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Abstract—This paper introduces a neural network based ap-
proach for parameter identification of a half-bridge LLC Reso-
nant Converter. By using a set of measured inputs, the system
can characterize the component values, and difficult to measure
switch characteristics including the junction temperature or gate-
source capacitance. This capability is useful for reliability, health
monitoring and model based control applications. The range of
the Mean Absolute Error (MAE) obtained for all parameters
predictions was from 0.142% to 4.12%, with an average MAE
of 1.57% over all parameters.

Index Terms—Parameter identification, Digital twin, Neural
network, Resonant converters.

I. INTRODUCTION

The concept of a Digital Twin (DT) devises a digital mirror
of a physical system. Ideally, the system can update in real-
time, with high resolution and accuracy while only having
inputs equal to the physical system. When applied to power
converters, a DT reveals internal information of the parameters
and operation, while minimizing the need for sensor hardware.
Achieving this ideal DT is difficult and requires complex
models that take into account all the dynamics and physics
over the converter’s lifetime. Instead, some measurements of
the physical system can be taken and fed into a parameter
identification block. This block would characterize the con-
verter’s state as it changes, update simpler models, and then
make predictions. Having this system is perhaps most useful
in reliability prediction and lifetime estimation given how
difficult those processes are to model.

A variety of techniques have been used to create DTs
ranging from statistical modeling, to Machine Learning, or
real-time swarm optimization. DT models based on statis-
tical modeling techniques include a Bayesian Optimization
approach used in [1] for parameter identification of the re-
sistance, inductance, capacitance, parasitic resistances, and
MOSFET on-state resistance of buck and boost converters
in an online application. By characterizing the circuit in
real-time, the drift of components can be estimated which
could be applied for control or repair of converters. In [2],
Polynomial Chaos Expansion is used to transform state-space
models into stochastic models. Components are assumed to
be random variables defined by their tolerances. By modeling
the converter and controller, basic condition monitoring can be
done by flagging a deviation between the DT and real behavior.
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An alternative series of solutions include meta-heuristic
optimization algorithms. These algorithms are used to search
large solution spaces but have no guarantees of convergence.
A population-based technique called Particle Swarm Opti-
mization (PSO) is used by [3]-[7]. PSO works by having a
population of guess solutions that work together to search a
solution space defined by an objective function. An individual
in this swarm balances between its own best solution, the
group’s best solution, and its current velocity in the search
space. Generally these papers try to characterize component
values of the converter for health monitoring or control.
PSO can constantly search for solutions as the real converter
data is gathered and compare them to the DT outputs. In
contrast to PSO, one paper uses a technique called Arithmetic
Optimization Algorithm (AOA) [8]. AOA makes use of simple
arithmetic operations (Addition, Subtraction, Multiplication,
and Division) to search over a space. It was shown in [§]
that AOA was faster compared to PSO for a Buck Converter
model.

Finally, a number of papers have implemented Machine
Learning approaches, namely Neural Network variants. An
Artificial Neural Network (ANN) is used in [9], [10]. The
former paper inputs four PI parameters into the ANN to
predict the error between reference and actual active and
reactive power. This can be used to tune the control parameters
to reduce control error. The latter paper uses an ANN to
tune a DT model for accurate predictions. The method of
Bayesian Regularized ANN (BR-ANN) and Random Forest
(RF) machine learning techniques were applied in [11]. The
BR-ANN was trained to predict transient behavior such as
settling time, overshoot, rise time, and steady state value.
The RF was used to predict steady state ripple through a
series of decision trees. To add a dynamic view to the ANN
model, methods such as Nonlinear AutoRegressive eXogenous
(NARX-ANN) in [12] or a NARX with a Recurrent Neural
Network (NARX-RNN) in [13] are used. These models take
in inputs over a window of time to predict the converter’s
outputs building a sense of time into the model itself.

Overall, both statistical and meta-heuristic approaches are
computationally demanding and often involve manual mod-
eling, which would have a high level of complexity for
incorporating non-linear switch parameters or modeling large
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topologies. The machine learning approaches do not experi-
ment with parameter identification at all, and introduce ex-
panded ANN models which may not be necessary. Therefore,
this paper introduces an application of machine learning in
power electronic converter parameter identification, with a
focus on identification of switch parameters using basic ANNS.
A case study of an LLC resonant converter operating with
variable frequency control is presented to verify the proposed
approach.

