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Seasonal resource pulses can have enormous impacts on species interactions.
In marine ecosystems, air-breathing predators often drive their prey to
deeper waters. However, it is unclear how ephemeral resource pulses such
as near-surface phytoplankton blooms alter the vertical trade-off between
predation avoidance and resource availability in consumers, and how
these changes cascade to the diving behaviour of top predators. We inte-
grated data on Weddell seal diving behaviour, diet stable isotopes, feeding
success and mass gain to examine shifts in vertical foraging throughout
ice break-out and the resulting phytoplankton bloom each year. We also
tested hypotheses about the likely location of phytoplankton bloom orig-
ination (advected or produced in situ where seals foraged) based on
sea ice break-out phenology and advection rates from several locations
within 150 km of the seal colony. In early summer, seals foraged at deeper
depths resulting in lower feeding rates and mass gain. As sea ice extent
decreased throughout the summer, seals foraged at shallower depths and
benefited from more efficient energy intake. Changes in diving depth were
not due to seasonal shifts in seal diets or horizontal space use and instead
may reflect a change in the vertical distribution of prey. Correspondence
between the timing of seal shallowing and the resource pulse was variable
from year to year and could not be readily explained by our existing under-
standing of the ocean and ice dynamics. Phytoplankton advection occurred
faster than ice break-out, and seal dive shallowing occurred substantially
earlier than local break-out. While there remains much to be learned
about the marine ecosystem, it appears that an increase in prey abundance
and accessibility via shallower distributions during the resource pulse
could synchronize life-history phenology across trophic levels in this
high-latitude ecosystem.
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1. Background
Across the globe, the loss of predators [1,2] and shifting resource
availability due to climate change and habitat alterations [3,4]
have underscored the importance of resource pulses in structur-
ing spatial use by various trophic levels [5,6]. In some cases,
predators alter the distribution of their prey directly via con-
sumption [7–10] or indirectly through cascading species
interactions [11]. In other cases, environmental factors such as
nutrient availability regulate the distribution of primary produ-
cers and their consumers [12]. A key question is how resource
pulses impact the fine-scale behaviour and energetics of top
predators [13].

This question is especially relevant in polar regions where
strong physical forcing of retreating sea ice triggers a short-
term phytoplankton bloom at the ocean’s surface each year
[14–17]. The approximately 20-fold increase in phytoplankton
biomass concentrates zooplankton and fishes in the marginal
ice zone [18–22]. This resource pulse facilitates reproduction
[23] and survival [24] of individuals across species and trophic
levels [25]. However, environmental conditions are changing
rapidly and increasingly differ from those in which life-history
strategies evolved [26]. A major concern is whether climate
change will alter species interactions to create temporal or
spatial mismatches that compromise individual fitness [27,28].
It is therefore important to understand how ecological
dynamics vary across time and three-dimensional space.

A fundamental characteristic of ocean ecosystems is that
they are vertically stratified, with depth gradients of tempera-
ture, light, nutrients and oxygen that constrain biological
processes [29]. Primary producers such as phytoplankton
require sunlight for photosynthesis, which constrains their dis-
tributions to approximately the upper 50 m of the ocean.
Additionally, air-breathing predators such as seals, whales,
and seabirds must return to their oxygen supply at the surface
after foraging underwater. Behavioural theory suggests that
intermediate trophic levels such as zooplankton and fishes
will maximize fitness by balancing ecological trade-offs
between resource acquisition and predation risk, which both
vary with depth [30,31]. Empirical evidence suggests that on
a daily timescale, most zooplankton and fishes balance this
trade-off by consuming phytoplankton near the surface
during the night and descending to depth to avoid visual pre-
dators during the day. These diel vertical migrations [32] are
often tracked by air-breathing vertebrates [33–35]; however,
it is unclear whether ephemeral resource pulses cause
analogous cascading migrations on seasonal timescales [36].

