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Abstract—Machine learning (ML) has the potential to revo-
lutionize the design and optimization of electronic systems, but
mainly requires high-quality and diverse datasets that capture
the features and performance of various electrical circuits. Pre-
viously, there were no generic method applicable to any electric
circuit whether continuous circuit like resonant LC circuits or
switching circuits like buck, boost and buck-boost that allows
circuit connections and components separate representation when
circuits are fed to ML models. Moreover, all other methods
and models are inefficiently built to process either limited
complexity circuits, i.e. limited to a certain circuit order, or
use a fixed circuit topology so that the generated dataset is
of a definite size. In this paper, a novel circuit representation
that is based on heterogeneous graph is presented, which is a
graphical representation of the energy flow in a physical system
including electrical, mechanical and even chemical interactions.
Moreover, heterogeneous graph neural network (Hetero-GNN) is
applied to the proposed representation of heterogeneous graphs
representing electric circuits, allowing for the different ML tasks
on different electric circuit and converter applications.

I. INTRODUCTION

Many research works have addressed circuit representation
for ML application in the form of a graph and with the use of
GNNGs. [1]-[5] represented circuits as graphs that are arbitrar-
ily generated from circuit components and connections, where
every component is represented as node, while edges represent
connections between these components. A complete break-
down of the representation technique, feature assignment,
graph representation and model assessment is in [6]. Since the
structure of the circuit graph is arbitrary and doesn’t represent
the actual circuit connection or configuration, the ML model
process is only trained for a single circuit connection, does
not consider the effect of circuit components or the physical
arrangement of the circuit internal connections. Circuit struc-
ture based predictions was first introduced in [7]-[9], and was
further expanded to include continuous and switching circuits
in CCM and DCM in[6]. This mapping offered a diverse and
comprehensive guidelines to transform the structural behavior
of electric circuit based on the bond graph circuit represen-
tation [10]-[13]. Furthermore, the scalability and usability of
the graph framework was analysed and tested in [14], while
showing a case study of three phase inverter performance
prediction. However, this structural representation lacked the
physical representation of energy exchange between electric
component interaction between circuit elements and circuit
node. In this paper, a novel circuit representation technique
allowing for the decoupling of the physical interactions as well
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the circuit configuration of electric circuit is proposed. This
is an outcome of representing bond graphs as heterogeneous
graph, which preserves the physical and structural meanings of
circuit components. The following are the main contributions
of this paper: 1) Heterogeneous graph representation of contin-
uous and switching electric circuits by decoupling the physical
and structural properties of circuits, allowing independent
feature processing that enables the model to focus on specific
aspects of the circuit representation. 2) A dataset generation
algorithm that converts circuit netlist to an optimized hetero-
graph representation, as well as feature assignment framework
for assigning node and edge features the captures the physical
properties of electric circuits. 3) Application of the proposed
Hetero-GNN model in various ML tasks on continuous and
switching circuits, including differentiation between three cir-
cuits of the same order, components and connections and
circuit dynamics prediction based on component variations.
The proposed graph representation is tested on a classification
task, where the target is to classify three circuits of the same
components and component values but different component
order. The extreme similarity between the three circuits rep-
resent a challenge for the classifier if it cannot differentiate
between the structural and energy exchange domain of circuits.
Additionally, a regression case study implemented on a buck
converter highlights the usability of proposed framework for
advanced ML applications.

II. CIRCUITS TO MACHINE LEARNING PROBLEM

Mapping circuit structure, performance and operating con-
ditions into a formulation where Machine Learning algorithms
can be used is completed in several steps: 1) Transforming the
circuit structure to a heterogeneous graph representation, 2)
Assigning graph features, and then 3) Applying Hetero-GNN
model tailored to the target task.

