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Abstract—Machine learning (ML) has the potential to revo-
lutionize the design and optimization of electronic systems, but
mainly requires high-quality and diverse datasets that capture
the features and performance of various electrical circuits. Pre-
viously, there were no generic method applicable to any electric
circuit whether continuous circuit like resonant LC circuits or
switching circuits like buck, boost and buck-boost that allows
circuit connections and components separate representation when
circuits are fed to ML models. Moreover, all other methods
and models are inefficiently built to process either limited
complexity circuits, i.e. limited to a certain circuit order, or
use a fixed circuit topology so that the generated dataset is
of a definite size. In this paper, a novel circuit representation
that is based on heterogeneous graph is presented, which is a
graphical representation of the energy flow in a physical system
including electrical, mechanical and even chemical interactions.
Moreover, heterogeneous graph neural network (Hetero-GNN) is
applied to the proposed representation of heterogeneous graphs
representing electric circuits, allowing for the different ML tasks
on different electric circuit and converter applications.

I. INTRODUCTION

Many research works have addressed circuit representation

for ML application in the form of a graph and with the use of

GNNs. [1]–[5] represented circuits as graphs that are arbitrar-

ily generated from circuit components and connections, where

every component is represented as node, while edges represent

connections between these components. A complete break-

down of the representation technique, feature assignment,

graph representation and model assessment is in [6]. Since the

structure of the circuit graph is arbitrary and doesn’t represent

the actual circuit connection or configuration, the ML model

process is only trained for a single circuit connection, does

not consider the effect of circuit components or the physical

arrangement of the circuit internal connections. Circuit struc-

ture based predictions was first introduced in [7]–[9], and was

further expanded to include continuous and switching circuits

in CCM and DCM in[6]. This mapping offered a diverse and

comprehensive guidelines to transform the structural behavior

of electric circuit based on the bond graph circuit represen-

tation [10]–[13]. Furthermore, the scalability and usability of

the graph framework was analysed and tested in [14], while

showing a case study of three phase inverter performance

prediction. However, this structural representation lacked the

physical representation of energy exchange between electric

component interaction between circuit elements and circuit

node. In this paper, a novel circuit representation technique

allowing for the decoupling of the physical interactions as well

the circuit configuration of electric circuit is proposed. This

is an outcome of representing bond graphs as heterogeneous

graph, which preserves the physical and structural meanings of

circuit components. The following are the main contributions

of this paper: 1) Heterogeneous graph representation of contin-

uous and switching electric circuits by decoupling the physical

and structural properties of circuits, allowing independent

feature processing that enables the model to focus on specific

aspects of the circuit representation. 2) A dataset generation

algorithm that converts circuit netlist to an optimized hetero-

graph representation, as well as feature assignment framework

for assigning node and edge features the captures the physical

properties of electric circuits. 3) Application of the proposed

Hetero-GNN model in various ML tasks on continuous and

switching circuits, including differentiation between three cir-

cuits of the same order, components and connections and

circuit dynamics prediction based on component variations.

The proposed graph representation is tested on a classification

task, where the target is to classify three circuits of the same

components and component values but different component

order. The extreme similarity between the three circuits rep-

resent a challenge for the classifier if it cannot differentiate

between the structural and energy exchange domain of circuits.

Additionally, a regression case study implemented on a buck

converter highlights the usability of proposed framework for

advanced ML applications.

II. CIRCUITS TO MACHINE LEARNING PROBLEM

Mapping circuit structure, performance and operating con-

ditions into a formulation where Machine Learning algorithms

can be used is completed in several steps: 1) Transforming the

circuit structure to a heterogeneous graph representation, 2)

Assigning graph features, and then 3) Applying Hetero-GNN

model tailored to the target task.

A. Heterogeneous vs Homogeneous Circuit Graphs

Homogeneous graphs are graphs where nodes and edges

belong to the same type or category, and this uniformity in

node and edge types simplifies the graph structure and allows

for consistent processing and analysis. On the other hand,

heterogeneous graphs, are graphs where nodes and edges can

belong to different types or categories, which allows nodes and

edges to have diverse attributes and relationships, reflecting the

complex and varied nature of real-world networks and systems

if represented as heterogeneous graphs. Fig. 1 shows an RLC
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Fig. 1 – Homogeneous vs heterogeneous graph representation

of an RLC circuit

circuit in homogeneous and heterogeneous representation. In

the heterogeneous representation, junction and circuit elements

nodes are separated by their node type, while in homogeneous

representation nodes have the same node type.