Our aim was to understand how sea ice break-out and
resource pulses influence top predators’ use of vertical space at
a study site in the southern Ross Sea, which is in the most pro-
ductive sector of the Southern Ocean in Antarctica [37,38].
We integrated satellite-observed ice dynamicswith the behaviour,
diet and diving efficiency of a top predator (theWeddell seal, Lep-
tonychotes weddellii) to infer temporal variation in the vertical
distribution of lower trophic levels throughout the austral
summer. We hypothesized that during spring, when resource
stratification was weak, intermediate trophic levels (zooplankton
and fish) would have deeper distributions as compared to
summer, when sea ice break-out triggers a strong resource pulse
of phytoplankton at the ocean surface. This resource pulse could
increase the efficiency of energy transfer to air-breathing top pre-
dators, whichmust return to the surface for oxygen after foraging
underwater.
2. Methods
(a) Study design
We used archival biologgers to record the diving and foraging
behaviour of 59 adult female Weddell seals in Erebus Bay, Ant-
arctica in austral summers 2013–2016 (hereafter, AS13–AS16).
All study animals were between the ages of 10 and 20 years
and had given birth at least once prior to inclusion in this
study [39]. Each individual was chemically immobilized during
the November and December lactation period as described in
Shero, Pearson [40] and instrumented with a time-depth recorder
(hereafter TDR, manufactured by LOTEK, model LAT1800, 6 s
sampling interval, 0.5 m depth resolution) and a VHF tag for
relocation (manufactured by SIRTRACK) on flipper tags [41].
In addition, in AS16 (Nov 2016–Feb 2017), we used Loctite
epoxy to affix Little Leonardo acceleration loggers (measuring
two-axis raw acceleration at 20 Hz) to the lower jaws of four
seals. We recaptured seals and removed the TDRs 57 ± 13 days
later and accelerometers 2–4 days later. Seals were weighed at
tag deployment and recovery.
(b) Ice break-out and phytoplankton bloom dates
Direct measurements of phytoplankton bloom timing were not
available throughout our study site and the timing of ice
break-out and the resulting phytoplankton bloom are generally
not well understood [38]. Because advective (i.e. allochthonous)
inputs are thought to contribute significantly more to water
column productivity than local in situ (i.e. autochthonous) pro-
duction [42], we considered a suite of possible phytoplankton
sources (five areas around Ross Island) and current velocities
(three rates) as advective drivers of the seal diving patterns. To
do this, we obtained satellite-derived daily sea ice concentration
(% cover; US National Snow and Ice Data Center; NASA Boot-
strap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP
SSM/I-SSMIS, Version 3; spatial resolution 25 × 25 km) and
defined the date of sea ice break-out as the first occurrence of a
7-day running mean ice concentration of less than 50% at each
gridded data location [43] (electronic supplementary material,
figure S1) which we labelled ‘Northeast’ (centred at 77.24° S
169.10° E), ‘North’ (77.20° S 168.09° E), ‘Northwest’ (77.10° S
166.09° E), ‘West’ (77.32° S 165.84° E) and ‘Southwest’ (77.54° S
165.58° E). Next, we estimated the number of days it would
take for phytoplankton to advect into the Erebus Bay study
region (77.6° S 167.0° E) [42] from each data location based on
three previously measured ocean current velocities: 12 km day−1

[44], 10.3 km day−1 [45] and 6.5 km day−1 [46]. Hereafter in the
text and figures, we use the term ‘resource pulse’ to describe
the approximately 35-day phytoplankton bloom that begins in
Erebus Bay on the date of advective arrival from around Ross
Island (electronic supplementary material, figure S2, [38]).
(c) Statistical analysis
For each dive, we calculated the maximum depth, total duration,
bottom phase duration (defined as 80% of maximum dive depth)
and number of bottom wiggles (inflection points in the depth
profile of the bottom phase) using the IKNOS toolbox in
MATLAB (Y Tremblay 2005, unpublished) [47,48]. We identified
prey capture attempts within the raw acceleration data using a
surge acceleration threshold of 0.3 g [49] (electronic supplemen-
tary material, figure S3). We classified each dive as either
benthic or pelagic as previously described [50], using parameter
thresholds specified in the electronic supplementary material.
We used a linear mixed-effects model in R (package ‘lme4’
v. 1.1–14) to determine whether benthic dive depths varied pre-
dictably across the summer. Benthic dives (1% of all dives) were
excluded from all remaining analyses because we were interested
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Figure 1. Patterns of seal dive depth and date across four years. (a,b,c,d ) Generalized additive mixed models (lines) and 95% CI fits ( polygons) for mean dive depth
in metres (each point represents mean dive depth for one seal on 1 day) across the austral summer (AS) in 2013, 2014, 2015 and 2016. Data represent 59 seals.
(e) Correlation between Julian day of shallowest diving (days since 1 January) and depth of shallowest diving in metres. Note the reversed y-axis with zero at the top
of the plot representing the ocean surface.
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in quantifying seasonal changes in mid-water dives. We then
characterized seasonal changes in diving depth by calculating
the mean across all seals of the maximum dive depth on each
day for each seal (n = 2941 seal-days; figure 1 and electronic
supplementary material, figure S4). Finally, we evaluated the
inter-annual differences in benthic diving depth by fitting a
fourth order generalized additive mixed model (GAMM) to all
dives with the individual seal as a random effect. We used a
GAMM with the individual as a random effect to model foraging
depth as a function of calendar date, ice break-out date and phy-
toplankton advection arrival date. Akaike information criteria
(AIC) model selection methods were used to compare the relative
strength of models.

