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Abstract

A regression model based on graph neural network, tailored for electric circuit dynamics prediction is introduced, pro-
viding converter performance predictions on converter circuit level and internal parameter variations. Regardless of the
number of components or connections present in a converter circuit, the proposed model can be readily scaled to
incorporate different converter circuit topologies. Moreover, the model can be used to analyse converter circuits with any
number of circuit components and any control parameters variation. To enable the use of machine learning methods and
applications, all physical and switching circuit properties such as converter circuits operating in continuous conduction
mode or discontinuous conduction mode are accurately mapped to graph representation. Three of the most common
converters (Buck, Boost, and Buck-boost) are used as example circuits applied to model and the target is to predict the gain
and current ripples in inductor. The model achieves 99.51% on the R?> measure and a mean square error of 0.0263.

Keywords Power electronics - Bond graph - Graph neural networks (GNN) - Machine learning

1 Introduction

Artificial intelligence has been incorporated as deep
learning (DL) models in a wide range of disciplines. In
particular, the use of recurrent neural networks (RNN) for
sequential processing and convolutional neural networks
(CNN) in electrical and renewable energy applications has
been gaining momentum [1, 2]. Recently, graph neural
networks (GNN), which model patterns in graph-structured
data, have seen a surge in popularity. These networks are
particularly advantageous for representing electrical circuit
structure, as graphs are a natural data format for expressing
such information.

In [3], GNNs were proposed as suitable alternatives to
shallow methods or mathematical optimization techniques
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for circuit optimization/classification needs and multiple
applications (e.g., transistor sizing, capacitor value opti-
mization). [4, 5] used a reinforcement learning (RL) agent
to select optimal parameters via rewarding based on fig-
ure of merit (FOM) when circuits were represented as
graphs (nodes/edges refer to components/wires, each tran-
sistor embedded with a vector). [6] used differential neural
network (DNN) for mapping a circuit to its corresponding
transfer function, but applicable only for a specific topol-
ogy. [7] combined feature maps of nodes via GNN to
simulate a distributed circuit’s electromagnetic properties.
[8] used DeepGEN for predicting ladder and two-stage
operational amplifier circuits with up to 10 branches, but
lacked description of connection type and other elements,
e.g., frequency, phase shift. [9] used GNN to identify
symmetry constraints in analog circuits and proposed
extending it to other constraints. [10] represented elements
as heterogeneous multi-graphs and set four types of edges.

GNNs are not only capable of quickly training on
graphs, but also generalizing to large datasets, and learning
order permutation invariant representations from the graph
modelling approaches, but they have also been applied to
circuit design [7, 11, 12], though structure-based predic-
tions in switching converter circuits have yet to be
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addressed. This paper proposes a framework that utilizes
the use of graph representing circuits and GNNs to derive
predictions of converter internal states while considering
the control variables applied to converter like frequency
and duty cycle as well as circuit component variations,
with test cases of different and complex DC-DC converter
circuits. The paper is divided into six sections, where
section II shows the advantages of the proposed framework
and its utilization for converter states predictions. Sec-
tion III briefly discusses the circuit representation tech-
nique utilized in this framework and how to integrate it
with GNNs, which was previously described and illustrated
in details in [13]. Section IV shows the mathematical and
logical development and utilization of the proposed
regression model as well as its capability to handle dif-
ferent circuit complexities in terms of computational and
space complexities. Section V expands the problem into a
multi-variable regression problem and introduces multiple
DC-DC converter internal states estimates, showing results
of supervised and unsupervised learning. Finally, the model
performance including error and accuracy for circuit and
control parameter variations are analysed.

2 Advantages of ML framework in converter
modelling

Power electronic converters are traditionally modelled
using analytical differential equations that describe their
steady-state and dynamic behavior. However, these equa-
tions may not capture the complexity and nonlinearity of
the converters accurately, and may require simplifying
assumptions and approximations. Machine learning (ML)-
based models offer an alternative approach that leverages
data from simulations or experiments to learn the input—
output relationships of the converters. ML-based models
have several advantages over classical models, such as:

e High-dimensional and noisy data handling without
losing accuracy or generalization ability [14].

e Operating conditions and environmental variables
adaptations [15].

e Very complex and time consuming task implementa-
tions like optimal design, control, fault diagnosis,
efficiency and reliability assessment and of the con-
verters design by using data-driven optimization tech-
niques and feature extraction methods [16, 17].

