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Hybrid skyrmions in magnetic multilayer thin films are half-integer hopfions
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Magnetic skyrmions are chiral spin textures which have attracted intense research for their fundamentally
novel physics and potential applications as spintronic information carriers. The stability which makes them so
potentially useful is a result of their underlying nontrivial topology. While skyrmions were originally predicted
and observed in crystalline materials lacking inversion symmetry, some of the most promising host systems
for skyrmions are multilayer thin films, where skyrmions have been stabilized at ambient conditions, which
is critical for their use in real-world devices. The skyrmions found in multilayer thin films have additional
three-dimensional structure, with their domain wall helicities twisting through the thickness of the film to create
a hybrid skyrmion composed of a Bloch-type core with Néel-type caps of opposite chiralities at the surfaces.
In this paper, we show that this three-dimensional variation creates additional knotted topological structure,
providing an explanation for their exceptional stability in ambient conditions. We show that hybrid skyrmions
can be described as half-integer hopfions, and that their field lines have the knotted structure of the Hopf fibration.
Furthermore, we show that the topological charge of partially twisted hybrid skyrmions can be related to the
domain wall helicity at the surfaces, providing a straightforward way to connect experimental measurements to

underlying topology.

DOI: 10.1103/PhysRevB.110.224420

I. INTRODUCTION

Magnetic skyrmions are chiral spin textures whose rich
underlying physics and potential applications in logic and
memory devices have drawn the attention of substantial re-
search focus [1-5]. Their nontrivial topology grants them
inherent stability, while their localized, particlelike nature
may allow them to bypass pinning potentials when driven
by a current [6,7]. However, their use in real-world devices
will require stability in ambient conditions (room tempera-
ture and with no applied field) and efficient current-driven
motion, both of which have proven difficult to achieve [4,8].
This is in part because while skyrmions are two-dimensional
solitons, the systems that host them are three dimensional.
Magnetic skyrmions were first observed in bulk MnSi crys-
tals, first via small-angle neutron scattering [9] and later with
Lorentz transmission electron microscopy [10]. The noncen-
trosymmetric crystal structure in these materials leads to a
noncollinear Dzyaloshinskii-Moriya interaction (DMI) term
which causes a canting between pairs of spins [8—10]. The
result is a variety of spin textures whose form is determined
by the crystalline structure.

Multilayer thin films are one of the few systems capable
of hosting stable magnetic skyrmions at ambient conditions
(room temperature and no applied field), and as a result
they are a promising avenue forward for real-world de-
vices [1,4,11-13]. In particular, by adjusting the number and
thickness of layers in amorphous Fe/Gd multilayers, De-
sautels et al. were able to create lattices of skyrmions that
are stable across a wide range of temperatures and magnetic
fields, including ambient conditions [1]. The skyrmions they
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form have a hybrid domain wall helicity structure which
is able to bring magnetic flux closures into the material,
decreasing its magnetostatic energy, and their exceptional sta-
bility is a result of this hybrid structure. In these systems,
skyrmions are stabilized by the competition between long-
range dipole and short-range exchange interactions, and the
lack of a symmetry-breaking mechanism allows skyrmions of
opposite chiralities to coexist. Recent work has shown that the
surface-volume stray field interactions in these films have the
form of a layer-dependent interfacial DMI [14,15], causing
the naturally Bloch-type domain walls (DWs) to twist toward
Néel type at the surfaces, with opposite helicities at the top
and bottom. These Néel caps function as flux closure domains,
acting to bring stray dipolar fields inside the film and lower
the magnetostatic energy. The result is a fundamentally three-
dimensional structure known as a hybrid skyrmion, which is
not seen in conventional DMI-based skyrmion systems. This
has a significant effect on stability as well as current-driven
motion, as both velocity response and Hall angle depend
on skyrmion helicity [14]. Understanding this additional
three-dimensional (3D) structure is therefore critical for pre-
dicting and tailoring skyrmion properties towards real-world
applications.

