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Abstract

A regression model based on graph neural network, tailored for electric circuit dynamics prediction is introduced, pro-

viding converter performance predictions on converter circuit level and internal parameter variations. Regardless of the

number of components or connections present in a converter circuit, the proposed model can be readily scaled to

incorporate different converter circuit topologies. Moreover, the model can be used to analyse converter circuits with any

number of circuit components and any control parameters variation. To enable the use of machine learning methods and

applications, all physical and switching circuit properties such as converter circuits operating in continuous conduction

mode or discontinuous conduction mode are accurately mapped to graph representation. Three of the most common

converters (Buck, Boost, and Buck-boost) are used as example circuits applied to model and the target is to predict the gain

and current ripples in inductor. The model achieves 99.51% on the R2 measure and a mean square error of 0.0263.

Keywords Power electronics � Bond graph � Graph neural networks (GNN) � Machine learning

1 Introduction

Artificial intelligence has been incorporated as deep

learning (DL) models in a wide range of disciplines. In

particular, the use of recurrent neural networks (RNN) for

sequential processing and convolutional neural networks

(CNN) in electrical and renewable energy applications has

been gaining momentum [1, 2]. Recently, graph neural

networks (GNN), which model patterns in graph-structured

data, have seen a surge in popularity. These networks are

particularly advantageous for representing electrical circuit

structure, as graphs are a natural data format for expressing

such information.

In [3], GNNs were proposed as suitable alternatives to

shallow methods or mathematical optimization techniques

for circuit optimization/classification needs and multiple

applications (e.g., transistor sizing, capacitor value opti-

mization). [4, 5] used a reinforcement learning (RL) agent

to select optimal parameters via rewarding based on fig-

ure of merit (FOM) when circuits were represented as

graphs (nodes/edges refer to components/wires, each tran-

sistor embedded with a vector). [6] used differential neural

network (DNN) for mapping a circuit to its corresponding

transfer function, but applicable only for a specific topol-

ogy. [7] combined feature maps of nodes via GNN to

simulate a distributed circuit’s electromagnetic properties.

[8] used DeepGEN for predicting ladder and two-stage

operational amplifier circuits with up to 10 branches, but

lacked description of connection type and other elements,

e.g., frequency, phase shift. [9] used GNN to identify

symmetry constraints in analog circuits and proposed

extending it to other constraints. [10] represented elements

as heterogeneous multi-graphs and set four types of edges.

GNNs are not only capable of quickly training on

graphs, but also generalizing to large datasets, and learning

order permutation invariant representations from the graph

modelling approaches, but they have also been applied to

circuit design [7, 11, 12], though structure-based predic-

tions in switching converter circuits have yet to be

& Ahmed K. Khamis

akhamis@albany.edu

Mohammed Agamy

magamy@albany.edu

1 ECE Dept., University at Albany SUNY, Albany, NY, USA

2 EE Dept., Arab Academy for Science, Technology and

Maritime Transport, Alexandria, Egypt

123

Neural Computing and Applications (2024) 36:20807–20822

https://doi.org/10.1007/s00521-024-10293-0 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-8051-7282
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-10293-0&amp;domain=pdf
https://doi.org/10.1007/s00521-024-10293-0


addressed. This paper proposes a framework that utilizes

the use of graph representing circuits and GNNs to derive

predictions of converter internal states while considering

the control variables applied to converter like frequency

and duty cycle as well as circuit component variations,

with test cases of different and complex DC-DC converter

circuits. The paper is divided into six sections, where

section II shows the advantages of the proposed framework

and its utilization for converter states predictions. Sec-

tion III briefly discusses the circuit representation tech-

nique utilized in this framework and how to integrate it

with GNNs, which was previously described and illustrated

in details in [13]. Section IV shows the mathematical and

logical development and utilization of the proposed

regression model as well as its capability to handle dif-

ferent circuit complexities in terms of computational and

space complexities. Section V expands the problem into a

multi-variable regression problem and introduces multiple

DC-DC converter internal states estimates, showing results

of supervised and unsupervised learning. Finally, the model

performance including error and accuracy for circuit and

control parameter variations are analysed.

2 Advantages of ML framework in converter
modelling

Power electronic converters are traditionally modelled

using analytical differential equations that describe their

steady-state and dynamic behavior. However, these equa-

tions may not capture the complexity and nonlinearity of

the converters accurately, and may require simplifying

assumptions and approximations. Machine learning (ML)-

based models offer an alternative approach that leverages

data from simulations or experiments to learn the input–

output relationships of the converters. ML-based models

have several advantages over classical models, such as:

• High-dimensional and noisy data handling without

losing accuracy or generalization ability [14].