II. CONVERTER DESIGN

Solid State Transformers (SST) perform the task of regular
transformers but can have advantages in size, weight, and
power density [14]. Because of the solid state design, more
can be done than with just a traditional transformer such
as voltage or current regulation for compensation, or fault
current limitation [14]. At the core of any SST is an isolated
DC-DC converter. LLC resonant converters for SST improves
efficiency due to soft switching and adds more control flex-
ibility [15]. This circuit provides a number of opportunities
for interesting predictions useful for monitoring involving the
switches and resonant tank. Using a detailed switch model
enables experimentation with complex predictions about the
switch beyond just On-State resistance including the switch
capacitances and junction temperatures. Switch information
can be useful for health monitoring and control to extend the
lifetime of a converter. This will be an important concern
for SSTs if they see wide adoption as replacements for
conventional transformers.

Modeling the converter will follow the methods in [16]
leading to the simplified circuit in Fig. 1. This technique
mutates the transformer, rectifier and load resistor into a single
AC equivalent resistor at the output of the LLC tank. The gain
of the resonant tank can be finally expressed as (1).

G = ! (1)

2 2
O E
where, wqy is the resonant frequency, ws is the switching
frequency, Q is the quality factor, L, and L, are series

and parallel resonant tank inductors, respectively. Here, () =

woC/Reyq and wy = éL
P

A 1200V SiC Cascode JFET model is used [17] to gather
detailed switch data. This switch is rated 110A RMS for
junction temperatures around 120°C. For simplicity, the con-
verter gain is chosen to be one along with the LLC resonant
tank gain. Due to the half-bridge design, a total converter
gain of one is achieved using a turns ratio of 1/2. The
converter parameters are designed to meet gain requirements
as determined by (1). Table I shows the complete converter
specifications and component values.

III. DATA COLLECTION

The converter simulation is parameterized following the
ranges in Table II. Everything else is kept constant including
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Fig. 1: Simplified Converter with Equivalent Resistor

TABLE I: Converter Specifications

Parameter | Value | Unit
Voltage 800 v
Max Drain Current 110 A RMS
Converter Gain 1 VIV
Resonant Tank Gain 1 VIV
Power 39 kW
Frequency 100 kHz

Cs | 239 | oF

Ls | 1058 | puH

L, | 1058 | pH
Req | 3325 | Q

the DC-Coupling capacitors, gate voltage, gate resistors, dead-
time and switch junction temperature. The loop inductors
referenced in the ranges table are located on the top and bottom
paths from DC-link capacitors to the switching leg.

The main circuit simulation is coupled with a switch thermal
model to estimate temperature rise due to losses. The switch
thermal model is represented by a 4R4C thermal circuit as
shown in Fig. 2. Switch power is injected as a current source
(left) and the case temperature a voltage source (right). Using
these, the network will reach a steady state where the final
junction temperature can be measured as the leftmost capacitor
voltage. The average switch losses are taken from the power
circuit simulations. A junction temperature of 140°C was
chosen as an average of all scenarios for a conservative
estimate of device losses.

Simulations are run one at a time to avoid crashes or stalls.
To begin, a random configuration point is chosen from the
configuration space defined in Table II. These ranges are
subdivided by 32. Using the configuration point, the operating
frequency and initial conditions are found. One cycle is given
for the rough initial conditions to reach the true steady state,
then three cycles are run for the measurements. The power
circuit simulation is run, the output of which is used as
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Fig. 2: RC Network Thermal Model
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TABLE II: Simulation Parameter Ranges

Parameter | Base Value Range
Cs 239 nF +50%
Ls 10.58 puH +50%
Ly 105.8 uH +50%
Vin 800 V +25%
Cs ESR 20 m$2 +25%
Cpc ESR 10 mQ2 +20%
Parameter Min Max
Power 1 kW 39 kW
Lioop 0.5 nH 20 nH
Ls ESR 10 mQ 75 mS2
L, ESR 10 mQ2 75 mQ
Rys—on 0 m2 50 m§2
Clas 0 pF 350 pF
Cys 0 pF 8550 pF
Te -25 °C 200 °C

input to two thermal simulations. Measurements are taken
automatically though LTSpice and are limited to max, min,
RMS, or average values over the three cycles. Post-processing
can be done for custom measurements. In this case, slew rates
were taken with a discrete derivative over a larger window to
avoid massive spikes. This is repeated for as many simulations
as required.