Here, we show that the DW twisting in hybrid skyrmions
creates additional topological structure, contributing to their
exceptional stability. Specifically, hybrid skyrmions can be
modeled as half-integer hopfions—three-dimensional solitons
with Hopf index +1/2—and we show how they can be
constructed directly from the Hopf fibration underlying in-
teger hopfions. Partially twisted DWs lead to a fractional
Hopf index between 0 and £1/2, which provides an impor-
tant metric for experimental comparison, allowing topological
charge to be related solely to surface-sensitive measurements.
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The hybrid skyrmions’ fractional charge is a result of un-
satisfied boundary conditions; while integer Hopfions are
localized in three dimensions, hybrid skyrmions are localized
in only two, with the geometry of the system constraining
the third. This nonlocalization is a general feature of solitons
with fractional charge, for example, two-dimensional mag-
netic vortices (merons) [16], Bloch points [17], and optical
vortices [18].

We use MUMAX3 to perform micromagnetic simulations
representative of the Fe/Gd multilayer thin films that Desau-
tels et al. tuned to host skyrmion lattices at room temperature
and remanence, and numerically calculate the Hopf index of
the results. Our results show good agreement between theoret-
ical expectations, previous observations of this material, and
simulated magnetization, and reveal the underlying topology
of the complex structure of a hybrid skyrmion.

II. BACKGROUND

Magnetic skyrmions are two-dimensional topological
solitons—stable, particlelike configurations of the vector field
of magnetization. Their nontriviality is captured by a 2D topo-
logical index, the skyrmion number, Ny = ﬁ f m - [0,m X
dym]dxdy, where m is the normalized magnetization vector.
This index separates two-dimensional vector fields into equiv-
alence classes which cannot be continuously deformed into
each other. In this way, the topological charge corresponds to
physical stability, forbidding smooth transformations between
skyrmion states and uniform magnetization.

The magnetization configuration of a skyrmion can be
described as a closed DW loop, separating an out-of-plane
magnetic domain from an antiparallel surrounding region.
The magnetization rotates smoothly from within the domain
to without, creating an in-plane DW between the two. The
orientation of the DW magnetization determines its helicity;
Néel-type DWs point normal to the DW itself, while Bloch-
type DWs point along the DW. In-plane skyrmion analogs, in
which the isolated domain and surrounding region lie in plane,
are called bimerons [19] and have different geometric nuances
but equivalent topology. In some thin films, skyrmions have
a hybrid texture, with Bloch-type DWs at the center of the
film and Néel-type DWs at the top and bottom surfaces. For
example, simulations by Montoya et al. [12] predict such
hybrid structures in Fe/Gd multilayer thin films.

Hopfions, or Hopf solitons, are a natural way to extend
skyrmions into three dimensions. The configuration of a hop-
fion is that of a skyrmion tube—a skyrmion extended trivially
along its central axis—wrapped into a torus. Their nontrivial
topology is captured by the Hopf index, written in real space
as H = (Sﬂ)2 [ F - Ad®r, where F is the emergent magnetic
field and A its vector potential [20]. Integer-valued magnetic
hopfions take the form of a bimeron tube wrapped into a
closed loop around the z axis, such that the magnetization in
the core of the torus is parallel to this axis, while the magne-
tization outside the torus is antiparallel. In this configuration,
the core of the torus is an isolated magnetic domain, and the
texture as a whole is localized in three dimensions. These
have recently been observed in magnetic systems [21], having
been studied previously in other contexts, e.g., high-energy
physics [22] and superconductivity [23].
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FIG. 1. Schematic of (a) a hybrid skyrmion, or 1/2-integer hop-
fion, and (c) an integer hopfion. The hybrid skyrmion is composed
of a (b) meron wrapped around the vertical axis, resulting in an
isolated magnetic domain along the vertical axis, and is therefore
localized only in x and y. The hopfion is composed of a (d) bimeron
wrapped around the vertical axis, resulting in a ring-shaped isolated
magnetic domain, and is therefore localized in x, y, and z. The meron
has a 1/2-integer skyrmion number, while the bimeron (an in-plane
skyrmion analog) has an integer skyrmion number, which explains
the 1/2-integer and integer 3D topological charges of the hybrid
skyrmion and the hopfion, respectively.