• Operating conditions and environmental variables

adaptations [15].

• Very complex and time consuming task implementa-

tions like optimal design, control, fault diagnosis,

efficiency and reliability assessment and of the con-

verters design by using data-driven optimization tech-

niques and feature extraction methods [16, 17].

Therefore, ML-based models have the potential to create

digital twins of power electronic converters that can sup-

port their analysis, optimization, and maintenance in

practical applications. Contributions included in this paper

are listed as follows:

• A regression model is introduced, tying the electric

circuit structure with circuit performance regardless of

number of circuit components or the layout of the

circuit. Unlike other machine learning regression mod-

els that rely on hyperparameter tuning of hidden layers,

the proposed model leverages the graph representation

to learn the relationship between the circuit structure

and its performance metrics, such as current ripples and

voltage gain.

• The proposed model can estimate converter perfor-

mance based on circuit parameters, including circuit

elements variations and controller signal variations and

for different converter circuit topology variants. The

model can handle different types of converters, such as

buck, boost, and buck-boost, and differentiate between

operating modes such as continuous conduction mode

(CCM) and discontinuous conduction mode (DCM).

• The proposed model can differentiate and identify

different circuit structures even if they have the same

number of components by unsupervised means. The

model can cluster different circuit topologies based on

their graph features and performance metrics, without

requiring any prior knowledge or labels.

• The proposed model accommodates different circuit

and control parameters, for which the model’s accuracy

is tested. Histograms are used to evaluate the model’s

accuracy on three widely used converters (buck, boost,

and buck-boost) under different operating modes (CCM

and DCM), versus the circuit elements variations

(inductance and resistance) and control variables (fre-

quency and duty cycle) independently.

• The paper presents a case study of a multi-variable

regression problem that illustrates how the model can

be used to analyse the performance of different

converters under various scenarios. The paper also

shows how the model can scale to larger and more

complex circuits by using graph neural networks

(GNNs) to learn from the graph representation.

3 Circuit representation in ML domain

This work proposes converter dynamics predictions based

on the physical connection and operating circumstances of

a converter, based on circuits to machine learning (ML)

domain mapping approach published in [13, 18–20]. A

comparison between different graphical circuit represen-

tation techniques is given in Table 1, while a review of the

literature on circuit representation as graphs in previous

research studies is shown in Table 2. Bond graph modelling

with switching circuit representation is used to transform

circuits to graphs, from which a dataset is created. These

20808 Neural Computing and Applications (2024) 36:20807–20822

123



datasets then undergo feature extraction and a graph neural

network (GNN) model is applied with regression to obtain

circuit predictions for unseen circuits. Additionally, circuit

representation characteristics such as permutation invari-

ance and scalability, as well as aspects tying circuit

structure/behavior to corresponding graphs are discussed.

A detailed and complete comparative study between

graphical circuit representation is given in [13].

3.1 Converter circuits bond graph
representation

An electrical circuit is composed of five main components

that influence the electric current: resistors, inductors,

capacitors, voltage source, and current source. These

components can be modelled and analysed using bond

graph (BG) elements and their mathematical relations,

which is a graphical tool that depicts the energy flow and

power exchange in a system. A bond graph consists of

circuit elements that represent different forms of energy

storage, dissipation, conversion, and sources, i.e., voltage

and current sources, inductances, capacitances and resis-

tors. These elements are to be connected to junction ele-

ments, which represent the circuit connection. Junction

elements include zero and one junctions. Circuit elements

are assigned to zero-junctions and one-junctions, following

Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law

(KCL). In other words, circuit elements are assigned to

zero junctions when connected in parallel and where the

voltage is equal for all connected elements, while are being

assigned to one-junctions when connected in series and

where the current is equal for all connected elements.

Comparable to the continuous circuits discussed in

[13, 18, 19], the switching circuits utilize switching cells.

Bond graph (BG) formulation [27] is used to convert

converter circuit topologies into graphs, which incorporate

switching cells modelled as 1 s- and 0 s-connections gov-

erned by its control variable D (analogous to duty cycle in

circuits analogy). As depicted in Fig. 1a, the Single Pole

Double Throw switching cell can be reduced to two Single

Pole Single Throw cells (SPST). Every SPST is repre-

sented as a 1 s-junction with two flow determining bonds.