Therefore, ML-based models have the potential to create
digital twins of power electronic converters that can sup-
port their analysis, optimization, and maintenance in
practical applications. Contributions included in this paper
are listed as follows:
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e A regression model is introduced, tying the electric
circuit structure with circuit performance regardless of
number of circuit components or the layout of the
circuit. Unlike other machine learning regression mod-
els that rely on hyperparameter tuning of hidden layers,
the proposed model leverages the graph representation
to learn the relationship between the circuit structure
and its performance metrics, such as current ripples and
voltage gain.

e The proposed model can estimate converter perfor-
mance based on circuit parameters, including circuit
elements variations and controller signal variations and
for different converter circuit topology variants. The
model can handle different types of converters, such as
buck, boost, and buck-boost, and differentiate between
operating modes such as continuous conduction mode
(CCM) and discontinuous conduction mode (DCM).

e The proposed model can differentiate and identify
different circuit structures even if they have the same
number of components by unsupervised means. The
model can cluster different circuit topologies based on
their graph features and performance metrics, without
requiring any prior knowledge or labels.

e The proposed model accommodates different circuit
and control parameters, for which the model’s accuracy
is tested. Histograms are used to evaluate the model’s
accuracy on three widely used converters (buck, boost,
and buck-boost) under different operating modes (CCM
and DCM), versus the circuit elements variations
(inductance and resistance) and control variables (fre-
quency and duty cycle) independently.

e The paper presents a case study of a multi-variable
regression problem that illustrates how the model can
be used to analyse the performance of different
converters under various scenarios. The paper also
shows how the model can scale to larger and more
complex circuits by using graph neural networks
(GNNgs) to learn from the graph representation.

3 Circuit representation in ML domain

This work proposes converter dynamics predictions based
on the physical connection and operating circumstances of
a converter, based on circuits to machine learning (ML)
domain mapping approach published in [13, 18-20]. A
comparison between different graphical circuit represen-
tation techniques is given in Table 1, while a review of the
literature on circuit representation as graphs in previous
research studies is shown in Table 2. Bond graph modelling
with switching circuit representation is used to transform
circuits to graphs, from which a dataset is created. These
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Table 1 Comparison between different circuit representation techniques

Method

Representation
methods

Merits

Drawbacks

Graph theory

Bond Graph

Component terminals
are nodes. Circuit
elements are edges

Elements and
connections are
nodes with different
attributes

Multi-discipline physics-based modelling
technique. More intuitive graph for human
reader

Solid foundations on circuits/converter modelling
in CCM and DCM. BG is a linear transformation
and is mathematically identifiable as shown in
[22]. Multi-discipline physics-based modelling
technique. Generated graph can be defined with
one Adjacency matrix. Maintains causality
invariance of the system for any operational
mode, i.e., the state vector resulting from state
equation of the system does not change for any

Converter modelling foundations (duty cycle,

CCM and DCM, etc.) are missing/never been
addressed No research on graph identifiability
from graph to circuit. Circuit graph can be

defined using three matrices as shown in [21]

Non-intuitive modelling technique. Added

complexity of causality assignment. Can yield a
bigger graph than graph theory method

operating mode

Circuit buses are
nodes. Connections
between buses are
edges

Y admittance

matrix representation

Easy and well-known methodology for circuit

Used only for power system representation. Node
count is independent from number of
components. Number of circuit sources can’t be
extracted. System components can be lumped
altogether and information about element count
is lost. Never been used in converter modelling

datasets then undergo feature extraction and a graph neural
network (GNN) model is applied with regression to obtain
circuit predictions for unseen circuits. Additionally, circuit
representation characteristics such as permutation invari-
ance and scalability, as well as aspects tying circuit
structure/behavior to corresponding graphs are discussed.
A detailed and complete comparative study between
graphical circuit representation is given in [13].