Here, we generalize the hopfion model by considering a
wider class of 2D topological structures (skyrmions) wrapped
azimuthally into a torus. For a hybrid skyrmion, the magnetic
configuration can be achieved by wrapping a half-integer
skyrmion (meron) in this way (as opposed to the integer-
valued bimeron that results in an integer-valued hopfion). This
can be seen in the cross section of its DW, shown in Fig. 1.
This has two remarkable effects. First, the resulting texture
has a half-integer Hopf index, since the Hopf index is pro-
portional to this cross-sectional texture’s skyrmion number.
Second, the texture can be created from the Hopf fibration
by treating the fibers of the Hopf map as field lines of the
magnetization, that is, creating a magnetization which is ev-
erywhere tangent to the Hopf fibration. Physically, the latter
point corresponds to bringing flux closure lines inside the
material, allowing the magnetization itself to take on some of
the skyrmion’s dipolar structure.

III. CONSTRUCTION OF HYBRID SKYRMIONS
FROM THE HOPF FIBRATION

The Hopf fibration fills all of real space R® with linked
torus knots on a set of nested tori, via stereographic projection
of the fibers of the Hopf map from the 3-sphere. The vector
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FIG. 2. The Hopf fibration in real space. Tangent vectors are
plotted at the highest and lowest points of the fibers, where they lie
in plane. These points correspond to the DW center at a given z.

field of a hybrid skyrmion is formed by taking these torus
knots to be its field lines, that is, by constructing a vector
field which is at every point in space tangent to the Hopf fiber
passing through that point. Figure 2 shows these fibers as well
as the tangent vectors at their highest and lowest points, which
form the centers of the skyrmion’s DWs. Note the distinction
from integer Hopfions: For integer hopfions, the Hopf fibers
define curves along which magnetization is constant, while for
hybrid skyrmions the Hopf fibers are everywhere tangent to
the magnetization. As a result, in hybrid skyrmions the fibers
act as magnetic flux lines, and their knotted structure directly
implies their resistance to annihilation.

As shown in Appendix A, the Hopf fiber passing through a
point (x, y, z) can be written as a parametric curve

1

S@) =
® 1+R>+ (1 —R%*)cost — 2zsint

2xcost — 2ysint
X 2ycost + 2xsint , @))]
2zcost + (1 — R?)sint

where R? = x? + y? + z2. The hybrid skyrmion magnetization
is given by the normalized tangent vectors to this curve,

ey = SO
AR F ST N
2(xz —y)
=1 R 2(yz+x) . 2)

1+22—x>—y?

Since this vector field is cylindrically symmetric, it is useful
to express it in cylindrical coordinates (p, ¢, z),

2p(zcos¢p —sing)

2p(zsing +cos¢) |. 3)
1 +Z2 _ p2

m b ’Z = 5 5
. ¢.2) 1402 +22

Equation (3) is a unit vector field in R® which at every point
is tangent to the Hopf fiber passing through it. A similar
structure has been found as a solution to a certain class of
equations in magnetohydrodynamics [24], but in that case the
tangent was taken prior to stereographic projection, yielding a

vector field whose magnitude falls to zero far from the origin
and is therefore truly localized.

A. Properties and behavior

At z = 0, Eq. (2) has the form of a Bloch-type skyrmion in
the xy plane. The magnetization rotates from m = +Z at the
origin to m = —2 far from the origin, rotating around p such
that all in-plane components are azimuthal. In this plane, the
maximum in-plane magnetization is found at p = 1:

1 Y
mE, 0 = == e 2x . 4)
1—x2— y2

Away from z = 0, the polarization of the skyrmion, that is,
the limits as p — 0, co, remains the same but the in-plane
components rotate, becoming more radial farther from z = 0.
As z increases, the in-plane components twist radially out-
ward, creating a Néel-type skyrmion, while as z decreases,
they twist radially inward, creating a Néel-type skyrmion of
the opposite helicity. These helicities match the flux closure
curves created by the dipole field of the skyrmion’s core and
surrounding region and are known as Néel caps.

