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Abstract

Major efforts in recent years have been directed towards understanding molec-
ular transport in polymeric membranes, in particular reverse osmosis and
nanofiltration membranes. Transition-state theory is an increasingly com-
mon approach to explore mechanisms of transmembrane permeation with
molecular details, but most applications of this theory treat all free energy
barriers to transport within the membrane as equal. This assumption ne-
glects the inherent structural and chemical heterogeneity in polymeric mem-
branes. In this work, we expand the transition-state theory framework to
include distributions of membrane free energy barriers. Our mathemati-
cal framework is mechanism-agnostic, such that it generalizes to transport
through any membrane for molecular separation. However, we focus our
analysis on dense nanofiltration and reverse osmosis membranes. We show
that the highest free energy barriers along the most permeable paths, rather
than typical paths, provide the largest contributions to the experimentally-
observed effective free energy barrier. We show that even moderate, random
heterogeneity in molecular barriers will significantly impact how we interpret
the mechanisms of transport through these membranes. Our study suggests
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that experimentally-measured barriers are not easily related to the underly-
ing mechanisms governing transport, and simplified interpretations of these
barriers will likely miss the mechanisms most relevant to the overall perme-
ability.

Keywords: Transition-state theory, free energy barriers, reverse osmosis,
nanofiltration, membrane heterogeneity

1. Introduction

Understanding the molecular-level mechanisms that govern transport and
selectivity in salt-rejecting membranes, such as those used in nanofiltration
(NF) and reverse osmosis (RO), is necessary for the development of next-
generation desalination and water treatment technologies [1-3]. Numerous
models have been proposed over the years to explain the observed transport
and selectivity trends in these membranes. However, these models struggle
to describe the molecular details of transport through nanometer and sub-
nanometer membrane voids and channels [4-7]. Developing improved theo-
retical frameworks and approaches will enhance our understanding of molec-
ular transport in polymeric membranes and help to design future membranes
that can address specific requirements [8-10].

A number of studies of RO and NF membranes have examined the utility
of measuring energy barriers to membrane permeability based on either the
Arrhenius framework [3, 11-14] or the similar but more rigorous transition-
state theory framework [15-20] in order to elucidate details of the molecular
mechanisms of transport via experiment. At the simplest level, the Arrhe-
nius activation energy model can be used to understand the energetics of
molecular barriers. The Arrhenius equation relates the rate constant k£ to a
pre-exponential factor A and the reaction’s activation energy FE,, as shown
in Eq. 1 where R and T" are the gas constant and temperature, respectively.

—FE
k=Aexp | —— 1
o(7) 0
Based on this framework, the activation parameters (i.e., the energy bar-
rier and the pre-exponential factor) are often measured since they can be

directly extracted from the slope and intercept of the linearized Arrhenius
equation and can provide mechanistic information on the molecular events.
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By assuming that membrane permeability is an elementary rate process char-
acterized by some molecular-level energy barriers to transport, the Arrhenius
equation can be used to estimate these energy barriers. Permeability (P),
instead of k, is treated as an Arrhenius rate in order to relate it to the ac-
tivation parameters. Linearizing Eq. 1 yields the typical application of the
Arrhenius framework for membrane permeability:

i @

Breaking down the permeability into these activation parameters could,
in theory, differentiate between mechanisms that are indistinguishable with
common modeling frameworks because the activation parameters are ex-
pected to correspond to molecular-level phenomena, such as molecular re-
arrangement or ion dehydration [15].

A more thermodynamically rigorous model was proposed by Zwolinski,
Eyring, and Reese, who described membrane transport using transition-state
theory in 1949 [21]. They direct connected permeability to enthalpic and
entropic barriers. They adopted Eyring’s original theory of reaction rates
to describe membrane transport in order to probe how free energy barriers
govern permeability. Instead of a quasi-equilibrium between the reactants
and the activated complexes, they considered a quasi-equilibrium between
molecular jumps through the membrane. They treated membrane transport
as jumps governed by rate constants, which could be generalized to any
membrane system or transport mechanism, provided that the associated rates
were appropriately quantified (Fig. S1). They demonstrated the applicability
of their framework with biological membranes in a simple solution-membrane-
solution framework.

Typical applications of polymeric membranes, which are much thicker
than biological membranes, rely on the assumption that membrane diffusion
can be described as a series of molecular jumps over equal free energy bar-
riers, or equivalently as a single dominant free energy barrier [13, 22, 23].
Assuming the barriers within a polymeric membrane are equal does not iso-
late individual mechanisms and ignores the inherent heterogeneity within
polymeric membranes. Most notably, such assumption may hinder our un-
derstanding of the experimentally measured effective free energy barriers and
their associated enthalpic and entropic barriers [14, 17, 24].

In this study, we derive an expanded formulation of transition-state theory
applied to membrane permeation that incorporates a more realistic picture

InP=InA-
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Figure 1: Schematic for the expanded transition-state theory framework applied
to permeability for heterogeneous polymer membranes. A, ; ; is the jump length
within the membrane for jump j on path i, Ay, is the jump length for the solution-
membrane interface, A\,,s is the jump length for the membrane-solution interface, kg, is
the rate constant for the solution-membrane interfacial jump, k,,s is the rate constant
for the membrane-solution interfacial jump, and k,,; ; is the rate constant for the jth
membrane jump in path i.

of transport in reverse osmosis and nanofiltration membranes. We extend
the earlier work by Eyring and coworkers [21, 25] to account for distributions
of free energy barriers that exist within any realistic membrane. Statistical
mechanics tells us that to connect molecular phenomena like jumps between
voids in a membrane to macroscopic quantities like permeability we must
consider the probability distributions associated with those molecular phe-
nomena. We adapt theories for parallel arrays of pores [22, 26] to molecular
pathways through polymeric membranes, developing a novel expression for
membrane permeability in terms of molecular jumps along the transport co-
ordinates of many independent pathways. This expression for permeability
expands previous derivations [21, 25, 27| to generalized membrane barrier
distributions. Fig. 1 shows a representative free energy landscape for trans-
port through a membrane, incorporating more realistic nanoscale hetero-
geneity. Our mathematical framework is general for any solutes through any
membrane, as it is expressed only in terms of transition barriers. However,
our choices of parameters, our interpretations, and our conclusions focus on
nanofiltration and reverse osmosis membranes for solution-phase separations.

Based on our extended framework, we present a numerical study with sta-
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tistically random distributions to illustrate the effects of distributions of free
energy barriers on the transition-state theory framework. Using this frame-
work, we relate the observable, effective free energy barrier and its enthalpic
and entropic components to distributions of energy barriers for individual
molecular jumps. An effective free energy barrier that averages molecular
events has not been developed previously for arbitrary barrier heights across
many parallel paths, despite its growing application in highly heterogeneous
polymer membranes. We also explicitly address the accessible area to trans-
port in the derivation of the permeability in terms of the individual molecular
barriers across many parallel paths.

Finally, we discuss how researchers must use caution when interpreting
experimentally-observed free energy barriers in membranes, and how hetero-
geneity, even at the molecular level (i.e. at the single nanometer or even
Angstrom scale), has a significant impact on membrane transport. Notably,
our results highlight that observable barriers do not necessarily correspond
to individual mechanisms in the membrane. Additionally, we show that these
observable barriers are not necessarily representative of the average barriers
nor the most frequent barriers experienced by molecules in the membrane.