A. Heterogeneous vs Homogeneous Circuit Graphs

Homogeneous graphs are graphs where nodes and edges
belong to the same type or category, and this uniformity in
node and edge types simplifies the graph structure and allows
for consistent processing and analysis. On the other hand,
heterogeneous graphs, are graphs where nodes and edges can
belong to different types or categories, which allows nodes and
edges to have diverse attributes and relationships, reflecting the
complex and varied nature of real-world networks and systems
if represented as heterogeneous graphs. Fig. 1 shows an RLC
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Fig. 1 — Homogeneous vs heterogeneous graph representation
of an RLC circuit

circuit in homogeneous and heterogeneous representation. In
the heterogeneous representation, junction and circuit elements
nodes are separated by their node type, while in homogeneous
representation nodes have the same node type.

1) Homogeneous Circuit Graphs

The methodology provided in [6]-[9], [15] represents the
electric circuits as homogeneous graphs, i.e graphs including
the same type of nodes, where the components of the circuit
and junctions representing connections are modelled as nodes,
while connections between components and junctions are
edges. The homo-graph representation captures the physical
relationships as well as connectivity between circuit node,
providing a structured format for machine learning analysis.
Also, a unified node feature assignment algorithm that assigns
features to each node in the graph. This algorithm is designed
to be scalable and topology-generic, with inherent capability
to handle circuits of varying sizes and complexities. However,
the proposed homogeneous graph representation lacked the
separation between the physical and structural representation
of electric circuit, which leads the developed ML models to
struggle in capturing the intricate relationships between phys-
ical components and structural connections with the physical
behavior of electric circuit. Moreover, in graph generation
tasks, the model may produce graphs that lack coherence
between physical components and their connections, affecting
the realism of the generated output.
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Fig. 2 — Heterogeneous graph representation of: a) Three
continuous RLC circuits, b) Buck converter
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2) Hetero-Graph Representation

Mapping physical electric circuits represented as bond
graphs onto a heterogeneous graph for further processing by
a heterogeneous Graph Neural Network (GNN) involves a
systematic translation of the circuit elements and junctions into
nodes, and the bonds into edges. Fig. 2 shows RLC circuits
in addition to buck converter as examples of continuous and
switching circuits in hetero-graph representation. As for node
Representation, circuit elements (V, I, L, C, R) and junctions
(0, 1) are represented as two distinct node types. Each node
type is characterized by specific features. Circuit Element (CE)
nodes are encoded with a one-hot vector representing the type
of circuit element, accompanied by the analog value of the
component. The one-hot encoding is a binary vector with a
high (1) bit on the corresponding element and all the other
elements are set to low (0), ensuring that each element type
is uniquely identifiable. Furthermore, junction (J) nodes are
assigned a one-hot encoding indicating whether the junction
is a zero (common voltage) or one (common current) junction,
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Fig. 3 — CNGA flowchart with feature assignment matrix

cascaded with the analog value of the current or voltage.
Node features are included by introducing the concept of
Element ID. By identifying circuit elements or junctions as
graph nodes, an algorithm assigns the appropriate one-hot
encoding ID out of five circuit nodes (voltage source, cur-
rent source, Inductance, Capacitance, Resistance) or the two
junction nodes (zero or one junction). Then, element ID and a
normalized one run time simulation of circuit are concatenated
to from the feature matrix of the whole graph with dimension
N X d;,, where N is number of CE or Junction nodes and
d;n 1is the dimension of feature vector. Regarding the edge
representation, edges in the heterogeneous graph represent the
energy exchange between circuit elements and junctions, as
well as the connections between junctions themselves. Energy
Exchange Edges between circuit elements and junctions carry
features representing voltage and current values that signify
the magnitude of energy exchange. Likewise, connection/wire
edges symbolize the physical connections or wires in the
circuit, and are characterized by features of voltage, current,
and duty cycle. A full feature analysis is performed for
circuit assigned as “class 1”7 is shown in Table I, where "xx’
values represent features that are concatenated with the one-
hot encoding.