3.1 Converter circuits bond graph
representation

An electrical circuit is composed of five main components
that influence the electric current: resistors, inductors,
capacitors, voltage source, and current source. These
components can be modelled and analysed using bond
graph (BG) elements and their mathematical relations,
which is a graphical tool that depicts the energy flow and
power exchange in a system. A bond graph consists of
circuit elements that represent different forms of energy
storage, dissipation, conversion, and sources, i.e., voltage
and current sources, inductances, capacitances and resis-
tors. These elements are to be connected to junction ele-
ments, which represent the circuit connection. Junction
elements include zero and one junctions. Circuit elements
are assigned to zero-junctions and one-junctions, following
Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law

(KCL). In other words, circuit elements are assigned to
zero junctions when connected in parallel and where the
voltage is equal for all connected elements, while are being
assigned to one-junctions when connected in series and
where the current is equal for all connected elements.
Comparable to the continuous circuits discussed in
[13, 18, 19], the switching circuits utilize switching cells.
Bond graph (BG) formulation [27] is used to convert
converter circuit topologies into graphs, which incorporate
switching cells modelled as 1 s- and O s-connections gov-
erned by its control variable D (analogous to duty cycle in
circuits analogy). As depicted in Fig. la, the Single Pole
Double Throw switching cell can be reduced to two Single
Pole Single Throw cells (SPST). Every SPST is repre-
sented as a 1 s-junction with two flow determining bonds.
The physical realization is complete when the current
interruption, when the SPST switch is turned OFF, is
depicted as one flow decider bond modelled as a zero value
current source and the other flow decider bond still linked
to the system. The control signals that control the junction
flows are D and D (as in the physical duty cycle notion of
the converter circuits). SPST switches combinations are
modelled in bond graph notation as (0 s and 1 s) junctions,
indicating that the system state may become discontinuous
[28, 29]. Figure 2 shows the graph representation of dif-
ferent converters with embedded node and edge features.
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Table 2 Review of circuit representation as graphs

References Node features Edge features Circuit representation Task Network
. . type
Circuit components Connections
(Series/Parallel)
[4] DC operating points, Featureless Every circuit element is represented as node, Learning design RNN+RL
One-hot encoding of where node features define the element type policy for
simulation step, and DC operating conditions. No indication selecting
Transistor parameters, was given on connection representation, or its  optimal circuit
Internal capacitances effect on analog circuit performance. parameters.
[5] One-hot encoding of Featureless GCN+RL
element type Circuit
order, Passive and
active characteristics
[23] Gate logic level, Featureless Limited circuit representation in the form of Determine Meta-path
Controllability, connected nodes according to the physical whether an + GCN
Observability connection. observation
point should be
added on the
output port or
not
[6, 7] Subcircuit coordinates, Position of the System level representation, where every Electromagnetic =~ GCN
Center position of the two subcircuit is represented as a node, while edges  outputs
Subcircuit, Angular subcircuits, between two nodes represent distance between  prediction
position of the slit Gap length, two subcircuits. based on
shift resonators
relative
positions
[24] Operation type Bitwidth ~ Signal System level representation, where every node  Operation Delay =~ GraphSAGE
information represents a microbench operation, while Prediction for
edges represent signals. FPGA HLS
[8] One-hot encoding of Featureless Edges, but component No direct DC output Deep-GEN
terminal type, Device terminals are represented indication of voltage
parameters as nodes connection prediction
[25] Gate poly length, number Featureless Nodes No direct Net parasitics GraphSage,
of fingers, number of indication of Predictions Relation
fins, number of copies, connection based on GCN and
length of resistor, physical Graph
Capacitors, number of devices Attention
copies, net N parameters Networks
[9] One hot encoding Featureless Nodes represent component  No direct Binary GCN
(Device/Pin) Path terminals and pins. indication of classification
based feature Components can have connection of layout
multiple nodes symmetry
representing Pins. Pin/
Components are
distinguished by node
features. Power/GND is
represented as I/O nodes.
[10] Node type, Geometry, Featureless Devices and circuit elements No direct Binary Gated
layer indication of Classification Recurrent
connection of layout Unit-based
symmetry GNN
[26] Device type, Functional = Horizontal and ~ Nodes with different types ~ No direct Prediction of IC  GAT +
Module, Current vertical indication of placement Pooling
mirror, Differential distance connection impact on (PEA)
pair, Active load, between pins circuit
Device dimension, Pin metal performance
Device location layer, Pin
length, Pin
type
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Table 2 (continued)
References Node features Edge features Circuit representation Task Network
type
Circuit components Connections P
(Series/Parallel)
Proposed  Element ID, Normalized One for Nodes with different types  One and zero Different circuit GCN +
[13] Component Values continuous nodes for every  topologies- Pooling
Circuits, Duty branch/voltage based ML
Cycle for node tasks
switching (Classifier,
circuits Regression,
Clustering)