The helicity of the skyrmion can be expressed exactly as
a function of z. To do so, we define helicity o as the an-
gle between the in-plane component of magnetization m; =
myX + m,¥ and the in-plane gradient of m,, V  m, = d,m.X +
dym.y [25]. With this definition, pure Néel-type skyrmions
have helicity either O or &, while pure Bloch-type skyrmions
have helicity 7 /2 or 37 /2. Calculated explicitly from Eq. (2),
« has the form

a(z) = cos™! _—Z>, 5
(2) ( N 3)
which varies from O to  as z varies from —oo to oo.

In contrast to simulated and experimentally observed
hybrid skyrmions, the radius of the Hopf-derived hybrid
skyrmion ppw—the radius at which the in-plane component
is maximized—expands as |z| increases, varying as

pow = v/ 1+ 22. (6)

Micromagnetic simulations show that the hybrid skyrmions’
DWs are typically barrel shaped [14]. As this qualitative dif-
ference can be rectified by a smooth coordinate rescaling,
it has no impact on the topology of the structure, which is
instead determined by the DW helicity.

Lastly, we can calculate the curves along which m is con-
stant, that is, the fibers of the hybrid skyrmion. These are given
implicitly by

X = X0 — Yo%,

Y = Yo + Xoz. @)

For any fixed py = Vx(z) + y(z), these lines, as shown in Fig. 6,
are the generators of the hyperboloid p = pg+/1 + 22, for
example, the hyperboloid given by the skyrmion radius in
Eq. (6) when py = 1. Figure 6(a) shows these curves for the
DWs (pg = 1), while Fig. 6(b) shows the same, calculated
numerically, for a simulated hybrid skyrmion.
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This last result sheds some light on the hybrid skyrmion’s
noninteger Hopf index. For integer hopfions, the fibers form
closed loops, with a linking number equal to the Hopf in-
dex; however, the fibers of Eq. (7) extend to infinity, never
closing on each other. Since stereographic projection maps all
infinities in R? to a single point in S3, and the Hopf-derived
hybrid skyrmion is not homogeneous at infinity, the hybrid
skyrmion is not only many-to-one, but also one-to-many. In
fact, the pole of S* corresponding to infinity in R? itself covers
all of S2. In other words, a hybrid skyrmion’s magnetization
approaches a different value far from the origin depending on
which direction away from the origin you travel; this incon-
gruity expresses the nonlocalization of a hybrid skyrmion in
3D. In reality, the hybrid skyrmion is localized in z by the
finite thickness of the host system.

B. Hopf index

The Hopf index of a vector field m(x, y, z) can be calcu-
lated explicitly using its real-space expression [20]

_ 1 A
H= _(87r)2/F Ad°r, (8)

where F; = ¢;;m - (0;m x ym) and V x A =F are addi-
tionally defined based on m. F can be seen as the emergent
magnetic field, and A its vector potential [21].

We can parametrize the magnetization in a natural way
by azimuthal and polar angles ® and ®, respectively: m =
(sin ® cos @, sin O sin ®, cos ®@). When O is independent of
¢ and @ has the form ® = Q¢ + h(p, z) [for some integer
Q and some function h(p, z) which is independent of ¢], the
Hopf index can be expressed in the form [26]

o [ o0 . 0@ 0h 00 0h
H=— dz drsin®| —— — ——
4 J_o 0 ap 9z dz dp

where Ny(p, z) is the skyrmion number of the toroidally
wrapped texture, and Q is the winding number around the
z axis. Here, the Hopf index takes the explicit form of the
product of these two quantities. As noted above, for hybrid
skyrmions the toroidally wrapped texture is a meron, with
half-integer charge, while for integer hopfions the toroidally
wrapped texture is a bimeron, with integer charge. ® and ®
can be calculated directly from our Hopf-derived model of
the hybrid skyrmion, Eq. (3), and Q = 9,® = 1, giving an
analytical solution for H:

1 [ & 4p 1
H=— d dr| -————— | = ——=. (10
4n/,oo Z/O ’( <1+z2+p2)2> 7 19

Note that in the construction of m, Eq. (2), we had a choice of
two directions for the Hopf fibers’ tangent vectors. Making the
opposite choice results in H = 41/2. As the skyrmion index,
the sign of the Hopf index depends on the polarity of the spin
texture.