The physical realization is complete when the current

interruption, when the SPST switch is turned OFF, is

depicted as one flow decider bond modelled as a zero value

current source and the other flow decider bond still linked

to the system. The control signals that control the junction

flows are D and �D (as in the physical duty cycle notion of

the converter circuits). SPST switches combinations are

modelled in bond graph notation as (0 s and 1 s) junctions,

indicating that the system state may become discontinuous

[28, 29]. Figure 2 shows the graph representation of dif-

ferent converters with embedded node and edge features.

Table 1 Comparison between different circuit representation techniques

Method Representation

methods

Merits Drawbacks

Graph theory Component terminals

are nodes. Circuit

elements are edges

Multi-discipline physics-based modelling

technique. More intuitive graph for human

reader

Converter modelling foundations (duty cycle,

CCM and DCM, etc.) are missing/never been

addressed No research on graph identifiability

from graph to circuit. Circuit graph can be

defined using three matrices as shown in [21]

Bond Graph Elements and

connections are

nodes with different

attributes

Solid foundations on circuits/converter modelling

in CCM and DCM. BG is a linear transformation

and is mathematically identifiable as shown in

[22]. Multi-discipline physics-based modelling

technique. Generated graph can be defined with

one Adjacency matrix. Maintains causality

invariance of the system for any operational

mode, i.e., the state vector resulting from state

equation of the system does not change for any

operating mode

Non-intuitive modelling technique. Added

complexity of causality assignment. Can yield a

bigger graph than graph theory method

Y admittance

matrix

Circuit buses are

nodes. Connections

between buses are

edges

Easy and well-known methodology for circuit

representation

Used only for power system representation. Node

count is independent from number of

components. Number of circuit sources can’t be

extracted. System components can be lumped

altogether and information about element count

is lost. Never been used in converter modelling
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Table 2 Review of circuit representation as graphs

References Node features Edge features Circuit representation Task Network

type
Circuit components Connections

(Series/Parallel)

[4] DC operating points,

One-hot encoding of

simulation step,

Transistor parameters,

Internal capacitances

Featureless Every circuit element is represented as node,

where node features define the element type

and DC operating conditions. No indication

was given on connection representation, or its

effect on analog circuit performance.

Learning design

policy for

selecting

optimal circuit

parameters.

RNN?RL

[5] One-hot encoding of

element type Circuit

order, Passive and

active characteristics

Featureless GCN?RL

[23] Gate logic level,

Controllability,

Observability

Featureless Limited circuit representation in the form of

connected nodes according to the physical

connection.

Determine

whether an

observation

point should be

added on the

output port or

not

Meta-path

? GCN

[6, 7] Subcircuit coordinates,

Center position of the

Subcircuit, Angular

position of the slit

Position of the

two

subcircuits,

Gap length,

shift

System level representation, where every

subcircuit is represented as a node, while edges

between two nodes represent distance between

two subcircuits.

Electromagnetic

outputs

prediction

based on

resonators

relative

positions

GCN

[24] Operation type Bitwidth Signal

information

System level representation, where every node

represents a microbench operation, while

edges represent signals.

Operation Delay

Prediction for

FPGA HLS

GraphSAGE

[8] One-hot encoding of

terminal type, Device

parameters

Featureless Edges, but component

terminals are represented

as nodes

No direct

indication of

connection

DC output

voltage

prediction

Deep-GEN

[25] Gate poly length, number

of fingers, number of

fins, number of copies,

length of resistor,

Capacitors, number of

copies, net N

Featureless Nodes No direct

indication of

connection

Net parasitics

Predictions

based on

physical

devices

parameters

GraphSage,

Relation

GCN and

Graph

Attention

Networks

[9] One hot encoding

(Device/Pin) Path

based feature

Featureless Nodes represent component

terminals and pins.

Components can have

multiple nodes

representing Pins. Pin/

Components are

distinguished by node

features. Power/GND is

represented as I/O nodes.

No direct

indication of

connection

Binary

classification

of layout

symmetry

GCN

[10] Node type, Geometry,

layer

Featureless Devices and circuit elements No direct

indication of

connection

Binary

Classification

of layout

symmetry

Gated

Recurrent

Unit-based

GNN

[26] Device type, Functional

Module, Current

mirror, Differential

pair, Active load,

Device dimension,

Device location

Horizontal and

vertical

distance

between pins

Pin metal

layer, Pin

length, Pin

type

Nodes with different types No direct

indication of

connection

Prediction of IC

placement

impact on

circuit

performance

GAT ?

