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Superalloy IN718 components manufactured by laser powder bed fusion (PBF-LB/M) were non-destructively
evaluated by the sideband peak counting (SPC) nonlinear acoustics method and suitably validated by micro-
focus X-ray computed tomography (XCT). A wide-band chirp acoustic wave was used to inspect the micro-
structures of IN718 samples with five distinct process parameters, and the results reveal that the number of
sidebands, which result from the non-linearity induced by porosity, is significantly influenced by the distribution
and size of pores, in addition to the volume fraction. There was a clear correlation between extent of porosity and
the corresponding value of the SPC index. XCT analysis corroborated these findings, providing quantitative in-
sights into the porosity characteristics that affect the ensuing acoustic responses. The findings demonstrated that
the porosity with varying sizes and distributions generate different SPC profiles, which were correlated to XCT
results to quantitatively assess the size and spatial distributions of the porosity. Fusion of SPC and XCT char-
acterization techniques provides a new strategic approach for non-destructive testing, where the SPC method
offers rapid, qualitative evaluation, while XCT provides detailed spatial resolution for defect quantification. The
integration of SPC could lead to the development of more cost-effective and advanced quality control protocols,
ensuring the reliability of AM-manufactured components regardless of their geometry and composition.

studies have shown that PBF-LB/M can be used to fabricate high
strength superalloys such as IN718 [1-3], IN738LC [4], CM247LC [5],

1. Introduction

Additive manufacturing (AM) encompasses a range of technologies
where materials are consolidated in layers to construct complex 3D
components. For fabrication of superalloy components, laser powder
bed fusion (PBF-LB/M) further stands out among fusion-based AM
techniques. It is suitable for producing structural parts intended for use
in high performance applications, including aerospace, medical, and
motor racing applications. Essentially, PBF-LB/M uses a laser to fuse
specific sections of powder in a thin material layer with a predefined
scan strategy based on the computer-aided design (CAD) model geom-
etry to achieve the desired features. The same process is repeated for the
subsequent layers until a 3D part is fabricated. In recent years, numerous
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C263 [6], and Hastelloy X [7] for marine and aerospace applications.
The ability of PBF-LB/M to successfully fabricate fully dense and
crack free superalloy components, however, can be closely linked to
their intrinsic weldability and chemistry. Generally, extreme tempera-
ture gradients encountered in all high energy density processes can
induce issues like hot tearing and cracking during solidification of non-
weldable Ni-base superalloys [8-15]. The high energy density accom-
panied with fast laser scanning speeds can also lead to the formation of
keyhole porosity due to the vaporization of the material and the surface
tension [16,17]. While cracks and keyhole porosity are formed due to
the high energy input, lack-of-fusion (LoF) induced porosity are formed
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Table 1

Scan parameters used for the PBF-LB/M process. Note that the nominal IN718
scan parameters, including a laser power of 1000 W, a scanning velocity of
2100 mm/s, a laser spot size of 275 pm, a hatch spacing of 0.14 mm, and a layer
thickness of 50 um, were optimized for the Velo3D Sapphire printer.

Scan parameters compared with nominal parameters

Sample 1 30 % spot size reduction
Sample 2 20 % Power reduction
Sample 3 Same as nominal parameters
Sample 4 20 % Power reduction
Sample 5 Same as nominal parameters

as a result of the low energy density of the laser and usually has an
irregular shape [17,18].

Since the presence of pore-like defects in structural materials is un-
desirable as they act as stress concentrations, defect characterization
becomes a crucial technique for evaluation of the quality of PBF-LB/M
parts. Generally, detection of defects is destructive and requires con-
ventional metallographic procedures, including cutting, mounting,
grinding, polishing, and etching before observation under a microscope.
However, this method confines the analysis into a specific cross-section,
and hence many features may be missing if the defects are non-
uniformly distributed. Therefore, non-destructive testing (NDT) tech-
niques are usually applied to provide an overview of internal structures
including porosities and cracks to establish a quick evaluation of pro-
cessing parameters. As a quantitative measurement method, microfocus
X-ray computed tomography (XCT) has been used successfully to mea-
sure the physical density of objects and estimate the distribution, sizes,
and shapes of micron-sized defects, using a calibration set based on the
magnitude of attenuation coefficient [19]. Recently, a variety of studies
have involved XCT to evaluate potential crack initiation sites [20-22] or
to combine with in-situ monitoring for tracking the formation of various
types of defects for the AM processed Ni-base superalloys [23-25].