(d) Seal diet
In austral summers 2013 and 2014, we plucked one whisker from
each of nine seals during tag attachment and plucked the
regrown whisker during tag removal. To infer seal diet across
the summer period, we analysed carbon δ13C and nitrogen
δ15N stable isotope values in sequential segments of whiskers
grown during the biologger deployment period. We
incorporated average whisker δ13C and δ15N values for each
seal with stable isotope values of five published prey groups
(electronic supplementary material, table S1, [51]) into a stable
isotope mixing model using the R package SIAR [52]. We then
examined a time-series of δ13C and δ15N values from deployment
to recovery by assigning timestamps to each whisker segment as
described and validated in Beltran, Sadou [53]. Using linear
mixed-effects models, we characterized the relationship between
date (days since 1 January) and stable isotope ratios (δ13C
and δ15N) in whiskers with the individual as a random effect.
Full methodological details are provided in the electronic
supplementary material.
3. Results
(a) Vertical space use of top predators
We analysed 138 506 dives from 59 Weddell seals to charac-
terize the diving depth and foraging effort of each seal
across the austral summer over 4 years (AS13–AS16; figure 1).
Mean dive depth in early summer was 233 m with only 39%
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Figure 2. Stable isotope analysis of diet suggested no seasonal diet switch.
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(b) and (c) represents an individual seal.
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of dives being less than 200 m, suggesting that prey species
were found at depth. As sea ice extent decreased throughout
the summer, mean seal dive depth shallowed to 110 m and
83% of dives occurred within 200 m of the surface. The seal
shallowing period, when mean diving depth across seals did
not exceed 140 m, lasted approximately 24 days. Subsequently,
dive depths deepened back to 230 m (with 41% being above
200 m), indicating prey had shifted back to depth (figure 1).
There was clear inter-annual variation in seal diving behav-
iour, with shallowing occurring earliest in AS15 and latest in
AS16 (figure 1). Across years, seal diving was shallower
when the date of seal shallowest seal diving was earlier
(figure 1; Depthshallowestdives = 1.64 (± SE = 0.18) ×
Dateshallowestdives + 97.25, n = 4 years, R2= 0.95, one-tailed
p = 0.015).

(b) Spatial distribution of foraging
The depth of benthic dives suggested that seals foraged in the
same area throughout the austral summer, which aligns with
findings from a prior mark–recapture study [39]. Benthic dive
depths were stable over time (electronic supplementary
material, figure S6) and matched the bathymetry of the
nearby Erebus Bay area [54].

(c) Consistency in seal diets
Changes in diving depth were not due to seasonal shifts in
seal diets. Seal whisker δ15N and δ13C isotope values
showed no consistent trends over time, suggesting that
seals did not shift their diet across summer (figure 2). A
stable isotope mixing model of seal whiskers indicated that
seals consistently consumed silverfish Pleurogramma antarcti-
cum and Trematomus newnesi (diet proportion 72% (95% CI:
34%–86%) with smaller amounts of Pagothenia borchgrevinki
and other Trematomus spp. (diet proportion 20%, 95% CI:
6% to 39%) (figure 2 and electronic supplementary material,
table S1).