IV. ANN MODELING

The type of machine learning architecture chosen was a
series of Fully Connected ANN’s, one each for every desired
output. Each network has a series of layers that take in an input
vector, pass it through the hidden layers, and finally compute
the output. The input and output layer sizes must equal the size
of the input and output vectors. The hidden layers were all set
to the same size, though the length and size of the hidden
layers was tuned manually. The output of each neuron also
has a non-linear activation function. Most of these networks
will use the Leaky-ReLLU with the exception of Zero-Voltage
Switching (ZVS) using ReLU. To quantify the success of a
network during training the Mean Squared Error (MSE) cost
function is used. The Gradient Descent algorithm will adjust
the network’s weights based on their sensitivity to the loss
function. Other hyperparameters include the learning rate, and
number of epochs (full training iterations through the whole
training set). The full dataset is split in a 70/30 ratio between
train and test.

V. VERIFICATION
A. Verification Scores

After a network has been trained, the test set is used to
see how well the network performs on data it hasn’t yet
seen. Testing for regression accuracy uses scores that rely
on the prediction error such as RMS Error (RMSE) (2), or
Mean Absolute Error (MAE) (3). Another score used is the
Coefficient of determination or R-Squared (4). This score
informs of how well the predictions fit the real outputs by
measuring the variance in the predicted data compared to the
true data.

N
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Scoring is done differently for classification tasks. The
simplest score is Accuracy which is the ratio of correct
predictions to all predictions. Other scores include Precision
which is a score defined by the ratio of true positives to all
predicted positives (true and false positives). Another score
used is named Recall which is the ratio of true positives to
all actual positives (true positives and false negatives). In this
context, Precision will score how well the identifier can avoid
false predictions of ZVS occurring when it has really been
lost. Recall scores the identifier’s ability to avoid predicting
the loss of ZVS when it is still present. Precision may be a
more important score because missing the loss of ZVS would
increase the switch temperatures and exaggerate degradation.
Depending on the application, either Precision or Recall could
be more useful. For now, they help benchmark the identifier
agnostic of specific application scenarios.

B. Results

This sections presents the best results after training the
networks. For the following results a dataset of 108,750
random points was used. The dataset is split in a 70/30 ratio
for training and testing. Every regression network used the
MSE loss function, while every classification network used the
Binary-Cross Entropy loss function, and both have a learning
rate of 0.01 using the Adam optimizer. For a complete list of
results for each parameter see Table III. Moreover, the input
variables are defined in Table IV.

To visualize the results all the predictions were plotted
as a scatter plot where the horizontal axis holds the ground
truth values, and the vertical axis holds the predicted values.
Because the plots’ points overlap, it is hard to tell the dis-
tribution of predictions. This can be done using a series of
box plots. Note that the configuration ranges were subdivided
by 32, forming buckets. For each bucket the min, max, first
quartile, third quartile, and the median of the predictions were
found. These correspond to quantities a box plot uses. To
better visualize a series of box plots, the whiskers and box
widths are drawn as areas. The larger gray area represents
whiskers as a range from the min to max. The smaller blue
area represents the box width as the first to third interquartile
range. Furthermore, the median of each bucket was plotted as
a point. Ideally, the areas would both be very small. Moreover,
if the predictions match the ground truths exactly, the median
points should lie on a diagonal line represented in red for the
figures below. Using this, a complete picture of the results can
be created.
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Fig. 3: Model predictions vs.
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(j) Bottom Cj Final Prediction vs
True outputs

TABLE III: Experiment Results

Parameter | RMSE MAE R?
Cs 1.876% 1.411% 99.60%
Ls 1.465% 0.9982% | 99.76%
L, 1.982% 1.284% 99.56%
Piank | 0.3489% 0.1420% | 97.58%
T; Top | 0.2364% 0.1423% | 99.10%
T; Bottom | 0.3103% 0.1912% | 98.57%
Rgs—on Top 2.480% 1.569% 99.31%
Rgs—on Bottom 2.618% 1.530% 99.21%
Cys Top 6.011% 4.115% 95.93%
Cys Bottom 4.891% 3.285% 97.27%
Cys Top 5.684% 3.719% 96.40%
Cg4s Bottom 2.395% 1.736% 99.35%
Phase Difference | 0.4347% 0.2852% | 98.73%
Parameter | Accuracy | Precision | Recall
ZVS Top 99.85% 99.98% 99.86%
ZVS Bottom 99.94% 99.98% 99.97%
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ground truth for circuit and operation parameters