2. Proposed Theoretical Framework

To construct our framework, we relax two of the main assumptions pre-
sented by Zwolinski et al. [21], by allowing for distributions of membrane
barriers and jump lengths. We apply their equation for flux to a membrane
with solution on either side as in Fig. 1. We treat all solution jump rates
ks as equal and membrane jump rates k,,; as unequal. Similarly, we treat
all solution jump lengths A as equal and membrane jump lengths A, ; as
unequal. As a result, the permeability can be written in terms of the free
energy barriers and jump lengths through the interfaces and membrane. The
full derivation is provided in the Supplementary Materials Section S1.2. We
use permeability as it is defined in the original derivation by Zwolinski and
coworkers [21] — flux divided by concentration gradient. The permeability
for a single molecular pathway becomes:
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where P is permeability, and kg, T, h, and R are Boltzmann’s constant,
temperature, Planck’s constant, and the gas constant. M\, and \,,s are
the jump lengths from solution to membrane and membrane to solution,
respectively. Similarly, AG*  and AG? . are the free energy barriers for the
solution-to-membrane jumps and membrane-to-solution jumps. Aan’ ; 1s the
free energy barrier for membrane jump j.

The permeability in Eq. 3 only describes transport along a single molec-
ular pathway. The observed permeability is a combination of all accessible
molecular paths, similar to the parallel array of pores described by Wendt
et al. [26]. We apply this relationship to our expression for permeability to
obtain an area-weighted permeability across many parallel paths. By intro-
ducing the fraction of accessible area, the transition-state theory framework
can be applied to both membranes with permanent pores or with fluctuating
voids. Therefore, the overall permeability for N paths per unit area each
with M; barriers is:

(3)

P-3
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where A; is the cross-sectional area for path i, Ay is the membrane unit
area being considered, and M; is the number of membrane jumps for path
¢. Similar to Eq. 3, A, ; and AGfm-’j are the jump length and free energy
barrier for the j** membrane jump on path i, respectively.

We express the effective free energy barrier from Eyring’s original deriva-
tion (Eq. S5) in terms of distributions of membrane free energy barriers and
jump lengths across many parallel paths with different numbers of jumps.

To do this, we equate Eq. S5 to Eq. 4 and solve for AGiff. Eq. 5 gives the
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resulting analytical expression for the overall effective free energy barrier, the
main theoretical result of this paper.
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(5)
In Eq. 5, we introduce two parameters from the original expression for mem-
brane permeability (Eq. S5). These parameters are ¢, the membrane thick-
ness, and A4, the average jump length.

We can decompose this effective free energy barrier into enthalpic and
entropic terms. Under the same assumptions as the original expression by
Zwolinski et al. but expanded to include parallel paths, we find an effective
entropic penalty resulting from the fraction of membrane area accessible to
permeation. The permeability only depends on the path areas that are ac-
cessible to transport. The accessible area to transport is not necessarily the
total membrane area, as shown in Eq. S7. This result is consistent with ex-
perimental barriers calculated for ions in NF membranes, where the entropy
was attributed to geometric constraints on the void volumes [3, 17]. Eq. 6
more clearly shows this “entropic” penalty if we additionally assume all paths
are energetically identical. Zwolinski et al. implicitly assumed that the entire
area is accessible to transport, or equivalently that ZZ]\LI A; = Ag such that
the entropic penalty is 0. The area fraction accessible to transport, because
it is not temperature dependent, would manifest as part of the overall effec-
tive entropy. When we expand the scenario presented by Zwolinski et al. to
parallel paths, the overall equation becomes:

Es

AGH

N
Ly = [AH, + AH, — AH} |-T |AS}, + ASL, — AS}  + Rln (Z
=1

o

(6
AH} and AS* are the enthalpic and entropic barriers within the membrane,
and similarly, AH}  AS* ~AH}  and AS?E, are the enthalpic and entropic

barriers at the solution-membrane (sm) and membrane-solution (ms) inter-
faces.




158

159

160

161

162

163

164

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

190

191

192

In this study, we focus on the scenario where transport is primarily hin-
dered by diffusion through the membrane, not membrane entry or exit [13,
28]. As a result, we treat the jumps across the solution-membrane and
membrane-solution interfaces as fast and their associated free energy bar-
riers as negligible. We additionally assume interfacial barriers are constant
across all parallel paths. In this case, AGY, and AG?  are constant for all i
paths and small compared to AGme ;- However, in some cases, these barriers
may be significant factors in modeling membrane transport. For example,
ion transport through charged membranes may introduce a large barrier due
to Donnan exclusion [20]. To include the effect of the interfaces, there are
two significant scenarios to address. In the first case, interfacial barriers
dominate the transport. Only the interfacial barriers and their heterogeneity
across parallel paths would need to be considered. In the second case, in-
terfacial barriers are of similar magnitude to barriers within the membrane.
Since the individual barriers appear as a sum in the permeability expression,
the order of barriers does not change the interpretation of the single path
effective free energy barrier [27|. Therefore, the interfacial barriers can be
included in the overall framework with corresponding distributions.

3. Experimental

3.1. Numerical methods

We numerically evaluate our expanded transition-state theory model for
membrane permeability by drawing magnitudes for each of the individual
enthalpic and entropic barriers from independent random distributions. To
explore a range of resulting outcomes, we select two common distributions
with some physical motivation. First, we assume a fixed mean and normally
distributed barrier heights around this mean. Physically, this distribution
would model membranes with a consistent nanostructure on average, with
some statistical variation at the molecular level. Most molecular pathways
would thus have similar environments and jump mechanisms, such that the
barriers would be similar, though with some variation. Second, we choose ex-
ponentially distributed barrier heights to represent membranes with a large
amount of heterogeneity. All paths would have regions of unfavorable mech-
anisms with a few high barriers, as well as regions of low-barrier mechanisms
more similar to free diffusion. Normal and exponential distributions occur in
many natural phenomena, and thus represent two useful extremes of possible
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behavior. In virtually all cases, the actual distributions best describing mem-
brane transport are unknown, and we may not have explored the parameter
ranges that are most physically relevant. However, the analysis is generalized
to be broadly applicable, so the main conclusions of the work are unaffected
by the choice of distributions.

The free energy, enthalpy, and entropy associated with a molecular jump
are interrelated; only two can be specified independently. We draw enthalpic
and entropic barriers from independent distributions. In reality, these bar-
riers are likely correlated, for example, through observed enthalpy-entropy
compensation. However, it would be difficult to estimate appropriate covari-
ances as enthalpy-entropy compensation is not well-understood in polymeric
membranes [19, 20]. We draw heights of the enthalpic barriers from distri-
butions with mean 3.5 kcal/mol, which corresponds to the observed effective
enthalpic barrier for chloride within NF membranes at 300 K [29], and we
draw entropic barriers from distributions with mean -0.03 kcal /mol-K, which
corresponds to the observed effective entropic barrier for chloride under the
same conditions [29]. This combination results in an effective free energy of
AGiff = AHiff —TASEff = 12.5 kcal/mol, at 300 K. Unless otherwise spec-
ified, the standard deviation for the normally distributed enthalpic barriers
is 1.17 kcal/mol, and the standard deviation for the normally distributed
entropic barriers is 0.01 kcal/mol-K. These standard deviations ensure the
normally distributed barriers represent membranes with less heterogeneity
than the exponentially distributed barriers. Exponential distributions are
defined by a single parameter, so specifying their mean is enough to fully
define them.

Typical RO and NF membrane selective layers are between 10 and 200 nm,
or 100 and 2000 A [30, 31]. We estimate individual jumps to be between 1
and 10 A as done in previous work based on diffusion calculations [15, 18, 21].
Assuming no tortuosity along the path results in 10 to 2000 jumps. We use
200 jumps of length 2 A unless otherwise specified. We test how sensitive our
results are to jump lengths and number of jumps in Supplemental Materials
Section S2.2.

