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Introduction
Conformal geometry is the subfield of differential geom-
etry that studies manifolds on which infinitesimal angles
are defined, but not lengths; that is, the crossing angle be-
tween any two intersecting curves is well-defined, but their
lengths are not.

Given a manifold 𝑀, recall that a Riemannian metric
𝑔 is a (smoothly varying) choice ⟨⋅, ⋅⟩𝑔𝑝 of inner product
on each tangent space 𝑇𝑝𝑀. Now, given any inner product
⟨⋅, ⋅⟩ on a vector space 𝑉 , the angle 𝜃 between two vectors
𝑋, 𝑌 ∈ 𝑉 may be defined by

cos(𝜃) = ⟨𝑋, 𝑌⟩
√⟨𝑋, 𝑋⟩⟨𝑌, 𝑌⟩

.

The right-hand side remains unaltered if ⟨⋅, ⋅⟩ is replaced by
𝑐⟨⋅, ⋅⟩ (𝑐 > 0). Thus, angles are well-defined given only a ray
of inner products. For this reason, a conformal manifold
is usually defined as amanifold𝑀 equippedwith an equiv-
alence class [𝑔] of metrics, where ̃𝑔 ∼ 𝑔 if ̃𝑔 = 𝑒2𝜔𝑔, with
𝜔 ∈ 𝐶∞(𝑀) a smooth function. (The mode of expression
is conventional: the exponential forces the scaling factor
to be positive, while the factor 2 is merely for convenience.
Other conventions are also popular.)

One of the numerous reasons for the ubiquity of con-
formal geometry within differential geometry is that a con-
formal change—replacing 𝑔 by 𝑒2𝜔𝑔—is about the simplest
nontrivial transformation that can be performed on a met-
ric while preserving some of its geometric content. That
the change is scalar also makes it analytically quite practi-
cal to study. Just what is preserved under such a change
leads to one large set of questions within the field. Thus,
for example, the Weyl tensor, which is the totally tracefree
part of the Riemann curvature tensor, transforms accord-
ing to the simple rule𝑊 = 𝑒2𝜔𝑊 . Wewill focus on another

Stephen E. McKeown is an assistant professor of mathematical sciences at
the University of Texas at Dallas. His email address is Stephen.McKeown
@UTDallas.edu.
Cheikh Birahim Ndiaye is an associate professor of mathematics at Howard
University. His email address is cheikh.ndiaye@Howard.edu.

Communicated by Notices Associate Editor Chikako Mese.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2967

set of questions: what can be changed in a useful way? Put
differently: given a Riemannian metric 𝑔, is there a confor-
mal metric 𝑒2𝜔𝑔 with especially nice properties? (Can it
perhaps be used to study 𝑔?) This question has been ex-
tremely influential in geometric analysis, and we will be
concerned with several versions of it.

Beginnings: Two Dimensions
Conformal geometry in two dimensions is a very different
subject from that in higher dimensions, because of its in-
timate relationship with complex analysis. Every nonsin-
gular holomorphic function between regions of the com-
plex plane is angle-preserving (conformal). Thus, if it is
also bijective, it is in fact a conformal equivalence—from
the point of view of conformal geometry, two regions con-
nected by such a function are equivalent. The Riemann
mapping theorem may thus be viewed as saying that ev-
ery simply connected proper open subset of the plane is
conformally equivalent to the unit disk.

A natural question is whether the same might in some
sense be true of a compact Riemann surface (Σ2, 𝑔). Of
course, topological considerations forbid the existence of a
homeomorphism between Σ and the disk, but might we at
least expect the existence of a smooth function 𝜔 ∈ 𝐶∞(Σ)
such that ̃𝑔 = 𝑒2𝜔𝑔 has vanishing Gaussian curvature?
(This would imply that ̃𝑔 is at least locally isometric to the
disk.) In fact, the answer is certainly no: the Gauss-Bonnet
theorem asserts that the Gaussian curvature 𝐾𝑔 of any met-
ric satisfies

2𝜋𝜒(Σ) = ∫
Σ
𝐾𝑔𝑑𝑉𝑔,

where 𝜒(Σ) is the Euler characterisic of Σ. Thus, unless
𝜒(Σ) = 0 (i.e., unless Σ is a torus), there can be no such
function. However, a significant classical result asserts that
we can obtain the best that Gauss-Bonnet allows.