While microfocus XCT is a powerful tool, it has some intrinsic limi-
tations. For high atomic number materials, the ability to resolve small
defects (< 100 pm), such as cracks, cavities, and porosity, requires
extended scanning times over a smaller detection area, especially when
higher spatial resolutions are needed. In search of alternatives, ultra-
sonic techniques (UT) have been explored extensively. When a wave
propagates through a non-linear media (e.g. metal parts with porosity),
unlike the linear responses such as reduction in amplitude due to
attenuation and scattering of the material [26], material interactions
between these waves of different frequency at the interfaces of defects
produce non-linear waves due to frequency modulation or higher har-
monic effects. To characterize this variation, three common UT tech-
niques were proposed:

The Higher Harmonic Generation (HHG) Technique operates on the
principle of detecting nonlinearity in a range of materials via a quadratic
nonlinearity parameter [27]. It is particularly sensitive to defects
induced by material fatigue [28,29]. Since second harmonic compo-
nents can also be generated as a result of the instrumentation non-
linearities, such as amplifiers, transducers, and coupling media,
discerning between different sources of nonlinearities becomes the
biggest challenge. Utilizing two-wave or three-wave mixing techniques
[30] along with the selection of lamb waves should mitigate some of
these issues, but this also increases the difficulties for experimental
setups [31].

Nonlinear Wave Modulation Spectroscopy (NWMS) or Frequency
Modulation Technique works by exciting two distinct waves in a spec-
imen: a pumping wave with high amplitude but low frequency to induce
stresses within the samples, and a probing signal characterized by its low
amplitude but high frequency to sense the variation of modulus
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produced by the pump vibration [32]. This vibro-acoustic modulation
technique was commonly used to detect localized defects such as cracks
in structural parts [33,34]. Since only specific excitation frequencies
satisfy the conditions required for generating sidebands, the selection of
the probing and pumping frequencies for NWMS experiments still re-
mains challenging for detecting defects and porosity in an unknown
material.

The Nonlinear Impact Resonance Acoustic Spectroscopy (NIRAS)
functions by monitoring frequency variations correlated with the exci-
tation amplitude. Typically, a specimen is struck with an impactor,
which induces it to a downward resonance peak shift as the strain
amplitude increases. This technique is widely employed for detecting
micro-cracks within composite materials [35,36]. However, it does have
a limitation on the size of specimens and falls short when large defects
need to be identified.

Among these methodologies, the Sideband Peak Counting (SPC)
technique, which was first introduced in Kundu et al. [37], offers distinct
advantages. Instead of measuring the amplitude of peaks induced by
nonlinear interaction as waves propagate, the peaks of the sidebands
above a threshold value are counted, and an increased number of weak
spectral peaks appear when defects are present [37,38]. By averaging
the number of peaks counted at thresholds from low to high, a single
number of SPC index can be extracted to evaluate the degree of
nonlinearity of a material [39]. Its mechanism revolves around the quick
examination of defects without the necessity for precise guided wave
mode generation as the incident wave. The inherent feature not only
speeds up the analysis but also reduces preparatory steps and com-
plexities tied to guided wave accuracies, and hence numerous studies
have focused on the use of SPC technique to characterize the presence of
internal defects such as cracks, delamination, and impact damage
[40-46].

However, as promising as SPC seems, none of the existing studies
have quantitatively resolved differences in the spatial distribution, size,
and volume fraction of defects using the SPC method. Therefore, this
study compares SPC and XCT results of five distinct IN718 samples
processed by PBF-LB/M that have been engineered with varying
porosity attributes. By integrating the qualitative information from SPC
with the quantitative evaluations from XCT, this research aims to
develop more effective approaches for evaluating the porosity structures
in AM materials through ultrasonic defect analysis. The results from
these samples were also be benchmarked against cross-sectional char-
acterization using optical microscopy (OM) to ensure accuracy.

2. Theoretical background
2.1. Mathematical description of sideband generation

Assuming a nonlinear material be excited by elastic waves of two
different frequencies, f; and f, (or angular frequencies w; and w), the
total displacement field induced by elastic waves can be expressed by
the following equation [38]:

u(x, t) = A; (x)sin(wit) + By (x)cos(w: t) + Az (x)sin(wst) + Ba(x)cos(wot)
@

where A; and A, are the amplitudes of the sine components, while
B; and B, are the amplitudes of the cosine components of the
displacement field in terms of the oscillatory motion, representing the
magnitude and phase of the elastic waves at frequencies f; and f,. For
one-dimensional wave movement, the strain field created within the
material can further be derived as [38]:
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e(x,t) = %

= A} (x)sin(w; t) + B} (x)sin(w1t)  + A} (x)sin(wzt) + B, (x)cos(wat)

(2

Considering the classical nonlinear quadratic stress-strain relation,
the total stress field associated with the strain field from equation is
defined as [38]:

A (x)sin(w1t) + B, (x)sin(wt)

olx,8) = [Eo +Ey(6) Jelx,t) = Eo +A, (x)sin(wat) + By (x)cos(w2t)

Here, the first-order nonlinear elastic modulus E;(¢) explicitly de-
pends on the strain ¢, capturing the primary nonlinear response of the
material. The multiplying factors Ni, No,...... , Ng for different trigono-
metric terms are functions of A}, B}, A,, B,. While it is possible to
introduce higher-order nonlinear terms, i.e. Ex(¢), E3(¢), etc., to capture
more complex nonlinear behaviors, the first-order term typically has the
most dominant effect on the nonlinear response. Higher-order terms
often contribute significantly less to the overall behavior and can be
considered negligible in many practical scenarios.