In simulating membranes with multiple paths across the membrane, we
use 2 x 107* as an estimate for the number of paths per A®. This estimate
is approximately one order of magnitude smaller than the estimated packing
density of single-walled carbon nanotubes with a diameter of 0.5 nm (more in-
formation provided in the Supplementary Materials Section S2.1), to account
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for the heterogeneity of polymer membranes. Here, we show trends for 2000
paths through the membrane unless otherwise stated, which roughly corre-
sponds to a unit area of 0.1 pm?, enough to converge average results across a
distribution of paths. See Fig. S2 for determination of the number of paths
needed for convergence. When testing the model, we assume independent and
separate pathways through the membrane, but in reality, the molecular-level
pathways almost certainly can merge, split, and interconnect. Incorporating
this additional heterogeneity is beyond the scope of the current study. How-
ever, this framework can be easily extended to introduce correlated barrier
distributions between paths and consideration of topological effects, as for
example in the work of Culp et al. [32]. Similar to correlations between bar-
riers, it would be difficult to determine a priori appropriate covariances for
any given polymeric membrane. However, by treating the molecular jumps as
resistances, many different topologies could be explored with parallel-series
circuit models. This circuit model theory is well-developed for interconnected
pathway flows and can be readily expanded to include varying barriers [33—
36]. The code implementation for our numerical analysis is on Github at
https://github.com/shirtsgroup/eyring_model.

3.2. Crossflow filtration experiments

Filtration experiments were performed with two types of flat-sheet com-
mercial membranes in a crossflow mode — a loose polyamide NF membrane
(NF270, Dow FilmTec) and a tight polyamide RO membrane (SW30, Dow
FilmTec). Single-salt solutions of NaCl and NaF at 5 mM were used as feed
solutions. The filtration experiments were carried out at pH 7, with an ap-
plied pressure of 33 bar and a crossflow velocity of 2.13 m/s. In order to
calculate transition-state theory barriers, the salt flux was measured at 6
temperatures from 10 °C to 40 °C. The permeability at these temperatures

was calculated using
J;

P=—— 7
cnC, (7)
where J; is the salt flux and (), and C,, are the salt concentrations on the
membrane surface in the feed side and in the permeate solution, respectively.
Concentration polarization on the membrane surface and C),, were evaluated
using previously reported methods given also in the Supplementary Mate-
rials Section S3.1 [37]. The effective overall enthalpic and entropic barriers
were extracted from the slope and intercept of the linearized Eyring plot, as

10
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shown previously [19]. These experiments were replicated 3 times for each
temperature.

3.3. Measurement of barriers to transport of salt in water

Energy barriers to transport of salt in water were calculated by measuring
the conductivity (Eutech Instruments, CON2700) of 5 mM sodium chloride
solutions at 4 different temperatures between 25 °C and 45 °C. The barriers
for the conductivity were then extracted using the same method applied to
calculate the barriers of the permeability. The resulting transition-state the-
ory plot for conductivity in water is provided in the Supplementary Materials
Fig. S6.

4. Results

4.1. The single path effective free energy barrier is highly dependent on the
heterogeneity of the individual barrier distributions

We find that the effective free energy barrier along a single path is slightly
below the maximum free energy barrier of the underlying distributions, and
significantly larger than the mean free energy barrier. The single path effec-
tive free energy barrier can be related to the distribution of membrane free
energy barriers AanJ by assuming a single path ¢ where the entire area is
accessible to transport. Fig. 2A shows where the single path effective free
energy barrier would lie for one realization of the barrier distribution, as-
suming the underlying distributions for the enthalpic and entropic barriers
follow normal distributions and exponential distributions. Fig. 2B shows free
energy profiles for single pathways through the membrane with the barrier
distributions in Fig. 2A. We only show free energy profiles for half of the
length of the membrane to ensure the figure is legible.

The single path effective free energy barrier is most affected by the largest
individual barriers, qualitatively consistent with Giddings and Eyring’s k'T-
cutoff [25]. We numerically test the kT-cutoff model by comparing the ef-
fective free energy barrier calculated with all barriers and the effective free
energy barrier calculated with only those in the kT-cutoff. The effective bar-
rier calculated with the barriers within the kT-cutoff is within 15% and 6%
of the actual effective barrier, for 1000 realizations of normally distributed
and exponentially distributed barriers, respectively. Larger variance in the
underlying barrier distributions introduces high outliers that significantly in-
crease the single path effective free energy barrier. In Fig. 2A, the higher

11
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variance path with exponentially distributed barriers gives a much larger
single path effective barrier than the path with normally distributed barri-
ers. Fig. 2 shows that the single path effective barrier is slightly below the
maximum barrier and well above the mean at 12.5 kcal/mol. The effective
barrier through a single path does not depend on the locations or orders of
the barriers, as it can be calculated from an unordered distribution as in

Fig. 2A.
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Figure 2: A realization of distributions of membrane barriers along a single
path. (A) For both realizations considered, the effective free energy barrier for a single
path lies near the maximum of the distribution. Larger variance in the distribution results
in a significantly larger effective barrier. The effective free energy barrier is shown as a
dashed vertical line. The mean free energy barrier for both distributions is 12.5 kcal/mol
with further discussion in Section 3.1. We use 200 jumps of 2 A each through a single path
at 300 K. (B) The effective free energy barrier along a single path is most similar to the
maximum barrier along the path. We show only half of the membrane pathways simulated
in A to better visualize the individual barriers. The effective free energy barriers for each
path are shown as dashed horizontal lines. Enthalpic and entropic barriers are each drawn
independently from the specified distributions and combined to calculate the free energy
barrier.
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Figure 3: Effective free energy barriers depend on the largest underlying bar-
riers. The overall effective free energy barrier is near the maximum of the individual free
energy barriers and near the minimum of the single path effective free energy barriers.
Membrane barrier distributions have the same mean of 12.5 kcal/mol. The underlying
enthalpic and entropic barriers are all equal (A), normally distributed (B), and exponen-
tially distributed (C). The effective free energy barriers are shown as dashed vertical lines.
The overall effective free energy barriers are calculated by Eq. 5. We use 200 jumps of 2
A each for all 2000 paths.

4.2. The overall effective free energy barrier is determined by the highest
barriers in the most permeable paths

Expanding the model to a membrane comprising many parallel paths,
we find the overall effective free energy barrier through the membrane from
Eq. 5 lies within the high tail of the underlying barrier distributions and the
low tail of the single path effective barriers. In Fig. 3, we show the overall
effective free energy barriers for 2000 paths compared to the distributions of
individual free energy barriers and the distributions of single path effective
barriers. The entropic penalty from the accessible area for transport as shown
in Eq. 6 is assumed to be 0. If all paths have equal individual barriers as
in the original Zwolinski et al. derivation, the overall effective free energy
barrier collapses to be identical to an individual membrane barrier, as shown
in Fig. 3A.

Fig. 3B and Fig. 3C show that the overall effective barrier for the mem-
brane lies near the maximum individual barrier. Equivalently, the overall
effective barrier lies near the lowest single path effective barrier. Therefore,

13



322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

when we consider distributions of free energy barriers across many pathways,
the overall effective free energy barrier to permeability is not the difference
in free energy between the species in solution and the species at the top of
the highest potential energy barrier. Rather, it is heavily dependent on the
highest barriers within the paths with the lowest single path effective barri-
ers. These single path effective barriers are most dependent on the highest
individual barriers along the path. We demonstrate that the overall effec-
tive barrier is typically determined by the paths whose highest barriers are
relatively low in Fig. 4A and Fig. 4B, where we plot each path’s maximum
barrier. The overall effective barrier is near the lowest maximum barriers,
which is in turn near, but not at, the top of the distribution of individual
barrier heights.