Theorem 1 (Uniformization theorem). Let (Σ, 𝑔) be a com-
pact Riemann surface. There exists 𝜔 ∈ 𝐶∞(Σ) such that
̃𝑔 = 𝑒2𝜔𝑔 has constant Gaussian curvature 𝐾𝑔̃. Assuming the
normalization vol𝑔̃(Σ) = 1, we have 𝐾𝑔̃ = 2𝜋𝜒(Σ).

There are many proofs; we mention [3]. Note that, be-
cause Gaussian curvature fully determines the curvature in
two dimensions, it follows from this theorem that every
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surface is conformal to one that is locally isometric to ei-
ther the plane, the sphere, or hyperbolic space.

One might very well ask what the situation is for a sur-
face with boundary. If Σ has a boundary, Gauss-Bonnet
reads

2𝜋𝜒(Σ) = ∫
Σ
𝐾𝑔𝑑𝑉𝑔 +∮

𝜕Σ
𝜅𝑔𝑑𝑠,

where 𝜅𝑔 is the geodesic curvature of the boundary. Thus,
in this case, Gauss-Bonnet does not forbid obtaining 𝐾𝑔 ≡
0, as long as 𝜅𝑔 is nonzero. Sure enough, the uniformiza-
tion theorem for surfaces with boundary states that a con-
formal change lets us push the topological data to the
boundary, and make it constant there.

Theorem 2 (Uniformization theorem for surfaces with
boundary). Let (Σ, 𝑔) be a compact Riemann surface with
nonempty boundary. There exists 𝜔 ∈ 𝐶∞(Σ) such that ̃𝑔 =
𝑒2𝜔𝑔 has vanishing Gaussian curvature 𝐾𝑔̃ and the boundary
has constant geodesic curvature 𝜅𝑔̃.

See, for example, [1].

Higher Dimensions: The Yamabe Problem
In higher dimensions, complex analysis no longer plays
an important role in conformal geometry, and the meth-
ods of proof are often quite different. Indeed, two dimen-
sions is much more “flexible,” since the Liouville theorem
shows that the space of conformal maps of ℝ𝑛 for 𝑛 ≥ 3
is finite dimensional, in contrast to the two-dimensional
case. Yet it is natural to ask very similar questions. One
of the most celebrated problems of twentieth-century dif-
ferential geometry is the Yamabe problem, raised by Hide-
hiko Yamabe in 1960. This asks whether the uniformiza-
tion theoremholds for compactmanifolds𝑀𝑛 when 𝑛 ≥ 3.
That is, given a Riemannian manifold (𝑀𝑛, 𝑔), does there
exist 𝜔 ∈ 𝐶∞(𝑀) such that ̃𝑔 = 𝑒2𝜔𝑔 has constant scalar
curvature 𝑅𝑔? (To look for constant higher-rank curva-
ture would yield a vastly overdetermined problem, since
a conformal change is itself a scalar.) Actually, it is more
common in this context to write the conformal change as

̃𝑔 = 𝑢
4

𝑛−2 𝑔, requiring 𝑢 > 0; this is merely conventional,
and is because the problem becomes easier to express and
study when written in terms of

𝑢 = 𝑒(𝑛−2)𝜔/2. (1)

Yamabe believed he had proven that the answer is yes, but
seven years after his tragically early death, Neil Trudinger
discovered a significant error in his path-breaking paper.
Partial solutions to the Yamabe problem were given over
the next ten years by Trudinger and by Thierry Aubin, and
in 1984, Richard Schoen finally solved all the remaining
cases using the positive mass theorem.

Theorem 3 (Yamabe, Trudinger, Aubin, Schoen). Suppose
(𝑀𝑛, 𝑔) is a compact Riemannian manifold, 𝑛 ≥ 3. Then there

exists a positive 𝑢 ∈ 𝐶∞(𝑀) such that ̃𝑔 = 𝑢
4

𝑛−2 𝑔 has constant
scalar curvature 𝑅𝑔̃.

Note that in higher dimensions, the Chern-Gauss-
Bonnet theorem says nothing about ∫𝑀 𝑅𝑔𝑑𝑉𝑔, so whether
the constant given by this theorem is positive, negative, or
zero is a property more of the conformal geometry of [𝑔]
than of the topology (although the two are not unrelated).

