a diagonal line represented in red for the

figures below. Using this, a complete picture of the results can

be created.
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(a) Cs Prediction vs True outputs (b) Ls Prediction vs True outputs (c) Lp Prediction vs True outputs (d) Ptank Prediction vs True out-
puts

(e) Top TJ Final Prediction vs
True outputs

(f) Bottom TJ Final Prediction vs
True outputs

(g) Top Rds−on Final Prediction
vs True outputs

(h) Bottom Rds−on Final Predic-
tion vs True outputs

(i) Top Cgs Final Prediction vs
True outputs

(j) Bottom Cgs Final Prediction vs
True outputs

(k) Top Cds Final Prediction vs
True outputs

(l) Bottom Cds Final Prediction vs
True outputs

Fig. 3: Model predictions vs. ground truth for circuit and operation parameters

TABLE III: Experiment Results

Parameter RMSE MAE R2

Cs 1.876% 1.411% 99.60%

Ls 1.465% 0.9982% 99.76%

Lp 1.982% 1.284% 99.56%

Ptank 0.3489% 0.1420% 97.58%

Tj Top 0.2364% 0.1423% 99.10%

Tj Bottom 0.3103% 0.1912% 98.57%

Rds−on Top 2.480% 1.569% 99.31%

Rds−on Bottom 2.618% 1.530% 99.21%

Cgs Top 6.011% 4.115% 95.93%

Cgs Bottom 4.891% 3.285% 97.27%

Cds Top 5.684% 3.719% 96.40%

Cds Bottom 2.395% 1.736% 99.35%

Phase Difference 0.4347% 0.2852% 98.73%

Parameter Accuracy Precision Recall

ZVS Top 99.85% 99.98% 99.86%

ZVS Bottom 99.94% 99.98% 99.97%

TABLE IV: Complete Input Measurement Set

Parameter Description

fsw Switching Frequency

Iser LLC Tank Series/Input Current

Id Switch Drain Current

Vgs Switch Gate-Source Voltage

Vds Switch Drain-Source Voltage

Vds−on Switch Drain-Source Voltage during on-time

Vrg Switch Gate Resistor Voltage

Tc Switch Case Temperature

Qg Gate Charge (Integration of gate current
Vrg

Rgate
)

Vds−slew Time Derivative of Vds− > d
dt
Vds

Vgs−slew Time Derivative of Vgs− > d
dt
Vgs

All switch parameters have corresponding top and bottom measurements for

the half-bridge. Also, no single network uses all these inputs

1) Resonant Passives Components: The resonant compo-

nents did well with low MAEs around 1.2% matched by the

high R-Squared of around 99.6%. This can be seen visually

in Fig. 3a, 3b, and 3c. Notice the gray area is quite small,

and the blue area very small. This means that even the worst
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Fig. 4: Resonant Tank Input I-V Phase Difference

predictions were tightly distributed near the ground truth.

These networks benefited the most from a widening of the

hidden layers to 120 neurons while going further didn’t help.

Moreover, they had hidden layer lengths of four and did

not gain anything from going deeper. The inputs for all the

passives included the Max and RMS of Iseries, Iout, Iin, and

Vout. Also included is the DC input voltage, Vin, and the

switching frequency fsw. The measurements are simple and

avoid measuring the high magnitude, high frequency voltages

on the passive components. Moreover, the inductors will likely

be inaccessible being implicitly designed into the transformer.

2) Lumped Tank Loss: The lumped tank loss performed

well with a 0.14% MAE and 97.6% R-Squared. Looking at

the scatter plot in Fig. 3d, the predictions generally fall into

a central grouping. Looking further into the raw data, it was

found that the tank losses are highly biased around a central

value. The converter is limited by its normal behavior such that

a uniform distribution of tank loses will not be produced within

the sweep ranges. This may be a problem for interpolation but

looking at the scatter plot again, the rare points outside the

dominating grouping still fit quite well. The network structure

consisted of four hidden layers with a width of 12. Inputs

included the Vds−on of the top and bottom and the maximums

of Iseries, Iout, Iin, Vout, as well as Vin and fsw. These inputs

should help find the total converter loss, as well as the switch

losses, to isolate the tank losses.

3) Junction Temperature: Both the junctions temperatures

did well with MAEs at or below 0.19% and an R-Squared near

99%. The scatter plots are presented in Fig.3e and 3f. Similar

to the tank loss, these both have the majority of points around

a grouping, though still fit the rare points well. Again, the

converter dynamics are limited to producing this bias. These

networks also had four hidden layers with a width of 12. The

inputs important here are similar to the tank losses, in that

they need to help isolate the switch losses from total converter

losses. These include Vds−on and the maximums of Iseries,

Iout, Iin, Vout, as well as Vin and fsw.