From Eq. 3, it could be seen the non-linear term with frequencies
other than w; and w, generates waves with frequencies 2w; and 2w,
(higher harmonic waves) as well as w; + w» (modulated waves), and
more waves would be generated if higher order terms are included.
These modulated waves are considered as sideband peaks or simply
sidebands.

2.2. Sideband peak count technique

When a broadband pulse laser signal propagates through an in-
spection area with non-linearity induced by defects, nonlinear wave
modulation can occur among various frequency components excited by
the input signal. To identify these nonlinear modulations, the spectral
density distribution Py(f) should be calculated from the time-signal
function x(t) using the following correlation [38,41,43]:

P.(f) = EX(HX (f)] @

where X(f) is the Fourier transform of x(t) and the “prime” denotes the
complex conjugate. Py(f) within selected frequency range is then
normalized to fit its values within unity.

The SPC is defined as the ratio of the number of spectral peaks (Np)
above a threshold (T) to the total peak number (N7) in Py(f) within the
specified spectral frequency range. A lower limit (LL) is defined to avoid
influence from noise, and SPC values are determined when T moves
from LL to 1, i.e. upper limit, UL, using the following correlation:

Np(T)

T) = Np(T) _ )

SPCT) = =8, = N({IL) - N(UL)

As the level of non-linearity increases, more sideband peaks show up
in the spectrum or the sideband amplitude increases proportionally.
Therefore, the SPC plot will show larger values as the number of defects
increases.
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3. Experimental procedure
3.1. Materials

Gas atomized IN718 powder with a chemical composition consistent
with ASTM standard B637 was used in this investigation. The PBF-LB/M
process was carried out by Lockheed Martin Corporation, USA using a
Velo3D Sapphire printer to fabricate tensile bars in an inert Argon gas

Ny (x)sin(2w1t) + Nosin((2w.t)(wnt))

+N3(x)sin((w1 + w2)t) + Na(x)sin((w1 — w2)t)
+N5(x)cos(2w;t) + Ng(x)cos(2mt) (w1 t)
+Ny(x)cos((w1 + w2)t) + Ng(x)cos((w1 — w2)t)

3

atmosphere using five customized process conditions. The core param-
eters are shown in Table 1. Customized scan patterns, generated by the
embedded Flow 4.0 software, were implemented to create different
sizes, fractions, and distributions of porosity in each sample. This
approach facilitated a systematic evaluation of the SPC technique’s
capability to differentiate these engineered variations. These five
distinct samples were part of a build that included 148 tensile bars,
which were stacked and distributed in 74 build plate locations. All
samples were built in near-net shape without subsequent machining.
The dimension of tensile bars and the building direction during the PBF-
LB/M process are illustrated in Fig. 1, and the area of interest for both
ultrasonic test and X-ray computed tomography is highlighted by a red
dotted box.

3.2. Ultrasonic inspection

The experimental configuration used for ultrasonic testing is depic-
ted in Fig. 2(a). A computer controls a BK Precision 4055B function
generator and a Tektronix MDO3024 oscilloscope. To allow the
nonlinearity in the specimen to interact with whichever frequency it is
sensitive to, a wide band chirp signal (0-400 kHz) was sent and prop-
agated through the samples, generating the sidebands [37]. The signals
were then amplified to a peak-to-peak voltage (Vpp) of 20 V through a
PD200 amplifier, and an Olympus PZT transducer was linked to the
amplifier and transform the electrical signal to the sound wave which
propagated through the samples. Subsequently, the output waves were
received by the other PZT transducer and the final signals were recorded
by the oscilloscope that was connected to the computer.

In order to further compare the SPC results with XCT visualization in
a selected area, transducers were clamped with samples by a fixture to
allow acoustic wave travel through the center of gauge section, as shown
in Fig. 2(b). The analytical procedures were displayed in Fig. 3. The time
signal data was collected and were used to estimate the number of
sidebands for further analysis, as illustrated in Fig. 3(a). The receiving
signals under time domain were then calculated using a Fast-Fourier
Transform (FFT) method in Matlab to obtain the side bands under the
frequency domain (Fig. 3(b)). The amplitude was normalized to stan-
dardize the thresholding procedure and fix the upper limit of threshold
to be 1. The SPC value was subsequently determined by counting the
peaks above the selected threshold and below the upper limit. To
minimize the test noise induced by environmental and operational
conditions which can deteriorate the performance of the SPC technique,
the lower limit was set to be 0.07 (see Fig. 3(c)).
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Fig. 1. Schematic illustration showing the sample dimensions of tensile bars. The area of interest for both ultrasonic test and X-ray computed tomography is

highlighted by a red dotted box.
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Fig. 2. (a) Experimental configuration for ultrasonic testing and (b) photo showing the fixture fixing the transducers to detect the acoustic response from the

gauge section.