(d) Diving efficiency of top predators
Shallower diving was associated with increased seal feeding
rates, diving efficiency and mass gain. Two proxies for prey
capture were correlated with each other: jaw motion events
(feeding attempts associated with quick mouth opening)
and depth wiggles (vertical excursions in a dive’s bottom
phase, where feeding usually occurs) [49] (electronic sup-
plementary material, figure S5A). In turn, wiggles were a
strong predictor of mass gain per hour diving (electronic sup-
plementary material, figure S5B) and were markedly more
frequent during the shallow period (WiggleRate =−0.0043
(± SE = 0.0002) ×MeanDiveDepth + 3.2589, R2 = 0.83, p <
0.0001, n = 76 days). Feeding rates increased by 16% from
the first 10 deep days to the shallow period and then
decreased by 11% in the last 10 deep days (figure 3). In
addition, the proportion of time spent in the bottom phase
of each dive where most feeding occurs (hereafter, diving effi-
ciency) increased 66% from early to mid-summer and then
decreased by 19% thereafter (figure 3). The cumulative effects
of increased feeding rates in the bottom phase and spending
proportionally more time on each dive in the bottom phase
resulted in an 82% increase in diving efficiency during the
mid-summer shallow period compared to the deep period
in early summer.
(e) Links with sea ice break-out and resource pulses
As expected, sea ice break-out progressed anticlockwise
around Ross Island from the Northeast to the Southwest
over approximately 40 days, although ice break-out pro-
gression showed marked inter-annual variation (figure 4
and electronic supplementary material, figure S1). Advection
from the five data locations to the study location took 5 to 26
days based on the slow current velocity [46], 3 to 17 days
based on the intermediate current velocity [45], and 3 to 14
days based on the fast current velocity [44] (figure 4). We
note that these advection durations represent a rough
approximation given that inter-annual variations in current
speed are expected from large-scale atmospheric and oceanic
processes as well as depth, tides and ice dynamics [55].

We did not find consistent support for the hypothesis that
seal shallowing is triggered by ice break-out or arrival of
advected phytoplankton from a particular source. The
period of shallowest diving in each year estimated by the
GAMMs was tightly correlated with the temporal arrival of
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the resource pulse for some seasons (e.g. AS13) but not others
(e.g. AS15) and from some data locations (e.g. West) but not
others (e.g. Northeast) (figure 4, bottom). In fact, the seal
shallowing occurred before ice break-out at three data
locations and before calculated phytoplankton arrival from
four data locations (figure 5b). One possible explanation is
that the Cape Royds current around Ross Island (figure 4a)
may be notably faster than the currents near the seal colony
that we used in our estimates [56]. Interestingly, the rate
of advection exceeded that of ice break-out, which could
explain why local break-out occurs substantially later than
seal dive shallowing (figure 5). The inter-annual variability
in seal dive shallowing was most explained (26% of variance)
by the two data locations closest to the Erebus Bay study
area, West and Southwest (figure 5b). Additionally, seal
foraging depth was better explained by the date of advected
phytoplankton arrival than calendar date (GAMMs;
ΔAIC = 490) for all but one data location, Northeast
(figure 5b), that showed extremely limited inter-annual varia-
bility in ice break-out dates (electronic supplementary
material, figure S1). However, the seal shallowing preceded
phytoplankton advection by up to 20 days across the four
study years, suggesting that phytoplankton advection arrives
earlier than estimated from current velocities and ice
break-out dates.
4. Discussion
We show that in Antarctic summer, ice break-out and the
resulting resource pulse are associated with increased
energy transfer to top predators. Foraging depth of Weddell
seals halved and remained shallow for three weeks in mid--
summer, suggesting that zooplankton and fishes may have
shallowed [57], despite the predation risk from air-breathing
predators (figure 6). Diving efficiency of seals (the proportion
of time spent in the bottom phase of each dive) nearly
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doubled during this period because shallower dives require
less descending and ascending transit time [58]. At the end
of summer, seals resumed foraging at deeper depths
(figure 6). The deepening of dives may coincide with
iron limitation [59] and phytoplankton biomass depletion
(electronic supplementary material, figure S2), when mesope-
lagic fishes [22,60] and krill [19] are thought to inhabit deeper
depths. Across the summer there was little change in seal diet
composition or horizontal space use, indicating that seal
diving patterns reflect shifts in prey vertical distributions.
Together, these data suggest that sea ice break-out and the
associated resource pulse triggers cascading vertical distri-
bution changes of three trophic levels: zooplankton, fishes
and seals.