Circuit Element Node Features

Connection Node Features

(b)

Fig. 1 a SPDT Switching cell represented as bond graph, b An LCC
resonant circuit and its equivalent bond graph with node and edge
features assignment

3.2 Circuits graph representation

The next step is to transform the BG formulation into a
graph representation that contains all the information col-
lected and simulated from the circuit, such as circuit types,
classes, nodes, edges, and node and edge features. A graph
representation of a continuous circuit based on the BG
formulation, with some minor modifications for Switching
circuits, is shown in Fig. 1b. Circuit elements and zero and
one junctions are represented by nodes. Circuit connections
between nodes are represented by edges. Node and edge
features describe the operating condition of the circuit. In
continuous circuits, edge features are set to one to indicate
100% connection between the corresponding nodes. The

same notation is used for switching circuits. Node features
indicate the type and value of the element in the circuit.
Some properties of switching circuits need special attention
like the duty cycle, which is a property of every switching
circuit that physically indicates the percentage of time that
the connection exists within a switching cycle. The duty
cycle is mapped as a feature of the edges that connect to
switching nodes (0 s and 1 s nodes). On the other hand,
switching Frequency is a property of the switching cell,
which is represented by one/zero switching junctions that
are connected to a current source with zero value. This
current source acts as a control source for every switch and
interrupts the switch current with a frequency equal to the
switching frequency. Therefore, including the switching
frequency as a property of the BG control source is con-
sistent with the physical properties of the circuit. More
informative and in detail explanation of circuit to graph
representation can be found in [13].

3.3 Graph neural network

Graph neural networks (GNNs) are to be used for graph-
structured data, with two main categories: spectral GNNs,
which operate in the spectral domain of the graph (e.g.,
GCN [30], GAT [31]), and spatial GNNs (e.g., Graph-
SAGE [32], R-GCN [33]). GCNs have advantages over
traditional convolutional neural networks (CNNs) due to
their capability to capture complex relationships between
nodes in a graph and achieve better prediction accuracy
[30], generalize to unseen data, and accommodate nodes of
varying degree of connectivity, making them suitable for
non-uniform data.
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Fig. 2 Circuit diagrams and
their equivalent graph with node
features for Buck converter,
Boost converter and Buck-boost
converter
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4 Regression model definition

Regression is the process of computing/predicting the
output of a system given its input and parameters, which is
also known as the forward problem. Mathematically, the
system is a function f that maps an input space X to an
output space ). The relation between the input x € X and
the output y € Y is described by the dependent probability
distribution P in Eq. (1) on X x Y. Practically, the distri-
bution P shown in Eq. (2) is known only through data
samples z, which are the circuit simulation data obtained at
different operating points, and are used as training set,
which were simulated independently and within identically
distributed data points.

P(x,y) = f(x)P(y | x) (1)

z=(x,y) = ((x1,51), .-, (xe,0))

g(x) = / ydP(y | x
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The regression function can be mathematically defined in
Eq. (3), which is a well-posed problem and has a unique
solution that depends continuously on the input and
parameters.

0,1,0,0,0,0,0,0, F

[0, 0,0,0,.0,0,Cp,0

4.1 Regression model development

The goal of the proposed regression model is to obtain an

approximation of f such that the approximated function )
can generalize well to new unseen data. The following
assumptions are considered:

e A hypothesis space H which is defined as the set of all
possible functions that can be used to model functions
from an input space X’ to an output space ).

e Probability distribution P on X x ).

The goal of the estimator is to find a function f € H that
minimizes the expected risk, which is a measure of the
performance of a learning algorithm on new, unseen data
because it quantifies the average loss incurred by the
algorithm when making predictions over the entire joint
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distribution of inputs and outputs. The expected risk
defined by Eq. (4) is proportional to the mean squared error
defined by loss function in Eq. (5):

1) = /X L), 3)dP () (4)
LIfF().y) = (Fx) — y)? (5)

Since the regression function in 3 is well defined and is the
minimizer of the expected risk over the space of all the
measurable real functions on X, g can be taken for an ideal
estimator of the distribution probability P. However, due to
the limited, finite, and possibly small number of simulation
data points recorded (z), the regression function cannot be
perfectly constructed, and to overcome this problem, the
solution to the regularized least squares problem is to be
redefined as the estimator f,, which is indicated in Eq. 6
where € is a penalty term and £ is the number of regression
variables.