3.3. Microfocus X-ray computed tomography (XCT) set-up and
experimental test parameters

The gauge section of five distinct specimens (see Fig. 1) were
analyzed non-destructively for the shape and size of their internal
structures using a Shimadzu InspeXio™ SMX™-225CT FPD HR Plus
Microfocus X-ray computed tomography (XCT) with a detector pixel
pitch of 139 uym. Settings used for the evaluation for all samples are
displayed in Table 2, and a 2 mm thick copper plate was utilized to
harden the spectrum. The resolution limit of this system was determined
by the combination of tube current and tube voltage. Parameters used in
the present study allow the system to resolve a line size of 7 pm, which is
close to the selected voxel size. The small enough voxel size allowed for
the quantitative analysis of voids with diameters larger than 10 um. The
projection data with an image resolution of 2048 x 2048 were then
corrected for beam hardening and visualized using open-source software
Paraview 5.11.0 [47]. For better standardization during the porosity
structure analysis, the iso-value selected for binarization was fixed at
50 % within the range between the peaks contributed by the matrix and
porosity, respectively, from the transfer function illustrated by a histo-
gram (see the example in Fig. 4).

The selected pixels were processed using the "Tetrahedralize" and
"Extract surface" algorithms embedded in Paraview to generate a volume
mesh, which helped define the interface of each object in the next step.
Surface approximation and extraction was then carried out using the
algorithm 3D VESPA Alpha Wrapping from the Computational Geome-
try Algorithms Library (CGAL) to generate a valid triangulated surface
mesh that strictly contains the inputs as determined by the binarized
XCT data [48-50]. With the resulting valid surface meshes, object
identification was carried out using the "Compute connected surface

properties" filter in Paraview, which identifies objects with closed
surfaces.

The results after binarization and surface extraction were validated
by comparing the area fraction of porosities between the same image
layers from the unprocessed XCT data and the results processed by
binarization and VESPA Alpha Wrapping algorithm, respectively. As
shown in Fig. 5, it could be seen that the images processed by binar-
ization and surface extraction closely matched the unprocessed XCT
images. Through the image analysis via default image thresholding al-
gorithm using Image J software, whose results are shown in Table 3, the
differences in area fraction of porosity are found to be below 0.5 % for
all tested samples. The comparison demonstrates the reliability of
binarization and surface extraction process to be used for correlating the
acoustic results.

To visualize the volumetric properties of the porosities, an extended
script was incorporated into the pipeline via the “Programmable filter”
function to apply the volumetric data to each pore. The distribution of
porosities was evaluated by estimating the center-to-center distances
between one pore and its 20 nearest neighbors using the k-nearest
neighbors method under the sklearn.neighbors library (Python) [51,52].

3.4. Validation by 2D defect characterization: digital microscopy

The gauge section of samples was sectioned in half via a Struers
precision cut off wheel along the longitudinal direction for microstruc-
tural validation by OM. The sectioned samples were mounted using
phenolic resin and prepared using standard metallographic procedures
with a final grinding step with 1200 grit SiC paper followed by auto-
matic polishing with 9 ym, 3 ym, and 1 pm diamond suspension as well
as 0.05 um alumina suspension. An area of 6 mm x 8 mm was captured
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Table 2
XCT parameters used in the present investigation.
Parameters Value
Voltage (kV) 145
Current (uA) 100
Source to object distance (mm) 25
Source to image distance (mm) 800
Acquisition rate (fps) 4.5
Voxel size (um) 6
Number of views 3600
Number of averages for each view 2
Porosity Threshold Matrix
1 1
| 1
| 1
| 1
! 1
Z 1 |
g|! 1
s 1
| 1
| |
I I
1 I
- !
50 100 150 200
Isovalue

Fig. 4. Illustration showing the selection of binarization from the transfer
function of XCT unprocessed data represented by a histogram. The example was
taken from sample 1.

for each specimen with a pixel size of 2 pm using a Keyence VHX-7000
optical microscope; the subsequent measurements for pore size and area
fraction were conducted using the Keyence image analysis software for
comparison with the XCT observations.