TABLE IV: Complete Input Measurement Set

Parameter | Description
fsw | Switching Frequency
Iser | LLC Tank Series/Input Current
I; | Switch Drain Current
Vgys | Switch Gate-Source Voltage
Vgs | Switch Drain-Source Voltage
Vis—on | Switch Drain-Source Voltage during on-time
Vrg | Switch Gate Resistor Voltage
Te | Switch Case Temperature
@g | Gate Charge (Integration of gate current R‘;i -
Vis—siew | Time Derivative of Vgs— > %Vds
Vys—stew | Time Derivative of Vgs— > %Vgs

All switch parameters have corresponding top and bottom measurements for
the half-bridge. Also, no single network uses all these inputs

1) Resonant Passives Components: The resonant compo-
nents did well with low MAEs around 1.2% matched by the
high R-Squared of around 99.6%. This can be seen visually
in Fig. 3a, 3b, and 3c. Notice the gray area is quite small,
and the blue area very small. This means that even the worst
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predictions were tightly distributed near the ground truth.
These networks benefited the most from a widening of the
hidden layers to 120 neurons while going further didn’t help.
Moreover, they had hidden layer lengths of four and did
not gain anything from going deeper. The inputs for all the
passives included the Max and RMS of Icries, Louts Lin, and
Vout. Also included is the DC input voltage, V;,, and the
switching frequency f,,. The measurements are simple and
avoid measuring the high magnitude, high frequency voltages
on the passive components. Moreover, the inductors will likely
be inaccessible being implicitly designed into the transformer.

2) Lumped Tank Loss: The lumped tank loss performed
well with a 0.14% MAE and 97.6% R-Squared. Looking at
the scatter plot in Fig. 3d, the predictions generally fall into
a central grouping. Looking further into the raw data, it was
found that the tank losses are highly biased around a central
value. The converter is limited by its normal behavior such that
a uniform distribution of tank loses will not be produced within
the sweep ranges. This may be a problem for interpolation but
looking at the scatter plot again, the rare points outside the
dominating grouping still fit quite well. The network structure
consisted of four hidden layers with a width of 12. Inputs
included the V44—, of the top and bottom and the maximums
of Iseriess Louts Lin> Vouts as well as V;,, and f,,. These inputs
should help find the total converter loss, as well as the switch
losses, to isolate the tank losses.

3) Junction Temperature: Both the junctions temperatures
did well with MAE:s at or below 0.19% and an R-Squared near
99%. The scatter plots are presented in Fig.3e and 3f. Similar
to the tank loss, these both have the majority of points around
a grouping, though still fit the rare points well. Again, the
converter dynamics are limited to producing this bias. These
networks also had four hidden layers with a width of 12. The
inputs important here are similar to the tank losses, in that
they need to help isolate the switch losses from total converter
losses. These include Vjs_,, and the maximums of [gc ics,
Touts Lin, Vout, as well as Vj,, and fy,.

4) On-State Resistance: The On-State resistances also did
well with MAEs just above 1.5% and an R-Squared around
99.2%. Both of these networks found an optimal hidden layer
size of 40 perceptrons and a length of four. Inputs included
switch information such as Vy,_,, min and max, I; min,
max, and RMS, and finally fs,. The top and bottom versions
of switch inputs are used respectively. The results are in the

scatter plots of Fig. 3g and 3h. While the largest errors can
spread wider than before, the majority of the data in the blue
follows the line accurately resulting in an accurate prediction.

5) Gate-Source Capacitance: The Gate-Source capacitance
can be difficult to estimate properly, though given information
about the gate the MAEs can be lowered to around 4% with
an R-Squared just above 96%. These networks kept the length
of four and performed better as they got wider up to 120 or
90 neurons for the top and bottom. The inputs included the
Vys max slew rate, the max and RMS gate charge Q)gqze, the
max and RMS voltage across the external gate resistor Vg,
max V,, and the min V,_,,,. The most difficult measurement
here would be the slew rate, but this proved important for
increasing accuracy. Results are in Fig. 3i and 3j which show
a wide worst case error. The interquartile range represented
by the blue area shows the network still performs well.