C. Hopf index of partially twisted skyrmions

In real systems, the Néel caps arise from a layer-dependent
interaction competing with naturally Bloch-type domain

walls. As a result, the surfaces of the material are not neces-
sarily completely Néel type, but instead retain some azimuthal
component. In addition, when the system contains inherent
DMI, the Bloch core may be displaced above or below the
center of the film [14]. Here, we consider the Hopf in-
dex of such a partially twisted, possibly asymmetric, hybrid
skyrmion by recalculating the Hopf index with restricted lim-
its of integration.

If we restrict the integration with respect to z in Eq. (10) to
a lower limit z; and an upper limit z,,, we find that

tan~!(z) — tan~'(z,
g @ (@) —tan” (z) (11

2r
We can rewrite this in terms of the helicity at the surfaces
by solving for z in Eq. (5), and substituting the result into

Eq. (11), giving

_ tan~![cot(a,)] — tan~'[cot(a;)]

H = , 12

o (12)

where o, o, are the helicities at z;, z,, respectively. In the

symmetric case z; = —z,, the Hopf index is given in terms
of helicity by

—1
_ tan [cot(a,,)]‘ (13)
g

This means the Hopf index varies continuously from O when
the skyrmion is uniform throughout the thickness, to +1/2
when the skyrmion twists to fully Néel type at the surfaces.
For a texture where the Bloch walls twist only partially to-
ward Néel type at the surface, the Hopf index is between
0 and =£1/2. Furthermore, in this case, the Hopf index
depends solely on the helicity at the surface. This is an im-
portant result for the experimental characterization of hybrid
skyrmions, as it means the 3D topological charge can be
understood using only surface-sensitive magnetic imaging,
provided the texture is known to have this hybrid struc-
ture, without the need to quantitatively measure the full 3D
magnetization.

IV. MICROMAGNETIC SIMULATIONS

To assess the validity of these results in the context of
a well-studied system, we numerically solved the Landau-
Lifshitz-Gilbert (LLG) equation using MUMAX3 [27]. The
material parameters were chosen to match those obtained
experimentally by Montoya et al. in Ref. [12], whose sim-
ulations report Néel caps in the dipole-stabilized skyrmions
of Fe/Gd multilayer thin films, and temperature was set to
300 K. A 1.28 um x 1.28 um x 80 nm slab was initialized
with random magnetization. A saturating perpendicular field
of —330 mT was initialized, then decreased in increments
of 5 mT, with the LLG equation evolved for 15 ns at each
field step. This procedure generates a stable mixture of worm
domains and skyrmions at remanence.

Next, we simulated a field sweep from remanence back to
negative saturation, allowing us to predict the behavior of the
Néel caps and associated evolution of the Hopf index of a
hybrid skyrmion as they varied with applied field. The applied
field was decreased in steps of 5 mT from remanence, and the

224420-4



HYBRID SKYRMIONS IN MAGNETIC MULTILAYER THIN ...

PHYSICAL REVIEW B 110, 224420 (2024)

085

0.80

0.75

y-[um]

0.70

0.65

0.60

05 110 115

x [um] X [um]

0.2 04 0.6 038 10 12
X [am]

FIG. 3. Simulated surface magnetization of three hybrid
skyrmions stabilized at remanence. This surface helicity represents
the Néel cap, which retains some of the azimuthal component at
the center of the film, which is left handed in (a) and (b), and right
handed in (c).

LLG equation evolved for 15 ns at each field step, until all
magnetic domains were annihilated at —325 mT.

Additionally, the magnetization after the —250 mT field
step was used as a seed for a high-resolution simulation using
the relax () function of MUMAX3, which disables precession
in the LLG equation to instead attempt to find the energetic
minimum [27]. This method produces a less noisy result,
while preserving the structure. At —250 mT, all domains have
shrunken to isolated skyrmions, so this additional simulation
allows for a closer examination of the structure of an individ-
ual hybrid skyrmion.