4.8. Heterogeneity in molecular pathways dictates membrane flux

Intuitively, the overall flux is most determined by the paths with the
highest permeability, and Fig. 4C confirms this trend in the transition-state
theory model for molecular pathways through a membrane. Importantly, this
is true not only for macroscopic defects, but also for mechanistic molecular
barriers. If all individual membrane barriers are equal, the flux is evenly dis-
tributed across all parallel paths as shown in the straight, dark blue line. As
more heterogeneity is introduced from the distributions of membrane barri-
ers, the flux is skewed towards highly permeable paths. Distributions of free
energy barriers within the membrane create more favorable paths through
the membrane. Physically, paths through easily traversed voids will con-
tribute most to the total permeability, and paths that require energetically
unfavorable rearrangement and hopping will contribute least to the perme-
ability.

For a real membrane, all the molecular pathways will have variance in
their energy barriers, jumps, and total path length, and therefore outlier
pathways with high permeability will contribute the most to observable en-
ergy barriers. Fig. 5 gives one realization of the model where the underlying
barriers, jump lengths, and the number of jumps are each normally dis-
tributed, and we highlight two important free energy profiles through the
membrane—the most permeable path (blue) and the path with the smallest
maximum barrier (red). The highest permeability paths have low maximum
barriers and fewer jumps. In the model, fewer jumps corresponds to fewer
opportunities for high outliers in the membrane barrier distribution.
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Figure 4: The effective free energy barrier and flux are dominated by paths with
low maximum barriers. (A,B) The effective free energy barrier in the case of many
pathways is primarily determined by the paths with the smallest maximum barriers. We
show the distribution of maximum barriers for each of 2000 paths through the membrane.
For normally (A) and exponentially (B) distributed enthalpic and entropic barriers, the
overall effective free energy barrier is shown as a dashed line. The entropic penalty from
the accessible area for transport is assumed to be 0 to highlight the effect of the barrier
heights. (C) More heterogeneous free energy landscapes create a few highly permeable
paths that dominate the flux, as shown by the fraction of the flux through the most
permeable paths. The fluxes are calculated in the case of normally distributed enthalpic
and entropic barriers with increasing variance as given by the standard deviation (o) of
Aan,i, ;- The standard deviation for the enthalpic barriers ranges from 1 X 107% to 10
kcal/mol, and the standard deviation for the entropic barriers ranges from 3.3 x 1077 to
3.3 x 1072 kcal/mol-K.

These paths might correspond to large voids or defects in the membrane,
where molecules can easily take large jumps. A low maximum barrier may
represent a pore that has a single small constriction but is otherwise rela-
tively open. These constrictions would likely involve both large enthalpic and
entropic contributions. The enthalpic contributions would be a result of ion
dehydration or polymer fluctuations, while the entropic contributions would
come from the additional time needed to discover the low enthalpy routes
through the bottlenecks, in either the forward or reverse direction. Another
high permeability path may be through a region of loose, flexible polymer,
where most polymer rearrangements are low-energy or allow for large jumps.
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Other possible physical mechanisms that would introduce high barriers in
permeable pathways could involve the chemical heterogeneity of the polymer
or solute. The presence of ionized functional groups, such as carboxylates
and protonated amines, would increase the free energy barriers to jumps of
like-charge ions between metastable sites. In order for molecules to escape
entrapment and overcome large barriers, they may need to disrupt hydrogen-
bonding networks between water molecules and polymer atoms.

In contrast to the substantial effect from distributions in the barrier ther-
modynamics, we find the overall effective free energy barrier does not vary
much with distributions of number of jumps or jump lengths. Assuming all
barrier heights are equal, introducing heterogeneity in the jumps results in
changes on the order of 0.5 kcal/mol. This finding has a caveat that the
overall effective barrier can be decreased moderately when a non-negligible
number of paths contain only a few (single digit numbers) jumps, where the
effects might be as large as 1.5 kcal/mol. However, this is still a small con-
tributing factor compared to the effects from variation in barrier heights. In
the case of varying both barrier heights and numbers of jumps, we expect
a larger difference in the overall effective barrier caused by paths with both
small numbers of jumps and no high energy barriers among those jumps.
We do not explore this regime quantitatively in this study due to the large
number of possible variables. We present an in-depth discussion of the ef-
fects of jump lengths and number of jumps in the Supplementary Materials
Section S2.2.

In Fig. 5, we show a realization where the most permeable path does
not have the smallest maximum barrier. While its maximum barrier is com-
paratively small, it is not the smallest maximum barrier. We tested how
frequently the smallest maximum barrier path is also the most permeable
path for both normally distributed and exponentially distributed underlying
barriers. For 1000 realizations of normally distributed membrane barriers,
the smallest maximum barrier path is the most permeable path in 60.8%
of the realizations. That percentage jumps to 90.0% for exponentially dis-
tributed barriers with the same mean. Of the realizations where the smallest
maximum barrier path is not the most permeable path, the maximum bar-
rier in the most permeable path is similar to the smallest maximum barrier
95.9% of the time for normally distributed barriers and 97.0% of the time
for exponentially distributed barriers. Barriers are considered similar if they
are within kg7, as defined by Giddings and Eyring’s “kT-cutoff” [25].
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Figure 5: Smallest maximum barrier path and the most permeable path through
a membrane with normal barriers, jump lengths, and jump numbers. Pathways
with low maximum barriers and a few large jumps contribute most to the overall effective
barrier. Over a realization of 2000 paths with normally distributed enthalpic and entropic
barriers, jump lengths, and number of jumps, the path with the smallest maximum barrier
is shown in red, and the path with the highest permeability is shown in blue. While the
most permeable path does not have the smallest maximum barrier, its maximum barrier
is low and it requires fewer jumps. The overall effective free energy barrier for 2000 paths,
shifted by the effective entropic penalty from parallel paths is shown as a dashed line. We
shift the effective free energy barrier by the entropic penalty to better show the direct
connection of effective barriers to the barrier height distribution.

4.4. Overall effective enthalpic and entropic barriers are larger than the typ-
ical barriers experienced by molecules in the membrane

Zwolinski and coworkers’ expression for permeability (given in our Eq. S5)
has been used to estimate the overall effective enthalpic and entropic bar-
riers to membrane transport. Typically, this equation is linearized so the

1

slope is —Afgf L and the intercept is A%f L. Therefore, the enthalpic and
entropic contributions to the permeability can be estimated by simply mea-
suring permeability at a range of temperatures [15]. We follow this approach
using permeabilities from our numerical model evaluated at a range of tem-
peratures. Individual barriers at each temperature are drawn from random
distributions with the same parameters.

As with free energies, the overall effective enthalpy and entropy calculated
from the linearized fit lie in the high magnitude tail of the underlying distri-

butions of enthalpies and entropies. Fig. 6 demonstrates how the measured
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Figure 6: Distributions of enthalpic, entropic, and free energy barriers and their
overall effective barriers. Effective entropic and enthalpic barriers are found towards
the tails of their underlying distributions. In these examples, the effective entropic barriers
have a larger relative shift compared to the effective enthalpic barriers due to the accessible
area entropic penalty. We calculate the overall effective barriers for 22,000 paths from the
linearized permeability vs. temperature. Standard errors for the effective barriers and
means are shown as lightly shaded regions. Error for the means and normally distributed
barriers are too small to be visible.

enthalpic and entropic barriers are larger in magnitude than their respec-
tive average barriers in the membrane. These distributions are for 22,000
paths with 200 jumps each for temperatures at 10 K increments between
250 K and 350 K. We simulate 22,000 paths (which would be approximately
equivalent to 1 pm?, following the same procedure provided in the Supple-
mentary Materials Section S2.1) to reduce the error in the effective barriers
for the exponential distributions, since the exponential distributions have
higher variance.