6) Drain-Source Capacitance: The best drain source ca-
pacitance networks resulted in MAEs around 3.7% and 1.7%
for the top and bottom with an R-Squared 96% and 99%
respectively. The scatter plots in Fig. 3k and 31 show good
interquartile ranges in blue. The worst errors in gray did well
for the bottom but were wider for the top. These networks
found an optimal hidden layer width of 120 neurons with a
length of four. The min, max, average, and RMS V, slew rates
were included in the inputs along with max Qgqte, max Vi,
max Vis—on, RMS Igeries, and fgy,. The slew rates proved
useful again but are more difficult to measure.

7) Tank Input Voltage and Current Phase Difference:
Another parameter is the phase difference between the tank
input voltage and input current waveforms. This performed
well with an MAE of 0.285% and an R-Squared of 98.7%.
The scatter plot is in Fig. 4. This also has a main grouping
of samples but the system is still able to accurately predict
the rarer points. This network found an optimal hidden layer
size of 120 neurons going four deep. The inputs here were
the same as the passive component inputs as they relate to the
tanks behavior.

8) Zero Voltage Switching: Predicting Zero Voltage Switch-
ing suffered from the same problem as the tank loss and
junction temperatures. Due to the frequency control used in
simulation, ZVS was rarely lost. In the whole dataset, ZVS
was true 98.9%, and 99.4% of the time for the top and bottom
respectively. One concern is that a network may simply output
a constant “’true” and never learn to differentiate the negative
cases. If this does occur, the Recall score should be 100%
from never guessing a negative. Furthermore, the accuracy and
precision scores will be the exact same. If these conditions
are met, the network is guessing a constant positive and has
not learned anything useful. The best results have networks
having small widths of 8 and 18 neurons for the top and
bottom, both having a length of four. Going deeper or wider
did not lead to better results. The final accuracies for the top
and bottom were 99.85% and 99.94%, with both precision’s
at 99.98%. The recall was 99.86% and 99.97% for the top
and bottom. The recall was never 100% and the accuracy and
precision were never the same showing that the network did
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learn to differentiate negative cases. The inputs used include
the min, max, average, and RMS V, slew rates, max Igcries,
max Qgate, and fg,,. These should help predict the speed Cy,
can be discharged and therefore if ZVS will occur.

C. Discussion

The proposed ANN model shows good prediction perfor-
mance over the design space of the converter. The model
depends on inputs that are standard to measure in the power
or gate drive circuit. Even though a few of the parameters
have tight distributions, such as lumped tank losses, junction
temperature, phase difference and ZVS indication, the model
is considered sufficient since the regression output is limited
to interpolation of results. Even with a skewed dataset the
network can do a good job of discriminating rare outputs
that deviate from the main peak. Looking at the scatter plots
for the tank loss, both junctions temperatures, and the phase
difference (Fig. 3d, 3e, 4, and 3f) do show a good fit suggesting
the network can successfully follow points outside the main
peak when rare. Errors in the results could be attributed to the
dataset quality or size. Quality meaning numerical error from
simulation or pre-processing stages, as well as the breadth of
modes a converter is simulated through. Network tuning could
also play a role as some output variables may require deeper
networks for longer chains of calculations.

VI. CONCLUSION

This paper applied simple Feed Forward Neural Networks to
an LLC Resonant converter to create a parameter identifier. It
is shown to be capable of predicting internal component values
including the switch parameters. By following a procedure of
parameterizing a converter, many simulations can be run by
randomly sampling from chosen ranges of those parameters.
Using the collected data, simple neural networks can be trained
to predict each output. Results here show MAEs below 4.12%
for all parameters. As many of the measurements required
as inputs are simple values taken over multiple cycles, the
system could feasibly be used for parameter identification. The
developed models are computationally simple being straight
forward ANNs, making them well suited for implementation
on local converter FPGAs. This approach can be readily
applied to non-resonant converters. Further, adding a detailed
transformer model would enable the extension of this approach
to isolated converters.
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