V. RESULTS

Figure 3 shows the surface magnetization of the simulation
result at remanence. As expected, the DWs are nearly Néel
type, but not fully, competing energetically with the azimuthal
component at the center of the film. At remanence, we see pri-
marily worm domains, with three skyrmions—two left handed
and one right handed. To quantify the twist of each skyrmion,
the surface helicity was averaged for a circular region en-
compassing the skyrmion, weighted by the magnitude of the
in-plane component of magnetization. Equation (13) was then
used to predict the Hopf index we should expect based on the
surface helicity. The Hopf index was also calculated numeri-
cally from the full vector magnetization using the procedure
described in Appendix B, and shows a good match to the value
predicted by Eq. (13). Table I summarizes these results. Next,
a field sweep from remanence to saturation was simulated,
using the magnetization shown in Fig. 3(d) as a seed. The field
was decreased in steps of 5 mT, and the LLG equation evolved
for 15 ns at each step, until all domains were annihilated at a

TABLE I. The average surface helicity, surface-helicity based
Hopf index [calculated using Eq. (13)], and numerically calculated
Hopf index of the simulated skyrmions shown in Fig. 3.

A B C
Avg. surface helicity 0.8804x 0.88437  —0.8757n
Helicity-based HI [Eq. (13)] —0.3804  —0.3843 0.3757
Numerically calculated HI —0.3909 —0.3831 0.3495

field value of —325 mT. At each step, skyrmion A’s surface
helicities and numerical Hopf index were calculated, with
its center tracked by the weighted average of its core mag-
netization. Figure 4(a) shows the calculated average surface
helicities at the upper and lower surfaces of the film, and
Fig. 4(b) shows the Hopf index expected from these surface
helicities, along with the explicitly calculated Hopf index.
Figure 4(c) shows the z-dependent average helicity for three
different field values: remanence, the value at which surface
helicity was closest to Néel type, and the last field step before
annihilation.

Notably, the Néel caps are most Néel type at around
—220 mT, rather than near remanence or saturation. At rema-
nence, the DWs of neighboring magnetic domains are pressed
together [Fig. 5(a)], and their Néel caps antiparallel, making it
energetically unfavorable for the DWs to twist fully Néel type.
As the magnitude of applied field is increased, the skyrmions
become more isolated [Fig. 5(b)], allowing their Néel caps
to twist more fully. However, the skyrmions also shrink with
applied field, until the DWs on opposite sides of an individual
skyrmion begin to interact [Fig. 5(c)], again creating a prefer-
ence against fully twisted Néel caps.

Finally, the —250 mT magnetization, after relaxation to
a minimum energy state, was used to numerically calculate
the curves of constant magnetization for a hybrid skyrmion.
Figure 6(a) shows these curves for the half-integer hopfion
constructed from the Hopf fibration, Eq. (2), and Fig. 6(b)
shows the numerically calculated results for a simulated hy-
brid skyrmion. The simulated hybrid skyrmion’s DWs are
barrel shaped rather than hyperboloid, but can be created from
the former’s via a smooth rescaling of radial coordinates.
This barrel shape is also predicted by Ref. [14]. The salient
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FIG. 4. Evolution of (a) surface helicity and (b) Hopf index of the
simulated skyrmion as B, is decreased from remanence to —325 mT.
(c) shows the average helicity through the thickness of the skyrmion
for three applied field values.
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FIG. 5. Z component of magnetization at the center of the film at
(a) remanence, (b) —250 mT, and (c) —325 mT.

feature is the nearly 180° rotation from top to bottom, which
corresponds to the varying helicity.

VI. CONCLUSION

As one of the few systems capable of hosting stable mag-
netic skyrmions at ambient conditions, multilayer thin films
are a promising avenue forward for real-world devices. The
skyrmions they host have a hybrid helicity structure, result-
ing in exceptional stability, with the Néel caps bringing the
skyrmions’ magnetic flux closures into the material and de-
creasing their magnetostatic energy. In this paper we showed
that this additional twisting creates a knotted topological
structure. In particular, hybrid skyrmions have a half-integer
Hopf index, adding another nontrivial topology to the plethora
of topological spin textures observed in magnetic systems. We
also showed that the structure of a hybrid skyrmion can be
constructed directly by creating a vector field tangent to the
fibers of the Hopf fibration. This has the physical interpre-
tation of tying magnetic field lines into linked torus knots,
creating a barrier against the annihilation of the structures.
We used micromagnetic simulations to tie these results to a
well-known and highly promising system, Fe/Gd multilayers,
in order to understand the underlying topology first at rema-
nence as well as in the presence of an external field. As new
chiral spin textures continue to be observed across a range
of systems, it is vital to understand the three-dimensional
structure and topology of each new texture in order to predict
and understand its dynamics, properties, and stability.