The relative shift in the entropic barrier is larger than that for the en-
thalpic barrier because the entropic shift also includes the contribution from
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transport-accessible area, as that contribution is temperature independent
and would be interpreted as entropy. Additionally, in Fig. 6, the mean en-
m72‘7j

tropic contribution <—TASi > is larger than the enthalpic contribution,

further exaggerating the difference in effective barriers. Increasing the vari-
ance in the membrane barrier distribution increases the magnitudes of the
overall effective enthalpic and entropic barriers, as shown by the higher vari-
ance exponential distributions in Fig. 6. Higher variance introduces higher
maximum barriers along single paths, which heavily influences the overall
barrier to transport. We find that observable entropic and enthalpic barri-
ers are, again, not representative of the typical or mean mechanisms in the
membrane but rather, of the rate-limiting mechanisms along only the most
permeable paths.

4.5. Implications for experimental study of effective energy barriers in RO
and NF membranes

In experimental studies of molecular transport in polymeric membranes,
the measured barrier is considered an overall effective parameter that rep-
resents the transport of a given solute, and the physical meaning has not
been fully established for aqueous transport in polymeric membranes. Based
on the current study, we can better analyze and understand effective energy
barriers in the context of many individual energy barriers in parallel and
series.

To demonstrate the implications our analysis has on the experimental
study of effective energy barriers, we extracted effective transition-state bar-
riers from permeabilities of a selection of salts in a selection of membranes.
Specifically, we experimentally measured the permeability of sodium chlo-
ride (NaCl) in a NF membrane at six temperatures to extract the effec-
tive enthalpic barrier for the salt transport from the slope of the linearized
transition-state theory plot (Fig. 7A). We also performed a similar measure-
ment for the transport of sodium fluoride (NaF) in the same NF membrane
and for NaCl in a RO membrane (Fig. 7A). Finally, we measured the in-
crease of NaCl conductivity with temperature in water and constructed its
corresponding linearized transition-state theory plot (Fig. S6). The effective
enthalpic barriers measured for the four cases are shown in Fig. 7B.

Fig. 7B does show an increasing effective enthalpic barrier to transport
with a denser medium (water < NF < RO) or a larger and more strongly hy-
drated species (NaCl < NaF'). These trends are intuitive as a denser medium
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Figure 7: Experimental linearized transition-state theory plots and the resulting
overall effective enthalpic barriers. Overall effective barriers measured experimentally
are similar across different salts and membranes, indicating that the highest barriers in
the most permeable paths are also similar, despite changes in membrane and salts. (A)
Linearized transition-state theory plots for the permeability of NaCl and NaF in the NF270
membrane and NaCl in the SW30 RO membrane. The least squares fit is shown as a line
for each system. (B) Overall effective enthalpic barriers calculated from the slopes in
(A) and Fig. S6. The errors shown are the propagated errors from the linear regression.
Experimental conditions during filtration: a single-salt solution of NaCl or NaF at 5 mM,
10-40 °C, pH 7, 33 bar, and crossflow velocity of 2.13 m/s.

or larger species may require higher molecular adjustments and arrangements
during diffusion jumps. The effective enthalpic barriers measured for mem-
brane permeability are slightly higher than typical barrier values reported
for water or ion diffusion in water, [38, 39] indicating a hindered diffusion
compared to free diffusion in water. However, the differences in the en-
thalpic barrier heights are within the statistical uncertainty, so the effective
enthalpies do not appear to be significantly affected by the substantial change
in ion size, nor by membrane density. This observation supports the picture
that the average ion environment only loosely affects the transport along the
most important paths. For example, both the NF and RO membranes may
have low density paths or large, interconnected voids that dominate the flux,
resulting in similar effective barriers, despite the significant difference in the
chemistry of the membranes.

Our finding that the overall effective energy barrier is dictated by the
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highest barrier in the most permeable path is also supported by prior exper-
imental data examining the heterogeneity of polyamide RO membranes [32].
Culp et al. identified water diffusion pathways in polyamide RO membranes
and estimated the local flux along those pathways. They found that the aver-
age diffusion coefficient in the polymer was unable to predict membrane water
permeability, rather that the nanoscale heterogeneity controlled membrane
permeability. They identified the same two levels of heterogeneity that we
explore, namely heterogeneity across parallel paths and heterogeneity within
a single path in the direction of transport.

Interestingly, the membrane samples studied by Culp et al. had pathways
through the membrane with significantly more heterogeneity along pathways
than between pathways. All pathways within a membrane sample were sim-
ilar with highly correlated flux. However, each of the parallel pathways had
regions of low and high local flux, corresponding to high and low barriers,
respectively. Sections with low local flux (high outlier barriers) significantly
limited the total flux along all paths. On the other hand, the high permeabil-
ity membranes had narrower distributions of local flux along the transport
coordinate. Consequently, the most permeable membranes had barrier dis-
tributions with low variance, such that there were not many high outliers.
All paths were similar, and the highest barriers in these paths were relatively
low. The correlations in paths and barriers in the work of Culp et al. dif-
fered from those explored in this study. These differences in heterogeneity
are likely due to the choices in membrane synthesis or some deeper concep-
tual reason beyond the scope of this paper. However, we emphasize their
observations are still well-described by our overall framework and support
our conclusions.

5. Conclusions

In this work, we find that even moderate, statistically random heterogene-
ity in energy barriers will significantly impact how we interpret the mecha-
nisms of transport through membranes. Because the framework we present
is generalized to incorporate any kind of molecular jumps, our findings can
aid in interpreting energy barriers in any membranes used for molecular sep-
arations; although, we focus our conclusions on RO and NF membranes. In
RO and NF membranes, structural and chemical heterogeneity, such as non-
uniform voids or charged functional groups, introduce a wide variety of free
energy barriers to permeability [17, 40]. Our work shows that the conven-
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tional theoretical framework for transition-state theory energy barriers leads
to incorrect interpretations of experimental effective free energy, enthalpic,
and entropic barriers. That is, even analysis of experimental results based
on transition-state theory will produce effective barriers that are not easily
related to mechanistic details at the atomistic level. We found that for a
given membrane, the overall effective barrier is most dependent on the high-
est barriers in the most permeable paths with smaller contributions from
the other parallel paths. The enthalpic and entropic components, and thus
the overall free energy barrier, increase with increasing heterogeneity in the
membrane.

Our results suggest that to design membranes with desired separation
capabilities we must control the highest barriers to transport in the most
permeable paths. Even molecular-level defects or voids in the membrane
along the transport coordinate will significantly increase the permeability by
decreasing the highest barriers to transport through individual paths, leading
to flux hot spots [41]. Designing membranes with more uniform energy barri-
ers, even at the nanoscale level, will distribute flow through more paths. Such
nanoscale homogeneity could potentially be achieved through processes such
as self-assembly of monomers into nanochannels or regulation of polymeriza-
tion [42—44]. Experimentally, increasing the homogeneity of the polyamide
films has been shown to increase water flux and permselectivity [44, 45]. Ad-
ditionally, recent research has focused on solute-solute selectivity, not only
water-solute selectivity [1, 9, 19]. Our results indicate that attempts to im-
prove solute-solute selectivity with effective energy barriers may overlook the
microscopic events that govern selectivity, since these effective energy bar-
riers provide only a partial picture of the nanoscale transport of different
solutes.