= mm{—z Q(f (x;)) — yi } (6)

Equation 6 are valid only for known dimension problems,
but since the converter circuits are fed to the Regression
model in non-Euclidean graph forms consisting of node
and edge features, a transformation function (GCN) is used
by applying feature transformation and aggregation oper-
ations to transform the graph to Euclidean space. The ini-
tial node features in (7) are initialized then fed to the graph
processor, which are k layers of GCNs. Each node in the
graph receives and sends messages from/to its neighbours
and itself, which are weighted by their degrees and nor-
malized by their square roots. The messages are aggregated
by the sum and multiplied by a weight matrix, where an
activation function is applied to obtain the new embedding
for each node. The node wise convolution operation can be
mathematically formulated as 9. where ®F is a weight
matrix for the k-th neural network layer and ¢ is a non-
linear activation function, A=A+ I, where I is the identity
matrix and U is the diagonal node degree matrix of A. This
allows the GCN to scale well, since the number of
parameters in the model is not tied to the size of the graph.
The node-wise formulation of feature update is given by
Eq. (9), where d =1+ Z N (i) € denotes the edge
weight e;; from source node j to target node i. Equa-
tion (10) defines the global pooling operation that averages
the node embeddings into a single vector representation,
denoted as V, where x, is the embedding of node n, and N;
is the number of nodes in graph i.

20813

xO = E(x) (7)
x* ) = o(02 40X 0 (8)
x=0" > Py )

JEN (Ui} £/ d;d;
1

- %k, 10
¢ N2 X (10)

Predictions on graphs are obtained by applying linear
transformation V+—'R, which can be obtained by using
linear functions with nonlinearity. The first linear layer can
be interpreted as a linear transformation followed by a
nonlinear transformation of the graph vector representa-
tion. Equation (11) defines the first fully connected layer,
which takes the graph hidden vector representation ¢ as
input and produces a nonlinear response f (1) ag output. The
function o(-) is the nonlinear activation function namely
leaky ReLU, which is formulated in (12), hence controlling
the slope of the negative part of the function by controlling
the tunable factor «, while w(ol) is the bias term of the first
layer. Equation (13) defines the second linear layer, which
takes the output of the first layer f )
f@ as output. The £ output is the prediction of the
regression task that is comparable to the ground truth y.
The estimator model flowchart is represented in Fig. 3.

N
forr=o{u+ 33009

n=1

as input and produces

(11)
(12)

¢ = max(cinput, input)

Uy
FA (@) =wf + 3w gV (13)
i=1

Inputs

Inpulfeatures l edge index (E) I Edge weights (Z) I

Linear Layers

/‘ global mean pool

fc_regression: Linear layer

LeakyRelLU activation

fc_regression2: Linear IayerJ

conv1: GCNConv layer
tanh1: tanh activation

GCN Layers

Outputs ]

[ Output Layer: output regression )

ALY

+ 2D representation of Vector

2D transformation

Fig. 3 Proposed model for circuit dynamics prediction
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4.2 Model regularization

The dropout layer is chosen as the penalty term in Eq. (6)
which reduces the overfitting of the predicted output to the
ground truth, by introducing some noise and variability into
the prediction. The inclusion of a dropout layer makes the
prediction more generalizable to unseen data. However,
there is a possibility that the accuracy and precision of the
prediction are affected by introducing some error and
uncertainty into the prediction. The dropout function used
in this model can be defined in (14), where w; is the value
of the i-th weight, and [(w; # 0) is an indicator function
that returns 1 if w; is non-zero and O otherwise. The mask
function Z has a probability of p of being zero for each
element, and a probability of 1 — p of being one.