The condition 𝑅𝑔̃ = 𝑐 (with 𝑐 constant) is equivalent to
𝑢 solving the PDE

𝑃2𝑢 = 𝑐𝑢
𝑛+2
𝑛−2 , (2)

where 𝑃2𝑢 = 4𝑛−1
𝑛−2

Δ𝑔𝑢 + 𝑅𝑔𝑢 is the conformal Laplacian of
𝑢. (The conformal Laplacian is so named because it satis-
fies the relatively nice conformal transformation property

𝑃2(𝑢−1𝑓) = 𝑢−
𝑛+2
𝑛−2𝑃2(𝑓). Here 𝑃2 is the conformal Laplacian

of ̃𝑔 = 𝑢
4

𝑛−2 𝑔.) One thus wishes to find a strictly positive so-
lution to (2). The original approach to solving the Yamabe
problem is variational: (2) is the Euler-Lagrange equation
of the functional

ℰ(𝑢) =
∫𝑀 ( 4(𝑛−1)

(𝑛−2)
|𝑑𝑢|2 + 𝑅𝑔𝑢2) 𝑑𝑉𝑔

(∫𝑀 |𝑢|
2𝑛
𝑛−2 𝑑𝑉𝑔)

𝑛−2
2𝑛

, 𝑢 ∈ 𝐶∞(𝑀), 𝑢 > 0.

It follows easily by Hölder’s inequality that ℰ is bounded
below, so one can take a minimizing sequence; the chal-
lenge is then to show that it converges to a solution to (2),
and that said solution is positive. The analytical and geo-
metric ideas that go toward showing that this is the case
are ponderous. First, one replaces the exponent

𝑛+2
𝑛−2

in

(2) by
𝑛+2
𝑛−2

− 𝜀, as the former is the “critical exponent” for
which the relevant Sobolev injection fails to be compact.
This process of subcritical regularization yields a compact
variational problem. Finding a solution 𝑢𝜀 via the direct
method in the calculus of variations, the question then be-
comeswhether this converges to a solution 𝑢 as 𝜀 → 0. This
is addressed by studying the Euler equation associated to
𝑢𝜀.

Let 𝑌([𝑔]) = infᵆ ℰ(𝑢), which one may show is a con-
formal invariant. It was shown by Trudinger and Aubin
that if 𝑢𝜀 does not converge to a solution 𝑢, then we must
have 𝑌([𝑔]) ≥ 𝑌([𝑆𝑛, ̊𝑔]), where the latter is the conformal
round sphere; so a solution exists if 𝑌([𝑔]) < 𝑌([𝑆𝑛, ̊𝑔]).
The problem is thus reduced to showing that the latter in-
equality holds. This can be done in many cases by con-
structing clever test functions 𝑢 that realize the inequality.
In the work of Aubin, the test function is constructed using
local geometry. Schoen’s approach in solving the remain-
ing cases used global geometry to construct test functions.
Indeed, one of his key ideas in completing the proof was to
use the Green’s function of 𝑃2 itself as a conformal change
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factor; since it blows up at a point, this transforms theman-
ifold to a noncompact but asymptotically flat space. A care-
ful study of the asymptotics of the Green’s function allows
the problem then to be solved by appealing to the positive
mass theorem of Schoen-Yau, which arose from General
Relativity. The full details, including all the original refer-
ences, are given in the well-known survey [7]. We will refer
to the manner of argument described here as the Aubin-
Schoen minimization technique. There is another varia-
tional approach to the Yamabe problem by Bahri-Coron
and Bahri-Brezis, called the barycenter technique, using al-
gebraic topological tools.

Once again, there are natural related problems to ask in
the case of compact manifolds with boundary. The one
we will consider here can be considered a natural analog
of the Riemann mapping theorem and of Theorem 2. In
higher dimensions, the appropriate boundary curvature to
consider is themean curvature𝐻𝑔, rather than the geodesic
curvature. The following theorem was first studied by Pas-
cal Cherrier and was established in most cases by José Es-
cobar in 1992; the remaining cases were treated by Sergio
Almaraz, Sophie Chen, Fernando Coda Marques, and Mar-
tin Mayer and Cheikh Ndiaye.