B. Circuit Netlist to Graph Algorithm (CNGA)

The CNGA algorithm is a novel dataset generation algo-
rithm that converts circuit netlist to an optimized bond graph. It
can capture the features and performance of various electrical
circuits in a scalable and general way. If the circuit has switch
connected to ground, a voltage source of value zero is added
to one terminal of the switch. Fig. 3 shows an example of
obtaining a graph from an RLC circuit netlist of class 0
indicated in Fig. 2 when fed to CNGA. The algorithm works
as follows:

1) The algorithm takes the circuit netlist as input, which

Table I — Features per node and edge type

Node Node Type Features
A\ Element [1, 0,0, 0, 0, Vx]
1 Junction [0, 1, xx]
L Element [0, 0,0, 0, 1, Lx]
0 Junction [1, 0, xx]
C Element [0, 0,0, 1, 0, Cx]
R Element [0, 0, 1, O, 0, Rx]

Edge Edge Type Features
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Fig. 4 — Hetero-GNN structure

is a description of the components and connections of
the circuit. The netlist contains the names, values, and
nodes of the components, such as resistors, capacitors,
inductors, sources, etc. The nodes are numbered from N,
to Nz, where O is the ground node and M is the total
number of nodes in the circuit.

The algorithm assigns 1 and -1 values at the correspond-
ing circuit nodes that the components are connected to.
The ground node O is ignored for an optimized graph
output. For example, voltage source (V) is connected to
node N1 and ground, so N1 field is assigned 1 while the
ground net is ignored.

) The algorithm sums the values at each net, and if the sum
is even number, it is considered O and if odd number it
is 1. and then takes the binary negation of the sum. The
binary negation output represents the type of junction to
which the node is assigned.

The algorithm outputs an optimized bond graph by merg-
ing every consecutive 1 or 0 nodes. The bond graph con-
sists of bond graph junction which the CNGA extracted
and the circuit elements, which are connected to these
junctions by directed edges that represent the power flow

~

~
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Fig. 5 — a) Confusion matrix of classifier output, b) 2D representation of the classified circuits

between the circuit elements to the circuit.

5) The algorithm identifies the series junctions and assign
them the components that have 1 in their node column.
Series junctions have the highest priority, so they can
claim the components first. Series junctions are the nodes
that have a sum of zero or an even number.

6) Parallel junctions are assigned the remaining components
that have 1 in their node column. Parallel junctions are
nodes that have a sum of an odd number.

7) Bond graph is built by starting from the highest sum value
and connecting the junctions and components by bonds.
Rows that have 1 & -1 indicate a jump from junction to
junction (orange arrow).

C. Graph Neural Network Model

GNNSs are are scalable and permutation invariant, i.e input
layer is not fixed and node re-ordering will not affect the
NN layer output, which satisfies the requirements needed for
physical circuits representations. This allows each node to
have knowledge about self information, surrounding neighbour
information, and knowledge about graph structure. The graph-
ical representation of physical systems as Bond graphs that
capture the energy exchange and conservation among different
components is not directly equivalent to heterogeneous graphs,
and require a proper mapping and interpretation to be used
as input data for GNN models. Moreover, designing a GNN
model that can learn from heterogeneous graphs representing
physical systems can be cumbersome [16], since accommodat-
ing different types of circuit elements, junctions, and edges,
as well as their features and physical interactions is not trivial.
Heterogeneous graphs are more complex and diverse than
homogeneous graphs, and require special handling of the
different types and features of nodes and edges.
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III. ML APPLICATIONS USING HETERO-GNN

The general structure of the GNN model shown in Fig. 4
utilizes three GCN layers to exchange messages across nodes.
The GCN layers, aggregates feature vectors representing CE
and junction features in the neighborhood nodes by message-
passing algorithm, then passes the result to a dense NN layer,
then apply a RELU non-linearity as an activation function. The
output is fed to the Hetero-global mean pooling (GMP) layer,
which returns the average node features of each node type
across the node features dimension. The GMP layer output
two vectors representing CE and junction features, each is of
size d. The output of this general GNN structure can be used
in classification and regression tasks with minor modifications
to suit the application needs.