4. Results
4.1. SPC analysis focusing on gauge area

Fig. 6(a) shows the FFT plots for the five distinct samples. It could be
seen that samples 2 and 3 exhibit the most significant peaks at fre-
quencies below 400 kHz. This trend was more pronounced in sample 2
as the peak at low frequency suppressed the relative intensity of peaks at
higher frequencies after normalization. In contrast, samples 1, 4, and 5
show their peaks predominantly at higher frequencies, and the number
of peaks with normalized intensity higher than 0.5 became larger
leading to higher peak counts at higher thresholds, especially for sample
5. According to the plot showing the number of peak counts at different
thresholds, Fig. 6(b), sample 5 exhibited more than 2500 peaks when the
threshold value was set at 0.07. Moreover, unlike samples 2 and 3 whose
number of peaks dropped rapidly before the threshold value increased to
0.5, the number of peaks for sample 5 only presented a slight drop before
the threshold value reached 0.2 and decreased slowly until threshold
value reached 0.7. Although less pronounced, samples 1 and 4 showed a
similar trend to sample 5 leading to higher number of peaks in general
when compared to samples 2 and 3. This observation is in agreement
with the average SPC values which were greater for samples 1, 4, and 5
whereas less for samples 2 and 3, as shown in Table 4.

4.2. Visualization of porosity structure

To further quantify the level of defects and to evaluate the impact of
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Fig. 5. Comparison of the same layers extracted from the unprocessed XCT data and extracted data via binarization and CGAL Alpha Vespa Wrapping algorithm,
respectively, for (a) sample 1, (b) sample 2, (c) sample 3, (d) samples 4, and (e) sample 5.

Table 3

Summary of area fraction of porosity estimated from Fig. 5. The area fraction
was evaluated by the ImageJ software and the binarization was carried out by
the Default algorithm.

Sample Sample Sample Sample Sample
1 2 3 4 5
Unprocessed XCT data
Area fraction of 0.186 3.751 4.206 0.285 0.171
porosity (%)
Extracted data (after binarization and surface extraction)
Area fraction of 0.189 3.227 3.768 0.276 0.197

porosity (%)

defects on the magnitude of SPC in different samples. Microfocus XCT
analysis was carried out to reveal the morphologies and distribution of
porosities within the gauge section of 5 distinct samples, as shown in
Fig. 7. It could be seen that samples 2 and 3 possessed a high fraction of
large, irregular porosity, accompanied by large number of finer poros-
ities with more spherical morphology. On the other hand, samples 1, 4,
and 5 contained mostly spherical porosity that was distributed differ-
ently within the gauge section. Through the statistical analysis for
porosity within each sample, Fig. 8, the volume fraction, mean size, and
maximum size of the porosity can be estimated, as shown in Table 5. It is
noteworthy that samples containing the relatively higher volume frac-
tion and pore size, such as samples 2 and 3, exhibited a smaller average
peak count and magnitude of the SPC value. Furthermore, despite the
same nominal volume fraction of pores, samples 1, 4, and 5 still pre-
sented large variations in number of peaks and SPC values from 625.6
and 0.26 to 371.7 and 0.19, respectively, which correspond to the
decreasing mean size and maximum size of the porosity from 200 um
and 47.5 pm to 140 um and 40.7 pm, respectively. These findings clearly
suggest that the non-linear acoustic response is likely influenced by not
only the number of defects, but also their size and distribution.

To better analyze the morphologies of non-spherical defects, the
sphericity of porosities within each sample was estimated using the
following equation [53]:

ﬂ1/3(6V)2/3

= 4 (6)

where V is defect volume and A is defect surface area. The objects are
considered to be the perfect spheres when y = 1, and defects with y <
0.5 can be regarded as lack-of-fusion defects [54].

Fig. 9 displays the distribution of sphericity for porosities distributed
within distinct samples; the porosities with the size below and beyond
the mean size were analyzed separately to highlight the morphologies of
large defects, as shown in Fig. 9(a) and (b), respectively. It could be seen
that over 50 % of the porosity with the size smaller than the mean
diameter showed the sphericities larger than 0.8 for samples 1, 4, and 5.
Even though some porosity with the size beyond the mean diameter
possessed sphericities smaller than 0.5, the relative frequencies of these
irregular porosities was found to be below 30 % for samples 1, 4, and 5.
This statistical finding indicates that there is a predominance of small,
spherically shaped porosity in these samples as observed in the 3D
visualization results, Fig. 7 and Fig. 8.

In contrast, 56 % and 78 % of porosity larger than the mean size were
observed in sample 2 and sample 3, respectively. Despite the relatively
lower fraction of the non-spherical defects, more than 50 % of fine
porosity had a sphericity below 0.7. The analysis of sphericities has
clearly suggested the morphologies of porosity in sample 2 and sample 3
are dominated by the elongated-shaped or irregularly-shaped defects.