Pooling

(PEA)
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3.2 Circuits graph representation

The next step is to transform the BG formulation into a

graph representation that contains all the information col-

lected and simulated from the circuit, such as circuit types,

classes, nodes, edges, and node and edge features. A graph

representation of a continuous circuit based on the BG

formulation, with some minor modifications for Switching

circuits, is shown in Fig. 1b. Circuit elements and zero and

one junctions are represented by nodes. Circuit connections

between nodes are represented by edges. Node and edge

features describe the operating condition of the circuit. In

continuous circuits, edge features are set to one to indicate

100% connection between the corresponding nodes. The

same notation is used for switching circuits. Node features

indicate the type and value of the element in the circuit.

Some properties of switching circuits need special attention

like the duty cycle, which is a property of every switching

circuit that physically indicates the percentage of time that

the connection exists within a switching cycle. The duty

cycle is mapped as a feature of the edges that connect to

switching nodes (0 s and 1 s nodes). On the other hand,

switching Frequency is a property of the switching cell,

which is represented by one/zero switching junctions that

are connected to a current source with zero value. This

current source acts as a control source for every switch and

interrupts the switch current with a frequency equal to the

switching frequency. Therefore, including the switching

frequency as a property of the BG control source is con-

sistent with the physical properties of the circuit. More

informative and in detail explanation of circuit to graph

representation can be found in [13].

3.3 Graph neural network

Graph neural networks (GNNs) are to be used for graph-

structured data, with two main categories: spectral GNNs,

which operate in the spectral domain of the graph (e.g.,

GCN [30], GAT [31]), and spatial GNNs (e.g., Graph-

SAGE [32], R-GCN [33]). GCNs have advantages over

traditional convolutional neural networks (CNNs) due to

their capability to capture complex relationships between

nodes in a graph and achieve better prediction accuracy

[30], generalize to unseen data, and accommodate nodes of

varying degree of connectivity, making them suitable for

non-uniform data.

Table 2 (continued)

References Node features Edge features Circuit representation Task Network

type
Circuit components Connections

(Series/Parallel)

Proposed

[13]

Element ID, Normalized

Component Values

One for

continuous

Circuits, Duty

Cycle for

switching

circuits

Nodes with different types One and zero

nodes for every

branch/voltage

node

Different circuit

topologies-

based ML

tasks

(Classifier,

Regression,

Clustering)

GCN ?

Pooling

Fig. 1 a SPDT Switching cell represented as bond graph, b An LCC

resonant circuit and its equivalent bond graph with node and edge

features assignment
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4 Regression model definition

Regression is the process of computing/predicting the

output of a system given its input and parameters, which is

also known as the forward problem. Mathematically, the

system is a function f that maps an input space X to an

output space Y. The relation between the input x 2 X and

the output y 2 Y is described by the dependent probability

distribution P in Eq. (1) on X � Y . Practically, the distri-

bution P shown in Eq. (2) is known only through data

samples z, which are the circuit simulation data obtained at

different operating points, and are used as training set,

which were simulated independently and within identically

distributed data points.

Pðx; yÞ ¼ f ðxÞPðy j xÞ ð1Þ

z ¼ ðx; yÞ ¼ x1; y1ð Þ; . . .; x‘; y‘ð Þð Þ ð2Þ

gðxÞ ¼
Z

Y

ydPðy j xÞ ð3Þ

The regression function can be mathematically defined in

Eq. (3), which is a well-posed problem and has a unique

solution that depends continuously on the input and

parameters.

4.1 Regression model development

The goal of the proposed regression model is to obtain an

approximation of f such that the approximated function (f̂ )

can generalize well to new unseen data. The following

assumptions are considered:

• A hypothesis space H which is defined as the set of all

possible functions that can be used to model functions

from an input space X to an output space Y.

• Probability distribution P on X � Y.

The goal of the estimator is to find a function f 2 H that

minimizes the expected risk, which is a measure of the

performance of a learning algorithm on new, unseen data

because it quantifies the average loss incurred by the

algorithm when making predictions over the entire joint

Fig. 2 Circuit diagrams and

their equivalent graph with node

features for Buck converter,

Boost converter and Buck-boost

converter
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distribution of inputs and outputs. The expected risk

defined by Eq. (4) is proportional to the mean squared error

defined by loss function in Eq. (5):