Q=w; - l(w; #0) (14)

4.3 Circuit complexity investigation

In order to quantify the model’s ability to handle more
prediction outputs and more complex circuit structures,
model performance metrics are to be used as judgement
factors. Some possible metrics are:

e Accuracy: Evaluation of the GNN model prediction
percentage, by using one of the most common evalu-
ation metrics like Fl-score, accuracy, precision or R,
which will be shown in the case study in the next
section.

e Computational scalability: Computational effort evalu-
ation of model’s performance, number of parameters, or
memory usage against the increase in graph nodes and
feature sizes without compromising the accuracy or
performance.

Given G as the circuit graph, e as the number of edges, N as
the number of nodes, d as the latent vector length, OL as
output layer size and d;, as the feature vector length, the
computational effort can be broken down to time and space
complexities and are calculated for three GCN layers as:

e Time complexity: O(3(e + Nd?

d+ d x OL)
e Space complexity: O(N + e + Nd;, + 3d + OL)

)+ (N +dN) +2d x

Figure 4 shows the time and space complexity of the
proposed model. (O) is the order of magnitude which
defines the complexity growth proportional to the graph
input size and number of features assigned for every node.
Different converters and their operating modes are high-
lighted in the figure showing the memory and processing
requirements to handle each circuit graph.
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5 Multi-variable regression problem

This section presents a case study of three DC-DC con-
verters for obtaining predictions based on circuit topology
and component values. The main prediction targets are
voltage gain and current ripples, which are governed by
equations in Table 3, with the potential to scale up to
include many more variables. The dataset contains graph
forms of circuit data, as well as information about the
prediction targets, obtained from simulations. It is observed
that various factors such as resistance, inductance, duty
cycle, switching frequency, converter type and operation
mode are influential to the output voltage gain and current
ripples. Thus, the solution search space becomes ubiqui-
tous, rendering traditional analytical solvers inefficient.

5.1 Proposed GNN-based prediction model

To address the mentioned issues, a neural network model is
proposed, which takes converter circuits in graph forms
(G), node features (X) expressing element type and element
value, adjacency matrix (A), edge features (e) as inputs,
and outputs the predicted variables (Y) with output vector
size being the number of predicted variables (¢). The
mathematical representation of the regression model and
the propagation of graph features across layers are given by
Egs. (15-20). Mathematically, this initial embedding
function is represented by Eq. (7). The aggregation layer
has multiple Graph Convolution Networks (GCN) that
performs multiple message passing leaps to collect infor-
mation about neighbouring nodes and keeps updating the
latent dimensional vector with dimension d, which is
mathematically represented as in Eq. (8).

Y = Regression(X, A, ¢) (15)
Where
X € RV*dn (16)
Y € RS (17)
GCN(k) . RNXdinHRNXd (]8)
ke {0,1,. k-1

{ . } (19)
GMR : RV*4 R
FC : R4 R™ (20)

5.2 Obtaining predictions from circuit structure

Figure 5 shows a paradigm of obtaining predictions from
circuits using a regression model. The model utilizes three
GCN layers to exchange messages across nodes. The out-
put is fed to the global mean readout (GMR) layer, which
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averages the processed node and edge features to an output
dimension of d. The two fully connected (FC) linear layer
is trained to linearly transform the averaged graph vector to
desired output predictions by minimizing the mean square
error loss function. According to the universal approxi-
mation theorem, neural networks with appropriate depth,
FC layers may estimate any function without any limitation

on the structure. Equations 15-9 express the regression
model mathematics, while Eq. (11-13) are used to express
the two-layer FC layer mathematically. Model is fed with a
18,000 graph dataset split 70% to 30% between training
and testing datasets, and a separate unseen validation set of
2200 graphs. Datasets include captures of converter gain
and inductor current ripples at various inductances, loads,
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Fig. 5 Paradigm for obtaining predictions from circuits using regression model

frequency, duty cycle and converter topology in CCM and
DCM. Training dataset is used in updating the linear layers
and GCN layers weights through Adam optimizer running
at 0.02 learning rate.