Fig. 10 (a) shows the OM images revealing the cross-section of gauge
area for five distinct samples. The statistical analysis shows that the
equivalent volume fraction was estimated to be 0.047 %, 0.61 %,
0.18 %, 0.066 %, and 0.066 % for sample 1 to sample 5, respectively.
These estimated volume fractions were similar to those evaluated from
the XCT visualization results. The conditions and scan parameters used
for the microfocus XCT analysis provide enough accuracy and spatial
resolution to elucidate the variations in SPC results. In addition, the
irregular or elongated porosity with sizes larger than 100 pm is consis-
tent with the presence of lack-of-fusion defects (y < 0.5) within samples
2 and 3 as observed in the XCT results, Fig. 8 to Fig. 9. Similar obser-
vations showing the characteristic morphologies of lack-of-fusion de-
fects revealed by XCT and metallographic characterization have been
widely reported in the previous studies [55-57]. It should be noted,
however, that there appeared to be differences in the pore size distri-
bution between the samples 4 and 5. Comparison of the OM and XCT
results, Fig. 10 (b), revealed a slightly larger size distribution of pores
within the sample 4, when compared to the maximum and mean size of
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Fig. 6. (a) FFT plots and (b) SPC curves for the five samples.

Table 4
Summary of average number peak counts and SPC values for the five distinct
samples.

Sample Sample Sample Sample Sample
1 2 3 4 5
Average number of 371.7 217.8 333.3 442.2 625.6
peaks
Average SPC 0.19 0.12 0.17 0.22 0.26

porosities estimated by XCT results. This variation might be attributed to
the non-uniform distribution and irregular shapes of porosity within the
samples 4 and 5 that are not captured in the 2D OM images.

5. Discussion

This investigation demonstrates that there are systematic variations
in sideband peak generation that are induced by different volume frac-
tions and sizes of pores in PBF-LB/M processed IN718. Comparison of
the XCT, OM, and SPC results for the same samples has yielded illumi-
nating insights into the relationship between pore structure and result-
ing acoustic response. Several key observations can be derived from our
analysis.

5.1. Influence of porosity structure on SPC response

The SPC results from Fig. 6 and Table 4 have clearly demonstrated
that sample 2 and sample 3 possessed less generation of sidebands
leading to a rapid drop in counting of peaks as magnitude of threshold
increased. Statistical analysis of XCT results (Fig. 8, Fig. 9, and Table 5)
revealed a prevalence of large, irregularly shaped lack-of-fusion defects
in samples 2 and 3. It is also interesting to note that the number of SPC
did not necessarily increase with increasing volume fraction, as evi-
denced by comparing the average peak counts and SPC values with
sample 1, sample 4, and sample 5. Although the volume fraction only

differed by at most 0.01 %, the average peak counts and SPC varied
significantly between sample 1 and sample 5, ranging from 371.7 and
0.19 to 625.6 and 0.26, respectively. Hence, it could be deduced that the
volume fraction of porosity should not be the only factor contributing to
the variations in non-linear acoustic response.

To further understand the other factors that may influence the
sideband generation, the size distributions of pores analyzed from the
XCT results were summarized in Fig. 11 (a) and (b). The median of the
pore sizes can be estimated to be 72 um, 196.3 um, 264.9 um, 66.6 um,
128 um for samples 1-5, respectively. By comparing samples 1, 4, and 5,
it could be further seen that the volume fraction of pores larger than
150 ym increased by 2.5 % and 15 % approximately in sample 4 and
sample 5 resulting in larger mean size and maximum size of porosity as
presented in Table 5. Since the generation of sidebands arises from the
relative opening and closing of an interface (kissing bonds, cracks and/
or crack tips, porosity, etc.), if the defect size is small enough to cause
non-linear effects, then more sideband peaks appear as the contacting
area of surface increases by increasing size of defects [42,58]. Therefore,
the presence of relatively larger pores in samples 4 and 5 likely accounts
for the increase in both the number and amplitude of sidebands,
resulting in higher SPC values compared to sample 1.

It should be noted, however, that the number of sidebands does not
always increase with increasing pore sizes or volume fraction of defects.
As the pore sizes exceeded a certain threshold, the number of sidebands
decreased significantly accompanied with reduce normalized amplitude
in samples 2 and 3. It is known that the non-linear acoustic response is
generated when contact occurs along an interface. Under the same fre-
quencies used for the elastic wave, it would be expected that the small
pores come in contact more frequently causing higher nonlinearity in
the material as the elastic wave passes through the specimens [37,43,
59]. It has been reported earlier that SPC index increases at a faster rate
initially with the increase of defect size (cracks, porosity etc.) and then
its rate of increase goes down and can even become negative for
different structures - welded joints in steel pipes [60,61], composite
plates [39], concrete [44,45,62], and also for additively manufactured
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Fig. 7. XCT visualization results for (a) sample 1, (b) sample 2, (c) sample 3, (d) sample 4, (e) sample 5, respectively.

components [63]. Justifications of such observation have been provided
through peri dynamics based peri-ultrasound modeling [59,64-66].

Even for larger pores, the effective surface area available for gener-
ating sidebands with sufficient amplitude would be limited to tips of
these lack-of-fusion defects. The underlying mechanism is consistent
with the lower measured SPC values in samples 2 and 3 as these large
void spaces in the material’s microstructure might not contribute as
effectively to the nonlinear response as smaller, less connected voids in
samples 1, 4, and 5.