Iðf Þ ¼
Z

X�Y

Lðf ðxÞ; yÞdPðx; yÞ ð4Þ

Lðf ðxÞ; yÞ ¼ ðf ðxÞ � yÞ2 ð5Þ

Since the regression function in 3 is well defined and is the

minimizer of the expected risk over the space of all the

measurable real functions on X, g can be taken for an ideal

estimator of the distribution probability P. However, due to

the limited, finite, and possibly small number of simulation

data points recorded (z), the regression function cannot be

perfectly constructed, and to overcome this problem, the

solution to the regularized least squares problem is to be

redefined as the estimator fz, which is indicated in Eq. 6

where X is a penalty term and ‘ is the number of regression

variables.

fz ¼ min
f2H

1

‘

X

‘

i¼1

Xðf xið ÞÞ � yið Þ2
( )

ð6Þ

Equation 6 are valid only for known dimension problems,

but since the converter circuits are fed to the Regression

model in non-Euclidean graph forms consisting of node

and edge features, a transformation function (GCN) is used

by applying feature transformation and aggregation oper-

ations to transform the graph to Euclidean space. The ini-

tial node features in (7) are initialized then fed to the graph

processor, which are k layers of GCNs. Each node in the

graph receives and sends messages from/to its neighbours

and itself, which are weighted by their degrees and nor-

malized by their square roots. The messages are aggregated

by the sum and multiplied by a weight matrix, where an

activation function is applied to obtain the new embedding

for each node. The node wise convolution operation can be

mathematically formulated as 9. where H
k is a weight

matrix for the k-th neural network layer and r is a non-

linear activation function, Â= A ? I, where I is the identity

matrix and Û is the diagonal node degree matrix of Â. This

allows the GCN to scale well, since the number of

parameters in the model is not tied to the size of the graph.

The node-wise formulation of feature update is given by

Eq. (9), where d̂i ¼ 1þ
P

j2N ðiÞ ej;i denotes the edge

weight ej;i from source node j to target node i. Equa-

tion (10) defines the global pooling operation that averages

the node embeddings into a single vector representation,

denoted as V, where xn is the embedding of node n, and Ni

is the number of nodes in graph i.

Xð0Þ ¼ EðXÞ ð7Þ

Xðkþ1Þ ¼ rðÛ�1
2ÂÛ

�1
2Xk

H
kÞ ð8Þ

x0i ¼ H
> X

j2N ðvÞ[fig

ej;i
ffiffiffiffiffiffiffiffi

d̂jd̂i

q xj ð9Þ

/ ¼ 1

Ni

X

Ni

n¼1

xn ð10Þ

Predictions on graphs are obtained by applying linear

transformation V 7!R, which can be obtained by using

linear functions with nonlinearity. The first linear layer can

be interpreted as a linear transformation followed by a

nonlinear transformation of the graph vector representa-

tion. Equation (11) defines the first fully connected layer,

which takes the graph hidden vector representation / as

input and produces a nonlinear response fð1Þ as output. The
function rð�Þ is the nonlinear activation function namely

leaky ReLU, which is formulated in (12), hence controlling

the slope of the negative part of the function by controlling

the tunable factor a, while w
ð1Þ
0 is the bias term of the first

layer. Equation (13) defines the second linear layer, which

takes the output of the first layer fð1Þ as input and produces

f ð2Þ as output. The f ð2Þ output is the prediction of the

regression task that is comparable to the ground truth y.

The estimator model flowchart is represented in Fig. 3.

f ð1Þ /ð Þ ¼ r w
1ð Þ
0 þ

X

N

n¼1

w 1ð Þ
n /

 !

ð11Þ

r ¼ maxðainput; inputÞ ð12Þ

f ð2Þ f ð1Þ /ð Þ
� �

¼ w
ð2Þ
0 þ

X

U1

i¼1

w
ð2Þ
i f

ð1Þ
i /ð Þ ð13Þ

Fig. 3 Proposed model for circuit dynamics prediction
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4.2 Model regularization

The dropout layer is chosen as the penalty term in Eq. (6)

which reduces the overfitting of the predicted output to the

ground truth, by introducing some noise and variability into

the prediction. The inclusion of a dropout layer makes the

prediction more generalizable to unseen data. However,

there is a possibility that the accuracy and precision of the

prediction are affected by introducing some error and

uncertainty into the prediction. The dropout function used

in this model can be defined in (14), where wi is the value

of the i-th weight, and Iðwi 6¼ 0Þ is an indicator function

that returns 1 if wi is non-zero and 0 otherwise. The mask

function I has a probability of p of being zero for each

element, and a probability of 1� p of being one.