5.3 Dataset data range

The range of the datasets has to be properly identified, or
else the resulting regression model may perform poorly as
it will not be able to accurately extrapolate beyond the
range of the dataset. Generally, selected algorithms should
have the potential to accommodate minimum and maxi-
mum values in the datasets. Furthermore, the range of the
datasets should effectively match the purpose of the
machine learning model. It is essential for chosen algo-
rithms to be capable of handling the full spectrum of values
within the datasets. Moreover, the span of the datasets must
align precisely with the intended function of the machine
learning model. Should the scope of the datasets be
excessively constrained, the model’s capacity to adapt to
parameter variations may be compromised, leading to less
accurate output prediction. Conversely, an overly broad
dataset scope can lead to a model that is overgeneralized,
diminishing its precision due to erroneous predictions. The
range of the utilized dataset including circuit and control
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parameters represented as node and edge features are listed
in Table 4. The variables ranges [resistance (R), inductance
(L), duty cycle (D) and frequency (F)] are selected so that
the dataset include a wide range of CCM and DCM oper-
ation modes in the three converter classes.

5.4 Results analysis
5.4.1 Unsupervised learning clustering

The global mean pool layer outcome in Fig. 5 shows a 2D
embedding, where each point represent a circuit graph. It is
shown that the embedding contains the three converter
topologies in each operating mode (CCM & DCM). The
proposed model is capable of not only of differentiating the
converter circuit topologies, but also recognize different
operating modes (CCM & DCM). The unsupervised clus-
tering of each converter topology occurs without prior
knowledge of correlation between converter circuit graphs
or the operation mode (CCM & DCM). Furthermore, the
learnt graph embeddings represent the converter operating
conditions (based on circuit and control parameters) per
class basis. This proves that the regression model predic-
tion takes into consideration the converter structure as well
as operating conditions and can attain performance
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Table 4 Dataset circuit

Notes

parameters range Parameter = Range
R 1Q—20Q
L 1 uH — 10 uH
F 10 KHz — 1 MHz
D 0.01 — 0.85

Parameters based on equal CCM and DCM dataset of buck converter

Limited to prevent infinite gain

prediction even with intricate converter dynamics as shown
in Fig. 6.

5.4.2 Accuracy analysis

The R-squared which is a statistical measure of how much
the model fits the data, is the percentage of the dependent
variable variation that a model can explain. Equation 21
shows the mathematical formula for the coefficient of
determination, where RSS is the sum of squares of resid-
uals and TSS is the total sum of squares. It is also known as
the coefficient of determination, and for the same data set,
higher R-squared values represent smaller differences
between the observed data and the fitted values. The score
R? for the trained model is 99.49% when tested with the
validation dataset, Two independent variables are being
predicted in two operating modes: (e for CCM or A for
DCM) vs. simulated (line) natural log inductor current
ripples and gain curves are shown for the three topologies.
Obviously, even though the current ripples predictions vary
with frequency, inductance, resistance, and duty cycle, the
model is able to adapt all components and control

Vo/Vg

—— CCM
—— DCM
] Dcrz't

Buck/boost

op===--_____ _

0 Duty ratio D L0

Fig. 6 Voltage gain curves of the three converters in CCM and DCM

variations. The second predictions are the converter gain
shown in Fig. 7. In CCM, gain is dependent only on duty
cycle. However, it nonlinearly depends on multiple factors
like inductance, frequency duty cycle and resistor values in
DCM. Despite the nonlinearity, the model is able to predict
the gain and the current ripples utilizing the same training
data. Notably, the model has learned it is the same con-
verter working in two modes (CCM & DCM) and clustered
each converter mode based on their topologies.
Rss

2
2 Rss Zi(yi_yi)
R =1- =1-=—5

Tss Zi(yi—yi)

where, y; = observed value, y; = predicted value, y; = mean
of observed values.

(21)

6 Model performance analysis

The prediction error mean and standard deviation are cru-
cial for its performance as these defining metrics highlight
the accuracy of the model’s predictions. A low error mean
(u) and standard deviation (¢) typically indicate a high-
performing model, whereas a high error ¢ and ¢ indicate a
low-performing model. Keeping both performance metrics
in low values is necessary for optimal performance.