4) On-State Resistance: The On-State resistances also did

well with MAEs just above 1.5% and an R-Squared around

99.2%. Both of these networks found an optimal hidden layer

size of 40 perceptrons and a length of four. Inputs included

switch information such as Vds−on min and max, Id min,

max, and RMS, and finally fsw. The top and bottom versions

of switch inputs are used respectively. The results are in the

scatter plots of Fig. 3g and 3h. While the largest errors can

spread wider than before, the majority of the data in the blue

follows the line accurately resulting in an accurate prediction.

5) Gate-Source Capacitance: The Gate-Source capacitance

can be difficult to estimate properly, though given information

about the gate the MAEs can be lowered to around 4% with

an R-Squared just above 96%. These networks kept the length

of four and performed better as they got wider up to 120 or

90 neurons for the top and bottom. The inputs included the

Vgs max slew rate, the max and RMS gate charge Qgate, the

max and RMS voltage across the external gate resistor Vrg ,

max Vgs, and the min Vds−on. The most difficult measurement

here would be the slew rate, but this proved important for

increasing accuracy. Results are in Fig. 3i and 3j which show

a wide worst case error. The interquartile range represented

by the blue area shows the network still performs well.

6) Drain-Source Capacitance: The best drain source ca-

pacitance networks resulted in MAEs around 3.7% and 1.7%

for the top and bottom with an R-Squared 96% and 99%

respectively. The scatter plots in Fig. 3k and 3l show good

interquartile ranges in blue. The worst errors in gray did well

for the bottom but were wider for the top. These networks

found an optimal hidden layer width of 120 neurons with a

length of four. The min, max, average, and RMS Vds slew rates

were included in the inputs along with max Qgate, max Vgs,

max Vds−on, RMS Iseries, and fsw. The slew rates proved

useful again but are more difficult to measure.

7) Tank Input Voltage and Current Phase Difference:

Another parameter is the phase difference between the tank

input voltage and input current waveforms. This performed

well with an MAE of 0.285% and an R-Squared of 98.7%.

The scatter plot is in Fig. 4. This also has a main grouping

of samples but the system is still able to accurately predict

the rarer points. This network found an optimal hidden layer

size of 120 neurons going four deep. The inputs here were

the same as the passive component inputs as they relate to the

tanks behavior.

8) Zero Voltage Switching: Predicting Zero Voltage Switch-

ing suffered from the same problem as the tank loss and

junction temperatures. Due to the frequency control used in

simulation, ZVS was rarely lost. In the whole dataset, ZVS

was true 98.9%, and 99.4% of the time for the top and bottom

respectively. One concern is that a network may simply output

a constant ”true” and never learn to differentiate the negative

cases. If this does occur, the Recall score should be 100%

from never guessing a negative. Furthermore, the accuracy and

precision scores will be the exact same. If these conditions

are met, the network is guessing a constant positive and has

not learned anything useful. The best results have networks

having small widths of 8 and 18 neurons for the top and

bottom, both having a length of four. Going deeper or wider

did not lead to better results. The final accuracies for the top

and bottom were 99.85% and 99.94%, with both precision’s

at 99.98%. The recall was 99.86% and 99.97% for the top

and bottom. The recall was never 100% and the accuracy and

precision were never the same showing that the network did
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learn to differentiate negative cases. The inputs used include

the min, max, average, and RMS Vds slew rates, max Iseries,

max Qgate, and fsw. These should help predict the speed Cds

can be discharged and therefore if ZVS will occur.

C. Discussion

The proposed ANN model shows good prediction perfor-

mance over the design space of the converter. The model

depends on inputs that are standard to measure in the power

or gate drive circuit. Even though a few of the parameters

have tight distributions, such as lumped tank losses, junction

temperature, phase difference and ZVS indication, the model

is considered sufficient since the regression output is limited

to interpolation of results. Even with a skewed dataset the

network can do a good job of discriminating rare outputs

that deviate from the main peak. Looking at the scatter plots

for the tank loss, both junctions temperatures, and the phase

difference (Fig. 3d, 3e, 4, and 3f) do show a good fit suggesting

the network can successfully follow points outside the main

peak when rare. Errors in the results could be attributed to the

dataset quality or size. Quality meaning numerical error from

simulation or pre-processing stages, as well as the breadth of

modes a converter is simulated through. Network tuning could

also play a role as some output variables may require deeper

networks for longer chains of calculations.

VI. CONCLUSION

This paper applied simple Feed Forward Neural Networks to

an LLC Resonant converter to create a parameter identifier. It

is shown to be capable of predicting internal component values

including the switch parameters. By following a procedure of

parameterizing a converter, many simulations can be run by

randomly sampling from chosen ranges of those parameters.

Using the collected data, simple neural networks can be trained

to predict each output. Results here show MAEs below 4.12%

for all parameters. As many of the measurements required

as inputs are simple values taken over multiple cycles, the

system could feasibly be used for parameter identification. The

developed models are computationally simple being straight

forward ANNs, making them well suited for implementation

on local converter FPGAs. This approach can be readily

applied to non-resonant converters. Further, adding a detailed

transformer model would enable the extension of this approach

to isolated converters.
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