There are a number of limitations to this study due to the approxima-
tions required to perform numerical experiments, but the framework is flex-
ible enough that the main conclusions are broadly applicable. Some exten-
sions to the theory are also possible; in this framework, we do not consider
the coupled diffusion of multiple species, which can constrain transport via
requirements of electroneutrality for ions, but recent work has applied the
transition-theory framework to coupled multicomponent fluxes [20]. We also
do not include external driving forces in our analysis, but previous work has
developed this theory, which effectively scales the energy barriers [21, 22].
The magnitudes of the barriers would change, but our interpretation of ef-
fective energy barriers would not.
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To better understand the underlying distribution of barriers in polymeric
membranes, it is necessary to correlate nanoscale transport phenomena to
measured effective barriers. For example, Culp et al. [32] were able to quan-
tify the nanoscale heterogeneity in RO membranes, and relating these poly-
mer density distributions to the effective barriers to transport would provide
a sense of scale for the variances relevant in RO and NF transport. Molecular
simulations can give examples of molecular mechanisms, but it is necessary
to ensure these simulations are representative of physical membrane systems.

Notably, the observed effective enthalpies and entropies do not necessar-
ily correspond to either the most frequent or the highest mechanistic barriers
occurring in the system. For example, attempts to match barriers to spe-
cific enthalpies of ion dehydration within the membrane are unlikely to be
successful, as the free energy barrier of an individual mechanistic event may
be several kcal/mol different from the measured effective free energy barrier,
and thus chemical design attempts may focus on the wrong interactions. Ad-
ditionally, attempts to understand membrane barriers by looking at typical
events in the membrane via simulation may focus on the wrong events, as
the typical free energy barrier is not necessarily relevant in the overall per-
meability. Similarly, the highest barriers encountered within the membrane
may not be relevant, as it is only the highest barriers on the most permeable
paths that primarily contribute to the experimentally observable barrier.
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S1. Additional Derivations

S1.1. Previous theoretical framework

The original derivation by Zwolinski and coworkers [1] modeled membrane
flux in terms of point-to-point jumps of molecules governed by rate constants.
Thus, the net flux (Q) between equilibrium positions within the membrane
becomes the difference in the forward (k) and backward (k) molecular jump
rates through a cross-sectional area. A single barrier with equal forward and
backward rate constants (k) and jump lengths (A) leads to Fick’s first law of
diffusion (Eq. S1) with diffusion coefficient D = kA%

Q=-DT (s1)

At steady state, the flux is a set of rate equations relating all local equi-
librium positions along the direction of transport. Assuming a constant flux
across the membrane and eliminating all the local concentrations gives an
expression for the flux in terms of the local rate constants k;, jump lengths
i, and initial Cy and final C),,; concentrations shown in Eq. S2, where n is
the total number of jumps along the transport coordinate.

Preprint submitted to Elsevier August 10, 2024
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Under transition state theory, the individual rate constants k; can be related
to free energy barriers AGf by

Q= (52)

kpT —~AG!

k= k-2
i =R —exp |

(S3)

K; is the transmission coefficient (generally assumed to be unity for membrane
processes), and kg, T, and h are Boltzmann’s constant, temperature, and
Planck’s constant, respectively. Zwolinski et al. [1] and later del Castillo
et al. [2] expanded the expression for flux in terms of free energy barriers
to include external forces. Here, we explore the model without external
forces, as external forces will only increase or decrease the free energy barriers
without impacting the behavior of the model.

&n' km k m km m k
<k— — —_— —_ ms
ms km ki km k k
_— m
ks ks
kg ks
solution solution

Fig. S1. Schematic for the membrane model presented by Zwolinski and
coworkers [1]. A, is the jump length within the membrane, Ay, is the jump length
for the solution-membrane interface, \,,s is the jump length for the membrane-solution
interface, k; is the rate constant for the solution jumps, ks, is the rate constant for the
solution-membrane interfacial jump, k,,s is the rate constant for the membrane-solution
interfacial jump, and k., is the rate constant for the membrane jump. M is the number
of jumps along the transport coordinate, and J is the membrane thickness.
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Zwolinksi and coworkers verified their model on biological membranes
using a simple setup with four distinct rate constants for the solution ks,
the solution-membrane interface k;,,, the membrane k,,, and the membrane-
solution interface k,,;. We depict this setup in Figure S1. The authors
evaluated Eq. S2 for the solution-membrane-solution scenario under the as-
sumptions that all jump lengths are equal, all free energy barriers within the
membrane are equal, and diffusion within the membrane is the dominating
step. They arrived at the following equation for membrane permeability (P)

p ==t (S4)

M is the number of membrane jumps. As a result, they expressed membrane
permeability in terms of a single, effective free energy barrier that includes
the solution-membrane, membrane, and membrane-solution barriers. They
claimed that this effective free energy barrier represents the difference in
free energy between the species in solution and the species at the top of the
highest potential energy barrier within the membrane. They extracted the
enthalpic (AHeif ) and entropic (Angf) contributions to permeability from
the Gibbs-Helmholtz relation.

A2\ [ kpT —AGH,,
Po= (5)(h)eXp< RT
A2\ (kT ASE, —AH},,
B (T) (T) eXp( r )P\ Rr (55)

0 in Eq. S5 is the membrane thickness, defined as 6 = M A. This expres-
sion has been applied to both biological and polymeric membrane systems
as a way to explore the molecular mechanisms governing membrane perme-
ability [3-5].

Giddings and Eyring also explored barrier kinetics primarily through the
lens of nucleation [6]. Starting from Eq. S2, the authors represented the
effective free energy barrier for flux in terms of the individual point-to-point
rate constants. While they did not explicitly state the similarity, the effective
free energy barrier is in the form of multiple parallel resistances (see Equation
7 in reference [6]). They developed a “kT-cutoff model” to identify the non-
negligible barriers (i.e. those within kgT of the maximum barrier). They
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concluded that for a series of jumps over unequal free energy barriers, the
highest barrier does not define the overall flux but rather contributes the
most to a sum of non-negligible barriers. Furthermore, they showed that the
effective barrier depends only on the magnitude of the contributing barriers,
not on their order.

Scheuplein further explored the idea that position does not matter in his
analysis of Gidding and Eyring’s multibarrier kinetics model more specifi-
cally applied to membrane permeability [7]. Scheuplein grouped membrane
barriers of similar size and represented membrane transport across many un-
equal groups as transport across a series of membranes with equal barriers.
For barrier groups «, 3, ...,w, the permeability becomes

% - (% Z (ka) (59)

1=

M is the total number of barriers, Kj; is the partition coefficient from the
solution to the i minimum in the membrane, and p; is the probability of
occurrence of the i*" kind of barrier. This representation shows that the
permeability is dependent on the individual probabilities and rate constants
within the membrane. Therefore, the permeability is most affected by the
highest and the most probable membrane barriers.

This equation leads to interpreting membrane permeability as combining
parallel resistances. Wendt et al. derived a similar interpretation of perme-
ability for pores in series [8], and del Castillo et al. explicitly showed how the
multibarrier kinetic model can be thought of under this context [2]. Wendt
and coworkers’ primary assumptions were that transport can be treated
as one-dimensional and that there is no internal concentration polarization
within the membrane. From these assumptions, they showed that the overall
flux in a series of non-sieving pores is equivalent to flux through a single pore
with an overall permeability in the form of parallel resistances. Expanding to
an array of pores, they showed that the overall flux in parallel pores is a sum
of the individual pore fluxes. The overall permeability for the parallel array
of pores is the area-weighted sum of the n individual pore permeabilities (F;)
as shown in Eq. S7.