1) Homogeneous Circuit Graphs

The methodology provided in [6]–[9], [15] represents the

electric circuits as homogeneous graphs, i.e graphs including

the same type of nodes, where the components of the circuit

and junctions representing connections are modelled as nodes,

while connections between components and junctions are

edges. The homo-graph representation captures the physical

relationships as well as connectivity between circuit node,

providing a structured format for machine learning analysis.

Also, a unified node feature assignment algorithm that assigns

features to each node in the graph. This algorithm is designed

to be scalable and topology-generic, with inherent capability

to handle circuits of varying sizes and complexities. However,

the proposed homogeneous graph representation lacked the

separation between the physical and structural representation

of electric circuit, which leads the developed ML models to

struggle in capturing the intricate relationships between phys-

ical components and structural connections with the physical

behavior of electric circuit. Moreover, in graph generation

tasks, the model may produce graphs that lack coherence

between physical components and their connections, affecting

the realism of the generated output.
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Fig. 2 – Heterogeneous graph representation of: a) Three

continuous RLC circuits, b) Buck converter

2) Hetero-Graph Representation

Mapping physical electric circuits represented as bond

graphs onto a heterogeneous graph for further processing by

a heterogeneous Graph Neural Network (GNN) involves a

systematic translation of the circuit elements and junctions into

nodes, and the bonds into edges. Fig. 2 shows RLC circuits

in addition to buck converter as examples of continuous and

switching circuits in hetero-graph representation. As for node

Representation, circuit elements (V, I, L, C, R) and junctions

(0 , 1) are represented as two distinct node types. Each node

type is characterized by specific features. Circuit Element (CE)

nodes are encoded with a one-hot vector representing the type

of circuit element, accompanied by the analog value of the

component. The one-hot encoding is a binary vector with a

high (1) bit on the corresponding element and all the other

elements are set to low (0), ensuring that each element type

is uniquely identifiable. Furthermore, junction (J) nodes are

assigned a one-hot encoding indicating whether the junction

is a zero (common voltage) or one (common current) junction,
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cascaded with the analog value of the current or voltage.

Node features are included by introducing the concept of

Element ID. By identifying circuit elements or junctions as

graph nodes, an algorithm assigns the appropriate one-hot

encoding ID out of five circuit nodes (voltage source, cur-

rent source, Inductance, Capacitance, Resistance) or the two

junction nodes (zero or one junction). Then, element ID and a

normalized one run time simulation of circuit are concatenated

to from the feature matrix of the whole graph with dimension

N × din, where N is number of CE or Junction nodes and

din is the dimension of feature vector. Regarding the edge

representation, edges in the heterogeneous graph represent the

energy exchange between circuit elements and junctions, as

well as the connections between junctions themselves. Energy

Exchange Edges between circuit elements and junctions carry

features representing voltage and current values that signify

the magnitude of energy exchange. Likewise, connection/wire

edges symbolize the physical connections or wires in the

circuit, and are characterized by features of voltage, current,

and duty cycle. A full feature analysis is performed for

circuit assigned as ”class 1” is shown in Table I, where ’xx’

values represent features that are concatenated with the one-

hot encoding.

B. Circuit Netlist to Graph Algorithm (CNGA)

The CNGA algorithm is a novel dataset generation algo-

rithm that converts circuit netlist to an optimized bond graph. It

can capture the features and performance of various electrical

circuits in a scalable and general way. If the circuit has switch

connected to ground, a voltage source of value zero is added

to one terminal of the switch. Fig. 3 shows an example of

obtaining a graph from an RLC circuit netlist of class 0

indicated in Fig. 2 when fed to CNGA. The algorithm works

as follows:

1) The algorithm takes the circuit netlist as input, which

Table I – Features per node and edge type

Node Node Type Features

V Element [1, 0, 0, 0, 0, Vx]
1 Junction [0, 1, xx]
L Element [0, 0, 0, 0, 1, Lx]
0 Junction [1, 0, xx]
C Element [0, 0, 0, 1, 0, Cx]
R Element [0, 0, 1, 0, 0, Rx]

Edge Edge Type Features

V→1 CE
Energy Ex.
−−−−−−→ J [D]

1→L J
Energy Ex.
−−−−−−→ CE [D]

1→0 J
Wire
−−→ J [D]

0→C J
Energy Ex.
−−−−−−→ CE [D]

0→R J
Energy Ex.
−−−−−−→ CE [D]

Fig. 4 – