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Experimentation in Networks†

By Simon Board and Moritz Meyer-ter-Vehn*

We propose a model of strategic experimentation on social networks 
in which forward-looking agents learn from their own and neighbors’ 
successes. In equilibrium, private discovery is followed by social diffu-
sion. Social learning crowds out own experimentation, so total informa-
tion decreases with network density; we determine density thresholds 
below which agents’ asymptotic learning is perfect. By contrast, agent 
welfare is single peaked in network density and achieves a second-best 
benchmark level at intermediate levels that strike a balance between 
discovery and diffusion. (JEL D82, D83, D86, O31, O33, Z13)

The discovery and diffusion of innovations are key drivers of long-term economic 
growth. This is illustrated by the seminal papers of Griliches (1957) and Coleman, 
Katz, and  Menzel (1957), which document the spread of new technologies by 
farmers and doctors. From the perspective of societal welfare, discovery and dif-
fusion are complements; Mokyr (1992) argues that both are required for sustained 
economic progress. From an individual strategic perspective, they are substitutes; 
Grossman and Stiglitz (1980) famously point out that if prices aggregate informa-
tion efficiently, then individual agents have no incentive to privately generate such 
information. Economic theory has made large strides in understanding information 
acquisition and aggregation in centralized settings such as financial markets, auc-
tions, and collective experimentation. These incentives are less well understood 
in decentralized settings, where information slowly diffuses through society. This 
paper seeks to reconcile these forces in a parsimonious equilibrium model of exper-
imentation in networks.

The classic paper on this topic, Bala and  Goyal (1998), considers myopic 
non-Bayesian agents who do not reason about the behavior of their neighbors. This 
short-cuts strategic considerations and allows one to solve the model as a sequence of 
static decision problems. By contrast, our agents are forward-looking and Bayesian, 
so they reason about the network and future learning opportunities. To maintain 
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tractability, we impose structure on the network and assume agents learn via perfect 
good news events; this reduces each agent’s problem to choosing a deterministic 
cutoff time, with social learning described by simple ordinary differential equations, 
opening the gate to a myriad of questions about experimentation in networks.

We use this new approach to study how asymptotic information and welfare 
depend on network density, as measured by either the degree in regular random net-
works or by the core size in core-periphery networks. For either measure, we show 
that agents’ asymptotic information decreases monotonically in network density 
and they eventually learn the truth when the network is sufficiently sparse. By con-
trast, welfare is single peaked in network density and attains a second-best welfare 
benchmark when density is intermediate; such networks both encourage generation 
of information and quickly diffuse the discoveries. Collectively, these results paint 
a clear picture about learning dynamics, information aggregation, and welfare in 
networks of forward-looking, Bayesian agents.

In the model, ​I​ agents (Iris, John, Kata…) are connected by an exogenous net-
work (e.g., clique, tree, core-periphery). They can each exert effort experimenting 
with a new technology whose state is high or low; effort generates successes at 
random times if and only if the state is high. Agents learn from their own and neigh-
bors’ successes but do not observe neighbors’ effort. This simple model captures a 
number of applications: consider farmers learning about the success of a new crop 
from neighbors, doctors learning about a new drug from colleagues, or landowners 
learning the best way to extract shale gas from nearby frackers.

In Section II, we first characterize Iris’s best response to arbitrary strategies of 
others. Observing a success perfectly reveals the high state, so she exerts effort 
forever after. Before this time, Iris’s effort, or “experimentation,” is based on her 
social learning curve, i.e., the expected effort of her neighbors. We show that Iris’s 
dynamic experimentation problem is solved by a simple cutoff strategy: in the 
absence of success, Iris stops experimenting at some cutoff time ​​τ​i​​​. An increase in 
social information crowds out Iris’s private experimentation, lowering her cutoff 
time. Unsuccessful past social learning makes Iris pessimistic, while future social 
information lowers the information value of her own experimentation.

Next, we illustrate how to generate Iris’s social learning curve from others’ cut-
off times via examples. In the clique network, social learning is fast but shallow. 
The agents collectively experiment as much as a single agent would by herself. 
Adding agents speeds up learning but does not raise aggregate information because 
the density of the network chokes off experimentation prematurely. In the line net-
work, social learning is deep but slow. The agents collectively experiment an infinite 
amount. Eventually, they learn the state perfectly, but the sparsity of the network 
constrains the speed of learning.

In Section III, we study the effect of network density on asymptotic information 
and welfare. Specifically, we consider two canonical classes of networks (regular 
random networks and core-periphery networks) as ​I  →  ∞​. To study aggregate 
information, define the asymptotic information to be the total information created 
by society; there is asymptotic learning if asymptotic information is unbounded, 
meaning that the agents eventually learn the state. To study welfare, we propose 
a second-best benchmark that upper bounds equilibrium utility (of the worst-off 
agent) across all networks. The clique does not attain this benchmark because the 
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network is too dense and agents do not generate enough information; the line does 
not attain it either because the network is too sparse and learning is too slow. But we 
show that both large random networks and large core-periphery networks do attain 
the benchmark when network density is intermediate.

We first study large regular random networks with degree ​​n​​ I​​. This model encom-
passes sparse trees, where ​​n​​ I​​ does not depend on ​I​, and dense cliques, where ​​
n​​ I​ / I  →  1​. Theorem 1 completely characterizes asymptotic information and wel-
fare as functions of network density. Asymptotic information falls in network den-
sity, and asymptotic learning obtains if density is below a threshold. Specifically, 
the agents fully learn if the time-diameter (the typical time for information to travel 
between two agents) exceeds a threshold ​​σ​​ ⁎​​. Welfare is single peaked in network den-
sity and attains the second-best benchmark if ​​n​​ I​  →  ∞​ and ​​n​​ I​ / I  →  0​. Intuitively, 
asymptotic learning requires sparsity to sustain experimentation incentives; high 
welfare requires intermediate density to ensure both generation and prompt diffu-
sion of information.

To study the role of network position on experimentation incentives, we next turn 
to core-periphery networks, where ​​K​​ I​​ core agents connect to everyone, while ​I − ​K​​ I​​
peripheral agents connect only to all core agents. In equilibrium, core agents have 
more social information than peripherals, so they experiment less and have higher 
utility. While core agents experiment little themselves (if at all), they serve an import-
ant role as information brokers connecting the peripherals. As ​I  →  ∞​, asymptotic 
learning and welfare exhibit similar properties to large random networks, with core 
size substituting for the degree. Theorem 2 completely characterizes asymptotic 
information and welfare as functions of network density. Asymptotic information 
decreases in network density, and asymptotic learning obtains if ​​K​​ I​​ remains below a 
threshold ​​κ​​ ⁎​​. Welfare is single peaked in network density and attains the second-best 
benchmark if ​​K​​ I​​ exceeds ​​κ​​ ⁎​​ and ​​K​​ I​ / I  →  0​.

Our two families of networks differ in their network structure and thus exhibit 
different social learning dynamics. In large random networks, independent suc-
cesses are achieved over time by agents scattered throughout the network; for a 
typical agent, all this social information arrives in a single burst at a fixed time ​σ​. 
By contrast, in core-periphery networks, independent successes are achieved in the 
first instant by a small fraction of peripherals; for a typical peripheral agent, this 
initial burst of social information arrives slowly as it is filtered through the core. 
The resulting cumulative social learning curves are thus convex for large random 
networks but concave for core-periphery networks.

Our analysis of large random networks and core-periphery networks points to a 
fundamental trade-off between social learning and welfare. These goals are often 
thought to be aligned; Hayek (1945) famously emphasizes the importance of infor-
mation aggregation for allocative efficiency. However, in our model agents must be 
incentivized to acquire information, so the fast diffusion required for second-best 
welfare can lower total information. Indeed, for core-periphery networks, the two 
goals are mutually exclusive.

Literature.—At the core of the paper is a “perfect good news” model of strategic 
experimentation with unobserved actions and private payoffs. In the context of a 
clique, Keller, Rady, and Cripps (2005) study a good-news model with observed 
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actions and private payoffs; Bonatti and Hörner (2011) consider a good-news model 
with unobserved actions and public payoffs; and Bonatti and Hörner (2017) con-
sider a bad-news model with unobserved actions and private payoffs. In all of these 
papers, equilibrium is in mixed strategies. Specifically, in the first two papers, agents 
gradually phase out their experimentation as the public belief approaches the exit 
threshold. In our model, agents use simple cutoff strategies; this allows us to go 
beyond the clique and solve for equilibria in rich classes of networks. We also think 
that the assumptions of unobserved actions and private payoffs are a natural way 
to model a network of farmers, doctors or frackers whose externalities are purely 
informational.

Observational learning in networks was pioneered by Bala and Goyal (1998), who 
study myopic, non-Bayesian agents and provide conditions on the network under 
which (i) agents reach a consensus and (ii) the agents learn the state.1 Subsequent 
work has generalized these two limited results in models with forward-looking, 
Bayesian agents who incorporate the future value of information when choosing 
to experiment. Rosenberg, Solan, and Vieille (2009) consider a very general model 
that encompasses strategic experimentation in networks and shows that all agents 
eventually play the same action. Camargo (2014) considers a continuum-agent 
model with “random sampling” and shows that information aggregates if each 
action is myopically optimal for a positive measure of agents’ heterogeneous pri-
ors. By focusing on good-news learning, we can characterize learning dynamics 
at each point in time rather than restricting attention to long-run behavior. This is 
important because agents care about when innovations diffuse and not just if they 
diffuse; indeed, this consideration underlies the contrast between sparse networks 
that induce asymptotic learning and the denser networks that maximize welfare.2

Most closely related to our model, Salish (2015) embeds a discrete-time version 
of Keller, Rady, and Cripps’s (2005) strategic experimentation model in a network. 
Neighbors observe each others’ actions, which thus signal successes of second 
neighbors; Salish (2015) sidesteps such signaling by introducing an additional 
learning channel, whereby successes are automatically transmitted across the net-
work, one link per period. More recently, Manso and Pourbabaee (2023) consider 
a two-period version of Keller, Rady, and Cripps (2005) on a network. In both of 
these papers, social learning crowds out private experimentation, but neither of them 
speaks to our main result of welfare being single peaked in network density.

The complexity of Bayesian updating has led some authors to consider reduced-form 
models of information acquisition and aggregation. For example, Bramoullé 
and  Kranton (2007) and Galeotti and  Goyal (2010) consider a local public goods 
game where each agent chooses a contribution level and benefits from her neighbors’ 
contributions. Since our agents optimally choose a deterministic stopping time, we 

1 Sadler (2020b) characterizes outcomes more completely in Bala-Goyal’s model with Brownian learning.
2 A parallel literature considers dynamic learning games where private information is initially endowed to 

agents instead of being learned over time. Gale and Kariv (2003) show that consensus must emerge when agents 
are Bayesian and myopic. Mossel, Sly, and Tamuz (2015) extend this result to forward-looking agents and also 
show that agents eventually learn the state if the network is not too connected (e.g., the network is undirected with 
bounded degree). Another classic literature considers agents who move in sequence, learning from (a subset of) 
prior agents. Acemoglu et al. (2011) show that society learns the state if signals are unbounded and agents (indi-
rectly) observe an unbounded number of agents. Mossel et al. (2020) unify many of the results in these literatures 
by looking at steady-state asymptotic behavior.
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recover the tractability of the reduced-form models of experimentation in a model 
of Bayesian learning.

In seeking to characterize learning dynamics in networks, the paper is related to 
Board and Meyer-ter-Vehn (2021). In that paper, myopic agents sequentially choose 
to acquire information at a single point in time. Here, forward-looking agents simul-
taneously choose to acquire information at every point in time. The different models 
give rise to different economic forces. The forward-looking agents in this paper 
anticipate the arrival of future social information that crowds out their private exper-
imentation, and the repeated choices give rise to the clean distinction between an 
experimentation phase and a contagion phase. This paper also focuses on a different 
question: How do aggregate information and welfare change with network density?

The paper also complements a growing empirical literature on innovation and 
social learning. Fetter et al. (2020) study the effect of disclosure requirements on 
the choice of chemical inputs in the shale gas industry. They find that improved dis-
closure increases interfirm social learning but decreases innovation; this is precisely 
the trade-off underlying our welfare results. Hodgson (2021) studies the effects of 
information sharing in a structural model of oil exploration and development. As in 
our model, forward-looking firms experiment and free ride on others’ experimen-
tation, but, as in Bala and Goyal (1998), their beliefs are not Bayesian in that they 
do not draw inferences about others’ beliefs from their action choices or their past 
exploration rights. In the development literature, Foster and Rosenzweig (1995); 
Munshi (2004); and Bandiera and Rasul (2006) show that imperfect information is a 
major barrier to the adoption of new crops and that social learning crowds out farm-
ers’ experimentation. These papers focus on the agents’ best responses but do not 
address how information diffuses across a network. Recently, this latter question was 
taken up by Banerjee et al. (2021) and Beaman et al. (2021) using a non-Bayesian 
DeGroot model of learning.3 Overall, these literatures lack a simple equilibrium 
framework with forward-looking Bayesian agents that can be estimated and used for 
counterfactuals. This paper proposes such a framework.

I.  Model

Network.—Agents ​​{1, … , I}​​ are connected by an undirected network, ​g​, con-
sisting of unordered pairs ​​(i, j)​​ (Iris, John) that represent neighbors who observe 
each other. The set of Iris’s neighbors is ​​N​ i​​​(g)​​. The network may be deterministic or 
random; denote the random network by ​G​ with realization ​g​.

Game.—The agents seek to learn about the quality ​θ  ∈ ​ {L, H}​​ of a new tech-
nology. Time is continuous, ​t  ∈ ​ [0, ∞)​​. At time ​t  =  0​, the common prior is  
​Pr​(θ  =  H)​  = ​ p​ 0​​​. At each time ​t​, agent ​i​ privately chooses effort ​​A ​i,t​​  ∈ ​ [0, 1]​​ at 
flow cost ​c​. This effort results in successes with Poisson arrival rate ​​A ​i,t​​ 1​{θ  =  H}​​. 
Agent ​i​ observes her own and her neighbors’ past successes but not others’ actions. 

3 There are a variety of other papers that study the impact of social learning on the adoption of new agricultural 
technology (Besley and  Case 1994; Conley and  Udry 2010; BenYishay and  Mobarak 2019), financial innova-
tions (Banerjee et al. 2013), health interventions (Kremer and Miguel 2007; Dupas 2014), and consumer products 
(Goolsbee and Klenow 2002; Moretti 2011; Bailey et al. 2022).
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If the network is random, she knows ​G​ but nothing about the realization ​g​, and ​G​ is 
independent of quality ​θ​.

Payoffs.—Agents receive payoff ​x  >  c​ from their own successes. Payoffs are 
discounted at rate ​r  >  0​, so Iris’s net present value equals

(1)	​​ V​ i​​  = ​  max​ 
​​{​A​ i,t​​}​​t≥0​​

​​ E​[​∫ 
0
​ 
∞

​​​e​​ −rt​ ​A​ i,t​​​(x 1​{θ  =  H}​ − c)​dt]​​,

where the expectation is taken over quality ​θ​, network ​G​, and past observed suc-
cesses on which ​​A​ i,t​​​ conditions. We solve for weak perfect Bayesian equilibria, where 
agents who have observed a success infer that ​θ  =  H​. Since ​x  >  c​, agents set ​​
A​ i,t​​  ≡  1​ after observing a success and obtain continuation value ​y  ≔ ​ (x − c)​ / r​. 
To avoid trivialities, we assume that the prior belief exceeds the single-agent thresh-
old belief, ​​p​ 0​​  > ​  p _ ​  ≔  c / ​(x + y)​​ (see Section IIA).

Interpretation.—The model assumes that actions are unobservable and gener-
ate observable success with a stochastic delay. Jointly, these assumptions lead to 
the slow diffusion of successes, much like an epidemiological SI model. They also 
make the analysis tractable from a strategic perspective. Agents do not attempt to 
trigger their neighbors to experiment and use cutoff strategies rather than the mixed 
strategies in Keller, Rady, and Cripps’s (2005) symmetric equilibrium.

We now map the model to the introductory applications (doctors, farmers, and 
frackers). First, we discuss how to interpret payoffs, which, in the model, arrive at 
Poisson frequency when an agent exerts effort in state ​θ  =  H​.

  • � Poisson arrival of payoffs: Suppose doctors learn about the effectiveness of a 
new drug. The drug does not work with every patient, but in state ​θ  =  H​, it 
works at Poisson frequency. When using the drug, the doctor pays a flow cost ​c​ 
and receives benefit ​x​ at Poisson intervals, when the drug is effective.

  • � Flow payoff interpretation: Suppose farmers learn if a new crop works in their 
climate. While experimenting, they pay a flow cost ​c​, representing the opportu-
nity cost of land. Experimentation takes time, as they must try different inputs 
(e.g., watering patterns, fertilizer). When the new crop succeeds, they use it 
thereafter and receive flow payoff ​​(1 + r)​x − c​.

  • � Lump-sum payoff interpretation: Suppose frackers learn whether they can extract 
natural gas from the ground. They pay flow cost ​c​ when experimenting, repre-
senting the cost of trying different chemical mixtures. If their exploration suc-
ceeds, they receive lump-sum payoff ​x + y​, representing the value of the gas.

Under the second and third interpretation, agents only observe any neighbor succeed 
once; this does not matter since observing one success reveals ​θ  =  H​ perfectly.

Second, we assume that neighbors’ successes are observable. In the applications, 
this may be because the neighbors see the success directly (e.g., a farmer brings 
their new crop to market), the neighbors see the agent’s payoff from succeeding 
(e.g., the farmer buys a new truck), or the neighbors see a piece of hard information 
that someone shares (e.g., the local Bayer representative tells other farmers about 
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the crop’s success). The method of communication affects the identity of neighbors 
and thus the density of the resulting network. For example, relatively few people 
will see the farmer’s new truck (leading to a sparse network), whereas the Bayer 
representative may tell all their clients (leading to a dense network).

Third, we assume that neighbors’ actions are unobservable. In the applications, 
this means a farmer does not know whether other farmers are planting the new crop, 
a doctor does not know whether colleagues are prescribing the drug, and a fracker 
does not know whether other landowners are actively exploring. We also assume 
agents do not directly communicate with one another (other than successes). Indeed, 
an agent has little incentive to reveal her failures, which tend to make her neighbors 
more pessimistic and lower their experimentation. These assumptions ensure that 
news spreads slowly over the network.

II.  General Analysis

We start with a general analysis of best responses. Section IIA shows agents use 
cutoff strategies, while Section IIB derives comparative statics.4 Section IIC then 
characterizes equilibrium in three examples, while Section IID establishes general 
equilibrium existence and discusses equilibrium uniqueness.

A. Best Responses: Cutoff Strategies

In this section, we characterize the best response of a generic agent, Iris, given 
arbitrary strategies of other agents.

As a benchmark, consider the single-agent experimentation problem, or equiv-
alently, Iris’s problem when she has no neighbors. After her first success, she sets ​​
A ​i,t​​  ≡  1​. Before that, as long as ​​A ​i,t​​  =  1​, her posterior belief evolves according to

	​​ p​ t​​  = ​ P​​ ∅​​(t)​  ≔ ​ 
​p​ 0​​ ​e​​ −t​
 ___________  

​p​ 0​​ ​e​​ −t​ + 1 − ​p​ 0​​
 ​ .​

Iris thus experiments until time ​​τ –​​, when her belief hits the single-agent threshold 
belief ​​p​ ​τ –​​​  = ​  p _ ​  =  c / ​(x + y)​​. It is also useful to define the myopic threshold belief​​
p – ​  ≔  c/x​, where Iris would stop if she ignored the future benefit of success, ​y​.

Returning to the general problem where Iris learns from her neighbors ​​N​ i​​​(G)​​, 
write ​​T​ i​​​ for Iris’s first success time and ​​S​ i​​  ≔ ​ min​j∈​N​ i​​​(G)​​​ ​T​ j​​​ for her neighbors’ first 
success time. After Iris observes a success at ​min​{​T​ i​​, ​S​ i​​}​​, she chooses maximal 
effort and receives continuation value ​y​. We can thus restrict attention to earlier 
times and write ​​​{​a​ i,t​ 

∅ ​}​​t≥0​​​ for her experimentation, i.e., her effort before ​min​{​T​ i​​, ​S​ i​​}​​. 
Define Iris’s rate of social learning by

(2)	​​ b​ i,t​​  ≔ ​ E​​ −i​​[​  ∑ 
j∈​N​ i​​​(G)​

​ 
 

 ​​ ​ A​ j,t​​ ​|​​ t  < ​ S​ i​​]​,​

4 The results in Sections IIA and IIB extend far beyond the networks of Section I, for instance, to directed or 
time-varying networks, or to agents with private information about the network, specifically about their own degree ​
|​N​ i​​​(g)​|​.
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where the expectation ​​E​​ −i​​ is taken over the random network ​G​ and others’ success 
times ​​​{​T​ j​​}​​j≠i​​​, conditional on ​θ  =  H​ and assuming that no one has observed a suc-
cess by ​i​. We also define the cumulative of Iris’s experimentation ​​α​ i,t​ 

∅ ​  ≔ ​ ∫ 0​ 
t​​​ a​ i,s​ 

∅ ​ ds​ 
and social learning ​​β​i,t​​  ≔ ​ ∫ 0​ 

t​​​ b​ i,s​​ ds​. We generally refer to both ​​{​b​ i,t​​}​​ and ​​{​β​i,t​​}​​ as 
Iris’s social learning curve; when referring specifically to ​​β​i,t​​​, we call it the cumu-
lative social learning curve. Since Iris’s experimentation is unobservable to others 
and her own success effectively ends the game for her, Iris takes ​​{​b​ i,t​​}​​ as given. We 
thus study the best response ​​{​a​ i,t​ 

∅ ​}​​ to ​​{​b​ i,t​​}​​ and drop the ​i​ subscript for the rest of 
the section.

When ​θ  =  H​, the random time ​min​{T, S}​​ has hazard rate ​​a​ t​ 
∅​ + ​b​ t​​​, implying 

chance ​exp​{− ​(​α​ t​ 
∅​ + ​β​t​​)​}​​ of observing no success before ​t​, and a posterior belief 

equal to

	​​ p​ t​​  = ​ P​​ ∅​​(​α​ t​ 
∅​ + ​β​t​​)​.​

Truncating (1) at ​min​{T, S}​​ renders Iris’s stochastic control problem deterministic,

(3) ​ V  = ​  max​ 
​​{​a​ t​ 

∅​}​​t≥0​​
​​ ​∫ 

0
​ 
∞

​​​e​​ −rt​​[​p​ 0​​ ​e​​ −​(​α​ t​ 
∅​+​β​t​​)​​ + ​(1 − ​p​ 0​​)​]​​(​[​a​ t​ 

∅​​(x + y)​ + ​b​ t​​ y]​ ​p​ t​​ − ​a​ t​ 
∅​ c)​dt.​

Intuitively, Iris gets ​x + y​ when she succeeds, ​y​ when a neighbor succeeds, and 
effort costs ​c​. The chance of no success by time ​t​ is ​​e​​ −​(​α​ t​ 

∅​+​β​t​​)​​​ when ​θ  =  H ​and one 
when ​θ  =  L​.

Clearly, Iris experiments for beliefs above the myopic threshold, ​​p​ t​​  ≥ ​ p – ​​. 
Conversely, equation (3) implies that Iris stops experimenting below the single-agent 
threshold, ​​p​ t​​  ≤ ​ p – ​​. For beliefs ​​p​ t​​  ∈ ​ [​ p _ ​, ​p – ​]​​, her choice depends on her social learn-
ing. We say the prior is optimistic if ​​p​ 0​​  > ​ p – ​​ and pessimistic if ​​p​ 0​​  < ​ p – ​​.5 An opti-
mistic agent always engages in some experimentation, no matter her social learning 
curve.

We first claim that Iris uses a cutoff strategy in that she experiments maximally 
until some cutoff time ​τ​ and then stops, ​​a​ t​ 

∅​  =  1​{t  ≤  τ}​​.6 Intuitively, it is sub-
optimal to stop experimenting at some ​​τ ′ ​ ​ but then resume it after neighbors’ lack 
of success over ​​[​τ ′ ​ , τ ″]​​. To see why, suppose Iris shirks at time ​t​ but works at time ​
t + δ​ , and consider the effect of front-loading effort ​ϵ​ from ​t + δ​ to ​t​. This has two 
consequences. First, if the effort pays off, ​i​ now gets to enjoy the success earlier, 
raising her value by ​rδ​[​p​ t​​​(x + y)​ − c]​ϵ​, which is positive in the relevant range of 
posteriors, ​​p​ t​​  > ​  p _ ​​. Second, if one of her neighbors succeeds over ​​[t, t + δ]​​, she 
ends up working at both ​t​ and ​t + δ​, raising her value by ​​p​ t​​ ​b​ t​​ δϵ​(x − c)​  >  0​. Thus, 
Iris prefers to front-load experimentation, so she optimally uses a cutoff time ​τ​ with 
cutoff belief ​​p​ τ​​  ∈ ​ [​ p _ ​, ​p – ​]​​, illustrated in Figure 1.

5 Recall our assumption ​​p​ 0​​  >  ​ p _ ​​; we are pragmatic about calling the boundary case ​​p​ 0​​  =  ​p – ​​ optimistic or 
pessimistic.

6 Of course, “stopping” is provisional in the sense that Iris starts to work again when she observes one of her 
neighbors succeed at some ​t  >  τ​.
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To characterize the optimal cutoff ​τ​, define Iris’s experimentation incentives at 
time ​t​,

(4)	​​ ψ​t​​  ≔ ​ p​ t​​​(x + r y​∫ 
t
​ 
∞

​​​e​​ −​∫ t​ 
s​​​(r+​b​ u​​)​du​ ds)​ − c.​

To understand (4), suppose that successes from Iris’s neighbors arrive at constant 
rate ​b​, so (4) simplifies to ​​p​ t​​​(x + ​  r _ 

r + b
 ​ y)​ − c​. If she raises the cutoff from ​t​ to ​t + δ​,  

she gains the expected payoff from a success ​​p​ t​​​(x + y)​δ​, forgoes the expected ben-
efit of future social learning ​​p​ t​​​(​  b _ 

r + b
 ​ y)​δ​, and incurs cost ​cδ​. The experimentation 

incentives are the sum of these three effects. We summarize this discussion as 
follows.

PROPOSITION 1: Given social information ​​{​b​ t​​}​,​ the agent’s optimal experimenta-
tion is given by the cutoff strategy ​​a​ t​ 

∅​  =  1​{t  ≤  τ}​​, where the cutoff time ​τ  ∈ ​ (0, ​
τ –​]​​ uniquely solves ​​ψ​τ​​  =  0​ if ​​ψ​0​​  >  0​, and ​τ  =  0​ if ​​ψ​0​​  ≤  0​.

PROOF: 
The proof in Appendix A.A formalizes the front-loading argument and shows that 

the marginal payoff from experimentation at the cutoff is proportional to ​​ψ​t​​​, which 
in turn single-crosses from above in ​t​. ∎

Proposition 1 reduces the potentially complicated experimentation problem of a 
forward-looking, Bayesian agent to choosing one number, ​τ​, which is characterized 
by setting (4) to zero. This tractability allows us to characterize equilibria for rich 
classes of networks. In contrast to Proposition 1, the seminal papers on strategic 
experimentation in the clique network, Keller, Rady, and Cripps (2005) and Bonatti 
and Hörner (2011), both have agents gradually phase out effort in equilibrium. This 
difference arises because free riding incentives are greater in their models. In Keller, 
Rady, and Cripps (2005), actions are observable, so Iris’s neighbors get pessimistic 
when her experimentation fails; in Bonatti and Hörner (2011), payoffs are public, so 
Iris does not want to exert effort if others are about to succeed.

B. Best Responses: Comparative Statics

This section derives two useful comparative statics on Iris’s value and her optimal 
cutoff as a function of social learning.

Figure 1. Beliefs

Note: The agent always experiments for posterior beliefs ​​p​ t​​​ above the myopic cutoff ​​p – ​​ and never below the 
single-agent cutoff ​​ p _ ​​.

0 1

a = 0

_p  = c/(x + y)
single-agent cuto�

pτ

optimal cuto�
 p = c/x

myopic cuto�

a = 1
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LEMMA 1: Higher cumulative social learning ​​​{​β​t​​}​​t≥0​​​ raises value ​V​ and lowers 
the optimal cutoff ​τ​.

PROOF: 
Higher ​​{​β​t​​}​​ constitutes Blackwell-better information and raises ​V​. 

Experimentation incentives (4) fall both in pre-cutoff learning ​​β​τ​​​, which lowers the 
cutoff belief ​​p​ τ​​  = ​ P​​ ∅​​(τ + ​β​τ​​)​​, and in future learning ​​​{​b​ t​​}​​t≥τ​​​. To show that ​​ψ​τ​​​ falls 
in cumulative learning ​​{​β​t​​}​​, we need to compare the impact of “early” and “late” 
increases in ​​b​ t​​​. Specifically, differentiating time-​τ​ experimentation incentives (4) 
with respect to time-​t​ social learning, we get7

(5)	​ − ​ 
∂ ​ψ​τ​​ _ ∂ ​b​ t​​

 ​  = ​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​
​p​ τ​​​(r y​∫ 

τ
​ 
∞

​​​e​​ −​∫ τ​ 
s​​​(r+​b​ u​​)​du​ ds + x − c)​

​ 
for t  <  τ

​    
​p​ τ​​ r y​∫ 

t
​ 
∞

​​​e​​ −​∫ τ​ 
s​​​(r+​b​ u​​)​du​ ds

​ 
for t  >  τ,

​​​

where the case ​t  <  τ​ uses ​∂ ​p​ τ​​/∂ ​b​ t​​  =  − ​p​ τ​​​(1 − ​p​ τ​​)​​ and  

​​(1 − ​p​ τ​​)​​(x + r y​∫ τ​ 
∞​​​e​​ −​∫ τ​ 

s​​​(r+​b​ u​​)​du​ ds)​  =  x + r y​∫ τ​ 
∞​​​e​​ −​∫ τ​ 

s​​​(r+​b​ u​​)​du​ ds − ​(​ψ​τ​​ + c)​​. Clearly, 

(5) is positive and falls in ​t​, weakly for ​t  <  τ​ and discontinuously at ​t  =  τ​. Thus, 
earlier learning reduces incentives more, so ​​ψ​τ​​​ falls as a function of ​​{​β​t​​}​​. Since ​​ψ​t​​​ 
strictly single-crosses from above (by the Proof of Proposition 1), the solution ​τ​ of ​​
ψ​τ​​  =  0​ falls in ​​{​β​t​​}​​. ∎

Equation (5) tells us that pre-cutoff learning ​​β​τ​​​ crowds out the agent’s experi-
mentation more than post-cutoff learning ​​​{​b​ t​​}​​t≥τ​​​. After the cutoff, it crowds out the 

option value of own experimentation ​r y​∫ τ​ 
∞​​​e​​ −​∫ τ​ 

s​​​(r+​b​ u​​)​du​ ds​, as seen in the second line 
of (5) for ​t  =  τ​. Before the cutoff, the additional term ​x − c​ in the first line of (5) 
represents the reduced opportunity of achieving a first success at ​τ​.8

In online Appendix C.1, we show that Iris’s learning curve ​​{​β​t​​}​​ rises in other 
agents’ cutoffs. Together with Lemma 1, this means that ​​τ​i​​​ falls in ​​τ​−i​​​, so the game 
has strategic substitutes.9

Our next result provides a tool for rich comparisons of equilibrium values. Lemma 1 
is of limited value for such comparative statics because the order on social learning 
​{​β​t​​}​ is highly incomplete. To obtain a sharper tool, the Proof of Lemma 2 shows that by 
truncating the integral expression for an agent’s value (3) at ​τ​, we can write the agent’s 
value as a function of only two variables: the cutoff ​τ​ and pre-cutoff social learning ​​β​τ​​​,

(6) ​ V  = ​ 
​p​ 0​​ x − c

 _ r  ​ + ​e​​ −rτ​​(​p​ 0​​ ​e​​ −​β​τ​​−τ​​(x − c)​ − ​(1 − ​p​ 0​​)​c ​ r − 1 _ r  ​)​  ≕  ​(τ, ​β​τ​​)​.​

7 Formally, define ​​ 
∂ ​ψ​τ​​ _ ∂ ​b​ t​​

 ​  =  ​lim​ϵ→0​​ ​ 
1 _ ϵ ​​[​ψ​τ​​​(​​{​b​ s​ 

t,ϵ​}​​s≥0​​)​ − ​ψ​τ​​​(​​{​b​ s​​}​​s≥0​​)​]​​, where ​​b​ s​ 
t,ϵ​  ≔  ​b​ s​​ + 1​{s  ∈  ​[t−ϵ, t]​}​​.

8 For optimistic agents, ​​p​ 0​​  >  ​p – ​​, this asymmetry is stark. A finite amount ​​β​t​​  =  ​τ –​​ of pre-cutoff learning fully 
crowds out incentives by inducing ​​p​ t​​  <  ​ p _ ​​, and so ​​ψ​t​​  <  0​. In contrast, no amount of post-cutoff learning fully 
crowds out incentives since ​​ψ​0​​  >  ​p​ 0​​ x − c  >  0​ for any ​​{​β​t​​}​​.

9 Strategic substitutes owe to our assumption of perfect good news learning. Duffie, Malamud, and  Manso 
(2014) show the possibility of strategic complementarity in a game in which agents acquire imperfect signals and 
then engage in dynamic bilateral trade in randomly matched pairs.
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Before ​τ​, Iris exerts effort anyway, so she does not care about the timing of social 
learning ​​​{​b​ t​​}​​t≤τ​​​. After ​τ​, learning ​​​{​b​ t​​}​​t≥τ​​​ matters only via the continuation value ​​

V​ τ​​  = ​ p​ τ​​ y​​∫ τ​ 
∞​​b​ s​​ ​e​​ −​∫ τ​ 

s​​​(r+​b​ u​​)​du​ ds  = ​ p​ τ​​​(x + y)​ − c​,10 which is a function of ​​(τ, ​β​τ​​)​​ 

since ​​p​ τ​​  = ​ P​​ ∅​​(τ + ​β​τ​​)​​.

LEMMA 2: For any social learning curve ​​{​β​t​​}​​ with ​​ψ​0​​  ≥  0​ and optimal cutoff ​
τ​ , the agent’s value is given by (6). The function ​​(τ, ​β​τ​​)​​ falls in both arguments,  
with ​​∂​τ​​   < ​ ∂​β​​   <  0​.

PROOF: 
See Appendix A.B.

The fact that ​​(τ, ​β​τ​​)​​ falls in ​​β​τ​​​ may sound counterintuitive. It occurs because 
we fix the optimal stopping time ​τ​, as characterized by ​​ψ​τ​​  =  0​. A rise in pre-cutoff 
learning ​​β​τ​​​ must be compensated by a fall in post-cutoff learning ​​​{​b​ t​​}​​t≥τ​​​ in order 
to keep ​τ​ constant. More strongly, since pre-cutoff learning has a discontinuously 
larger effect on ​​ψ​τ​​​ than post-cutoff learning by (5), we must reduce the latter by 
a larger amount to compensate. In contrast to (5), the effect of social learning on 
value, ​∂ V / ∂ ​b​ t​​​, is continuous in ​t​, so the combination of a small raise of ​​b​ τ−ϵ​​​ and a 
large drop of ​​b​ τ+ϵ​​​ decreases value.

Lemma 2 assumes ​​ψ​0​​  ≥  0​, so the agent’s stopping time is characterized by ​​
ψ​τ​​  =  0​ .11 This assumption is satisfied in the random networks in Section  IIIB 
where all agents exert some effort, and for peripheral agents in the core-periphery 
networks in Section IIIC.

Lemma 2 is key to compare equilibrium welfare across agents and networks 
since ​τ​ and ​​β​τ​​​ can be characterized in many cases. For example, suppose one agent 
optimally shirks ​τ  =  0​, while another optimally works ​​τ  ′ ​  >  0​. Since ​​β​τ​​  =  0​ and ​​
β​​τ  ′ ​​​  ≥  0​, the shirker has higher utility than the worker, ​​(0, 0)​  >  ​(​τ  ′ ​, ​β​​τ  ′ ​​​)​​.

C. Equilibrium: Examples

So far, we studied Iris’s best response ​​τ​i​​​ as a function of reduced-form social 
learning curves ​​{​β​i,t​​}​​. To close the model in equilibrium, we must study how indi-
vidual cutoffs ​​τ​−i​​  = ​​ {​τ​j​​}​​j≠i​​​ aggregate into ​​{​β​i,t​​}​​, as illustrated in Figure 2. Here, 
we demonstrate this aggregation in three canonical example networks, foreshadow-
ing the more general analysis in Section III.

Example 1 (Clique): Assume that all ​I​ agents observe each other. We claim there 
is a unique equilibrium in which all agents equally divide the single-agent experi-
mentation between them; that is, ​​τ​i​​  = ​ τ –​ / I​ for all agents ​i​, where ​​τ –​​ solves ​​P​​ ∅​​(​τ –​)​  = 
​ p _ ​​ . The resulting social learning curve is illustrated in Figure  3 (panel A).  

10 The first equality leverages the fact that all learning after ​τ​ is social ​​​{​b​ t​​}​​t≥τ​​​, and the second leverages the 
indifference condition ​​ψ​τ​​  =  0​.

11 Otherwise, if the agent receives too much social information and ​​ψ​0​​  <  0​, her value equals ​V  =  ​V​ 0​​  = ​
p​ 0​​ y​​∫ 0​ 

∞​​b​ s​​ ​e​​ −​(rs+​β​s​​)​​ ds  =  ​p​ 0​​​(x + y)​ − c − ​ψ​0​​  =  ​(0, 0)​ − ​ψ​0​​  >  ​(0, 0)​​.
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As ​I​ rises, aggregate information is constant, while welfare rises as learning accel-
erates and agents share the cost of experimentation.

We prove our claim in two steps. First, the agents collectively experiment as much as 
one isolated agent, ​​∑ i​ 

 
 ​​​τ​i​​  = ​ τ –​​. This is because any agent who experiments the longest 

expects no social information after her cutoff, ​​b​ i,s​​  =  0​ for ​s  > ​ τ​i​​​. Hence, she faces 
the first-order condition of the single-agent problem, ​​P​​ ∅​​(​∑ j​ 

 
 ​​​τ​j​​)​​(x + y)​ − c  =  0  

= ​  p _ ​​(x + y)​ − c​. Second, the agents split total experimentation evenly, ​​τ​j​​  = ​ τ –​ / I​. 
This is because all agents are indifferent when ​​p​ t​​​ reaches ​​ p _ ​​ and prefer to front-load 
experimentation, so they all experiment until ​​τ –​ / I​.12​​

12 The uniqueness of equilibrium is notable since public good problems with linear costs feature a continuum of 
equilibria. Bramoullé and Kranton (2007) select an equilibrium via a stability criterion, while Galeotti and Goyal 
(2010) select via a network formation game; we resolve this indeterminacy through impatience. In experimentation 
papers there are also asymmetric equilibria (e.g., Keller, Rady, and Cripps 2005; Bonatti and Hörner 2011). As 
discussed after Proposition 1, free-riding incentives are weaker in our paper, leading putative asymmetric equilibria 
to unravel.

Experimentation cutoff τi

Network model:
Info aggregation

Learning model:
Best response

Social learning curve

bi,t = E−i[Σ Aj,t| t < Si]
Ni(G)

Figure 2. Equilibrium Analysis

Figure 3. Social Learning Curves 

Note: This picture illustrates the rate of social learning ​​b​ it​​​ as defined in equation (2) for Examples 1–3, as described 
in the text.

bi,t bi,t bℓ,t

Panel A. Clique Panel B. Line

2

0

1

0

Panel C. Star (peripheral agent)

2 − 2e−τ

I − 1

0
0  τ /I t 0 τ t 0 τℓ t



2952 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2024

Example 2 (Line): Consider the following (infinite) network:13

	​ … − ​j  ′ ​ − i − j − k − …​

In the unique symmetric equilibrium, private discovery in an initial experimen-
tation phase of length ​τ​ is followed by social diffusion in a contagion phase. For 
example, suppose Kata succeeds in the experimentation phase, while Iris and John 
and John′ do not. After ​τ​, Kata’s success means that Kata and John continue to work, 
while Iris shirks. Eventually, John also succeeds, and Iris resumes work.

Let ​​a​ t​​​ be ​i​’s expectation of ​j​’s effort conditional on ​i​ not seeing a success,

(7)	​​ a​ t​​  ≔ ​ E​​ −i​​[​A​ j,t​​ | t  < ​ S​ i​​]​  =  1 − ​Pr​​ − i​​(t  < ​ T​ k​​ | t  < ​ T​ j​​)​ 1​{τ  <  t}​.​

The second equality uses that, in the absence of successes by ​i​ and ​j​, John works at 
times after ​τ​  if and only if Kata has succeeded. Further,

(8)	​​ Pr ​​ − i​​(t  < ​ T​ k​​ | t  < ​ T​ j​​)​​  = ​ 
​Pr​​ −i​​(t  < ​ T​ j​​, ​T​ k​​)​

  ____________  
​Pr​​ −i​​(t  < ​ T​ j​​)​

 ​   = ​  ​e​​ −τ−​α​t​​​ _ 
​e​​ −​α​t​​​

 ​   = ​ e​​ −τ​.

The denominator is the chance that John’s cumulative experimentation  
​​α​t​​  = ​ ∫ 0​ 

t​​​ a​ s​​ ds​ fails to yield a success. For the numerator, the hazard rate of the suc-
cess time ​min​{​T​ j​​, ​T​ k​​}​​ equals two ​​in the experimentation phase ​t  ≤  τ​ ; in the conta-
gion phase ​t  >  τ​, the lack of success by ​i, j, k​ implies ​​A​ j,t​​  =  0​, so the hazard rate 
drops to ​​E​​ −i​​[​A​ k,t​​ | t  < ​ T​ j​​, ​T​ k​​]​  = ​ E​​ −j​​[​A​ k,t​​ | t  < ​ T​ k​​]​  = ​ a​ t​​​.

Substituting (8) into (7) yields ​​a​ t​​  =  1 − ​e​​ −τ​ 1​{τ  <  t}​​, which is constant at ​
t  >  τ​. While the unconditional probability that Kata has succeeded, and hence, 
John works, rises over time, this positive effect is exactly offset by conditioning on 
the bad news event that John has not succeeded yet, ​t  < ​ T​ j​​​.

Since Iris has two neighbors, her social learning curve equals  
​​b​ i,t​​  ≡  2​(1 − ​e​​ −τ​ 1​{τ  <  t}​)​​, as illustrated in Figure  3 (panel B). Using (4), the 
equilibrium stopping time ​τ​ solves

(9)	 ​​ψ​τ​​  = ​ P​​ ∅​​(3τ)​​
(

x + ​  r ___________  
r + 2​(1 − ​e​​ −τ​)​

 ​ y
)

​ − c  =  0.​​​

Example 2′ (Tree): Generalizing Example 2, we consider an (infinite) tree where 
everyone has ​n​ neighbors. Iris’s expectation of neighbor John’s effort in (7) now 
considers the event that none of his ​n − 1​ other neighbors ​k​ has succeeded. In turn, ​
1 − ​a​ t​​​ in (8) becomes

(10) ​​ Pr ​​ − i​​(t  < ​ T​ k​​, ∀ k  ∈ ​ N​ j​​ | t  < ​ T​ j​​)​ = ​ 
​Pr​​ −i​​(t  < ​ T​ j​​, ​T​ k​​, ∀ k  ∈ ​ N​ j​​)​

  __________________  
​Pr​​ −i​​(t  < ​ T​ j​​)​

 ​  = ​ ​e​​ −τ−​(n−1)​​α​t​​​ _ 
​e​​ −​α​t​​​

 ​ .​

13 This example has infinite agents, but we can approximate it with a sequence of finite random networks that 
generate circles of exploding size. These finite networks admit unique, symmetric equilibria that converge to the 
symmetric equilibrium described here (see Board and Meyer-ter-Vehn 2024).
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The denominator is the same as (8). For the numerator, the hazard rate of the suc-
cess time ​min​{​T​ j​​, ​T​ k​​, ​T​ ​k ′ ​​​, …}​​ equals ​n​ in the experimentation phase ​t  ≤  τ​ ; in the 
contagion phase ​t  >  τ​, the lack of success by ​k, ​k ′ ​, …​ implies ​​A​  j,t​​  =  0​, so the 
hazard rate drops to ​​a​ t​​​ for each of ​j​’s neighbors ​k​ other than ​i​.

Simplifying and differentiating (10), Iris’s belief at ​t  ≥  τ​ follows the ODE

(11)	​​ a ˙ ​  = ​ (n − 2)​a​(1 − a)​​

with initial condition ​​a​ τ​​  =  1 − ​e​​ −​(n−1)​τ​​ given by the probability that one of John’s ​
n − 1​ other neighbors succeeded in the experimentation phase.14

For the line, ​n  =  2​, we recover the time-invariant beliefs ​​a​ t​​  ≡  1 − ​e​​ −τ​​ for ​
t  ≥  τ​. For ​n  ≥  3​, Iris’s belief rises over time because the good news from John’s 
expected inflow of information outweighs the bad news from his observed lack of 
success. The net effect is captured by the factor ​​(n − 2)​​ in (11): the more neighbors 
John has, the faster he observes a success, and the faster Iris’s rate of social learning 
increases.​​

Example 3 (Star): The star consists of one core agent (Kata, ​k​) and L peripheral 
agents (Lili, ​ℓ​) and undirected links between ​k​ and each ​ℓ​. In any equilibrium, 
peripherals use a common cutoff ​​τ​ℓ​​​ (by Proposition 3). Moreover, Kata learns faster 
than the peripherals and so experiments less herself, ​​τ​k​​  < ​ τ​ℓ​​​ (by Lemma 5). Indeed, 
for ​​p​ 0​​  < ​ p – ​​ and large ​L​, Kata does not experiment herself, ​​τ​k​​  =  0​.15

When ​​τ​k​​  =  0​, information is generated by peripherals but flows via Kata, who 
serves as the information broker. If a peripheral succeeds before ​​τ​ℓ​​​, Kata sees this 
and starts to work; her eventual success then triggers all other peripherals to work. 
The resulting social learning curve for peripheral agent Lili ​​b​ ℓ,t​​​ undergoes two 
phases, illustrated in Figure 3 (panel C). Up to time ​​τ​ℓ​​​, it increases because of other 
peripherals’ experimentation. After ​​τ​ℓ​​​, no more additional information is created, 
and ​​b​ ℓ,t​​​ falls as the information filters through Kata and Lili becomes pessimistic 
about Kata having seen a success. These dynamics are analogous to water that flows 
into a reservoir while the peripherals experiment and slowly drains out through a 
bottleneck as Kata conveys the information.​​

D. Equilibrium: Existence and Uniqueness

We round off our preliminary analysis by establishing equilibrium existence and 
limited uniqueness results.

PROPOSITION 2: Equilibrium exists.

14 We can rewrite (11) as ​​ d _ 
dt

 ​ log ​ 
​a​ t​​ _ 1 − ​a​ t​​

 ​  =  n − 2​ and solve in closed form for  
​​a​ t​​  =  1 / ​(1 + exp​{− ​(n − 2)​​(t + γ)​}​)​​, with constant ​γ​ determined by the initial condition ​​a​ τ​​  =  1 − ​e​​ −​(n−1)​τ​​.

15 This is analogous to the equilibrium where peripheral agents provide all of the public good in Bramoullé 
and Kranton’s (2007) static, reduced-form model of experimentation (right panel of their Figure 1b).
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PROOF: 
We argue that the best-response mapping in cutoff vectors ​​{​τ​ j​ 

⁎​}​ : ​​[0, ​τ –​]​​​ I​  → ​​ [0, ​τ –​]​​​ I​​ 
is continuous, which implies equilibrium existence by Brouwer’s fixed point theo-
rem. First note that ​i​’s social learning curve ​​​{​b​ i,t​​}​​t≥0​​​, defined in equation (2), is 
pointwise continuous in ​​​{​τ​j​​}​​j≠i​​​ for all ​t  ≠ ​ τ​j​​​. Then, Lebesgue’s dominated conver-
gence theorem implies that incentives ​​ψ​i,t​​​ in (4) are also continuous in ​​​{​τ​j​​}​​j≠i​​​ for 
all ​t​. Finally, since ​​ψ​i,t​​​ strictly single-crosses in ​t​ (see the Proof of Proposition 1), its 
root ​​τ​ i​ 

⁎​​(​​{​τ​j​​}​​j≠i​​)​​ is also continuous. ∎

Uniqueness is more difficult. We are not aware of networks with multiple equi-
libria but can only prove uniqueness under strong assumptions. For a deterministic 
network ​g​ and agents ​i  ≠  j​, define ​​g​ i↔j​​​ to be the same network when switching ​i​ 
and ​j​.16 For a random network ​G​, define ​​G​ i↔j​​​ by ​Pr​(​G​ i↔j​​  =  g)​  =  Pr​(G  = ​ g​ i↔j​​)​​  
for all ​g​. In analogy to sequences of random variables, we say that ​i​ and ​j​ are 
exchangeable in ​G​ if and only if ​​G​ i↔j​​  =  G​; network ​G​ is exchangeable if ​​G​ i↔j​​  =  G​ 
for any pair of agents ​i, j​.

PROPOSITION 3: If ​i​ and ​j​ are exchangeable in ​G​, then in any equilibrium ​​τ​i​​  = ​ τ​j​​​.

PROOF: 
See online Appendix C.2.

For intuition, consider a deterministic network where ​i​ and ​j​ are not connected. 
By contradiction, assume ​​τ​j​​  < ​ τ​i​​​. Since ​i​’s additional learning over ​​[​τ​j​​, ​τ​i​​]​​ is more 
immediate to ​i​ than to ​j​, who only benefits indirectly via some other agent ​k​, we can 
argue that ​min​{​T​ i​​, ​S​ i​​}​​ is smaller than ​min​{​T​ j​​, ​S​ j​​}​​. This greater chance of learning the 
state depresses ​i​’s experimentation incentives below ​j​’s, leading to the contradiction 
that ​​τ​j​​  > ​ τ​i​​​.

COROLLARY 1: Exchangeable networks have a unique equilibrium, characterized 
by a cutoff ​τ  ∈ ​ (0, ​τ –​]​​, such that ​​τ​i​​  =  τ​ for all ​i​.

PROOF: 
Proposition 3 implies that all agents must share the same cutoff ​τ​. Uniqueness 

follows from strategic substitutes: when agents ​j  ≠  i​ raise their cutoff ​​τ​−i​​​, ​i​’s social 
learning rises (see online Appendix C.1), which in turn lowers own experimentation ​​
τ​i​​​ by Lemma 1. ∎

Exchangeability is so demanding that only two deterministic networks sat-
isfy it, the clique and the empty network. If ​j  ∈ ​ N​ i​​​(g)​​, exchangeability implies  
​k  ∈ ​ N​ i​​​(g)​​ and ​j  ∈ ​ N​ k​​​(g)​​ for all ​k  ≠  i, j​, so ​g​ is the clique. A weaker notion of 
symmetry is vertex-transitivity: for each ​i, j​, there is a graph automorphism of ​g​ that 

16 Formally, given ​g​, we can define ​​g​ i↔j​​​ by three types of links. First, links involving ​i​ and ​j​: ​​(i, j)​  ∈  ​g​ i↔j​​​ if and 

only if ​​(i, j)​  ∈  g​. Second, links involving one third party: ​​(i, k)​  ∈  ​g​ i↔j​​​ if and only if ​​(j, k)​  ∈  g​, and ​​(j, k)​  ∈  ​g​ i↔j​​​ 

if and only if ​​(i, k)​  ∈  g​. Third, links between third parties: ​​(k, ℓ)​  ∈  ​g​ i↔j​​​ if and only if ​​(k, ℓ)​  ∈  g​. 
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maps ​i​ to ​j​. By the Proof of Corollary 1, vertex-transitive networks have exactly one 
symmetric equilibrium, but we do not know whether there are additional, asymmet-
ric equilibria.17

With this said, many natural classes of random networks, such as those studied in 
Section IIIB, are exchangeable, and Corollary 1 applies.18 Moreover, Proposition 3 
is useful beyond exchangeable networks; for instance, equilibria in core-periphery 
networks in Section IIIC are characterized by one cutoff ​​τ​k​​​ for all core agents and 
another cutoff ​​τ​ℓ​​​ for all peripherals.

III.  Density of Links

We now turn to the main question of the paper: How do learning and welfare depend 
on network density? Section  IIIA introduces some terminology and a second-best 
benchmark for welfare. Section  IIIB studies large random networks. Section  IIIC 
studies large core-periphery networks. The results for asymptotic learning and welfare 
in these two sections run parallel to one another, but the learning dynamics differ.

A. Bounds on Learning and Welfare

First consider aggregate information. We study large networks via sequences of 
networks ​​​{​G​​ I​}​​I∈ℕ​​​ and write ​​β​​ I​  ≔ ​ min​j​​ ​β​ j,∞​ I  ​​ for the social information of the least 
informed agent. If ​​G​​ I​​ admits multiple equilibria, we consider the infimum values 
of ​​β​​ I​​. We define asymptotic information as ​β  =  lim ​inf​I→∞​​ ​β​​ I​​. There is asymptotic 
learning if ​β  =  ∞​, so all agents eventually learn the state.

Next consider welfare. Iris’s value is trivially bounded above by the value of 
learning the state perfectly immediately, ​​V​ i​​  < ​ p​ 0​​ y​. Another, less obvious, upper 
bound on agents’ value comes from the fact that for ​i​ to socially learn, some other 
agent ​j  ≠  i​ must generate that social information. By Lemma 2 and equation (6), 
this implies that ​​min​j​​ ​V​ j​​  <  ​(0, 0)​  = ​ p​ 0​​​(x + y)​ − c​.19 This motivates an upper 
bound on Rawlsian welfare that we refer to as the welfare benchmark,

	​​ V​​ ⁎​  ≔  min​{​p​ 0​​ y, ​p​ 0​​​(x + y)​ − c}​,​

illustrated in Figure 4 as a function of ​​p​ 0​​​. Given a sequence of networks ​​​{​G​​ I​}​​I∈ℕ​​​, 
let ​​V​​ I​  ≔ ​ min​j​​ ​V​ j​ 

I​​ be the expected welfare of the worst-off agent. If ​​G​​ I​​ admits mul-
tiple equilibria, we consider the infimum values of ​​V​​ I​​. Define asymptotic welfare as  
​V  = ​ lim inf​I→∞​​ ​V​​ I​​.

17 A case in point is the four-agent ring ​…  ↔  i  ↔  j  ↔  k  ↔  ℓ  ↔  i  ↔  …​; it is vertex transitive but 
not exchangeable since ​i​ (but not ​j​) is linked to ​ℓ​, and so ​g  ≠  ​g​ i↔j​​​. However, ​i, k​ are exchangeable, as are ​j, ℓ​; any 
equilibrium must thus have ​​τ​i​​  =  ​τ​k​​​ and ​​τ​j​​  =  ​τ​ℓ​​​. The two equilibrium conditions for these two cutoffs are easy to 
derive, but we do not know how to prove that ​​τ​i​​  =  ​τ​j​​​.

18 Another natural class of exchangeable networks fixes an arbitrary deterministic or random graph and then 
assigns agents to nodes at random. Agents thus know the global structure of the network but not their own location. 
We do not know if this class of networks captures all exchangeable networks.

19 This upper bound relies on agents using equilibrium strategies. Consider a sequence of clique networks in 
which agents use symmetric cutoffs ​​τ​​  I​​ that vanish individually, ​​τ​​  I​  →  0​, but explode in aggregate, ​I ​τ​​  I​  →  ∞​. 
Agents’ payoffs approach ​​p​ 0​​ y​, which exceeds ​​p​ 0​​​(x + y)​ − c​ for pessimistic priors ​​p​ 0​​  <  ​p – ​​. However, in equilib-
rium, such agents have a strict incentive to shirk for large ​I​ (see Example 1).
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While asymptotic learning and the welfare benchmark are both driven by social 
learning ​​{​β​t​​}​​, asymptotic learning focuses on the long run, while welfare incorporates 
discounting. For optimistic priors ​​p​ 0​​  ≥ ​ p – ​​, the welfare benchmark requires agents learn 
the state immediately, so clearly they also learn asymptotically. For pessimistic priors ​​
p​ 0​​  < ​ p – ​​, asymptotic learning and the welfare benchmark are opposing goals. Recall 
that the value function ​​(τ, β)​​ from Lemma 2 falls in ​τ​. Thus, the welfare benchmark ​​
V​​ ⁎​  =  ​(0, 0)​​ requires individual experimentation to vanish ​​max​1≤i≤I​​ ​τ​ i​ 

 I​  →  0​, while 

asymptotic learning requires aggregate information to diverge, ​​∑ i=1​ 
I  ​​​τ​ i​ 

 I​  →  ∞​. For 
core-periphery networks, we will see that these two conditions are mutually exclusive.

Our main results, Theorems 1 and 2, show that sequences of random networks and 
core-periphery networks can attain asymptotic learning ​β  =  ∞​ when network den-
sity is small, and the welfare benchmark ​​V​​ ⁎​​ when network density is intermediate.20

We illustrate these concepts with the three examples from Section IIC.

20 In both cases, the proof of the theorem characterizes unique limit points for ​​{​β​​ I​}​​ and ​​{​V​​ I​}​​, so the ​lim inf​ 
equals the ordinary limit. In the large random networks, equilibria are unique, so taking the infimum over equi-
librium values is moot. In finite core-periphery networks, we do not know whether equilibrium is unique, but the 
unique characterization of the limit points does not rely on taking the infimum over equilibria and rather applies for 
any equilibrium selection.
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Figure 4. Welfare as a Function of the Prior ​​p​ 0​​​

Notes: The figure shows the benchmark upper bound ​​V​​ ⁎​​ and the single-agent lower bound. The benchmark ​​V​​ ⁎​​ is 
piecewise linear with a downward kink at the myopic cutoff, ​​p – ​​. The figure also shows welfare in our three examples. 
The blue line shows the infinite clique (Example 1) in which welfare is ​​(0, ​τ –​)​​, where ​​τ –​​ is the single-agent experi-
mentation. The magenta line shows the infinite line (Example 2) in which welfare is ​​(τ, 2τ)​​, where ​τ​ satisfies (9). 
The red line shows the infinite star (Example 3); in which welfare equals the benchmark ​​(0, 0)​​ for ​p  ≤ ​ p​​ s​​ and 
otherwise ​​(τ, τ)​​, where ​τ​ satisfies (12). The figure assumes the benefit and cost of experimentation are ​x  =  4​ and ​
c  =  3​ and the interest rate is ​r  =  1 / 2​.
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Example 1, continued (Clique): In a finite network, the agents share the single-agent 
experimentation, ​​τ​i​​  = ​ τ –​ / I​. As ​I  →  ∞​, individual experimentation vanishes, and 
all learning is social with asymptotic information ​β  = ​ τ –​​. Agents receive all their 
social information before stopping, ​​β​τ​​  = ​ τ –​​, so asymptotic welfare equals ​​(0, ​τ –​)​​ . 
More concretely, agents’ beliefs instantly jump to ​1​ (if there is a success) or drop 
to ​​ p _ ​​ (if there is no success). The payoff to the former is ​y​, so the equilibrium values 
converge to ​​(0, ​τ –​)​  = ​ (​p​ 0​​ − ​ p _ ​)​y / ​(1 − ​ p _ ​)​  < ​ V​​ ⁎​​, as illustrated in Figure 4. The 
speed of diffusion in the clique chokes off discovery and means that agents neither 
asymptotically learn nor obtain the welfare benchmark.​​

Example 2, continued (Line): In this infinite network, each agent experiments for 
time ​τ  >  0​, where ​τ​ solves (9). Asymptotic learning obtains since social learning ​​
β​t​​  =  2​[τ + ​(1 − ​e​​ −τ​)​​(t − τ)​]​​ is unbounded. However, agents learn too slowly, 
and they do not attain the welfare benchmark. Specifically, each agent experiments 
for ​τ​ and learns ​τ​ from each neighbor before stopping, so ​​β​τ​​  =  2τ​ and welfare 
equals ​​(τ, 2τ)​  < ​ V​​ ⁎​​.​​

Example 3, continued (Star): When there is a large number of peripherals, the core 
agent Kata shirks, ​​τ​k​​  =  0​. The peripherals thus do all the experimentation and have 
the lowest information and welfare, so we focus on them. We show in Section IIIC 
that agents asymptotically learn if and only if ​​p​ 0​​  ≥ ​ p​​ s​​. The threshold ​​p​​ s​​ is defined 
so that peripheral agents barely work at ​t  =  0​ if they think Kata will instantly learn 
the state and choose ​​b​ k,t​​  ≡  1​ thereafter,

(12)	 ​​ψ​ℓ,0​​  = ​ p​​ s​​(x + ​  r _ 
r + 1

 ​ y)​ − c  =  0.​

Note that ​​p​​ s​  < ​ p – ​​, so agents asymptotically learn if they have an optimistic prior.
The welfare result is exactly the opposite. Agents attain the welfare benchmark 

if and only if ​​p​ 0​​  ≤ ​ p​​ s​​. For a high prior, ​​p​ 0​​  > ​ p​​ s​​, the peripheral agents experiment 
in the limit, ​​τ​ℓ​​  >  0​, meaning Kata instantly learns. Thus, a peripheral agent learns ​​
β​​τ​ℓ​​​​  = ​ τ​ℓ​​​ before stopping and has value ​​(​τ​ℓ​​, ​τ​ℓ​​)​  <  ​(0, 0)​  = ​ V​​ ⁎​.​21 For a low 
prior, ​​p​ 0​​  ≤ ​ p​​ s​​, the peripherals stop experimenting in the limit, ​​τ​ℓ​​  =  0​, and since ​​
β​​τ​ℓ​​​​  < ​ τ​ℓ​​​, their value converges to its upper bound ​​V​​ ⁎​  =  ​(0, 0)​​.22 Thus, asymp-
totic learning and the welfare benchmark are not only distinct concepts but in fact 
mutually exclusive (for generic priors ​p0  ≠ ​ p​​ s​​).​​

B. Large Random Networks

We first study large random networks. This is a tractable and canonical class of 
networks that can capture realistic contagion dynamics. For simplicity, we focus on 
regular networks, where agents all have the same number of neighbors. This class 

21 The latter equality presumes ​​p​ 0​​  ≤  ​p – ​​. For ​​p​ 0​​  >  ​p – ​​, the welfare benchmark ​​V​​ ⁎​  =  ​p​ 0​​ y​ requires immediate 
perfect social information, which is clearly impossible with a single neighbor.

22 It may appear paradoxical that the welfare upper bound ​​V​​ ⁎​​ is achieved for low but not high prior beliefs ​​p​ 0​​​. 
This is because ​​V​​ ⁎​​ itself rises as function of ​​p​ 0​​​ and is hence a more demanding benchmark for high ​​p​ 0​​​.
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is rich enough to encompass the clique and trees, as in Sadler (2020a) and Board 
and Meyer-ter-Vehn (2021). After our main result, we discuss which insights gener-
alize to nondegenerate degree distributions.

We construct a regular random network as follows. Each of the ​I​ agents has ​​​n ˆ ​​​ I​  ≥  2​ 
link stubs. We randomly draw pairs of stubs and connect them into undirected links. 
We then prune self-links (from ​i​ to ​i​), multilinks (from ​i​ to ​j​), and, if ​​​n ˆ ​​​ I​ I​ is odd, the 
single leftover stub. We assume that agents observe nothing about the network reali-
zation, not even their own degree; omitting such information seems innocuous since 
agents asymptotically know their degree (see Lemma 3).

By construction, the random network is exchangeable, so Corollary 1 implies 
there is a unique equilibrium. Denote the symmetric cutoff by ​​τ​​  I​​ and agents’ value 
by ​​V​​ I​​. We consider sequences of such networks with degrees ​​{​​n ˆ ​​​ I​}​​ and assume exis-
tence of the limits ​ν  ≔  lim ​​n ˆ ​​​ I​  ≥  2​,23​λ  ≔  lim ​​n ˆ ​​​ I​ / log  I​, and ​​ρ ˆ ​  ≔  lim ​​n ˆ ​​​ I​ / I​, possi-
bly equal to ​∞​.

Let ​​N​​ I​​ be the number of realized links of a random agent. Some stubs may fail to 
form links, so ​​N​​ I​​ is random with expectation ​​n​​ I​  ≔  E​[​N​​ I​]​  < ​​ n ˆ ​​​ I​​. We now argue that 
we can ignore this complication as ​I  →  ∞​.

LEMMA 3: As the network grows large, ​I  →  ∞​:

	 (a)	 Realized degree: ​​N​​ I​ / ​n​​ I​ ​ →​​ D ​  1​.

	 (b)	 Expected degree: ​​n​​ I​ / I  →  1 − ​e​​ −​ρ ˆ ​​​. If ​​ρ ˆ ​  =  0​, then ​​n​​ I​ / ​​n ˆ ​​​ I​  →  1​.

	 (c)	 Social information at the cutoff time: ​lim ​β​ ​τ​​  I​​ 
I  ​  =  lim ​n​​ I​ ​τ​​  I​​.

PROOF: 
See online Appendix C.3.

Part (a) means agents know their realized degree ​​N​​ I​​ in the limit. Part (b) means 
we can ignore the distinction between stubs and links when ​​ρ ˆ ​  =  0​. And part (c) 
means agents do not update ​​N​​ I​​ during the experimentation phase, a consequence of 
part (a).

We next introduce three relevant regions of limit network density:

	 (i )	 Sparse Networks.—Here, agents have a bounded number of links, with ​
ν  ≔  lim ​​n ˆ ​​​ I​  =  lim ​ n​​ I​  ∈ ​ {2, 3, …}​​. Such networks approximate trees in 
the following local sense: for any agent ​i​ and any ​r  ∈  ℕ​, the probability 
that ​i​ has ​ν​ first neighbors, ​ν​(ν − 1)​​ second neighbors, … , ​ν ​​(ν − 1)​​​ r−1​​ 
neighbors at distance ​r​, and all these agents are distinct converges to one as ​
I  →  ∞​. Board and Meyer-ter-Vehn (2024) show that contagion dynamics 
and equilibrium converge to those of infinite trees in Example 2′.

23 The restriction ​​​n ˆ ​​​ I​  ≥  2​ ensures that the component of a typical agent has size proportional to ​I​.
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	 (ii)	 Intermediate Networks.—Here, agents’ links are of order ​log I​, with ​
λ  ≔  lim ​​n ˆ ​​​ I​ / log I  =  lim ​n​​ I​ / log I  ∈ ​ (0, ∞)​​. In such networks, information 
spreads across the network in finite time, as in Milgram’s (1967) six degrees 
of separation. Indeed, Lemma 4 shows that the inverse ​1 / λ​ measures the 
network’s time-diameter, i.e., the time for information to travel between two 
random agents in the network.24

	 (iii )	 Dense Networks.—Here, agents are connected to a fixed proportion of other 
agents ​ρ  ≔  lim ​n​​ I​ / I  =  1 − ​e​​ −​ρ ˆ ​​  ∈ ​ [0, 1]​​. Agents are at most two links 
apart, and we approximate the clique from Example 1 when ​ρ  =  1​.

The set of network densities is the union ​​{ν | ν  ∈  ℕ}​ ∪ ​{λ ⋅ log I | λ  ∈ ​ [0, ∞]​}​  
∪ ​{ρ ⋅ I | ρ  ∈ ​ [0, 1]​}​​, endowed with its natural order, after identifying ​∞   ⋅ log I​ 
with ​0 ⋅ I​.25

We now define the threshold density for asymptotic learning. For pessimistic 
priors, ​​p​ 0​​  < ​ p – ​​, let ​​σ​​ ⁎​  ∈ ​ [0, ∞)​​ be such that perfectly learning the state at time ​​σ​​ ⁎​​ 
renders an agent indifferent about experimenting at ​t  =  0​. Using (4),

(13)	​​ ψ​0​​  = ​ p​ 0​​​(x + ​(1 − ​e​​ −r​σ​​ ⁎​​)​y)​ − c  =  0.​

Here, ​​e​​ −r​σ​​ ⁎​​ y​ is the post-experimentation continuation value. For optimistic priors, ​​
p​ 0​​  ≥ ​ p – ​​, set ​​σ​​ ⁎​  =  0​.

THEOREM 1: In random networks ​​{​​n ˆ ​​​ I​}​​ as ​I  →  ∞​.

	 (a)	 Asymptotic information ​β​ is a decreasing function of network density. It 
attains asymptotic learning ​β  =  ∞​ if and only if ​λ  ≤  1 / ​σ​​ ⁎​​, and it strictly 
falls when ​λ  ≥  1 / ​σ​​ ⁎​​.26

	 (b)	 Welfare ​V​ is a single-peaked function of network density. It strictly rises when ​
ν  <  ∞​, attains the benchmark ​​V​​ ⁎​​ if and only if ​ν  =  ∞​ and ​ρ  =  0​, and 
then strictly falls when ​ρ  >  0​.

PROOF: 
See Appendix B.A.

Asymptotic learning requires sparse networks. Intuitively, denser networks 
accelerate diffusion, crowd out discovery, and undermine learning in the long run. 

24 This time-diameter ​1 / λ  =  lim ​(log I / ​n​​ I​)​​ is smaller than the typical diameter estimate for large random net-
works ​lim ​(log I / log ​n​​ I​)​​. The smaller diameter reflects a faster contagion process: contagion in our model does 
not travel one link in every discrete time period; rather, each link transmits continuously with rate one. Much like 
compound interest, this allows nodes infected at ​​t ′ ​  ∈  ​[t, t + 1]​​ to begin transmitting immediately instead of having 
to wait until ​t + 1​.

25 This order treats many sequences of networks as equally dense. For instance, ​​n​​ I​  =  log  log  I​ or ​​n​​ I​  =  ​​(log I)​​​ 1/2​​ 
both correspond to ​ν  =  ∞, λ  =  0​. Theorem 1 shows that asymptotic information ​β​ and welfare ​V​ of a sequence 
of networks ​​{​n​​ I​}​​ only depend on its limit density ​​(ν, λ, ρ)​​.

26 For optimistic priors ​​p​ 0​​  ≥  ​p – ​​, where ​1 / ​σ​​ ⁎​  =  ∞​, asymptotic information is perfect if and only if ​ρ  =  0​ and 
strictly falls in ​ρ  >  0​.
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Welfare attains the benchmark when network density is intermediate. Intuitively, 
welfare discounts the future and so relies on both information generation and its 
quick dissemination.

Theorem 1 goes beyond traditional threshold theorems (see, e.g., Jackson 2010, 
Section 4.2.2). First, we solve for the exact threshold for asymptotic learning within 
the logarithmic range, ​λ  ≤  1 / ​σ​​ ⁎​​. Second, we characterize learning and welfare for 
network densities where the upper bounds are not attained.

Figure 5 illustrates Theorem 1 for ​​p​ 0​​  < ​ p – ​​. The top and middle panels sketch asymp-
totic information ​β​ and welfare ​V​ as functions of network density. The bottom panel 
illustrates the underlying cumulative social learning curves ​​{​β​t​​}​​ for our three regions 
of network density.27 We discuss Figure 5 in order of increasing network density.

27 We illustrate cumulative social learning ​​{​β​t​​}​​ since the rate ​​{​b​ t​​}​​ (in Figure 3) fails to exist for ​ν  =  ∞​. 
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Figure 5. Large Random Networks for Pessimistic Priors, ​​p​ 0​​  ≤ ​ p – ​​ 

Notes: The top panel shows asymptotic information ​β​ as a function of network density, as described in  
Theorem 2(a). The middle panel shows welfare ​V​ as a function of network density, as described in Theorem 2(b). 
The bottom panel shows the cumulative social learning curves of a typical agent in three canonical cases, as dis-
cussed in the text. Note, ​​σ​​ ⁎​​ is defined by (13), ​β​(λ)​​ by (15), and ​​β​​ ⁎​​ by (16).
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We begin with sparse networks, ​ν  <  ∞​. As ​I  →  ∞​, these networks approxi-
mate trees, with independent information across Iris’s neighbors. Cumulative social 
learning in the contagion phase ​​​{​β​t​​}​​t≥τ​​​, illustrated in Figure 5(i), is convex, with 
rate ​​b​ t​​  =  n ​a​ t​​​ described by (11). This convexity reflects the fact that an agent has ​ν​ 
first-degree neighbors, ​ν​(ν − 1)​​ second-degree neighbors, ​ν ​​(ν − 1)​​​ 2​​ third-degree 
neighbors, etc., so contagion accelerates over time. Each agent experiments for a 
bounded time ​τ  >  0​, which ensures asymptotic learning, while welfare falls short 
of the benchmark, ​​(τ, ντ)​  <  ​(0, 0)​​. The proof shows that ​τ  =  τ​(ν)​​ falls in ​ν​ 
and ​​(τ, ντ)​​ rises in ​ν​.

Next, we characterize diffusion in intermediate and dense networks, ​ν  =  ∞​ . 
As illustrated in Figure 5(ii) and Figure 5(iii), the cumulative social learning curve ​​

{​β​t​​}​​ is a step function with a single step at time ​σ​. That is, agents observe the first 
success at time ​σ​, or never. In analogy to epidemiological contagion processes, 
we also say that agents get “exposed” at ​σ​. For intermediate networks, we have ​
σ  =  σ​(λ)​  >  0​; for dense networks, we have ​σ  =  0​.

To state the underlying result, consider any sequence of cutoffs ​​{​τ​​  I​}​​ (not neces-

sarily equilibrium) with limit ​σ  ≔  lim ​ 
− log ​τ​​  I​

 _ 
​n​​ I​

 ​   ∈ ​ [0, ∞]​​. Let ​S​ be the binary random 
time, with ​Pr​(S  =  σ)​  =  1 − ​e​​ −lim I​τ​​  I​​​ and ​Pr​(S  =  ∞)​  = ​ e​​ −lim I​τ​​  I​​​,28 and index 
i’s exposure time ​​S​ i​ 

I​​ by ​I​.

LEMMA 4: Assume ​ν  =  ∞​. As ​I  →  ∞​, ​i​ gets exposed at time ​σ​ or never,  
​​S​ i​ 

I​ ​→​​ D ​ S​, and learns all generated information, ​lim I ​τ​​  I​  =  β​.

PROOF: 
The full proof is in Appendix B.B. For an intuition, suppose Iris’s neighbors are 

a negligible share of the population, ​ρ  =  0​. At ​​τ​​  I​​, the chance at least one agent has 
succeeded is ​1 − ​e​​ −I​τ​​  I​​​, and there are approximately ​​n​​ I​ I ​τ​​  I​​ exposed agents. The con-
tagion then grows exponentially at rate ​​n​​ I​​ (which itself diverges ​​n​​ I​  →  ∞​), so there 
are approximately ​​n​​ I​ I ​τ​​  I​ ​e​​ ​n​​ I​t​​ exposed agents at time ​t​, and, heuristically, everyone 

is exposed when ​​n​​ I​ I ​τ​​  I​ ​e​​ ​n​​ I​t​  =  I​, or ​t  = ​ 
− log​(​n​​ I​ ​τ​​  I​)​

 _ 
​n​​ I​

 ​   →  σ​.29 This argument slightly 
overstates exposures because of double-counting. But this problem scales with the 
share of exposed agents, and we only need the argument as long as this share is 
negligible; once a fixed share of the population is exposed, all agents are exposed 
immediately since ​​n​​ I​  →  ∞​. The proof uses Chernoff bounds to make these argu-
ments rigorous. ∎

To sharpen Lemma 4, note that the time-diameter upper-bounds the exposure time

(14)	​ σ  =  lim ​ 
− log ​τ​​  I​

 _ 
​n​​ I​

 ​   =  lim  ​ 
log I − log I ​τ​​  I​

  ____________ 
​n​​ I​

 ​   = ​  1 _ λ ​ − lim  ​ 
log I ​τ​​  I​

 _ 
​n​​ I​

 ​ .​

28 Note that others’ information equals total information, ​lim ​(I − 1)​ ​τ​​  I​  =  lim  I ​τ​​  I​​, both when ​​τ​​  I​  →  0​ and 

when ​​τ​​  I​​ is bounded away from zero ​​(so both limits are infinite).
29 Recalling footnote 24, here, we see the difference between typical discrete-time contagion models where 

exposed agents grow like ​​e​​ ​(log ​n​​ I​)​t​​ and our continuous-time model with the faster rate ​​e​​ ​n​​ I​t​​.
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With finite aggregate information, ​β  =  lim I ​τ​​  I​  <  ∞​, they coincide ​σ  =  1 / λ​, 
but with ​β  =  ∞​, a diverging number of agents succeed during experimentation, so 
exposure can happen earlier, ​σ  ≤  1 / λ​.

With this characterization of social learning curves for any cutoffs ​​τ​​  I​​, we now 
return to the question of equilibrium. For intermediate networks, the Proof of 
Theorem 1 shows that pre-cutoff learning must vanish, ​​(​n​​ I​ + 1)​ ​τ​​  I​  →  0​.30 Welfare 
thus converges to the benchmark ​​(​τ​​  I​, ​n​​ I​ ​τ​​  I​)​  →  ​(0, 0)​  = ​ V​​ ⁎​​.

Turning to asymptotic information, the indifference condition (4) at ​t  =  0​ when 
anticipating information ​β​ at exposure time ​σ​ becomes

(15)	​​ p​ 0​​​(x + ​[1 − ​e​​ −rσ​​(1 − ​e​​ −β​)​]​y)​ − c  =  0.​

For low-density intermediate networks with ​λ  ∈ ​ (0, 1 / ​σ​​ ⁎​)​​, an exposure time 
equal to the time-diameter ​σ  =  1 / λ  > ​ σ​​ ⁎​​ would render experimentation incen-
tives (15) positive for any ​β​. That is, if the delay exceeded ​​σ​​ ⁎​​, no amount of infor-
mation could fully crowd out own experimentation. Equilibrium must therefore 
feature ​σ​(λ)​  = ​ σ​​ ⁎​  <  1 / λ​, implying infinite information, ​β​(λ)​  =  ∞​, by (14), 
so (15) becomes (13). Thus, in this range, the exposure time and information are 
independent of network density.

For high-density intermediate networks ​λ  ∈ ​ (1 / ​σ​​ ⁎​, ∞)​​, perfect learning ​
β  =  ∞​ would render incentives (15) negative for any ​σ​(λ)​  ≤  1 / λ  < ​ σ​​ ⁎​​. That is, 
learning is so fast that perfect information at ​σ​(λ)​​ would choke off experimentation 
entirely. Instead, equilibrium must feature finite information, ​β​(λ)​  <  ∞​, implying ​
σ​(λ)​  =  1 / λ​ by (14). The resulting ​​(σ​(λ)​, β​(λ)​)​  = ​ (1 / λ, β​(λ)​)​​ are described 
by initial indifference (15) and illustrated by the dashed line in Figure  5(ii). As 
density ​λ​ rises from ​1 / ​σ​​ ⁎​​ to ​∞​, the exposure time ​σ​(λ)​​ falls from ​​σ​​ ⁎​​ to zero​​, and 
asymptotic information ​β​(λ)​​ falls from ​β​(λ)​  =  ∞​ at ​λ  =  1 / ​σ​​ ⁎​​, as captured by 
(13), to ​​β​​ ⁎​  =  β​(∞)​​ defined by

(16)	​​ p​ 0​​​(x + ​e​​ −​β​​ ⁎​​ y)​  =  c.​

Intuitively, the higher incentives due to earlier learning are compensated by less 
information ​β​(λ)​​ in order to maintain indifference.

Finally, consider dense networks, where agents are connected to a fixed pro-
portion ​ρ  ∈ ​ (0, 1)​​ of others. Learning is immediate, as seen in Figure  5(iii). 
Such networks are analogous to the clique. With total information ​β​, agents learn ​
ρβ​ before stopping and ​​(1 − ρ)​β​ immediately after stopping. The indifference 
condition,

	​​ P​​ ∅​​(ρβ)​​(x + ​e​​ −​(1−ρ)​β​ y)​  =  c​,

30 Intuitively, with ​ν  =  ∞​ and ​ρ  =  0​, the ratio of second neighbors to first neighbors diverges, so nonzero 
pre-cutoff learning implies immediate, perfect post-cutoff learning and chokes off experimentation for ​​p​ 0​​  <  ​p – ​​. 
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then determines total information ​β​. The solution ​β​ falls in ​ρ​, and since learning is 
immediate, welfare also falls in ​ρ​. As ​ρ  →  1​, we approach the clique, with asymp-
totic information ​β  → ​ τ –​​ and welfare ​V  →  ​(0, ​τ –​)​​.

Theorem 1 is stated for regular, undirected networks. The analysis immedi-
ately extends to regular directed networks. Networks with nondegenerate degree 
distributions introduce an alternative possibility for asymptotic learning to fail. An 
agent may be isolated, or more generally, the size of her limit component may be 
finite. This arises with positive probability in Erdos-Renyi networks with bounded 
expected degree ​​n​​ I​​; asymptotic learning then requires intermediate network density 
with ​ν  =  ∞​ and ​λ  ≤  1 / ​σ​​ ⁎​​. We study networks with heterogeneous, finite degrees 
in Board and Meyer-ter-Vehn (2024).31

C. Core-Periphery Networks

In this section we study core-periphery networks. Theorem 2 shows that asymp-
totic information falls with network density, while welfare is single peaked, echo-
ing Theorem 1 for random networks. This analysis serves three purposes. First, 
core-periphery networks are of intrinsic interest. They are used to describe finan-
cial markets (e.g., Li and Schürhoff 2019) and can arise endogenously in network 
formation models (Galeotti and  Goyal 2010). Second, core-periphery networks 
allow us to examine the role of network position for information generation. Third, 
core-periphery networks have a different neighborhood structure, with relatively 
few first neighbors in the core slowly transmitting the information generated by 
the more numerous peripherals. As a result, social learning curves are then concave 
rather than convex in the contagion phase.

A core-periphery network is an undirected, deterministic network that consists of ​
K​ core agents and ​L  =  I − K​ peripheral agents. The core agents ​k​ are connected to 
everyone. The peripheral agents ​ℓ​ are only connected to core agents. See Figure 6 
for an illustration. When ​K  =  1​, we have the star from Example 3.

LEMMA 5: Any equilibrium in a core-periphery network is characterized by two 
cutoffs, ​​τ​k​​​  for all agents in the core and ​​τ​ℓ​​​  for all peripherals. Core agents work 
less, ​​τ​k​​  < ​ τ​ℓ​​​, and have higher values, ​​V​ k​​  > ​ V​ ℓ​​​.

32

PROOF: 
By exchangeability and Proposition 3, equilibrium is characterized by cutoffs  

​​(​τ​k​​, ​τ​ℓ​​)​​. Core agents ​k​ observe all successes immediately, so they have greater 
total information than peripherals who observe some successes with delay,  
​​β​k,t​​ + min​{t, ​τ​k​​}​  > ​ β​ℓ,t​​ + min​{t, ​τ​ℓ​​}​​ for all ​t  >  0​. Lemma 8 in online Appendix C.2 

31 Networks with nondegenerate degree distributions challenge our assumption that agents do not observe 
their own degree. The role of this assumption is to guarantee symmetry, so equilibrium is unique and character-
ized by a single cutoff by Corollary 1. If instead agents observe their degree, equilibrium is characterized by a 
multidimensional fixed point, which makes it difficult to derive comparative statics.

32 Lemma 5 and its proof apply as stated to nested split graphs (Koenig, Tessone, and Zenou 2014). In such 
networks, high-degree agents work less and have higher values than low-degree agents in any equilibrium.
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implies ​​τ​k​​  < ​ τ​ℓ​​​.
33 Since peripherals experiment more, core agents have greater 

social learning, ​​β​k,t​​  > ​ β​ℓ,t​​​ for all ​t  >  0​, so ​​V​ k​​  > ​ V​ ℓ​​​ by Lemma 1. ∎

We now characterize equilibrium cutoffs. Core agents ​k​ observe all successes imme-
diately, so their social learning follows ​​b​ k,t​​  ≡ ​ (K − 1)​ 1​{t  ≤​  τ​k​​}​ + L 1​{t  ≤​  τ​ℓ​​}​​. 
Experimentation incentives (4) are given by

(17)	​​ ψ​k,​τ​k​​​​  = ​ P​​ ∅​​(I ​τ​k​​)​​(x + y​[1 − ​[1 − ​e​​ −​(r+L)​​(​τ​ℓ​​−​τ​k​​)​​]​ ​  L _ 
r + L ​]​)​ − c​,

where the opportunity cost is the continuation value from having ​L​ peripherals 
experiment over ​​[​τ​k​​, ​τ​ℓ​​]​​. In equilibrium, ​​ψ​k,​τ​k​​​​  ≤  0​ with equality if ​​τ​k​​  >  0​.

Peripheral agents ​ℓ​ only observe the successes of core agents, so their 
social learning ​​b​ ℓ,t​​​ equals ​K​ before ​​τ​k​​​ and then drops to ​K ​a​ t​​​, where ​​a​ t​​  ≔ ​ 
Pr ​​ − ℓ​​(​T​ ​ℓ ′ ​​​  <  t for at least one ​ℓ ′ ​  ≠  ℓ | t  < ​ T​ k​​ for all k)​​ is the conditional probability 
that some other peripheral agent has succeeded by ​t​ and hence, the core agents are 
working. This follows

(18)	​​   ​a ˙ ​ _____ 
1 − a

 ​  = ​ (L − 1)​ 1​{t  ≤​  τ​ℓ​​}​ − Ka  = ​ {​
L − 1 − Ka,

​ 
t  ∈ ​ (​τ​k​​, ​τ​ℓ​​)​

​   
− Ka,

​ 
t  > ​ τ​ℓ​​

 ​​​

with boundary condition ​​a​ ​τ​k​​​​  =  1 − ​e​​ −​(L−1)​​τ​k​​​​, as shown in online Appendix C.4. 
Before ​​τ​ℓ​​​, social learning ​​a​ t​​​ rises because of experimentation by the other ​L − 1​ 
peripherals, tempered by the lack of success by the ​K​ core agents. After ​​τ​ℓ​​​, only the 

33 There is a subtlety here. Lemma 1 tells us that more social learning leads to less experimentation, but this is 
insufficient to conclude that core agents experiment less. For example, consider the star network and assume periph-
erals do not experiment; the core agent then has no social information but the same amount of total information 
as peripherals. In the online Appendix Lemma 8 adapts the arguments from Lemma 1 to show that greater total 
learning (including self-learning) implies less experimentation.

kk

ℓ

ℓ

ℓℓ

ℓℓ

Figure 6. Core-Periphery Network with ​k  =  2​ Core Agents and ​ℓ  =  6​ Peripherals
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latter effect remains, so learning ​​b​ ℓ,t​​  =  K​a​ t​​​ slows down. Using equation (4), periph-
erals’ cutoff ​​τ​ℓ​​  >  0​ then solves

	​​ ψ​ℓ,​τ​ℓ​​​​  = ​ P​​ ∅​​(K​[​τ​k​​ + ​∫ ​τ​k​​
​ 

​τ​ℓ​​
​​​a​ s​​ ds]​ + ​τ​ℓ​​)​​(x + r y​∫ ​τ​ℓ​​

​ 
∞

​​​e​​ −​∫ ​τ​ℓ​​​ 
t ​​​(r+K​a​ s​​)​ds​ dt)​ − c  =  0.​

For fixed ​I  <  ∞​, we do not know whether the equilibrium cutoffs ​​(​τ​k​​, ​τ​ℓ​​)​​ are 
unique, but the Proof of Theorem 2 shows that any equilibrium converges to the 
same limit.

In order to cleanly characterize how social information and welfare 
depend on the network density, we consider sequences of core-periphery net-
works with core sizes ​​​{​K​​ I​}​​I∈ℕ​​​. We assume the following two limits exist.  
Let ​κ  ≔  lim ​K​​ I​  ∈  ℕ ∪ ​{∞}​​ be the limit of absolute core size, and  
​ρ  ≔  lim ​K​​ I​ / I  ∈ ​ [0, 1]​​ the limit of relative core size, as a proportion of the popu-
lation. The set of network densities is the union ​​{κ | κ  ∈  ℕ}​ ∪ ​{ρ ⋅ I | ρ  ∈ ​ [0, 1]​}​​ 
endowed with its natural order.

We now define a threshold on core size that is critical for both asymptotic learn-
ing and welfare. For pessimistic priors ​​p​ 0​​  < ​ p – ​​, define ​​κ​​ ⁎​  ∈ ​ (0, ∞)​​ such that learn-
ing from ​​κ​​ ⁎​​ core agents who experiment forever, ​​b​ ℓ,t​​  ≡ ​ κ​​ ⁎​​, renders a peripheral 
agent indifferent about experimenting at ​t  =  0​,

(19)	​​ ψ​ℓ,0​​  = ​ p​ 0​​​(x + ​  r _ 
r + ​κ​​ ⁎​

 ​ y)​ − c  =  0.​

For optimistic priors, ​​p​ 0​​  ≥ ​ p – ​​, set ​​κ​​ ⁎​  =  ∞​.

THEOREM 2: In core-periphery networks ​​{​K​​ I​}​​ and any equilibria ​​{​τ​ k​ 
 I ​, ​τ​ ℓ​ 

 I ​}​​ as ​
I  →  ∞​,

	 (a)	 Asymptotic information ​β​ is a decreasing function of network density. It 
attains asymptotic learning ​β  =  ∞​ if and only if ​κ  ≤ ​ κ​​ ⁎​​ and strictly falls 
when ​κ  ≥ ​ κ​​ ⁎​​.34

	 (b)	 Welfare ​V​ is a single-peaked function of network density. It strictly rises when ​
κ  ≤ ​ κ​​ ⁎​​, it attains the benchmark ​​V​​ ⁎​​ if and only if ​κ  ∈ ​ [​κ​​ ⁎​, ∞]​​ and ​ρ  =  0​,  
and strictly falls when ​ρ  >  0​.

PROOF: 
See online Appendix C.5. 

As ​I  →  ∞​, asymptotic learning is achieved for sufficiently small core size; wel-
fare attains the benchmark for intermediate core size. Figure 7 illustrates Theorem 2 
for ​​p​ 0​​  < ​ p – ​​. The top and middle panels sketch asymptotic information ​β​ and welfare ​
V​ as functions of core size. The bottom panel illustrates three typical social learning 

34 For optimistic priors ​​p​ 0​​  ≥  ​p – ​​, where ​​κ​​ ⁎​  =  ∞​, asymptotic information is perfect if and only if ​ρ  =  0​ and 
strictly falls in ​ρ  >  0​.
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curves ​​{​β​ℓ,t​​}​​. While asymptotic learning and second-best welfare may a priori seem 
to be related goals, Theorem 2 shows that for pessimistic priors, they are generically 
mutually exclusive. Asymptotic learning requires a small core size ​κ  ≤ ​ κ​​ ⁎​​, while 
second-best welfare requires a large core size ​κ  ≥ ​ κ​​ ⁎​​.35

As with random networks, there are three regions of network density with qual-
itatively different social learning dynamics. First, consider a small core ​κ  < ​ κ​​ ⁎​​ , 
as illustrated in Figure 7(i). The exploding number of peripherals experiment for 
a bounded time interval, ​​τ​ℓ​​  >  0​, and collectively create an exploding amount 

35 The pessimistic prior assumption is important. For optimistic priors, ​​p​ 0​​  ≥  ​p – ​​, it is easier to motivate agents to 
experiment. Our welfare benchmark requires asymptotic learning, and both of these goals are obtained if ​κ  =  ∞​ 
and ​ρ  =  0​. While this is a single point ​0 ⋅ I​ in our density order, there any many sequences that satisfy both condi-
tions, e.g., ​​K​​ I​  =  log I​, ​​K​​ I​  =  log log I​, ​​K​​ I​  =  ​√ 

_
 I ​​.
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∞

Figure 7. Core-Periphery for Pessimistic Priors, ​​p​ 0​​  ≤ ​ p – ​​. 

Notes: The top panel shows asymptotic information ​β​ as a function of network density, as described in  
Theorem 2(a). The middle panel shows welfare ​V​ as a function of network density, as described in Theorem 2(b). 
The bottom panel shows the learning curves of a peripheral agent in three regions of network density, as discussed 
in the text. Note, ​​β​​ ⁎​​ is defined by (16), ​​κ​​ ⁎​​ by (19), and ​β​(κ)​​ by (20).
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of information in an instant. This crowds out experimentation by core agents. 
Peripherals choose to experiment since the flow of social information is restricted by 
the small core size. Formally, ​​β​ℓ,t​​  =  κt​, so equation (19) implies ​​ψ​ℓ,0​​  >  0​ given that  
​κ  < ​ κ​​ ⁎​​ . Asymptotic learning obtains, but since each peripheral generates 
a nonvanishing amount of information, welfare falls short of the benchmark  
​​(​τ​ℓ​​, κ ​τ​ℓ​​)​  < ​ V​​ ⁎​​.

Second, consider an intermediate core ​κ  ∈ ​ (​κ​​ ⁎​, ∞)​​, as illustrated in Figure 7(ii).36 
With this core size, perfect information from peripherals would crowd out periph-
erals’ experimentation incentives. In equilibrium, peripheral agents lower their cut-
offs, limiting their total information ​β​(κ)​  =  lim ​(I − ​K​​ I​ − 1)​ ​τ​ ℓ​ 

 I ​  <  ∞​ . The level 
of ​β​(κ)​​ is determined by peripheral agents’ indifference condition at ​t  =  0​,

(20)	​​ ψ​ℓ,0​​  = ​ p​ 0​​​(x + r y​∫ 
0
​ 
∞

​​​e​​ −​(rt+​β​ℓ,t​​)​​ dt)​ − c  =  0​,

where ​ℓ​’s social learning curve satisfies ​1 − ​e​​ −​β​ℓ,t​​​  = ​ (1 − ​e​​ −β​(κ)​​)​​(1 − ​e​​ −κt​)​​. 
Intuitively, ​ℓ​ learns the state if some peripheral learned it and a core agent succeeds. 
As in the star, ​​b​ ℓ,t​​​ falls over time as agents grow pessimistic about the chance that 
one of them succeeded. Asymptotic learning fails, but agents do obtain the welfare 
benchmark, ​​(0, 0)​​, as social pre-cutoff learning ​κ ​τ​ ℓ​ 

 I ​​ vanishes. For large ​κ​, the core 
transmits information increasingly fast, reinforcing the crowding out and reducing 
asymptotic information. When ​κ  =  ∞​ but ​ρ  =  0​, ​β  = ​ β​​ ⁎​​ solves (16), so ​​β​ℓ,t​​​ 
jumps to ​​β​​ ⁎​​ and remains constant thereafter.

Third, consider a large core ​ρ  ∈ ​ (0, 1]​​, as illustrated by Figure 7(iii). Now core 
agents generate a nonvanishing share of total information. Social learning becomes 
immediate, ​​β​ℓ,t​​  = ​ β​k,t​​  =  β​ for all ​t  >  0​, and core agents’ indifference condition 
becomes

	​​ P​​ ∅​​(​β​k,τ​​)​​(x + y ​e​​ −​(β−​β​k,τ​​)​​)​ − c  =  0​,

with pre-cutoff learning ​​β​k,τ​​  =  lim I ​τ​ k​ 
 I ​​. This equation together with the analogous, 

but more involved expression for peripherals’ pre-cutoff learning ​lim ​β​ ℓ,​τ​ ℓ​ 
I ​​ 

I  ​​ pin down 
aggregate information ​β​, which falls in ​ρ​. As ​ρ  →  1​, we approach the clique, with 
asymptotic information ​β  → ​ τ –​​ and welfare ​V  →  ​(0, ​τ –​)​​.

These results are reassuringly parallel to the ones for random networks in 
Section  IIIB. In both cases, asymptotic information decreases in density, while 
welfare is single peaked. The underlying economic forces share similarities that 
transcend these two cases. For example, the general tension between learning and 
welfare for pessimistic priors ​​p​ 0​​  < ​ p – ​​ is apparent from the welfare benchmark, ​​
V​​ ⁎​  =  ​(0, 0)​​, which requires individual experimentation to vanish, undermining 
asymptotic learning. However, significant differences arise from the higher ratio of 
second neighbors to first neighbors. First, the contrast between asymptotic infor-
mation and welfare is starker. With ​​p​ 0​​  < ​ p – ​​, asymptotic learning and second-best 
welfare are mutually exclusive under core-periphery networks; this stems from the 

36 For optimistic priors, ​​p​ 0​​  ≥  ​p – ​​, this region is empty. But, as pointed out in footnote 35, there are many net-
works with ​κ  =  ∞​ and ​ρ  =  0​.
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small diameter together with the discreteness of the core size. By contrast, large 
random networks with intermediate network density ​λ  ∈ ​ [0, 1 / ​σ​​ ⁎​]​​ accommodate 
both goals, as information aggregation occurs a long way from the typical agent 
and the learning time ​σ​ adjusts continuously to its equilibrium level. Second, social 
learning slows down over time in core-periphery networks with a finite core, as the 
information trickles through the core. By contrast, social learning speeds up over 
time in random networks, as the number of indirect neighbors grows exponentially 
with path length.

In our core-periphery network, peripheral agents connect to all core agents. In 
financial applications, one might assume instead that peripheral broker-dealers each 
connect to a single hub agent, in a fully connected core. This network is sparser than 
our core-periphery networks in that the information flow between a typical pair of 
peripherals ​ℓ, ​ℓ ′ ​​ must pass through their associated pair of core agents ​k, ​k ′ ​​ instead 
of any core agent. This bounds peripherals’ social learning ​​b​ ℓ,t​​  ≤  t​, which in turn 
bounds their welfare below ​​V​​ ⁎​​ when ​​κ​​ ⁎​  >  1​.

IV.  Conclusion

In Mokyr’s (1992, p. 176) study of the history of innovation, he writes that, in 
addition to financial incentives,

decentralization was equally important because it meant that search and 
experimentation were carried out by many independent units, possibly 
over and over again. This duplication of effort was not the most cost effec-
tive way of engaging in technological process [ … ] But this system mini-
mizes the probability of a technological opportunity being missed.

This paper has studied such a decentralized society and showed that welfare is 
single peaked in network density. Centralized societies quickly spread information 
and minimize the wasteful duplication of effort, but innovations are more likely to 
be missed (i.e.,  society fails to aggregate information). Thus, our results formal-
ize the general concern that the rise of interconnectedness (e.g., social media) may 
crowd out original thought and opinion formation and lead to less informed societal 
outcomes.

When it comes to a particular application, when is a network too dense? Indeed, 
a farmer might be part of a scarce network (if they learn about successful crops 
from neighbors) or a dense network (if they learn from Bayer representatives). Our 
analysis provides a detail-free thought experiment for the critical network density. If 
a farmer is happy to experiment even if she knows some other farmers have already 
succeeded, then the network is “sparse,” asymptotic learning obtains, and institu-
tions that enhance diffusion tend to raise welfare (e.g., the founding of agricultural 
universities in the nineteenth century). If she instead waits to learn via diffusion, the 
network is “dense,” asymptotic learning fails, and further raising density may lower 
welfare (e.g., global research networks). Of course, our model abstracts from prac-
tical considerations that are important for policy recommendations. For example, 
the first agent to succeed may obtain higher profits, or Bayer may subsidize early 
adoption of the crop. To inform policies, one would also wish to solve for socially 
optimal experimentation patterns.
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This paper focuses on the role of networks in facilitating social learn-
ing. Another possibility is that ​I  →  ∞​ agents are connected in a clique net-
work and observe others’ successes with a fixed delay ​σ  >  0​. Fix ​​p​ 0​​  < ​ p – ​​ and 
define ​​σ​​ ⁎​​ as in equation (13). When ​σ  > ​ σ​​ ⁎​​, initial experimentation incentives 
are positive, so ​τ  ≔  lim ​τ​​  I​  >  0​ solves ​​P​​ ∅​​(τ)​​(x + ​[1 − ​e​​ −r​(σ−τ)​​]​y)​  =  c​ . 
Agents learn perfectly at ​σ​, but welfare is below second-best ​​(τ, 0)​  < ​ V​​ ⁎​​.  
Conversely, when ​σ  < ​ σ​​ ⁎​​, perfect learning at ​σ​ would eliminate experimen-
tation incentives for finite ​I​, so total information ​β  <  ∞​ solves (15). Since ​​
τ​​  I​  ≈  β / I  →  0​, welfare is second-best ​​(0, 0)​  = ​ V​​ ⁎​​. As in core-periphery net-
works, perfect learning and the welfare benchmark are generically incompatible. In 
contrast, in large random networks the learning time ​σ​ is endogenous and equals ​​σ​​ ⁎​​ 
for a wide range of intermediate network densities.

Finally, we return to the classic paper of Bala and Goyal (1998) for a more detailed 
comparison. Two key long-run predictions carry over: individual beliefs converge 
due to the martingale convergence theorem, and, in connected networks, agents’ 
beliefs converge to consensus. However, two important differences arise. First, our 
forward-looking agents experiment strategically, and so they can achieve asymptotic 
learning and/or second-best welfare even for pessimistic initial beliefs, ​​p​ 0​​  < ​ p – ​​. 
The second type of difference stems from more technical modeling assumptions. 
For example, asymptotic learning fails in Bala and Goyal’s famous “royal family” 
example, in which a small clique of “royals” are observed by everyone, while a 
directed line of “peasants” are only observed by their neighbor. Intuitively, if all roy-
als receive strong negative signals in period 1, everyone switches to the safe action 
forever after. By contrast, our agents asymptotically learn because some peasants 
succeed during the initial experimentation phase, which then spreads to everybody 
else. The key is that perfect good-news learning (or continuous-time experimenta-
tion with repeated imperfect Poisson signals) generates unbounded signals, which 
can overturn any imperfect social information.

Appendix A. Proofs from Section II

A. Proof of Proposition 1 (Cutoff Strategies)

To formalize the discussion surrounding the statement of Proposition 1, we first 
introduce a shorthand for the time-​t​ discount factor on time-​s​ payoffs in the event 
that ​i​ observes no success over ​​[t, s]​​ from (3),

	​​ Λ​t,s​​  ≔ ​ e​​ −r​(s−t)​​​(​p​ t​​ ​e​​ −​∫ t​ 
s​​​(​a​ u​ 

∅​+​b​ u​​)​du​ + 1 − ​p​ t​​)​  = ​ e​​ −​∫ t​ 
s​​r+​p​ u​​​(​a​ u​ 

∅​+​b​ u​​)​du​,​

where the second expression integrates by parts and is convenient for taking deriv-
atives. Next, we generalize Iris’s value of optimal experimentation (3) to time-​t​ 
continuation payoffs from arbitrary, integrable experimentation,

(21)	​​ Π​t​​  = ​ Π​t​​​(​{​a​ s​ 
∅​}​)​  = ​ ∫ 

t
​ 
∞

​​​Λ​t,s​​​(​p​ s​​​(​a​ s​ 
∅​​(x + y)​ + ​b​ s​​ y)​ − ​a​ s​ 

∅​ c)​ds,​
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and recall from footnote 7 the derivative with respect to “experimentation just 

before ​t​,” ​​ 
∂ ​Π​0​​ _ 
∂ ​a​ t​ 

∅​
 ​  ≔ ​ lim​ϵ→0​​ ​ 

1 _ ϵ ​​(​Π​0​​​(​{​a​ s​ 
t,ϵ​}​)​ − ​Π​0​​​(​{​a​ s​ 

∅​}​)​)​​, where ​​a​ s​ 
t,ϵ​  ≔ ​ a​ s​ 

∅​ + 1​{s  ∈ ​

[t−ϵ, t]​}​​.
We will show that front-loading incentives are positive, equal to

(22)	​ − ​ d _ 
dt

 ​ ​ 
∂ ​Π​0​​ _ 
∂ ​a​ t​ 

∅​
 ​  = ​ Λ​0,t​​​(r​(​p​ t​​​(x + y)​ − c)​ + ​p​ t​​ ​b​ t​​​(x − c)​)​.​

The term ​r​(​p​ t​​​(x + y)​ − c)​​ is the time value of front-loading own experimentation 
from ​t + δ​ to ​t​, while ​​p​ t​​ ​b​ t​​​(x − c)​​ captures the value of additional experimentation 
that arises from neighbors succeeding in ​​[t, t + δ]​​. Since (22) is positive, agents 
maximally front-load effort, so cutoff strategies are optimal.37

To establish the second derivative (22), we first derive convenient expressions for ​
Π​ and its various first derivatives. Truncating (3) for ​​Π​0​​​ at time ​t​, we get

(23)	​​ Π​0​​  = ​ ∫ 
0
​ 
t
​​​Λ​0,s​​​(​p​ s​​​(​a​ s​ 

∅​​(x + y)​ + ​b​ s​​ y)​ − ​a​ s​ 
∅​ c)​ds + ​Λ​0,t​​ ​Π​t​​.​

To compute ​∂ ​Π​t​​ / ∂ ​p​ t​​​, Bayes’ rule implies ​​Λ​t,s​​ ​p​ s​​  = ​ e​​ −r​(s−t)​​ ​p​ t​​ ​e​​ −​∫ s​ 
t​​​(​a​ u​ 

∅​+​b​ u​​)​du​​, and we 
rewrite (21)

(24)	​​ Π​t​​  = ​ ∫ 
t
​ 
∞

​​​e​​ −r​(s−t)​​​(​p​ t​​ ​e​​ −​∫ t​ 
s​​​(​a​ u​ 

∅​+​b​ u​​)​du​​[​a​ s​ 
∅​​(x + y)​ + ​b​ s​​ y]​ 

	 − ​[​p​ t​​ ​e​​ −​∫ t​ 
s​​​(​a​ u​ 

∅​+​b​ u​​)​du​ + 1 − ​p​ t​​]​ ​a​ s​ 
∅​ c)​ds​.

Writing ​​𝔞​t​​  ≔ ​ ∫ t​ 
∞​​​e​​ −r​(s−t)​​​(​a​ s​ 

∅​ c)​ds​ with time derivative ​​​𝔞̇  ​​t​​  =  r ​𝔞​t​​ − ​a​ t​ 
∅​ c​, ​​Π​t​​ + ​𝔞​t​​​ is 

a linear function of the posterior belief ​​p​ t​​​, and so

(25)	​​ 
∂ ​Π​t​​ _ ∂ ​p​ t​​

 ​  = ​  1 _ ​p​ t​​ ​​(​Π​t​​ + ​𝔞​t​​)​​.

To compute ​∂ ​Π​0​​ / ∂ ​a​ t​ 
∅​​, define the derivative of the posterior belief  

​​p​ t​​  = ​ P​​ ∅​​(​α​t​​ + ​β​t​​)​​with respect to “experimentation just before ​t​,”

	​​ 
∂ ​p​ t​​​(​​{​a​ s​ 

∅​}​​s≥0​​)​
  ____________ 

∂ ​a​ t​ 
∅​
 ​   = ​ lim​ 

ϵ→0
​ ​ ​ 1 _ ϵ ​​[​p​ t​​​(​​{​a​ s​ 

t,ϵ​}​​s≥0​​)​ − ​p​ t​​​(​​{​a​ s​ 
∅​}​​s≥0​​)​]​  =  − ​p​ t​​​(1 − ​p​ t​​)​​,

37 To formally show the optimality of cutoff strategies, start with arbitrary cumulative experimen-
tation ​​{​​α ̃ ​​ t​ ∅​}​​. First, omit any experimentation after ​​ t _ ​  ≔  inf ​{t :  ​p​ t​​  ≤ ​  p _ ​}​​, i.e.,  consider ​​α​ t​ 

∅​  ≔  min​

{​​α ̃ ​​ t​ ∅​, ​α – ​}​​, where ​​α – ​  = ​​ α ̃ ​​ ​ t _ ​​ 
∅​​. By (21), ​​Π​0​​​(​{​a​ s​ 

∅​}​)​  ≥ ​ Π​0​​​(​{​​a ̃ ​​ s​ ∅​}​)​​. Second, we argue ​​Π​0​​​(1​{s  ≤​  α – ​}​)​  ≥ ​ Π​0​​​(​{​a​ s​ 
∅​}​)​​.  

Write ​T​(α)​  ≔  inf ​{t : ​α​ t​ 
∅​  =  α}​  ∈ ​ [α, ∞]​​ for the inverse of ​​{​a​ s​ 

∅​}​​. Then, from low to high values of ​α​, front-load 

experimentation ​​a​ T​(α)​​ 
∅  ​​ from ​T​(α)​​ to ​α​. Denote ​​{​a​ s​ 

∅,α​}​​ the strategy after having front-loaded ​​[0, α]​​; i.e.,  ​​a​ s​ 
∅,α​​  

equals ​1​ for ​s  ∈ ​ [0, α]​​, ​0​ for ​s  ∈ ​ (α, T​(α)​]​​, and ​​a​ s​ 
∅​​ for ​s  >  T​(α)​​; for ​α  = ​ α – ​​, we obtain the cutoff strategy ​​

a​ s​ 
∅,​α – ​​  =  1​{s  ≤​  α – ​}​​. Since every infinitesimal front-loading of ​​a​ T​(α)​​ 

∅  ​​ from ​T​(α)​​ to ​α​ raises profits, we get

	​​ Π​0​​​(1​{s  ≤​  α – ​}​)​ − ​Π​0​​​(​{​a​ s​ 
∅​}​)​  = ​ ∫ 

0
​ 
​α – ​
​​​(​a​ T​(α)​​ 

∅  ​ ​∫ 
α
​ 
T​(α)​

​​​[− ​ d _ 
dt

 ​ ​ 
∂ ​Π​0​​ _ 
∂ ​a​ t​ 

∅​
 ​​(​{​a​ s​ 

∅,α​}​)​]​dt)​dα  ≥  0.​
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where ​​a​ s​ 
t,ϵ​  ≔ ​ a​ s​ 

∅​ + 1​{s  ∈  ​[t−ϵ, t]​}​​; also, ​∂ ​Λ​0,t​​ / ∂ ​a​ t​ 
∅​  =  − ​p​ t​​ ​Λ​0,t​​​. Similarly, differ-

entiating payoff (23) with respect to ​​a​ t​ 
∅​​ and using (25),

(26)	​​ 
∂ ​Π​0​​ _ 
∂ ​a​ t​ 

∅​
 ​  = ​ Λ​0,t​​​(​p​ t​​​(x + y)​ − c + ​ 

∂ ​Π​t​​ ___ ∂ ​p​ t​​
 ​ ​ 
∂ ​p​ t​​ ___ 
∂ ​a​ t​ 

∅​
 ​ − ​p​ t​​ ​Π​t​​)​ 

	 = ​ Λ​0,t​​​(​p​ t​​​(x + y)​ − c − ​(1 − ​p​ t​​)​ ​𝔞​t​​ − ​Π​t​​)​​.

Turning to the time derivatives, we first note ​​​p ˙ ​​t​​  =  − (​a​ t​ 
∅​ + ​b​ t​​) ​p​ t​​(1 − ​p​ t​​)​ , 

​∂ ​Λ​t,s​​ / ∂ t  =  [r + ​p​ t​​(​a​ t​ 
∅​ + ​b​ t​​)] ​Λ​t,s​​​ , and ​∂ ​Λ​0,t​​ / ∂ t  =  − [r + ​p​ t​​(​a​ t​ 

∅​ + ​b​ t​​)] ​Λ​0,t​​​ , differ-
entiate (21)

	​​​ Π ˙ ​​t​​  =  − ​[​p​ t​​​(​a​ t​ 
∅​​(x + y)​ + ​b​ t​​ y)​ − ​a​ t​ 

∅​ c]​ + ​[r + ​p​ t​​​(​a​ t​ 
∅​ + ​b​ t​​)​]​ ​Π​t​​,​

and then differentiate (26) to get (22),

	​​ Λ​ 0,t​ 
−1​ ​ d __ 

dt
 ​ ​ 
∂ ​Π​0​​ ___ 
∂ ​a​ t​ 

∅​
 ​  =  − ​[r + ​p​ t​​​(​a​ t​ 

∅​ + ​b​ t​​)​]​​[​p​ t​​​(x + y)​ − c − ​(1 − ​p​ t​​)​ ​𝔞​t​​ − ​Π​t​​]​ 

	 − ​p​ t​​​(1 − ​p​ t​​)​​(​a​ t​ 
∅​ + ​b​ t​​)​​(x + y + ​𝔞​t​​)​​ ​− ​(1 − ​p​ t​​)​​(r ​𝔞​t​​ − ​a​ t​ 

∅​ c)​ 

	 + ​[​p​ t​​​(​a​ t​ 
∅​​(x + y)​ + ​b​ t​​ y)​ − ​a​ t​ 

∅​ c]​ − ​[r + ​p​ t​​​(​a​ t​ 
∅​ + ​b​ t​​)​]​ ​Π​t​​​

	​ =  − r​[​p​ t​​​(x + y)​ − c]​ − ​p​ t​​ ​b​ t​​​(x − c)​.​

Having established that cutoff strategies are optimal, we now show that the 
optimal cutoff is the unique solution of ​​ψ​τ​​  =  0​, if ​​ψ​0​​  ≥  0​. For cutoff strategies ​​
a​ s​ 

∅​  =  1​{s  ≤  t}​​, we have ​​𝔞​t​​  = ​ ∫ t​ 
∞​​​e​​ −r​(s−t)​​​(​a​ s​ 

∅​ c)​ds  =  0​, and (24) simplifies to

	​​ Π​t​​  = ​ p​ t​​ y​∫ 
t
​ 
∞

​​​e​​ −r​(s−t)​​ ​b​ s​​ ​e​​ −​∫ t​ 
s​​​b​ u​​du​ ds  = ​ p​ t​​ y​(1 − r​∫ 

t
​ 
∞

​​​e​​ −​∫ t​ 
s​​​(r+​b​ u​​)​du​ ds)​,​

where the last equality uses integration by parts. Then (26) simplifies to

(27)	​​ Λ​ 0,t​ 
−1​ ​ 

∂ Π​(1​{s  ≤  t}​)​
 _____________ 

∂ ​a​ t​ 
∅​
 ​   = ​ p​ t​​​(x + y)​ − c − ​Π​t​​ 

	 = ​ p​ t​​​(x + r y​∫ 
t
​ 
∞

​​​e​​ −​∫ t​ 
s​​​(r+​b​ u​​)​du​ ds)​ − c  = ​ ψ​t​​.​

Since ​​Λ​ 0,t​ 
−1​  >  0​ and ​∂ Π​(1​{s  ≤  t}​)​ / ∂ ​a​ t​ 

∅​​ falls in ​t​, ​​ψ​t​​​ strictly single-crosses from 
above. ∎
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For future reference, we summarize some properties of experimentation incentives

(28)	​​ ψ​τ​​​(​{​β​t​​}​)​  = ​ P​​ ∅​​(τ + ​β​τ​​)​​(x + r y​∫ 
τ
​ 
∞

​​​e​​ −r​(s−τ)​−​(​β​s​​−​β​τ​​)​​ ds)​ − c.​

First, note that while (4) and (5) express ​ψ​ instead as a function of the social learn-
ing rate ​​{​b​ t​​}​​, the definition and most properties of ​ψ​ extend to any increasing (not 
necessarily continuous or positive) cumulative social learning curve ​​β​t​​​.

LEMMA 6: Properties of incentives ​​ψ​τ​​​(​{​β​t​​}​)​​ in cutoff ​τ​ and social learning ​​{​β​t​​}​​.

	 (a)	 ​​ψ​τ​​({​β​t​​})​ falls in ​{​β​t​​}​ and thus also in ​{​b​ t​​}​ with partial derivative given in (5).

	 (b)	 ​​ψ​τ​​({​β​t​​})​ strictly single-crosses from above in ​τ​ and is equi-Lipschitz continu-
ous in ​τ​ for all uniformly bounded ​{​b​ t​​}​.

	 (c)	 The root ​τ​ of ​​ψ​τ​​  =  0​ falls in ​{​β​t​​}​ and strictly falls in ​​{b​ t​​}​.

B. Proof of Lemma 2 (Characterization of ​)​

We first derive (6),

	​ V  = ​ (​p​ 0​​ ​∫ 
0
​ 
τ
​​​e​​ −​∫ 0​ 

t​​​(r+​b​ s​​+1)​ds​​[x + ​(​b​ t​​ + 1)​y − c]​dt)​ − ​[​(1 − ​p​ 0​​)​​∫ 
0
​ 
τ
​​​e​​ −rt​ cdt]​ 

	 + ​e​​ −rτ​​[​p​ 0​​ ​e​​ −​β​τ​​−τ​ + ​(1 − ​p​ 0​​)​]​ ​V​ τ​​​

	​ = ​ p​ 0​​ y​(1 − ​e​​ −​β​τ​​−​(r+1)​τ​)​ − ​(1 − ​p​ 0​​)​c ​ 1 − ​e​​ −rτ​ _ r  ​ + ​e​​ −rτ​​(​p​ 0​​ ​e​​ −​β​τ​​−τ​​[x + y − c]​ 

	 − ​[1 − ​p​ 0​​]​c)​​

	​ = ​ 
​p​ 0​​ x − c

 _ r  ​ + ​e​​ −rτ​​[​p​ 0​​ ​e​​ −​β​τ​​−τ​​(x − c)​ − ​(1 − ​p​ 0​​)​c ​ r − 1 _ r  ​]​.​

The first line conditions on ​θ​ at time ​0​ and truncates flow payoffs at ​t  =  τ​ . 
The second line evaluates the first integral using ​x − c  =  r y​, and the 
last term using ​​p​ 0​​ ​e​​ −​β​τ​​−τ​ + ​(1 − ​p​ 0​​)​  = ​ p​ 0​​ ​e​​ −​β​τ​​−τ​ / ​p​ τ​​​ by Bayes’ rule, and  
​​V​ τ​​  = ​ p​ τ​​ y​∫ τ​ 

∞​​​b​ t​​ ​e​​ −​∫ t​ 
∞​​​(r+​b​ s​​)​ds​ dt  = ​ p​ τ​​​(x + y)​ − c​ (using ​​ψ​τ​​  =  0​). The last line uses ​

y  = ​ (x − c)​ / r​ and reorders terms.
The monotonicity in ​​β​τ​​​  is immediate from (6). To see the monotonicity in ​τ​, note 

that the first term in (6) is the payoff from experimenting forever. Thus, the second 
term is the option value of stopping earlier, which must be positive. Then

(29)	​​  ∂​τ​​   =  − r ​e​​ −rτ​​[​p​ 0​​ ​e​​ −​β​τ​​−τ​​(x − c)​ − ​(1 − ​p​ 0​​)​c​  r − 1 _ r  ​]​ − ​e​​ −rτ​ ​p​ 0​​ ​e​​ −​β​τ​​−τ​​(x − c)​​

	​ <  − ​e​​ −rτ​ ​p​ 0​​ ​e​​ −​β​τ​​−τ​​(x − c)​  = ​ ∂​β​​   <  0.​ ∎
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Appendix B. Proofs from Section III

A. Proof of Theorem 1 (Large Random Networks)

1. Trees: ​ν  <  ∞​.—We wish to show that ​V​ rises in ​ν​ for finite degrees ​ν  <  ∞​. 
We characterized the heuristic equilibrium in the infinite regular tree in Example ​​2 ′ ​​ ; 
write ​​τ​​ ​(ν)​​​ for the equilibrium cutoff and ​​a​ t​ 

(ν)​​(τ)​​ for a random neighbor’s expected 
experimentation, when all agents use the same arbitrary cutoff ​τ​. Board and  
Meyer-ter-Vehn (2024) shows that equilibrium in the large random networks con-
verges to these heuristics.

We first show that ​​τ​​ ​(ν)​​​ falls in ​ν​. For a given cutoff ​τ  >  0​, we have  
​​a​ t​ 

​(ν+1)​​​(τ)​  > ​ a​ t​ 
​(ν)​​​(τ)​​ for all ​t  ≥  τ​. To see this, at the cutoff we have  

​​a​ τ​ 
​(ν+1)​​​(τ)​  =  1 − ​e​​ −ντ​  >  1 − ​e​​ −​(ν−1)​τ​  = ​ a​ τ​ 

​(ν)​​​(τ)​​, and this ranking prevails for ​
t  >  τ​ since the RHS of (11) rises in ​ν​. Additionally, ​​a​ t​ 

​(ν)​​​(τ)​​ rises in ​τ​, strictly for ​
τ  <  t​. By Lemma 6, for any ​τ  ≤ ​ τ​​ ​(ν+1)​​​,

	​ 0  = ​ ψ​​τ​​ ​(ν+1)​​​​​(​{​(ν + 1)​ ​a​ t​ 
​(ν+1)​​​(​τ​​ ​(ν+1)​​)​}​)​  ≤ ​ ψ​τ​​​(​{​(ν + 1)​ ​a​ t​ 

​(ν+1)​​​(τ)​}​)​ 

	 < ​ ψ​τ​​​(​{ν ​a​ t​ 
​(ν)​​​(τ)​}​)​,​

so in equilibrium we must have ​​τ​​ ​(ν)​​  > ​ τ​​ ​(ν+1)​​​, as desired.
Below, we argue more strongly that

(30)	​​ (ν + 1)​ ​τ​​ ​(ν)​​  ≥ ​ (ν + 2)​ ​τ​​ ​(ν+1)​​​.

It follows that equilibrium values are increasing in degree. By Lemma 2,

 ​​ V​​ ​(ν+1)​​  =  ​(​τ​​ ​(ν+1)​​, ​(ν + 2)​ ​τ​​ ​(ν+1)​​ − ​τ​​ ​(ν+1)​​)​ 

	 >  ​(​τ​​ ​(ν+1)​​, ​(ν + 1)​ ​τ​​ ​(ν)​​ − ​τ​​ ​(ν+1)​​)​  >  ​(​τ​​ ​(ν)​​, ν ​τ​​ ​(ν)​​)​  = ​ V​​ ​(ν)​​,​

where the first inequality uses (30), and the second that adding ​​τ​​ ​(ν)​​ − ​τ​​ ​(ν+1)​​  >  0​ 
to the first argument of ​​ and subtracting it from the second argument decreases ​​.

To see (30), assume by contradiction that ​​ ​τ​​ ​(ν+1)​​ _ 
​τ​​ ​(ν)​​

 ​   > ​  ν + 1 _ ν + 2 ​  > ​  ν − 1 _ ν  ​​. Then ​​

a​ ​τ​​ (ν)​​ 
(ν)​  =  1 − ​e​​ −​(ν−1)​​τ​​ ​(ν)​​​  <  1 − ​e​​ −ν​τ​​ ​(ν+1)​​​  = ​ a​ ​τ​​ (ν+1)​​ 

(ν+1)​​, and since the ODE (11) rises  

in ​ν​, the inequality ​​a​ ​τ​​ (ν)​+δ​ 
(ν) ​   < ​ a​ ​τ​​ (ν+1)​+δ​ 

(ν+1) ​ ​ is preserved for all ​δ  >  0​. We thus get

	​ 0  = ​ ψ​​τ​​ ​(ν)​​​​​(​{ν ​a​ t​ 
​(ν)​​​(​τ​​ ​(ν)​​)​}​)​ 

	 = ​ P​​ ∅​​(​[ν + 1]​ ​τ​​ ​(ν)​​)​​(x + r y​∫ 
δ=0

​ 
∞

 ​​exp​{− rδ − ν ​α​​τ​​ ​(ν)​​+δ​ 
​(ν)​

  ​}​dδ)​ − c​

	​ > ​ P​​ ∅​​(​[ν + 2]​ ​τ​​ ​(ν+1)​​)​​(x + r y​∫ 
δ=0

​ 
∞

 ​​exp​{− rδ − ​(ν + 1)​ ​α​​τ​​ (ν+1)​+δ​ 
(ν+1)

  ​}​dδ)​ − c 

	 = ​ ψ​​τ​​ ​(ν+1)​​​​​(​{​(ν + 1)​ ​a​ t​ 
​(ν+1)​​​(​τ​​ ​(ν+1)​​)​}​)​​,
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contradicting the fact that ​​τ​​ ​(ν+1)​​​ is the equilibrium cutoff. This contradiction estab-
lishes (30), and so ​​V​​ ​(ν+1)​​  > ​ V​​ ​(ν)​​​.

2. Exploding Number of Neighbors: ​ν  =  ∞​.—In this case, equilibrium 
cutoffs must vanish, ​​τ​​  I​  →  0​; otherwise, the posterior belief at the cutoff  
​​P​​ ∅​​(​(​n​​ I​ + 1)​ ​τ​​  I​)​  →  0​, choking off experimentation incentives. Lemma 4 charac-
terizes the limit of social learning curves as a burst of social information of size ​β​ 
at time ​σ​, i.e., step functions ​​β​t​​ = β 1​{t ≥ σ}​​; for ​σ  =  0​, we split the burst into 
pre-cutoff information ​​β​τ​​ ≔ lim ​ n​​ I​ ​τ​​  I​ = lim ​(​n​​ I​ + 1)​ ​τ​​  I​​  and post-cutoff information ​
β − ​β​τ​​​. The equilibrium indifference condition becomes

(31)	​​ ψ​τ​​  =  lim ​ψ​ ​τ​​  I​​ 
I ​  = ​ P​​ ∅​​(​β​τ​​)​​(x + r y​∫ 

0
​ 
∞

​​​e​​ −rt−​(​β​t​​−​β​τ​​)​​ dt)​ − c​

	​ = ​ P​​ ∅​​(​β​τ​​)​​(x + ​[1 − ​e​​ −rσ​​(1 − ​e​​ −​(β−​β​τ​​)​​)​y]​)​ − c  =  0.​

To solve for ​​β​τ​​  ≤ ​ τ –​, β, σ​, we complement (31) with the simple observation that

(32)	​​ 
​β​τ​​ _ β ​  = ​  lim ​n​​ I​ ​τ​​  I​ _ 

lim I ​τ​​  I​
 ​  =  lim ​ ​ n​​ I​ _ 

I
 ​  =  ρ,​

and two conditions linking the learning time ​σ  =  lim ​ 
− log ​τ​​  I​

 _ 
​n​​ I​

 ​​  to pre-cutoff learn-

ing ​​β​τ​​​  and total learning ​β​. First, bounded total learning implies the learning time 

equals the network’s time-diameter:

(33)	​ If β  =  lim  I ​τ​​  I​  <  ∞,  then σ  =  lim ​ 
log​(I ​τ​​  I​)​ − log ​τ​​  I​

  ____________ 
​n​​ I​

 ​   = ​  1 _ λ ​.​

Second, nonvanishing pre-cutoff learning implies immediate learning:

(34)	​ If  ​β​τ​​  =  lim ​n​​ I​ ​τ​​  I​  >  0, then σ  =  lim ​ 
log​(​n​​ I​ ​τ​​  I​)​ − log ​τ​​  I​

  _____________ 
​n​​ I​

 ​   =  0.​

Case 1, ​ρ  =  0​ and ​​p​ 0​​  > ​ p – ​​: The optimistic prior together with the equilibrium 
condition (31) require nonvanishing pre-cutoff learning, ​​β​τ​​  >  0​, and so by (34) 
immediate learning, ​σ  =  0​. Since ​ρ  =  0​, (32) implies perfect learning ​β  =  ∞​. 
Perfect immediate learning, ​β  =  ∞, σ  =  0​, in turn implies the welfare benchmark ​
V  = ​ p​ 0​​ y  = ​ V​​ ⁎​​.

Case 2, ​ρ  =  0​ and ​​p​ 0​​  ≤ ​ p – ​​: We first observe ​​β​τ​​  =  0​. Otherwise, if ​​β​τ​​  >  0​, the 
proof for Case 1 implies ​β  =  ∞​ and ​σ  =  0​, and so experimentation incentives ​​
ψ​τ​​  < ​ p​ 0​​ x − c  ≤  0​, contradicting equilibrium. This implies the welfare bench-
mark, ​lim ​(​τ​​  I​, ​n​​ I​ ​τ​​  I​)​  =  ​(0, 0)​  = ​ V​​ ⁎​​.

Turning to asymptotic information, we now show that ​β  =  ∞​ if and only if ​
λ  ≤  1 / ​σ​​ ⁎​​, and ​β​ strictly decreases in density above this threshold. First assume ​
λ  ≤  1 / ​σ​​ ⁎​​.38 If by contradiction, learning was imperfect ​β  <  ∞​, social learning 

38 For ​​p​ 0​​  =  ​p – ​​, we have ​​σ​​ ⁎​  =  0​, so this condition is always satisfied.
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happens too late, at ​σ  =  1 / λ  ≥ ​ σ​​ ⁎​​ by (33), so experimentation incentives are 
strictly positive,

 ​​ ψ​τ​​  = ​ p​ 0​​​(x + ​[1 − ​e​​ −rσ​​(1 − ​e​​ −β​)​]​y)​ − c  > ​ p​ 0​​​(x + ​[1 − ​e​​ −r​σ​​ ⁎​​]​y)​ − c  =  0,​

contradicting equilibrium.
Next assume ​λ  >  1 / ​σ​​ ⁎​​. This induces early social learning ​σ  ≤  1 / λ  < ​ σ​​ ⁎​​ , 

and equilibrium indifference ​​p​ 0​​(x + [1 − ​e​​ −rσ​(1 − ​e​​ −β​ )]y) − c  = ​ ψ​τ​​  =  0 
= ​ p​ 0​​(x + [1 − ​e​​ −r​σ​​ ⁎​​ ]y) − c​ requires ​β  <  ∞​. Moreover, ​β  =  β(σ)​ rises in ​σ​ and 
so falls in ​λ  =  1 / σ​.

Case 3, ​ρ  >  0​: Then ​​β​τ​​  =  ρβ  >  0​; (34) then implies ​σ  =  0​, so (31) 
becomes ​​P​​ ∅​​(ρβ)​​(x + ​e​​ −​(1−ρ)​β​ y)​  =  c​. Since pre-cutoff learning lowers exper-
imentation incentives more than post-cutoff learning by (5), total learning  
​β  =  β​(ρ)​​ falls in ​ρ​. Success is observed either immediately, with probability  
​​p​ 0​​​(1 − ​e​​ −β​)​​, or never; so welfare ​V  = ​ p​ 0​​​(1 − ​e​​ −β​)​y​ also falls in ​ρ​. ∎

B. Proof of Lemma 4 (Degenerate Exposure Time)

With probability ​​e​​ −I​τ​​  I​​​, no agent succeeds by ​​τ​​  I​​, and so ​​S​ i​ 
I​  =  ∞​; from here on, 

we condition on the complementary event that at least one agent succeeds during 
experimentation, triggering a contagion process. For now, we also restrict attention 
to ​lim ​​n ˆ ​​​ I​ / I  =  0​, so that ​​​n ˆ ​​​ I​ / ​n​​ I​  →  1​ by Lemma 3(a). This allows us to work with ​​​n ˆ ​​​ I​​ 

for finite ​I​ but switch to ​​n​​ I​​ in the limit where ​σ  ≔  lim ​ 
− log ​τ​​  I​

 _ 
​n​​ I​

 ​​ . We discuss the case ​
lim ​​n ˆ ​​​ I​ / I  >  0​ later.

The overarching proof strategy is to separate the “geographical”/network aspects 
of the contagion process from its timing. Specifically, we realize the randomness 
of the network ​​G​​ I​​ as agents succeed. To emphasize the analogy to epidemiological 
SI contagion processes, we refer to agents who have succeeded as infected. When ​
k​ agents are infected, let ​​X​ k​ 

I​​ be the random number of exposed agents, i.e., that 
have observed a success but have yet to succeed themselves. Clearly, ​​X​ k​ 

I​  ≤ ​​ n ˆ ​​​ I​ k​; a 

(relative) exposure gap, ​​Γ​ k​ 
I ​  ≔ ​ 

​​n ˆ ​​​ I​ k − ​X​ k​ 
I​
 _ 

​​n ˆ ​​​ I​ k
  ​  >  0​, opens up after an exposed ​j​ agent suc-

ceeds because the exposing agent ​i​ already succeeded and cannot be reexposed, or a 
stub of a succeeding agent connects to an already exposed agent. For ​ϵ  >  0​, write  
​​ℰ​​ I​​(ϵ)​  ≔ ​ {​Γ​ k​ 

I ​  <  3ϵ  for all  k  ≤  ϵI/ ​​n ˆ ​​​ I​}​​ for the event that the gap process 
remains bounded in early stages of the contagion.

LEMMA 7: For any ​ϵ  >  0​, ​​ lim​ 
I→∞

​​ ​Pr​​ −i​​(​​​ I​​(ϵ)​)​  =  1​.39

39 Throughout this proof, we use the standard probability measure ​​Pr​​ −i​​ over the network ​G​ and others’ success 
times ​​T​ −i​​​, conditional on observing no success from ​i​, which is the relevant measure for the time of ​i​’s first observed 
success ​​S​ i​ 

I​​. As ​I  →  ∞​, this coincides with the notationally simpler (but less meaningful) measure ​Pr​ over the net-
work ​G​ and all agents’ success times ​​{​T​ j​​}​​. We omit the dependence of ​​Pr​​ −i​​ on ​I​ for notational simplicity.
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We postpone the Proof of Lemma 7; the idea is that with ​​X​ k​ 
I​  ≤  ϵI​ exposed agents, ​

ϵ​ small, and ​​​n ˆ ​​​ I​​ large, most stubs expose new agents.
For small ​ϵ​, Lemma 7 means that after the approximately ​​τ​​  I​ I​ initial infections 

in the experimentation phase, the contagion process resembles a collection of tree 
networks emanating from these “seeds” at exponential rate ​​​n ˆ ​​​ I​​. We now argue that 
as ​​​n ˆ ​​​ I​  →  ∞​, this contagion process reaches a negligible fraction of all agents at 

any ​​ t _ ​  <  σ  =  lim  ​ 
− log ​τ​​  I​

 _ 
​​n ˆ ​​​ I​

 ​​   but approximately all agents at any ​​t –​  >  σ​.

Specifically, write ​​T​ k​ 
I​​ for the ​​k​​ th​​ infection time, and ​​K​​ I​​ for the (random) num-

ber of infected agents at ​​τ​​  I​​. Also define inter-arrival times in the contagion phase  
​​Δ​ k​ 

I ​  ≔ ​ T​ k+1​ 
I  ​ − ​T​ k​ 

I​​ for ​k  > ​ K​​ I​​ and ​​Δ​ k​ 
I ​  ≔ ​ T​ k+1​ 

I  ​ − ​τ​​  I​​ for ​k  = ​ K​​ I​​. The proof idea is 
to apply Chernoff bounds to ​​T​ k​ 

I​ − ​τ​​  I​  = ​ ∑ ℓ=​K​​ I​​ 
k−1 ​​​ Δ​ ℓ​ 

I ​​. Toward this goal, note that con-
ditional on the realization of the “geographical exposure process” ​​{​X​ k​ 

I​}​ ​​​k∈​[​K​​ I​,ϵI/​​n ˆ ​​​ I​]​​​​ , 
inter-arrival times ​​Δ​ k​ 

I ​​ are independent with arrival rate ​​X​ k​ 
I​​. Conditional on ​​​​ I​​(ϵ)​​, we 

have ​​X​ k​ 
I​  ∈ ​ [​(1 − 3ϵ)​ ​​n ˆ ​​​ I​ k, ​​n ˆ ​​​ I​ k]​​  for ​k  ≤  ϵI / ​​n ˆ ​​​ I​​, and so

(35) ​​ E​​ −i​​[​e​​ −ξ​Δ​ k​ 
I ​​ | ​​​ I​​(ϵ)​]​  ≤ ​   ​​n ˆ ​​​ I​ k _ 

​​n ˆ ​​​ I​ k + ξ
 ​  for all  ξ  ≥  0,​

(36)	​​ E​​ −i​​[​e​​ ξ​Δ​ k​ 
I ​​ | ​​​ I​​(ϵ)​]​  ≤ ​ 

​(1 − 3ϵ)​ ​​n ˆ ​​​ I​ k
  ____________  

​(1 − 3ϵ)​ ​​n ˆ ​​​ I​ k − ξ
 ​  for all  ξ  ∈ ​ [0, ​(1 − 3ϵ)​ ​​n ˆ ​​​ I​ k)​.​

We now derive upper and lower bounds for the ​​k​​ th​​ success time ​​T​ k​ 
I​​ in the conta-

gion phase ​k  ∈ ​ [​K​​ I​, ϵI / ​​n ˆ ​​​ I​]​​; in the limit ​I  →  ∞​ these bounds are then shown to 
imply vanishing chances of getting exposed before ​σ​ and after ​σ,​ respectively. The 
upper bound is as follows:

(37)	​​ Pr ​​ − i​​(​T​ k​ 
I​  ≤ ​ τ​​  I​ + δ | ​​​ I​​(ϵ)​, ​K​​ I​  = ​ k​​ I​)​  = ​ Pr ​​ − i​​( ​ ∑ 

ℓ=​K​​ I​

​ 
k−1

 ​​ ​Δ​ ℓ​ 
I ​  ≤  δ | ​​​ I​​(ϵ)​)​ 

	 ≤ ​  inf​ 
ξ≥0

​​ ​e​​ ξδ​ ​ ∏ 
ℓ=​K​​ I​

​ 
k−1

 ​​ ​E​​ −i​​[​e​​ −ξ​Δ​ ℓ​ 
I ​​ | ​​​ I​​(ϵ)​]​​

	​ ≤ ​  inf​ 
ξ≥0

​​ exp​{ξδ − ​ ∑ 
ℓ=​K​​ I​

​ 
k−1

 ​​​[log​(​​n ˆ ​​​ I​ ℓ + ξ)​ − log​(​​n ˆ ​​​ I​ ℓ)​]​}​​

	​ ≤ ​   inf​ 
ξ∈​[0,​​n ˆ ​​​ I​]​

​​ exp​{ξδ − ​ ∑ 
ℓ=​K​​ I​

​ 
k−1

 ​​ ​ 
ξ _ 
​​n ˆ ​​​ I​

 ​​[log​(​​n ˆ ​​​ I​​(ℓ + 1)​)​ − log​(​​n ˆ ​​​ I​ ℓ)​]​}​​

	​ = ​   inf​ 
ξ∈​[0,​​n ˆ ​​​ I​]​

​​ exp​{ξ​(δ − ​ 
log k − log ​K​​ I​

  ___________ 
​​n ˆ ​​​ I​

 ​ )​}​​

The first equality drops the ​​τ​​  I​​ to focus on time since the cutoff, the first inequality 
is a Chernoff bound, the second uses (35), the third uses the concavity of the loga-
rithm, and the final equality collapses the telescopic sum.
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Next, we argue that for fixed ​ϵ  >  0​ and the integer floor ​k  = ​ ⌊​​ϵI / ​​n ˆ ​​​ I​​⌋​​​, the frac-
tion on the RHS of (37) (which approximates the time for the contagion process to 

reach ​k​ agents) converges to ​σ  =  lim ​ 
− log ​τ​​  I​

 _ 
​​n ˆ ​​​ I​

 ​​ :

(38)	​​ 
log ​⌊​​ϵI / ​​n ˆ ​​​ I​​⌋​​ − log ​K​​ I​

  _________________ 
​​n ˆ ​​​ I​

 ​ ​ →​​ D ​ σ​.

For ​​β – ​  =  lim I ​τ​​  I​  <  ∞​, this follows because ​​K​​ I​​ is almost surely 

bounded above, so as ​​​n ˆ ​​​ I​  →  ∞​, all terms other than ​​ 
log  I

 _ 
​​n ˆ ​​​ I​

 ​​  vanish, and ​ 

lim ​ 
log  I

 _ 
​​n ˆ ​​​ I​

 ​   =  lim ​ 
log  I − log​ β – ​ ________ 

​​n ˆ ​​​ I​
 ​   =  lim ​ 

− log ​τ​​  I​
 _ 

​​n ˆ ​​​ I​
 ​   =  σ​. For ​​β – ​  =  ∞​, it follows because, by 

the law of large numbers, ​​ ​K​​ I​ _ 
I ​τ​​  I​

 ​ ​→​​ D ​ 1​; equivalently, ​log ​K​​ I​ − log  I − log ​τ​​  I​ ​→​​ D ​ 0​, so the 

LHS of (38) becomes ​​ 
− log ​τ​​  I​

 _ 
​​n ˆ ​​​ I​

 ​​ , whose limit is ​σ​.

Exposing any positive fraction ​ϵ  >  0​ of nodes requires infecting at least ​ϵI / ​​n ˆ ​​​ I​​ 
agents, and the chance of this at any time ​​ t _ ​  <  σ​ vanishes,

	​​  lim​ 
I→∞

​​ ​Pr ​​ − i​​(​T​ ​⌊​​ϵI/​​n ˆ ​​​ I​​⌋​​​ 
 I ​   ≤ ​ τ​​  I​ + ​ t _ ​)​  = ​  lim​ 

I→∞
​​ ​Pr ​​ − i​​(​T​ ​⌊​​ϵI/​​n ˆ ​​​ I​​⌋​​​ 

 I ​   ≤ ​ τ​​  I​ + ​ t _ ​ | ​​​ I​​(ϵ)​)​ 

	 ≤ ​  inf​ 
ξ≥0

​​ exp​{ξ​(​ t _ ​ − σ)​}​  =  0.​

The equality uses Lemma 7, and the inequality (37) and (38). Then  
​​Pr​​ −i​​(​T​ ​⌊​​ϵI/​​n ˆ ​​​ I​​⌋​​​ 

 I ​   ≤ ​  t _ ​)​  →  0​.
Finally, for any population share ​ϵ  >  0​, the probability that a given agent ​

i​ has been exposed by time ​​ t _ ​​ is bounded above by the sum of that share ​
ϵ​ and the probability that more than share ​ϵ​ has been exposed by time ​​ t _ ​​,  
​​Pr​​ −i​​(​S​ i​ 

I​  ≤ ​  t _ ​)​  ≤  ϵ + ​Pr​​ −i​​(​T​ ​⌊​​ϵI/​​n ˆ ​​​ I​​⌋​​​ 
 I ​   ≤ ​  t _ ​)​​. Since this inequality holds for any ​

ϵ  >  0​ , we have

(39)	​​  lim​ 
I→∞

​​ ​Pr ​​ − i​​(​S​ i​ 
I​  ≤ ​  t _ ​)​  ≤ ​ lim​ 

ϵ→0
​ ​ ​ lim​ 
I→∞

​​​[ϵ + ​Pr ​​ − i​​(​T​ ​⌊​​ϵI/​​n ˆ ​​​ I​​⌋​​​ 
 I ​   ≤ ​  t _ ​)​]​  =  0.​

Turning to the lower bound for ​​T​ k​ 
I​​, using the same steps as for (37), but with (36) 

substituting for (35) for the second inequality,

 ​​ Pr ​​ − i​​(​T​ k​ 
I​  ≥ ​ τ​​  I​ + δ | ​​​ I​​(ϵ)​, ​K​​ I​)​  ≤ ​  inf​ 

ξ≥0
​​ ​e​​ −ξδ​ ​ ∏ 

ℓ=​K​​ I​
​ 

k−1
 ​​​E ​​ − i​​[​e​​ ξ​Δ​ ℓ​ 

I ​​ | ​​​ I​​(ϵ)​]​​

 ​ ≤ ​   inf​ 
ξ∈​[0,​(1−3ϵ)​​​n ˆ ​​​ I​)​

​​ exp​{− ξδ + ​ ∑ 
ℓ=​K​​ I​

​ 
k−1

 ​​​[log​(​[1 − 3ϵ]​ ​​n ˆ ​​​ I​ ℓ)​ − log​(​[1 − 3ϵ]​ ​​n ˆ ​​​ I​ ℓ − ξ)​]​}​​

 ​ ≤ ​   inf​ 
ξ∈​[0,​(1−3ϵ)​​​n ˆ ​​​ I​)​

​​ exp​{− ξδ + ​ ∑ 
ℓ=​K​​ I​

​ 
k−1

 ​​​ 
ξ _ 

​(1 − 3ϵ)​ ​​n ˆ ​​​ I​
 ​​(log​(​[1 − 3ϵ]​ ​​n ˆ ​​​ I​ ℓ)​)​ 

	 − log​(​[1 − 3ϵ]​ ​​n ˆ ​​​ I​​[ℓ − 1]​)​}​​
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 ​ = ​   inf​ 
ξ∈​[0,​(1−3ϵ)​​​n ˆ ​​​ I​)​

​​ exp​
{

− ξ​
[
δ − ​ 

log​(k − 1)​ − log​(​K​​ I​ − 1)​
   __________________  

​(1 − 3ϵ)​ ​​n ˆ ​​​ I​
 ​

]
​
}

​​.

As for the upper bound, for ​k  = ​ ⌊​​ϵI / ​​n ˆ ​​​ I​​⌋​​​, the fraction on the RHS con-

verges, ​​ 
log​(ϵI / ​​n ˆ ​​​ I​ − 1)​ − log​(​K​​ I​ − 1)​

  _________________  
​(1 − 3ϵ)​ ​​n ˆ ​​​ I​

 ​ ​ →​​ D ​ σ / ​(1 − 3ϵ)​​, so for any ​​δ –​  >  σ / ​(1 − 3ϵ)​​ in 

the limit,

	​​  lim​ 
I→∞

​​ ​Pr ​​ − i​​(​T​ ​⌊​​ϵI/​​n ˆ ​​​ I​​⌋​​​ 
 I ​   ≥ ​ τ​​  I​ + ​δ –​ | ​​​ I​​(ϵ)​)​  ≤ ​  inf​ 

ξ≥0
​​ exp​{− ξ​(​δ –​ − ​  σ _ 

1 − 3ϵ ​)​}​  =  0.​

Conditional on ​​​​ I​​(ϵ)​​, ​​⌊​​ϵI / ​​n ˆ ​​​ I​​⌋​​​ infections guarantee ​ϵ​(1 − 3ϵ)​I​ exposures by  
​​τ​​  I​ + ​δ –​​. For small ​​ϵ ′ ​  >  0​, approximately ​​ϵ ′ ​ϵ​(1 − 3ϵ)​I​ of these get infected by  
​​τ​​  I​ + ​δ –​ + ​ϵ ′ ​​, generating approximately ​​​n ˆ ​​​ I​​ϵ ′ ​ϵ​(1 − 3ϵ)​I​ new exposure possibilities; 
that is, an exploding number ​​​n ˆ ​​​ I​​ϵ ′ ​ϵ​(1 − 3ϵ)​  →  ∞​ for every agent. Now, for any ​​
t –​  >  σ​, we choose ​ϵ, ​ϵ ′ ​  >  0​ small enough and ​I​ large enough that ​​τ​​  I​ + ​δ –​ + ​ϵ ′ ​  < ​
t –​​ for ​​δ –​  ≔  σ / ​(1 − 3ϵ)​ + ​ϵ ′ ​  >  σ​. As ​I  →  ∞​, all remaining nodes get exposed 
before ​​τ ​​ I​ + ​δ –​ + ​ϵ ′ ​​ and thus before ​​t –​​ with probability

(40)	​​  lim​ 
I→∞

​​ ​Pr ​​ − i​​(​S​ i​ 
I​  ≤ ​ t –​)​  =  1.​

Jointly, (39) and (40) for any ​​ t _ ​  <  σ  < ​ t –​​ establish Lemma 4.

The case ​lim ​​n ˆ ​​​ I​ / I  >  0​.—So far, we assumed ​lim ​​n ˆ ​​​ I​ / I  =  0​ so that  
​lim ​n​​ I​ / ​​n ˆ ​​​ I​  =  1​ . Otherwise, we have ​ρ  =  lim ​n​​ I​ / I  =  1 − exp​(− lim ​​n ˆ ​​​ I​ / I)​  >  0​, 
implying ​​β​τ​​  =  ρβ  >  0​, and so the desired learning time equals ​σ  =  0​ by (34). 
To see that learning is indeed immediate, note that the first infection exposes frac-
tion ​ρ  >  0​ of nodes. The paragraph preceding (40) then implies that everyone is 
exposed immediately thereafter. ∎

PROOF OF LEMMA 7: 
We will construct ​p​(ϵ)​  <  1​ such that for large ​I​ and any ​k  ≤  ϵI / ​​n ˆ ​​​ I​​, the chance 

of a large exposure gap is bounded above via

(41)	​​ Pr ​​ − i​​(​Γ​ k​ 
I ​  >  3ϵ)​  <  p ​​(ϵ)​​​ ​​n ˆ ​​​ I​k​.​

Since ​​​​ I​​(ϵ)​​ is the complement of the union of these events over ​k  ≥  1​ , Boole’s 

inequality implies ​1 − ​Pr ​​ − i​​(​​​ I​​(ϵ)​)​  ≤ ​ ∑ k=1​ 
∞  ​​ p ​​(ϵ)​​​ ​​n ˆ ​​​ I​k​  =  p ​​(ϵ)​​​ ​​n ˆ ​​​ I​​ / ​(1 − p ​​(ϵ)​​​ ​​n ˆ ​​​ I​​)​  

→  0​, which implies (41).
We construct ​p​(ϵ)​​ and show (41) with the help of Chernoff bounds. The incre-

ment ​​X​ k​ 
I​ − ​X​ k−1​ 

I  ​​ counts the newly exposed agents at the ​​k​​ th​​ infection. If ​j​ was exposed 
himself, he exposes ​​​n ˆ ​​​ I​ − 1​ others and is himself deducted from ​​X​ k​ 

I​​; if ​j​ was not 
exposed, he exposes ​​​n ˆ ​​​ I​​ others. Each agent exposed by ​j​ was already exposed with 
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probability at most ​k ​​n ˆ ​​​ I​ / I​. Thus, writing ​​Y​ ν​​​ for iid binary random variables with  
​Pr​(​Y​ ν​​ = 1)​ = k ​​n ˆ ​​​ I​ / I​, and ​​Y​ ν​​ = 0​ else, we can upper-bound the absolute exposure gap

(42)	​​​ n ˆ ​​​ I​ k ​Γ​ k​ 
I ​  = ​​ n ˆ ​​​ I​ k − ​X​ k​ 

I​  = ​  ∑ 
ℓ=1

​ 
k

  ​​​[​​n ˆ ​​​ I​ − ​(​X​ ℓ​ 
I​ − ​X​ ℓ−1​ 

I  ​)​]​ ​ ⪯​​ 
D

 ​  2k + ​ ∑ 
ν=1

​ 
k​​n ˆ ​​​ I​

 ​​​Y​ ν​​​.

Now define ​p​(ϵ)​  ≔ ​ inf​ξ≥0​​​(​ 
E​[​e​​ ​Y​ ν​​ ξ​]​

 _ 
​e​​ 2ϵξ​

 ​ )​​. We have ​p​(ϵ)​  <  1​ since  

​E​[​Y​ ν​​]​  =  k ​​n ˆ ​​​ I​ / I  <  ϵ​ , and so ​​ 
E​[​e​​ ​Y​ ν​​ ξ​]​

 _ 
​e​​ 2ϵξ​

 ​   ≈ ​ 
1 + E​[​Y​ ν​​]​ξ _ 

1 + 2ϵξ  ​  ≤ ​ 
1 + ϵξ _ 

1 + 2ϵξ ​  <  1​ for small ​ξ  >  0​. 

For ​I​ large, such that ​ϵ ​​n ˆ ​​​ I​  >  2​, we then get the following Chernoff upper bound for 
the RHS of (42):

	​ Pr​(2k + ​ ∑ 
ν=1

​ 
k​​n ˆ ​​​ I​

 ​​​Y​ ν​​  >  3ϵ ​​n ˆ ​​​ I​ k)​  ≤  Pr​(​ ∑ 
ν=1

​ 
k​​n ˆ ​​​ I​

 ​​​Y​ ν​​  >  2ϵ ​​n ˆ ​​​ I​ k)​ 

	 ≤ ​  inf​ 
ξ≥0

​​ ​​(​ 
E​[​e​​ ​Y​ ν​​ ξ​]​

 _ 
​e​​ 2ϵξ​

 ​ )​​​ 

​​n ˆ ​​​ I​k

​  =  p ​​(ϵ)​​​ ​​n ˆ ​​​ I​k​​,

which, together with (42), implies (41) and hence Lemma 7. ∎
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