Theorem 4. Let (𝑀𝑛, 𝑔) be a compact manifold with boundary,
where 𝑛 ≥ 3. There exists 𝑢 ∈ 𝐶∞(𝑀) with 𝑢 > 0 such

that ̃𝑔 = 𝑢
4

𝑛−2 𝑔 has vanishing scalar curvature (𝑅𝑔̃ = 0) and
constant mean curvature: 𝐻𝑔 = 𝑐𝑜𝑛𝑠𝑡.

(Escobar also treated the reverse problem, where 𝑅𝑔 is
constant and 𝐻𝑔 = 0.) The works of Escobar, Almaraz,
Chen, and Marques used the Aubin-Schoen minimization
approach. Indeed, numerous new techniques were devel-
oped in the proof of these theorems. Escobar developed
a highly refined asymptotic expansion of the Green’s func-
tion of the conformal Laplacian near the boundary, as well
as a positive mass theorem in the bounded setting. Subse-
quent developments were often based on ever-finer con-
structions of local or global test functions. The final step,
byMayer and Ndiaye, used the Bari-Coron barycenter tech-
nique. Of the many papers we could cite in this line, we
mention [5].

Fourth Order
The scalar curvature is not the only scalar function that is
important to understanding the curvature of a Riemannian
manifold. Since it was introduced by Tom Branson and
Bent Ørsted, the so-called 𝑄-curvature has been an object
of intense study. This is a local curvature invariant. Define
𝐽 = 𝑅

2(𝑛−1)
and the Schouten tensor by 𝑃 = 1

𝑛−2
(Ric−𝐽𝑔).

Then 𝑄 is defined by 𝑄 = −Δ𝑔𝐽 − 2|𝑃|2𝑔 +
𝑛𝐽
2
; thus, it is

fourth-order in derivatives of the metric tensor. We will
mention here two of its numerous interesting properties.

First, let the Paneitz operator be the fourth-order operator
defined by 𝑃4𝑢 = Δ2𝑔 + 𝛿((4𝑃 − (𝑛 − 1))𝐽𝑔)𝑑𝑢 + 𝑛−3

2
𝑄𝑢,

where 𝛿 is the adjoint (with respect to 𝑔) of the exterior
derivative, and the two-tensor in the second term acts as
an endomorphism on one-forms via 𝑔−1. Now, this linear
elliptic operator is a pointwise conformal invariant in the
sense that, if ̃𝑔 = 𝑒2𝜔𝑔, then 𝑃4𝑢 = 𝑒(−𝑛/2−2)𝜔𝑃4(𝑒(𝑛/2−2)𝜔𝑢);
this is analogous to the conformal change property of the
conformal Laplacian. The first interesting property of the
𝑄-curvature, then, is that under a conformal change, when
𝑛 = 4, the 𝑄-curvature transforms by 𝑄 = 𝑒−4𝜔(𝑄 + 𝑃4𝜔),
which is exactly analogous to the relationship between the
Gaussian curvature and the Laplacian when 𝑛 = 2; while if

𝑛 ≥ 5, it transforms by 𝑄 = 𝑢−
𝑛+4
𝑛−4𝑃4𝑢, which is analogous

to the relationship (for 𝑛 > 2) between the scalar curvature
𝑅 and 𝑃2. Here, 𝑢 = 𝑒(𝑛−4)𝜔/2, much as in (1). The second
interesting property is that, in dimension four, the Chern-
Gauss-Bonnet formula can be written in such a way as to
include 𝑄:

4𝜋2𝜒(𝑀4) = 1
2 ∫𝑀

(14 |𝑊|2𝑔 + 𝑄)𝑑𝑉𝑔,

where𝑊 is the Weyl tensor of 𝑔. Now, |𝑊|2𝑔𝑑𝑉𝑔 is an abso-
lute pointwise conformal invariant, so ∫𝑀 𝑄𝑑𝑉𝑔 is a global
conformal invariant. Given these properties, it becomes
irresistible to see 𝑄 playing a rather exact fourth-order ana-
log to the second-order 𝑅, at least in conformal geometry.