N A,
P=3 3 F (S7)
=1

where A; is the individual pore area and A is the total membrane area con-
sidered, generally assumed to be a unit area. The individual pore areas are

4



s not required to sum to the total area. As a result, the overall permeability P
&s describes transport through the accessible area. If the pore areas do sum to
ss the total area, the overall permeability becomes a weighted average, and the
&7 entire membrane area is accessible for transport. del Castillo et al. also ex-
ss  plored these permeability expressions under arbitrary external forces, arguing
s that the overall flux depends on the distribution of parallel permeabilities,
o but in most cases, it will be near the pure diffusion limit. Additionally, they
a1 provided a weak constraint on the applicability of the multibarrier kinetic
o2 model for membrane transport.

s S1.2. Derivation of the permeability with distributions of barriers, jumps,
o and paths

o To construct our framework, we start with the main assumptions of
o Eyring’s multibarrier kinetic model applied to the solution-membrane-solution
o7 scenario, and then relax some of these assumptions. Their assumptions were:

% 1. steady state flux can be represented by point-to-point molecular jumps
% between locally equilibrated states,

100 2. membrane transport is one-dimensional,

101 3. all solution jumps have equal rate constants and jump lengths,

102 4. an aqueous solution is diffusing through the membrane, and membrane
103 diffusion is the primary hindrance to transport,

104 5. the transmission coefficient is one for all rate constants,

105 6. the free energy barriers within the membrane are a series of equal free
106 energy barriers, and

107 7. the jump lengths between local barriers are equal.

108 We start with Eq. S8 in the same way as Zwolinski et al. [1], but we do
e not apply the assumptions that the free energy barriers within the membrane
o are a series of equal free energy barriers and the jump lengths between local
i barriers are equal.
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n2  For the solution-membrane-solution scenario, we define four kinds of jumps.
u3 We use a solution jump with rate constant ks and jump length A, a solution-
us  membrane interfacial jump with rate constant ks, and jump length Ay, a
s series of membrane jumps with rate constants k,,; and jump lengths A, ;,
us and a membrane-solution interfacial jump with rate constant k,,; and jump
ur  length \,,,. As a result, the numerator expands to

Q=

(S8)
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us Here, there are S solution jumps before the membrane, M membrane jumps,
o S’ solution jumps after the membrane, and n total jumps.
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Therefore, the permeability as defined in the original derivation by Zwolinski
et al. becomes

1

S s’ 2 FmsAms | = 1
(o) () () = () 2 (o)
(S10)
In polymeric membrane transport, the jump rates through solution (k) are
significantly larger than those through the membrane interface and the bulk
membrane, since motion in the membrane is significantly hindered compared

to motion in solution [1]. As a result, the permeability can be expressed only
in terms of the interfacial and membrane rate constants as shown in Eq. S11.

1 2 Kms Ams 1
F B (ksm)\sm) * (ksm)‘sm> ]Zl (km,j)\m,j) (Sll>

The first term in Eq. S11 is associated with diffusion through the solution-
membrane interface, and the second term is associated with diffusion through
the membrane. For most polymeric membranes, the rate-determining step
is diffusion through the membrane [9], so Eq. S11 can be approximated with
only the second term. The resulting expression for permeability in terms of
the rate constants for transport is shown in Eq. S12.

P =

M
1
kms )\ms 7 N
( Km.jAm,; )

Jj=1

Under transition state theory, the individual rate constants k; can be related
to free energy barriers AG;E by
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Relating Eq. S12 to the associated free energy barriers with Eq. S13 yields
Eq. S14 for permeability across a series of unequal membrane barriers in
terms of the free energy barriers at transition Awa«.

(Ams) (T) P RT

pP= (S14)

S|
' )

— m,j
j=1 )\m’jexp< T

S1.3. Derivation of the effective free energy barrier

Zwolinski and coworkers express the effective free energy barrier to per-
meability as

A2\ [ kgT ~AGH,,
b= (7) (T) exXp <—RT
A\ (kBT ASyy —AH;,
= (7) (T) eXP( )P\ TR (515)

We incorporate parallel molecular pathways and distributions of membrane
jumps and barriers into the transition-state theory model for membrane per-
meability by applying the single path permeability in Eq. S14 to the overall

permeability for a parallel array of paths in Eq. S7. The resulting equation
for overall permeability across /N parallel paths is shown in Eq. S16.
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Aanm and A, ; ; are the free energy barrier and the jump length associated

with the j** jump in the i** path. M, is the number of jumps for path i.

We equate these expressions for permeability and solve for the effective free

energy barrier in terms of the distributions of membrane barriers and parallel
Asm

() ()
Jeo(M)

m,i,J
S2. Estimation and Sensitivity of Model Parameters

AG ;= —RTIn + (AGE, — AGE)

RT

(S17)

S2.1. Estimating the number of paths per unit area

We estimate the number of paths per unit area for the polyamide mem-
brane to be an order of magnitude fewer than what is expected for single-
walled carbon nanotubes (SWCNT). SWCNT with diameter 1.7 nm have
been reported to pack with density 1.9 x 10'? paths per cm? [10]. If all the
area is occupied by circular nanotubes with diameter 1.7 nm and negligible
thickness, the theoretical packing density is 4.4 x 10'® paths per cm?. We
use this ratio of actual packing density to theoretical packing density to ap-
proximate the actual packing density of SWCNT with diameter 0.5 nm, the
reported average pore size for polyamide membranes [11, 12].

10
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(S18)
We estimate the actual packing density of SWCNT with diameter 0.5 nm to
be 2.2 x 10** paths per cm? or 0.22 paths per nm?. Therefore, we estimate
the actual number of paths per unit area for polyamide membranes to be
0.022 paths per nm?. The results we present consider a total unit area of 0.1
um?, or 1.0 x 107 A®, and a single path area of m(5A)? = 19.635 A®. These
areas correspond to 2196 paths per 0.1 pm?.
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Fig. S2. Convergence testing to determine necessary number of paths. The
effective free energy barrier converges for both normally (A) and exponentially (B) dis-
tributed barriers for the distribution variances used in this paper converges within sum-
mation over 2000 pathways. Barrier distributions with higher variance will take more
pathways to converge. Black points are single realizations of calculated effective free en-
ergy barriers, and red points are effective free energy barriers averaged over all realizations.
We calculate 300 realizations for each number of paths.

S2.2. Effect of jump distributions on the effective free energy barrier

Given a fixed membrane thickness, the distribution of number of jumps
and the length of jumps are directly related. Thus, we can examine the
effects of only the distribution in the number of jumps for a given membrane
thickness. We choose a physically realistic membrane thickness and hold all

11
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membrane free energy barriers equal. We draw the number of jumps from
a (truncated) normal distribution because we can change the variance while
maintaining a physically relevant mean. For this analysis, we model 5000
paths through a membrane of thickness 400 A. We set the mean number of
jumps to be 100, and we adjust the jump length to ensure the membrane
thickness remains constant. We vary the standard deviation in the number
of jumps between 5 and 200. Because this can result in a negative number
of jumps, we redraw each negative draw from a normal distribution until no
paths have a non-positive number of jumps. This results in a nearly normal
distribution for large variances, but a truncated distribution at N = 1 and
below for larger variances.

We find that the effective free energy barrier decreases with increasing
variance in the number of jumps, but the change is significantly less than the
effects from distributions of barrier heights in all physical scenarios. Fig. S3
shows the relationship between the effective free energy barrier and the stan-
dard deviation in number of jumps.