X ¼ wi � Iðwi 6¼ 0Þ ð14Þ

4.3 Circuit complexity investigation

In order to quantify the model’s ability to handle more

prediction outputs and more complex circuit structures,

model performance metrics are to be used as judgement

factors. Some possible metrics are:

• Accuracy: Evaluation of the GNN model prediction

percentage, by using one of the most common evalu-

ation metrics like F1-score, accuracy, precision or R2,

which will be shown in the case study in the next

section.

• Computational scalability: Computational effort evalu-

ation of model’s performance, number of parameters, or

memory usage against the increase in graph nodes and

feature sizes without compromising the accuracy or

performance.

Given G as the circuit graph, e as the number of edges, N as

the number of nodes, d as the latent vector length, OL as

output layer size and din as the feature vector length, the

computational effort can be broken down to time and space

complexities and are calculated for three GCN layers as:

• Time complexity: Oð3ðeþ Nd2inÞ þ ðN þ dNÞ þ 2d �
dþ d � OLÞ

• Space complexity: OðN þ eþ Ndin þ 3d þ OLÞ
Figure 4 shows the time and space complexity of the

proposed model. (O) is the order of magnitude which

defines the complexity growth proportional to the graph

input size and number of features assigned for every node.

Different converters and their operating modes are high-

lighted in the figure showing the memory and processing

requirements to handle each circuit graph.

5 Multi-variable regression problem

This section presents a case study of three DC-DC con-

verters for obtaining predictions based on circuit topology

and component values. The main prediction targets are

voltage gain and current ripples, which are governed by

equations in Table 3, with the potential to scale up to

include many more variables. The dataset contains graph

forms of circuit data, as well as information about the

prediction targets, obtained from simulations. It is observed

that various factors such as resistance, inductance, duty

cycle, switching frequency, converter type and operation

mode are influential to the output voltage gain and current

ripples. Thus, the solution search space becomes ubiqui-

tous, rendering traditional analytical solvers inefficient.

5.1 Proposed GNN-based prediction model

To address the mentioned issues, a neural network model is

proposed, which takes converter circuits in graph forms

(G), node features (X) expressing element type and element

value, adjacency matrix (A), edge features (e) as inputs,

and outputs the predicted variables (Y) with output vector

size being the number of predicted variables (‘). The

mathematical representation of the regression model and

the propagation of graph features across layers are given by

Eqs. (15–20). Mathematically, this initial embedding

function is represented by Eq. (7). The aggregation layer

has multiple Graph Convolution Networks (GCN) that

performs multiple message passing leaps to collect infor-

mation about neighbouring nodes and keeps updating the

latent dimensional vector with dimension d, which is

mathematically represented as in Eq. (8).

Y ¼ RegressionðX;A; eÞ ð15Þ

Where

X 2 R
N�din

ð16Þ

Y 2 R
C�1 ð17Þ

GCNðkÞ
: R

N�din 7!R
N�d ð18Þ

k 2
�

0; 1; ::; k � 1
�

GMR : R
N�d 7!R

1�d
ð19Þ

FC : R
1�d 7!R

1�‘ ð20Þ

5.2 Obtaining predictions from circuit structure

Figure 5 shows a paradigm of obtaining predictions from

circuits using a regression model. The model utilizes three

GCN layers to exchange messages across nodes. The out-

put is fed to the global mean readout (GMR) layer, which

20814 Neural Computing and Applications (2024) 36:20807–20822
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averages the processed node and edge features to an output

dimension of d. The two fully connected (FC) linear layer

is trained to linearly transform the averaged graph vector to

desired output predictions by minimizing the mean square

error loss function. According to the universal approxi-

mation theorem, neural networks with appropriate depth,

FC layers may estimate any function without any limitation

on the structure. Equations 15–9 express the regression

model mathematics, while Eq. (11–13) are used to express

the two-layer FC layer mathematically. Model is fed with a

18,000 graph dataset split 70% to 30% between training

and testing datasets, and a separate unseen validation set of

2200 graphs. Datasets include captures of converter gain

and inductor current ripples at various inductances, loads,

Fig. 4 Time and space

computational complexity for

each DC-DC converter

Table 3 Gain and CCM/DCM

boundary formulas
CCM voltage gain DCM voltage gain CCM/DCM boundary

Buck converter D 2D

Dþ
ffiffiffiffiffiffiffiffiffiffiffi

D2þ 8L
RTs

p 1
2
1� Dcritð Þ ¼ L

RTs

Boost converter 1
1�D 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2D2RTs
L

q

� �

1
2
Dcrit 1� Dcritð Þ2¼ L

RTs

Buck/boost converter �D
1�D D

ffiffiffiffiffiffi

RTs
2L

q

1
2
1� Dcritð Þ2¼ L

RTs
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frequency, duty cycle and converter topology in CCM and

DCM. Training dataset is used in updating the linear layers

and GCN layers weights through Adam optimizer running

at 0.02 learning rate.