Since it is known that the non-linear acoustic response, such as
higher harmonics, are generated because of the structural in-
homogeneity or elastic inhomogeneity regardless of whether the defects
strengthen or weaken the matrix locally [58,67,68], the distribution of
porosity might have also contributed to the variations in SPC results. To
analyze the distribution of porosity, the center-to-center distances to
neighbors of porosities were measured. By averaging the distances to the
20 nearest neighbors, the cumulative distribution of center-to-center
distances for porosity in samples 1, 2, 3, 4, and 5 was determined and
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Table 5
Summary of statistical analysis for size and volume fraction of pores across five
distinct samples.

Sample Sample Sample Sample Sample

1 2 3 4 5
Volume fraction (%) 0.03 0.66 0.17 0.04 0.03
Max/mean diameter 140/ 461/ 380/ 181/ 200/
(pm) 40.7 81.3 65.7 40.6 47.5

plotted in Fig. 12. Due to the significant increase in volume fraction from
0.03 % to 0.66 %, it could be expected that the porosity within sample 2
shared a shorter distance to their neighbors under the same volume of
samples when compared with the other samples. It is interesting to note
that despite the relatively higher volume fraction of 0.17 % and larger
relative frequency of low-sphericity lack-of-fusion porosity, the

extremely non-uniform distribution of large pores along specific layers
(see Fig. 7 and Fig. 8) led to the increasing distance of pores to their
neighbors. This may account for the relatively larger average SPC when
compared with that of sample 2 as the sideband counts were averaged
among the entire volume, which included those intact regions.

Despite containing a similar volume fraction of porosity, samples 1,
4, and 5 exhibited significantly different average distances between each
pore. According to Fig. 12, the center-to-center distances to neighbors
can be estimated to be 65 pm, 104 um, 98 um at the cumulative fraction
of 50 % while 155 pm, 216 pm, and 259 um at the cumulative fraction of
75 % for samples 1, 4, and 5, respectively. This observation is also
supported by the XCT visualization corresponding to the reduced gauge
volume that is cropped to contain only 90 % of the original diameter,
Fig. 13. It is apparent that the number of pores decreased dramatically in
sample 1, and the top view of visualization (Fig. 13 (c)) further indicates
that there is a much higher tendency of porosity to be spatially
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Fig. 10. (a) OM images showing the cross-sectional view of 5 distinct samples and (b) the corresponding volume-weighted pore size distribution for each sample.

distributed and concentrated near the samples’ surface in sample 1,
when compared to sample 5. Through the statistical analysis of the
selected area, it is noteworthy that sample 1 exhibited a pronounced
drop in volume fraction from 0.03 % to 0.0019 %, whereas sample 5
only exhibited a subtle decrease by 0.01 %. The findings strongly sug-
gest that even for samples that contain similar volume fractions of
porosity, sample 1 would be expected to have higher degree of clustering
than that in samples 4 and 5. This variation is effectively captured in the
SPC results where the value for sample 1 is 0.19, while relatively higher
SPC values of 0.22 and 0.26 were determined for samples 4 and 5.
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5.2. Comparison of methods for defects characterization

The comparative analysis of different defect detection method-
s—specifically ultrasonic testing via SPC, microfocus XCT, and metal-
lographic characterization via OM—reveals complementary insights of
the material’s internal microstructure. Under proper conditions, the SPC
method has shown the ability to accurately assess the overall integrity of
materials without the constraints of sample size and resolution inherent
to XCT. SPC is also unique in its ability to assess large material volumes
quickly, making it an effective screening tool for preliminary qualitative
analysis. Furthermore, unlike the dependence of XCT on the linear
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Fig. 12. Cumulative plots showing the fraction of porosity with different
center-to-center distances between each pore and its nearest 20 neighbors.

attenuation of X-rays that limits the application toward the dense ma-
terials like superalloys or refractory alloys, the SPC method does not
have such restrictions and thus this method can be utilized for a wider
range of materials. It excels at identifying defects by detecting changes
in the material’s non-linearity, which can correlate to variations in the
size, distribution, and type of porosity within the microstructure. When
combined with advanced characterization techniques like laser doppler
vibrometry (LDV) [69-71], contactless detection can be achieved
thereby contributing to more flexibility to conduct structural health
monitoring for more AM components with complex geometries, like
lattice structures, for which transducers cannot be readily used due to
size constraints.

It should be noted that the SPC method is not a ‘ground-truth’
technique and therefore the interpretation of the SPC-index requires
comparison to a ‘standard’ pristine sample, or it must be initially guided
by comparisons with other methods such as XCT. This guidance can then
provide SPC the ability to directly quantify the exact changes in the size
of pores and spatial distribution in samples, independent of their size,
shape and geometry.