15.2 \
15.0 °
E 14.8 a
T 14.6
H " 4
5144 ) ....
< 142 4 [T
No o2 °
- P® & ® °
o A N i
135 - v R A S P

T
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Standard deviation in number of jumps

Fig. S3. Effective barrier decreases with increasing variance in the number of
jumps. We show the overall effective free energy barrier as a function of the standard
deviation for normally distributed numbers of jumps with mean 100. The jump length is
adjusted to maintain a constant membrane thickness of 40 A. For each standard deviation,
we calculate the overall effective free energy barrier over 5000 paths.

The effective barrier decreases negligibly when the variance is small.
When the variance becomes larger, a small number of paths have very few
jumps, which results in moderately decreased effective barrier, up to 1.5
kcal/mol. The barrier decreases negligibly again for larger standard devia-
tions of the truncated distribution, when the number of paths with N =1
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barriers predominates. In contrast, modest variance in the barrier height
distribution, as shown by the normally distributed barrier heights in Fig. 3B
in the main text, changes the effective barrier by 5.3 kcal/mol.

At large standard deviation, the effective barrier becomes dominated by
paths with only a few jumps. Fig. S4A confirms this trend by showing
the percentage of the total permeability through each path for the highest
variance distribution (standard deviation 200). Conversely, when all paths
have nearly the same number of jumps, the permeability is evenly distributed
across the paths, as shown in Fig. S4B. The standard deviation in the number
of jumps for Fig. S4B is 5.

Physically, larger jumps along the transport coordinate with the approx-
imately the same membrane thickness reduce the number of barriers the
molecules must cross. Jump lengths affect the single path permeability as a
sum of reciprocal jump lengths, so small jumps contribute more than large
jumps. The distributions of jump lengths introduce some smaller jumps that
drive the permeability lower and the effective free energy barrier higher. In-
dividual jump lengths are likely to be correlated with their associated free
energy barrier. However, the exponential contribution of the free energy bar-
riers will dominate the contribution from the jump lengths. For membranes
with heterogeneity in their free energy barrier distributions, the variability of
the smallest maximum barrier contributes significantly more than variability
in the number and length of jumps through the membrane, and we thus focus
primarily on the distribution of barrier heights in this study.

S3. Fitting Experimental Data

S3.1. Accounting for concentration polarization in the membrane

Previously reported barriers for NF and RO membranes range from 0
to ~17 kcal/mol with most values lie between ~4 and ~8 kcal/mol [13].
However, most of the reported values in the literature are likely an overesti-
mation of the real barriers, as these values were measured without accounting
for the increasing concentration polarization of the transported solutes with
temperature. This phenomenon leads to higher concentration gradient over
the membrane (and therefore higher driving force) with temperature, result-
ing in an increased solute flux that is not related to intrinsic activation (i.e.,
a permeability increase with temperature). Our measurements rigorously
accounted for concentration polarization and therefore reflect more reliably
the intrinsic barriers.
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Fig. S4. Paths with only a few jumps contribute most to the permeability. We
calculate the percentage of the total permeability through paths with different numbers
of jumps. The jump length is adjusted to maintain a constant membrane thickness of 40
A, and we calculate the overall effective free energy barrier over 5000 paths. (A) The
standard deviation in the normally distributed number of jumps is 5, and the mean is 100.
The permeability is evenly spread across paths, since all paths have similar number of
jumps. (B) The standard deviation in the normally distributed number of jumps is 200,
and the mean is 100. The permeability is dominated by paths with only a few jumps.

In brief, to account for concentration polarization during the measure-
ment of the permeability at the different temperatures, evaluation of the salt
concentration on the membrane surface, C,,, was performed at each temper-
ature by retrieving the mass transfer coefficient in the boundary layer, k,
using the following correlation for the Sherwood number based on laminar
(Eq. S19) and turbulent (Eq. S20) flows in a rectangular channel without a
spacer [14]:

d 0.33
Sh =1.85 <ReScfh) (S19)

Sh = 0.04Re% 7S (S20)

where Sh is the Sherwood number (Sh = (%)), Re is the Reynolds number
(~3295 in our system), Sc is the Schmidt number (Sc = %), where D is
the diffusion coefficient and v is the kinematic viscosity), dj, is the hydraulic
radius (1.55 x 107 m in our system), and L is the cell length (0.06 m in our

system). The height and width of the flow channel in our system were 0.8 mm
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and 25 mm, respectively. Because Re was in the borderline of laminar and
turbulent flow in our system, we examined both the laminar and turbulent
correlations. The diffusion coefficients of the different ions at the tested
temperatures were calculated with the Stokes-Einstein equation using Stokes
radii (Table S1). For each salt, the diffusion coefficient of the slower ion was
used for the calculations of the Sherwood number. The evaluated k values
were then used in the film theory equation (Eq. S21) to measure C,,.

Cp— C, Ju
7P _ v 21
C(f - Cp P ( k ) (S )

C, and C are the salt concentrations in the permeate and the feed solution,
respectively, J,, is the permeate flux (L m™ h™!), and & is the mass transfer
coefficient (m s™!).

Species Stokes radius (nm) [15]
Sodium (Na™) 0.184
Fluoride (F7) 0.166
Chloride (C17) 0.121

Table S1. Stokes radii for the ions tested in the experimental filtration mea-
surements. All data is from reference [15]

S53.2. Comparing the Arrhenius plots and transition-state theory plots

Energy barriers to permeability are often measured as Arrhenius barri-
ers, and the effective parameters are determined as the slope and intercept
of In(P) vs 1/T. However, this form neglects the temperature dependence of
the prefactor that is explicitly stated in transition-state theory. The difficulty
with the transition-state theory approach is the need for additional param-
eters, namely average jump length A and membrane thickness § in Eq. S22,
which are challenging to measure.

p= () (B ) e (552 52

We perform both linear fits, and we determine the goodness of fit is not
significantly different between the models. The R? is 0.642 for the Arrhenius
treatment and 0.569 for the transition-state theory treatment. In Fig. S5, we
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show the linear fits for In(P) and In(P/T") for NaCl in the NF270 membrane.
Table S2 shows the effective enthalpic barriers for each linearization. The
errors shown are the standard errors in the slope parameter for the linear
fit propagated to the effective enthalpic barrier. Kinetic theory has shown
that the Arrhenius activation energy is related to the TST enthalpic barrier
by AH = E, — RT, and our results are consistent with this relationship.
Effective enthalpic barriers are the same within error for all systems. The
trends in the effective enthalpic barriers and the Arrhenius activation energies
are completely preserved.
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Fig. S5. Comparison of transition-state theory and Arrhenius plots Estimation
of the effective enthalpic barriers from the transition-state theory model and the Arrhe-
nius model are indistinguishable within error. Scatter points are the experimental data
linearized to fit the corresponding model. The least squares fits are shown as lines. A 95%
confidence interval (shaded region) is provided with each least squares fit, determined by
a nonparametric bootstrap over 1000 bootstraps.
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Fig. S6. Effective enthalpy for NaCl in water. Linearized transition-state theory
plot for the conductivity of NaCl in water, which corresponds to free diffusion of the ions.
The least squares fit is shown as a line.

System Linearization AHeif s (keal/mol)
NaCl (NF270) |— 2 36£09
STy ——

NaCl (RO) lj?}]/% an

Table S2. Effective barriers from Arrhenius and transition-state theory mod-
els. The effective enthalpic barrier AHeif 7 are the same within error for all systems.
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