6.1 Circuit and control parameters sensitivity
analysis

Parameter sensitivity analysis in regression models mea-
sures how changes in the parameter values affect the
regression results. The main aim of performed parameter
sensitivity analysis is to determine prediction error rate of
the model in correspondence to different parameters vari-
ations. Two types of variable variation are performed from
circuit prospective: the circuit parameters variation and
control parameters variation. From a GNN prospective,
these variations are node feature variations (resistance,
frequency and inductance variations) and edge feature
variations (duty cycle variation). It is important to show
that the model corresponds to all circuit graph representa-
tion parameters and how effectively these variations are
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Fig. 7 2-D embeddings and their corresponding voltage gain and current ripples predictions based on converter type and operation mode for (a)

Buck, (b) Boost and (c) Buck-boost converters.

reflected on the output. Figure 8a—c shows the actual vs
predicted outputs of the model, namely, voltage gain and
current ripples in CCM and DCM for the buck, boost and
buck-boost converters, respectively. The straight line
shows 100% accuracy prediction where Y = Y. The pro-
posed model remarkably predict both outputs with high
precision and accuracy, scoring a minimum R? of 99.77%
in predicting voltage gain and 98.63% in current ripples
prediction. Figure 9 shows histograms of the prediction
error distribution across the multi-variable regression
model, while showing prediction error mean and standard
deviation per converter class, circuit parameters and
regression outputs in Table 5.

@ Springer

o: CCM, A: DCM

6.1.1 Circuit parameters variation (hardware variation)

Two types of variations are included in the proposed
regression model, namely hardware and controller param-
eter variations. Hardware variation is when circuit com-
ponent values are changed, which is a real life equivalent
of adding more windings to the inductor or using another
core type or adjusting the airgap.

Load variation: The histogram in Fig. 9a indicates error
distribution in voltage gain prediction when exposed to
changes in resistance across dataset range. The overall
performance of the model was highly accurate, as indicated
by the minimal prediction error, scoring the lowest in buck
converter, with an error mean of zero when predicting the
voltage gain. Furthermore, the error illustrated in Fig. 9b is
minor in all converter classes when predicting current
ripples, but it is more spread around error axis. On the other



Neural Computing and Applications (2024) 36:20807-20822

20819

Fig. 8 Actual vs prediction in
voltage gain and current ripples
for three converter classes:

a Buck converter, b Boost
converter, ¢ Buck-Boost
converter
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Table 5 Performance assessment for model output

Converter Voltage gain Current ripples
MSE R? MSE R?

Buck converter 0 0.9997 0.0290 0.9863

Boost converter 0.0166 0.9977 0.172 0.9962

Buck-boost converter 0.0091 0.9988 0.0688 0.9847

Total MSE 0.0263

Total R? 0.9951

hand, the error mean of current ripples prediction of the
boost converter was the lowest, while exhibiting an overall
constant error mean across the resistance range in both
output targets.

Inductance change: Figure 9c and d shows model error
when subjected to changes in inductances on both output
targets. The overall performance of the model is of high
accuracy and prediction error is minimal. Predictions on
buck converter are the most accurate and least error when
predicting voltage gain. However, the boost converter is of
the least error when predicting current ripples.

6.1.2 Control parameters variations

Controller parameters are changed like duty cycle and
frequency, which are controlled by digital controllers
running in real-time and require software changes. The
proposed regression model can accurately predict the
converter behaviour under these changes.

Switching frequency variation: Frequency is an impor-
tant factor for converter operation mode, which is actively
managed by a digital controller in real time, depicted as a
node feature when represented in the circuit graph. In
Fig. 9e and 9f, the variance in voltage gain prediction error
is relatively low, with almost no changes across frequency
range and converter class. On the other hand, when looking
into current ripple prediction, the same pattern is observed,
yet the prediction errors are comparatively higher, with a
higher variance.

Duty cycle variation: Two major contributions are
deduced from Fig. 9g and 9h which are the responsiveness
of the model to duty cycle, which is represented as edge
feature in circuit graph, and unchanged error mean when
the duty cycle is varied from 0.01 and is limited to the
practical value of 0.85 to prevent introducing infinite gain
in the dataset. The voltage gain error is more significant in
boost and buck-boost converters since gain vary signifi-
cantly across duty cycle range and up to 25x.

7 Conclusion

The manuscript showed a framework for predicting DC-
DC converter topologies performance including voltage
gain and current ripples against variable control signal and
component values. This framework is applicable to any
circuit including continuous and switching circuits. By
representing converter circuits as graphs models based on
bond graph modelling technique, The developed GNN-
based model was able to predict circuit performance
information as well as identify the type of circuit even
though it was not a planned task. This approach presents a
very promising step towards Al understanding of circuit
topologies and circuit analysis.
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