The question then arises: can one make a conformal
transformation ̃𝑔 = 𝑒2𝜔𝑔 so that 𝑄𝑔̃ is a constant? In the
case 𝑛 = 4, due to the Chern-Gauss-Bonnet formula and
the conformal invariance of total 𝑄, this has the flavor of
the uniformization theorem. In higher dimension, it is the
fourth-order analog of the Yamabe problem. The affirma-
tive answer to the fourth-order uniformization question in
dimension four was given in two steps in the papers [2,4]
by Alice Chang and Paul Yang and by Zindine Djadli and
Andrea Malchiodi, which are landmarks of fourth-order
nonlinear geometric analysis.

Theorem 5. Suppose (𝑀4, 𝑔) is a Riemannian manifold, and
let 𝑘𝑝 = ∫𝑀 𝑄𝑑𝑉𝑔. Suppose that ker 𝑃4 ≅ ℝ and that 𝑘𝑝 ∉
16𝜋2ℕ. Then there exists a function 𝜔 ∈ 𝐶∞(𝑀) such that
̃𝑔 = 𝑒2𝜔𝑔 has constant 𝑄-curvature.
The work [2] can be seen as a 𝑄-curvature version of

the Aubin-Schoen minimization approach. Elaborate ad-
ditional ideas were needed to approach the problem, us-
ing the Adams(-Moser-Trudinger) inequality. The work
[4], by contrast, can be seen as a min-max analog of the
Bahri-Coron algebraic topological argument, based on an
improved version of the Adams inequality.

Just as mean curvature is a natural first-order bound-
ary curvature associated to scalar curvature, in four dimen-
sions there is a natural third-order boundary curvature
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associated to 𝑄, the so-called 𝑇-curvature defined by Al-
ice Chang and Jie Qing. This curvature had leading part

𝑇 = − 1
12

𝜕
𝜕𝑛
𝑅𝑔, where

𝜕
𝜕𝑛

is the inward unit normal field.

One can define a linear boundary operator 𝑃3 ∶ 𝐶∞(𝑀) →
𝐶∞(𝜕𝑀) with leading part 𝑃3𝑢 = 1

2
𝜕
𝜕𝑛
Δ𝑔𝑢 + Δ𝜕

𝜕
𝜕𝑛
𝑢 that

is conformally invariant in the sense that 𝑃3 = 𝑒−3𝜔𝑃3, and
such that it controls the conformal behavior of𝑇 according
to the formula 𝑇 = 𝑒−3𝜔(𝑇+𝑃3𝜔). The curvature 𝑇 appears
in the Chern-Gauss-Bonnet formula with 𝑄 according to
the equation

4𝜋2𝜒(𝑀4) = 1
2 ∫𝑀

(14 |𝑊|2𝑔 + 𝑄)𝑑𝑉𝑔 +∮
𝜕𝑀

(ℒ + 𝑇)𝑑𝑉 𝜕,

where ℒ is a pointwise conformally invariant curvature
quantity. A natural fourth-order generalization of the
boundary uniformization problem, in four dimensions, is
thus to ask whether we can make a conformal change that
will set 𝑄 to zero and 𝑇 to a constant. The answer is gener-
ically yes, as shown by Ndiaye [9].

Theorem 6. Suppose (𝑀4, 𝑔) is a Riemannian manifold
with boundary. Let 𝐻𝑔 be the mean curvature, and 𝑘𝑃 =
1
2
∫𝑀 𝑄𝑑𝑉𝑔 + ∫𝜕𝑀 𝑇𝑑𝑉 𝜕; and suppose that 𝐻𝑔 = 0, that

𝑘𝑃 ∉ 4𝜋2ℕ, and that only constant solutions exist to the sys-
tem

⎧
⎨
⎩

𝑃4𝑢 = 0 in 𝑀,
𝑃3𝑢 = 0, on 𝜕𝑀,
𝜕
𝜕𝑛
𝑢 = 0, on 𝜕𝑀.

Then there exists 𝜔 such that ̃𝑔 = 𝑒2𝜔𝑔 has𝑄𝑔̃ = 0, 𝑇𝑔̃ = 𝑐𝑜𝑛𝑠𝑡,
and 𝐻𝑔̃ = 0.

The proof uses the min-max method of Djadli-
Malchiodi.