A. Circuit Structure Identification

To test the capability of the proposed framework of decou-
pling and differentiating between the physical and structural
properties of electric circuits, a circuit classifier that takes three
continuous filter circuits with identical circuit elements but
different arrangement is built. The classifier application can
be further utilized for digital twin applications. The classifier
is fed circuits in graph forms (G) with different number of
nodes (N), along with their corresponding node features (X),
and adjacency matrix (A) as inputs and outputs the probability
(Y) of a converter to belong to a certain class (C).

With the classifier GNN model structure implemented, a
fully connected (FC) layer takes CE and junction embeddings
from the (GMP) layer and outputs and generates a score for
each circuit belonging to every defined class, while (Softmax)
output layer is used to calculate the probability in range of (0-
1) of the possibility of each circuit belonging to certain class.
The classifier is fed with a 12000 graph dataset representing
the three converter topologies with 70% to 30% split ratio
between training and testing datasets, and the loss function
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Fig. 6 — Regression model predictions corresponding to converter control and parameter variations. a) Efficiency prediction,
b) Output voltage prediction
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is cross entropy loss function. The trained classifier scored
100% for testing data, when trained for 100 epochs. In Fig.
5, a 2-D output representation of 3600 test dataset graphs
are plotted and colorized according to their predicted class.
The scatter plots titled “Circuit Element Embeddings” and
“Junction Embeddings” provide a visual representation of
how the NN model processes and classifies the data. Despite
the uniformity in the number and values of circuit elements
across the classes i.e having the same type and values of
circuit components, the model has differentiated them into
distinct clusters, as evident in the “Junction Embeddings” plot.
Also, the confusion matrix provided in Fig. 5a indicate the
classifier’s high level of accuracy, as demonstrated by the
substantial values along the main diagonal, which represent
the true positives for each class (0, 1, and 2).

B. Converter Performance Prediction

The hetero-GNN based model in Fig. 4 is adjusted in order
to obtain converter dynamics predictions based on variable
component values. The model takes converter circuits in graph
forms (G), node features (X), adjacency matrix (A), edge
features (Z) as input, and outputs the predicted variables (Y').
Multiple case studies including single and multi-variable re-
gression problems are shown, including obtaining predictions
of the most essential outputs of converter circuits, namely
Voltage gain and efficiency, with the potential to scale up
to include many more variables and more prediction outputs.
Two types of variations are tested with the proposed regression
model, namely hardware and controller parameter variations.
Hardware variation are when circuit component values are
changed, which is a real life equivalent of changing resistor
values or changing the supply voltage. The model is fed
a dataset that contains circuit data after being transformed
into its graph forms and assigned node and edge features,
as well as information about the prediction targets, obtained
from simulations. Model output shown in Fig. 6 highlights
the prediction output compared to a straight line representing
the ideal case of the model having 100% accuracy, while the
dots represents the predicted output at this instant. The overall
performance of the model was highly accurate, as indicated by
the minimal prediction error. The histogram in Fig. 7 indicates
error distribution in model output when exposed to changes
in load resistance, supply voltage and duty cycle variations
across testing dataset range. The prediction error mean(u) and
standard deviation (o) are used to assess the model’s error,
while it is shown that the model can attain high prediction
accuracy, while maintaining prediction error percentage less
than 10%.

IV. CONCLUSION

This paper presented a mapping of the physical and struc-
tural properties of electric circuits using heterogeneous graphs.
Bond graphs are used as a primary modelling technique to
model electric circuit, then are transformed to heterogeneous
graphs for heterogeneous GNN based ML applications. Fea-
ture extraction and assignment is shown in this paper, with

theoretical explanations on how GNN can distinguish between
structural and physical explanation. A classifier model was
created and trained using the generated dataset and was able
to obtain accuracy of 100%, while showing it can distinguish
between the energy domains of circuits and their structural
configurations. Additionally, a regression model is trained to
predict the circuit performance when subjected to variations in
operating conditions, load variations and controller variations.
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