The next steps in ensuring the success of SPC as a rapid non-
destructive inspection technique, involves guidance from acoustic
wave propagation simulations that can examine the nonlinear acoustic
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response of materials as a function of different defect distributions. The
combination of such simulation data in conjunction with targeted
ground-truth characterization data (e.g. XCT), can accelerate the utili-
zation of SPC for robust and reliable inspection of parts with the ability
to detect changes in the acoustic response due to the presence of even
solitary defects that are deleterious to the integrity of engineered parts.

On the other hand, XCT yields a more detailed and precise estimation
of defect properties, including size, distribution, and morphologies. This
explicit form of data is essential for validating and correlating the
findings from SPC tests as it provides a direct visual representation of the
internal features. When combined, the spatial data from XCT helps
clarify changes in SPC values from different samples and hence
strengthened the quantitative relationship between the microstructural
characteristics and the acoustic response. Moreover, the microfocus
XCT’s high-resolution 3D imaging capabilities allow for the visualiza-
tion of the porosity down to the micron-scale, and validates the ability of
the SPC method to detect the presence of micron-sized defects in samples
1, 4, and 5.

Lastly, OM serves as an additional validation tool, offering surface-
level visualization down to sub-micron scale that can be correlated
with XCT data to confirm the accuracy of the visualized and recon-
structed 3D structure. Although OM is limited to destructive analysis
and may not capture the full distribution of porosity due to their inho-
mogeneous distribution, it remains a valuable and established technique
for validating the results from XCT.

This study demonstrated the benefits of combining microfocus XCT
and SPC for non-destructive evaluation, providing new insights into how
non-linear acoustic waves are influenced by the size and spatial distri-
bution of porosity in additively manufactured IN718 samples. This
integration has the potential to transform SPC from a qualitative to a
quantitative analysis method. Through the statistical analysis via XCT
data, the size and distribution of porosity were determined to have a
more profound impact on non-linear acoustic response in addition to the
volume fraction. By incorporating the SPC results with the XCT data, we
can correlate SPC values to the size, volume fraction, and spatial dis-
tribution of porosity. This will enable the SPC technique to non-
destructively evaluate the defects within the AM components with
different sizes and geometries and may serve as a substitute for the more
costly and time consuming XCT. As illustrated in Fig. 14, developing a
robust and validated database combined with machine learning ap-
proaches will enable further correlation between SPC and XCT. With a
sufficient database, the SPC method would provide more rapid non-
destructive evaluation to ensure the quality and reliability of addi-
tively manufactured products without the limitations of sample
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Fig. 13. 3D visualization of XCT data and surface extraction results focusing on a region of interest that is 90 % of the gauge diameter for samples 1 and 5: (a) XCT
data visualization before binarization, (b) surface extraction results shown from an isometric view, and (c) surface extraction results shown from a top view. Note that
the visualizations are extracted from the same data used in Fig. 8 for samples 1 and 5.

dimensions, geometries, and X-ray attenuation. Utilizing advanced
acoustic detection methods like laser doppler vibrometry and acoustic
wave propagation simulations, the integrated XCT and machine
learning-driven SPC approach could be combined with in-situ process as
well as evaluation of critical individual defects, potentially helping to
accelerate the qualification and standardization of different components
fabricated via additive manufacturing.
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6. Conclusion

This study elucidates the influence of porosity characteristics on the
non-linear acoustic response of IN718 fabricated via PBF-LB/M. By
correlating the SPC method with microfocus XCT non-destructive
techniques, we have generated new knowledge that now links physical
attributes of porosities to the magnitudes of the SPC results. The critical
findings are outlined as follows:
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e The non-linear acoustical response, indicated by the number of peaks
and SPC values, is predominantly affected by the porosity size dis-
tribution in addition to the volume fraction. Samples with large lack-
of-fusion defects exhibited a less pronounced generation of side-
bands, leading to a rapid decrease in peak counts as the threshold
increased. This was evidenced by the lower average peak counts and
SPC values observed in samples 2 and 3 in contrast to 1, 4, and 5
which displayed smaller and more uniformly distributed porosities.
By examining the distances between closest 20 neighbors within
samples containing the similar volume fraction of porosities, the
increases in magnitudes of number of peak counts and SPC were
found to be inversely proportional to the degree of clustering of
porosities. The findings highlight the distribution of porosities could
also significantly impact the non-linear acoustic response.

The comparative study of SPC and XCT underlined the potential of
utilizing both methods for a more comprehensive non-destructive
evaluation of defects. SPC serves as an effective preliminary
screening tool, while XCT offers a more detailed and precise esti-
mation of defect properties in a selected area. Through data-driven
analysis, this combination offers a novel and cost-effective solu-
tion, using ultrasonic and SPC methods, to rapidly understand the as-
built properties during the AM process, regardless of the compo-
nent’s geometry.
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