Extending the fourth-order problem to higher dimen-
sions than four required significant new techniques. One
of the challenges of studying fourth-order elliptic equa-
tions, as opposed to second-order ones, is that there is no
maximum principle in the case of the former. It was thus
a significant achievement when Matthew Gursky and Mal-
chiodi [6] showed that, under certain circumstances, the
Paneitz operator on a closed manifold does satisfy a maxi-
mum principle:

Theorem 7. Suppose that (𝑀𝑛, 𝑔) is a closed Riemannian man-
ifold, with 𝑛 ≥ 5, and that

{𝑄𝑔 ≥ 0 with 𝑄𝑔 > 0 somewhere; and
𝑅𝑔 ≥ 0.

(3)

If 𝑢 ∈ 𝐶4 satisfies 𝑃4𝑢 ≥ 0, then either 𝑢 > 0 or 𝑢 ≡ 0.
Moreover, under these hypotheses, 𝑃4 is a positive operator.
In the same paper, they also proved a fourth-order pos-

itive mass theorem for the Green’s function of the Paneitz

operator for the global case. Using these remarkable re-
sults, they were able to prove a fourth-order Yamabe theo-
rem in higher dimensions.

Theorem 8. Suppose that (𝑀𝑛, 𝑔) is a closed Riemannian
manifold with 𝑛 ≥ 5, and that (3) holds. Then there exists

𝑢 ∈ 𝐶∞(𝑀), 𝑢 > 0, such that ℎ = 𝑢
4

𝑛−4 𝑔 has constant positive
𝑄-curvature.

The proof in [6] is by a nonlocal flow. One can also
use a variational proof à la Aubin-Schoen using Theorem 7
and the positive mass theorem in [6]; this was pointed out
quickly by Emmanuel Hebey and Frédéric Robert. Shortly
thereafter, Fengbo Hang and Yang weakened the condi-
tion on scalar curvature to nonnegative Yamabe constant.
This improvement by Hang-Yang and the observation by
Hebey-Robert were made even before final publication of
[6]; see the discussion and references in that paper.

Jeffrey Case introduced boundary curvatures analogous
to 𝑇 in dimension higher than 4; the third-order one, he
calls 𝑇3. There is also an associated conformally invariant
boundary operator of third order, which we also call 𝐵3.
An argument in [10] enabled the proof of the following
fourth-order Escobar theorem in higher dimensions.

Theorem 9. Suppose that (𝑀𝑛, 𝑔), 𝑛 ≥ 5, is a compact Rie-
mannian manifold with boundary. If 𝐻 = 0 and the Green’s
function defined by

⎧
⎨
⎩

𝑃4𝑢(𝑥, 𝑦) = 0 in 𝑀
𝐵3𝑢(𝑥, 𝑦) = 𝛿𝑥 on 𝜕𝑀
𝜕
𝜕𝑛
𝑢(𝑥, 𝑦) = 0 on 𝜕𝑀

(4)

is positive, then there exists a conformal metric ̃𝑔 = 𝑢
4

𝑛−4 𝑔 sat-
isfying 𝑄 = 0, 𝑇3 = 𝑐𝑜𝑛𝑠𝑡, and 𝐻 = 0.

The equation (4) is dual to the problem for the frac-
tional curvature 𝑄3/2 in the Poincaré-Einstein setting. The
argument in [10] works for the case of (4) as well. The
technique of proof is similar to that of Mayer-Ndiaye.

Higher Order
The existence of conformally invariant operators and as-
sociated curvatures such as 𝑃2, 𝑃4 and 𝑅,𝑄 is not an iso-
lated phenomenon. In 1992, Robin Graham, Ralph Jenne,
Lionsel Mason, and George Sparling showed that there
exist conformally covariant operators 𝑃2𝑘 of every order
2𝑘 ≤ dim𝑀, having principal part Δ𝑘𝑔. Branson defined
an associated 𝑄2𝑘 curvature so that, in dimension 2𝑘, the
𝑄2𝑘-curvature transforms by

𝑄2𝑘 = 𝑒−2𝑘𝜔(𝑄 + 𝑃2𝑘𝜔)
(with a somewhat more complicated transformation for-
mula in higher dimensions). Branson’s original construc-
tion was by analytic continuation in the dimension. The
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GJMS operators, meanwhile, were defined via the so-called
ambient-metric construction of Charles Fefferman and
Graham. This allows the study of a conformal manifold
by situating it in a Lorentzian manifold of two dimen-
sions higher, much as the sphere could be studied by situ-
ating it in the light cone in Minkowski space of two higher
dimensions. Relationships between the two were illumi-
nated when Graham andMaciej Zworski showed that each
could be defined in terms of the scattering operator on an
asymptotically hyperbolic (formally) Einstein spacewhose
boundary was the given manifold.