FIG. 6. Curves of constant magnetization for (a) the skyrmion
constructed from the Hopf fibration, Eq. (2), and (b) the simulated
isolated hybrid skyrmion, starting from points at the center of the DW
wall. Note how the curves wrap almost but not quite 180° around the
z axis; this is equivalent to the nearly 180° twist in helicity from
top to bottom. The z dependence of this wrapping matches the z
dependence of its helicity [Fig. 4(c), B, = —0.250 T], varying fastest
at the center and slowing near the surfaces.
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APPENDIX A: DETAILED CONSTRUCTION
FROM HOPF FIBRATION

The Hopf fibration is a set of curves on the 3-sphere S*
defined by the fibers of the Hopf map, the fibers of a function
being all the elements of its domain that map to the same
point. For example, the set {—1, 1} can be considered one
fiber of the function f(x) = X2, as f(—=1)= f(1)=1. The
Hopf map is the many-to-one continuous function from the
3-sphere to the ordinary 2-sphere 4 : S3 — S? defined by

2(x1x2 + y1y2)
2(y1x2 — x1y2) |,
NV B -

h(x1,y1, %2, ¥2) = (A1)

whose fibers form circles on the 3-sphere. It can be directly
verified that if two points (xj, i, X2, y2) and (X}, ¥}, x5, ¥5)
map to the same point under the Hopf map, that is,
h(x1, y1, X2, y2) = h(x], ¥}, x5, ¥5), then the two points can be
related as follows,

X! .

1 cost —sint 0 0 X1

7 .

sin ¢ cost 0 0

HE AN | Bl ROY)
x5 0 0 cost —sint || x;

/ 0 0 sin t cost Y2
Y2

for any t € [0, 27), defining a circle in S*. We can use this
relation to write the Hopf fiber passing through an initial point
(x1,y1, X2, 2) € S3asa parametric curve

X1 CcOst — y;sint
X1 8int 4+ yj cost

s(t) =

. (A3)
Xp COSt — Yy, sint

X 8int + y, cost

We can relate this fiber to 3D space R? via the stereographic
projection, given by

S 1 1 S
S| = ) (A4)
S3 I=sa\s

Applying this to Eq. (A3) gives an equation for the Hopf fiber
in R3,

1 X1 COSt — yp sint
X1 sint + y; cost
Xp cOSt — y; sint

S@) = (AS5)

1 —xpsint — y, cost

However, this is expressed in terms of an initial point
(X1,¥1,%2,y2) € S3. We can relate this initial point to the
initial point in R*® via the inverse stereographic projection,
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given by
X 2x
wl_ 1 2y
vl =13rl| 22 | (A6)
y2 R2 -1

where R? = x? 4+y? 4+ 72, Substitution of Eq. (A6) into
Eq. (AS5) gives the result Eq. (1), which is a parametrization of
the Hopf fiber which passes through an initial point (x, y, z).

APPENDIX B: NUMERICAL CALCULATION
OF THE HOPF INDEX

To numerically calculate the Hopf index, it is necessary
to evaluate Eq. (8). F contains only spatial derivatives of m,

and is therefore straightforward to calculate numerically. A is
defined implicitly via V x A = F and is therefore less trivial.
To calculate A, we choose the Coulomb gauge V - A = 0, so
that we can use the identity

Vx(VxA)=V(V-A)— VA, (B1)

which, substituting the implicit definition of A on the left-
hand side and the Coulomb gauge condition on the right-hand
side, reduces to

V x F = —V?A. (B2)

This is Poisson’s equation, and it can be numerically
solved with a variety of existing techniques, for example,
by using Fourier transforms to replace differentiation with
multiplication.
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