We found substantial variation in timing between seal
shallowing and the resource pulse that cannot be explained
by our existing understanding of the complex marine ecosys-
tem (figure 4). Several critical questions about ecosystem-
level processes remain. Is 50% ice cover the threshold at
which ice break-out occurs and phytoplankton production
commences in situ? How does chlorophyll concentration
change when ice cover drops below 50% then re-freezes (elec-
tronic supplementary material, figure S1)? Do advection rates
around Ross Island exceed those directly measured in Erebus
Bay [56]? What proportion of phytoplankton is consumed in
the Cape Royds current before the bloom reaches Erebus
Bay? What are the relative contributions of advected phyto-
plankton versus in situ phytoplankton production, and
from which advective source(s)? How long does the resource
pulse on the west side of Ross Island last? Is the spatial res-
olution of satellite-derived ice data (25 × 25 km) sufficient to
describe this highly dynamic ecosystem? Alternatively, the
mismatch could be due to ecological processes, such as
seal prey avoiding peak resource aggregations to optimize
risk-reward trade-offs, which in turn might contribute to
the observed mismatch between seal shallowing and the
arrival of advected phytoplankton [61].

Regardless of the phytoplankton source and precise arri-
val timing, summer is clearly a season of opportunity for
these top predators with important implications for ener-
getics and behaviour that cascades up the food chain. In
the future, these complex dynamics could be studied in situ
by instrumenting seals with satellite-linked conductivity–
temperature–depth–fluorescence tags [62].

Previous studies have shown that zooplankton and silver-
fish exhibit seasonal differences in depth distributions [57,63]
and that downward movement (i.e. vertical ‘retreat’) of zoo-
plankton coincides with the end of the phytoplankton
bloom in other Southern Ocean regions [64–66]. Our study
links these findings together and demonstrates their influence
on the behaviour and energetics of top predators. Specifically,
the simultaneous shallowing of lower trophic levels during
phytoplankton blooms allows a suite of air-breathing preda-
tors to feed on prey species that are often inaccessible. During
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phytoplankton blooms, surface-feeding Antarctic seabirds,
including snow petrels, Pagodroma nivea, and Antarctic pet-
rels, Thalassoica antarctica, consume mesopelagic fishes
[67,68] that normally occur at depths greater than their
diving limits [67]. Similarly, Adélie penguins, Pygoscelis ade-
liae, which rarely dive below 70 m [69], increase the
proportion of silverfish P. antarcticum in their diet eightfold
during the phytoplankton bloom [70]. During the phyto-
plankton bloom in the Arctic, little auks, Alle alle, also
consume zooplankton which normally exist deeper than
their diving abilities [71].

The short-lived absence of resource limitation and shal-
lowing of intermediate trophic level species also appears to
synchronize critical life-history events across multiple trophic
levels. Krill, copepods and amphipods all spawn synchro-
nously in surface waters to exploit the brief resource pulse
[19,72–74] despite the risk of predation from air-breathing
predators. In turn, near-surface zooplankton are consumed
by larval silverfishes which hatch at the same time
[18,63,75]. These rich aggregations of lower trophic level
organisms in shallow waters also appear to drive predator
reproductive phenology. In mid-summer, weaned seal pups
and fledged penguin chicks with limited diving capacities
can feed on the shallower silverfish, which reside at deeper
depths during other seasons [63,76–78].
5. Conclusion
In summary, ice break-out and resource pulses in the highly
seasonal Southern Ocean appear to shift vertical prey
distributions from deeper to shallower waters. Vertical redis-
tributions of food chains are analogous to the horizontal
migrations documented in other ecosystems [79,80] and
appear to be an important driver of reproductive phenology
in many air-breathing vertebrate predators including
penguins, seals and seabirds. The cascading impacts of
three-dimensional resource pulses on the physiology, behav-
iour, ecology and evolution of marine communities creates
a tightly coupled ecosystem that may be at risk of
phenological disruptions. Future research should seek to
understand whether the photoperiod cues used by top preda-
tors to time their breeding may fail to predict resource pulse
phenology under global change [81].
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