5.3 Dataset data range

The range of the datasets has to be properly identified, or

else the resulting regression model may perform poorly as

it will not be able to accurately extrapolate beyond the

range of the dataset. Generally, selected algorithms should

have the potential to accommodate minimum and maxi-

mum values in the datasets. Furthermore, the range of the

datasets should effectively match the purpose of the

machine learning model. It is essential for chosen algo-

rithms to be capable of handling the full spectrum of values

within the datasets. Moreover, the span of the datasets must

align precisely with the intended function of the machine

learning model. Should the scope of the datasets be

excessively constrained, the model’s capacity to adapt to

parameter variations may be compromised, leading to less

accurate output prediction. Conversely, an overly broad

dataset scope can lead to a model that is overgeneralized,

diminishing its precision due to erroneous predictions. The

range of the utilized dataset including circuit and control

parameters represented as node and edge features are listed

in Table 4. The variables ranges [resistance (R), inductance

(L), duty cycle (D) and frequency (F)] are selected so that

the dataset include a wide range of CCM and DCM oper-

ation modes in the three converter classes.

5.4 Results analysis

5.4.1 Unsupervised learning clustering

The global mean pool layer outcome in Fig. 5 shows a 2D

embedding, where each point represent a circuit graph. It is

shown that the embedding contains the three converter

topologies in each operating mode (CCM & DCM). The

proposed model is capable of not only of differentiating the

converter circuit topologies, but also recognize different

operating modes (CCM & DCM). The unsupervised clus-

tering of each converter topology occurs without prior

knowledge of correlation between converter circuit graphs

or the operation mode (CCM & DCM). Furthermore, the

learnt graph embeddings represent the converter operating

conditions (based on circuit and control parameters) per

class basis. This proves that the regression model predic-

tion takes into consideration the converter structure as well

as operating conditions and can attain performance

Fig. 5 Paradigm for obtaining predictions from circuits using regression model
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prediction even with intricate converter dynamics as shown

in Fig. 6.

5.4.2 Accuracy analysis

The R-squared which is a statistical measure of how much

the model fits the data, is the percentage of the dependent

variable variation that a model can explain. Equation 21

shows the mathematical formula for the coefficient of

determination, where RSS is the sum of squares of resid-

uals and TSS is the total sum of squares. It is also known as

the coefficient of determination, and for the same data set,

higher R-squared values represent smaller differences

between the observed data and the fitted values. The score

R2 for the trained model is 99.49% when tested with the

validation dataset, Two independent variables are being

predicted in two operating modes: (� for CCM or M for

DCM) vs. simulated (line) natural log inductor current

ripples and gain curves are shown for the three topologies.

Obviously, even though the current ripples predictions vary

with frequency, inductance, resistance, and duty cycle, the

model is able to adapt all components and control

variations. The second predictions are the converter gain

shown in Fig. 7. In CCM, gain is dependent only on duty

cycle. However, it nonlinearly depends on multiple factors

like inductance, frequency duty cycle and resistor values in

DCM. Despite the nonlinearity, the model is able to predict

the gain and the current ripples utilizing the same training

data. Notably, the model has learned it is the same con-

verter working in two modes (CCM & DCM) and clustered

each converter mode based on their topologies.

R2 ¼ 1� RSS

TSS
¼ 1�

P

i ðyi � ŷiÞ2
P

i ðyi � �yiÞ2
ð21Þ

where, yi = observed value, ŷi = predicted value, �yi = mean

of observed values.

6 Model performance analysis

The prediction error mean and standard deviation are cru-

cial for its performance as these defining metrics highlight

the accuracy of the model’s predictions. A low error mean

(l) and standard deviation (r) typically indicate a high-

performing model, whereas a high error l and r indicate a

low-performing model. Keeping both performance metrics

in low values is necessary for optimal performance.