The higher-order uniformization problem for 𝑄2𝑘
(sometimes called the critical case), where dim𝑀 = 2𝑘, has
been solved by Ndiaye [8] using the min-max argument of
[4].

Theorem 10. Suppose (𝑀2𝑘, 𝑔) is a closed Riemannian mani-
fold, that ker 𝑃2𝑘 = ℝ, and that ∮𝑀 𝑄2𝑘𝑑𝑉𝑔 ∉ (2𝑘 − 1)! 𝜔2𝑘ℕ,
where 𝜔2𝑘 is the volume of the 2𝑘-sphere. Then there exists
𝜔 ∈ 𝐶∞(𝑀) such that 𝑒2𝜔𝑔 has constant 𝑄2𝑘-curvature.

As for the lower-order curvatures, in the critical dimen-
sion there is again a Chern-Gauss-Bonnet formula, due
to Spyros Alexakis, connecting the total 𝑄2𝑘-curvature and
the topology.

The higher-order Yamabe problem (sometimes called
the noncritical case), where dim𝑀 > 2𝑘 ≥ 6, was solved
quite recently by Saikat Mazumdar and Jérôme Vétois in
the setting where the local test function argument works,
or if the positive mass theorem holds, using the Aubin-
Schoen minimization technique. For example, we men-
tion the following:

Theorem 11. Suppose (𝑀𝑛, 𝑔) is a closed Riemannian mani-
fold, that 1 < 𝑘 < 𝑛

2
, and that the Green’s function of 𝑃2𝑘 is

positive. Assume moreover that the 2𝑘th Yamabe constant 𝑌2𝑘
satisfies

𝑌2𝑘 ≔ inf
𝑔̃∈[𝑔]

(vol𝑔̃(𝑀)−
𝑛−2𝑘
𝑛 ∫

𝑀
𝑄2𝑘,𝑔̃𝑑𝑉𝑔̃) > 0.

If 2𝑘 + 1 ≤ 𝑛 ≤ 2𝑘 + 3 or (𝑀, 𝑔) is locally conformally flat,
then assume also that the mass of the Green’s function of 𝑃2𝑘 is
positive somewhere on 𝑀. Then there exists 𝑢 ∈ 𝐶∞(𝑀) such
that 𝑢

4
𝑛−2𝑘 𝑔 has constant 𝑄2𝑘-curvature.

The mass of the Green’s function mentioned here is the
constant term in the asymptotic expansion (in especially
nice coordinates) of the Green’s function; it is so named
because of its relationship, in the 𝑘 = 1 case, with the
Arnowitt-Deser-Misner mass of general relativity. One ex-
pects that the Bahri-Coron argument should work to yield
the remaining cases of this theorem, still assuming the
Green’s function is positive.

Conclusion
The Yamabe problem and its generalizations have been
among the driving forces of conformal geometry in the
past sixty years. A natural class of problems, they have
required the development of new and powerful insights
both analytic and geometric for their solution, as well as
novel algebraic-topological arguments. Nor are they of in-
terest merely as curiosities: as the ever-growing number of
theorems whose hypotheses include some assumption on
the Yamabe constant show, once proved they have become
one of the most useful tools of the conformal geometer.
Leverage in problems can be obtained by making a con-
formal change so that an appropriate curvature quantity is
constant or vanishing.

There remains a large landscape of problems not yet
solved, which will require yet new insights; and we have
not even discussed all those that have already been at-
tacked. Fully nonlinear Yamabe problems, nonlocal frac-
tional curvatures, higher order boundary curvatures, CR
Yamabe questions, extrinsic curvature on corners, and
many other problems have seen enormous work and re-
main at the focus of bustling activity. The source of a
whole vast literature, the Yamabe problem stands as a pow-
erful reminder of the power of asking the right question.
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