6.1 Circuit and control parameters sensitivity
analysis

Parameter sensitivity analysis in regression models mea-

sures how changes in the parameter values affect the

regression results. The main aim of performed parameter

sensitivity analysis is to determine prediction error rate of

the model in correspondence to different parameters vari-

ations. Two types of variable variation are performed from

circuit prospective: the circuit parameters variation and

control parameters variation. From a GNN prospective,

these variations are node feature variations (resistance,

frequency and inductance variations) and edge feature

variations (duty cycle variation). It is important to show

that the model corresponds to all circuit graph representa-

tion parameters and how effectively these variations are

Table 4 Dataset circuit

parameters range
Parameter Range Notes

R 1 X7! 20 X Parameters based on equal CCM and DCM dataset of buck converter

L 1 lH 7! 10 lH

F 10 KHz 7! 1 MHz

D 0.01 7! 0.85 Limited to prevent infinite gain

Fig. 6 Voltage gain curves of the three converters in CCM and DCM
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reflected on the output. Figure 8a–c shows the actual vs

predicted outputs of the model, namely, voltage gain and

current ripples in CCM and DCM for the buck, boost and

buck-boost converters, respectively. The straight line

shows 100% accuracy prediction where Y ¼ Ŷ . The pro-

posed model remarkably predict both outputs with high

precision and accuracy, scoring a minimum R2 of 99.77%

in predicting voltage gain and 98.63% in current ripples

prediction. Figure 9 shows histograms of the prediction

error distribution across the multi-variable regression

model, while showing prediction error mean and standard

deviation per converter class, circuit parameters and

regression outputs in Table 5.

6.1.1 Circuit parameters variation (hardware variation)

Two types of variations are included in the proposed

regression model, namely hardware and controller param-

eter variations. Hardware variation is when circuit com-

ponent values are changed, which is a real life equivalent

of adding more windings to the inductor or using another

core type or adjusting the airgap.

Load variation: The histogram in Fig. 9a indicates error

distribution in voltage gain prediction when exposed to

changes in resistance across dataset range. The overall

performance of the model was highly accurate, as indicated

by the minimal prediction error, scoring the lowest in buck

converter, with an error mean of zero when predicting the

voltage gain. Furthermore, the error illustrated in Fig. 9b is

minor in all converter classes when predicting current

ripples, but it is more spread around error axis. On the other

Fig. 7 2-D embeddings and their corresponding voltage gain and current ripples predictions based on converter type and operation mode for (a)

Buck, (b) Boost and (c) Buck-boost converters. �: CCM, M: DCM
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Fig. 8 Actual vs prediction in

voltage gain and current ripples

for three converter classes:

a Buck converter, b Boost

converter, c Buck-Boost

converter
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Fig. 9 Model absolute prediction error distributions when subjected to multiple variations
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hand, the error mean of current ripples prediction of the

boost converter was the lowest, while exhibiting an overall

constant error mean across the resistance range in both

output targets.

Inductance change: Figure 9c and d shows model error

when subjected to changes in inductances on both output

targets. The overall performance of the model is of high

accuracy and prediction error is minimal. Predictions on

buck converter are the most accurate and least error when

predicting voltage gain. However, the boost converter is of

the least error when predicting current ripples.

6.1.2 Control parameters variations

Controller parameters are changed like duty cycle and

frequency, which are controlled by digital controllers

running in real-time and require software changes. The

proposed regression model can accurately predict the

converter behaviour under these changes.

Switching frequency variation: Frequency is an impor-

tant factor for converter operation mode, which is actively

managed by a digital controller in real time, depicted as a

node feature when represented in the circuit graph. In

Fig. 9e and 9f, the variance in voltage gain prediction error

is relatively low, with almost no changes across frequency

range and converter class. On the other hand, when looking

into current ripple prediction, the same pattern is observed,

yet the prediction errors are comparatively higher, with a

higher variance.

Duty cycle variation: Two major contributions are

deduced from Fig. 9g and 9h which are the responsiveness

of the model to duty cycle, which is represented as edge

feature in circuit graph, and unchanged error mean when

the duty cycle is varied from 0.01 and is limited to the

practical value of 0.85 to prevent introducing infinite gain

in the dataset. The voltage gain error is more significant in

boost and buck-boost converters since gain vary signifi-

cantly across duty cycle range and up to 259.

7 Conclusion

The manuscript showed a framework for predicting DC-

DC converter topologies performance including voltage

gain and current ripples against variable control signal and

component values. This framework is applicable to any

circuit including continuous and switching circuits. By

representing converter circuits as graphs models based on

bond graph modelling technique, The developed GNN-

based model was able to predict circuit performance

information as well as identify the type of circuit even

though it was not a planned task. This approach presents a

very promising step towards AI understanding of circuit

topologies and circuit analysis.
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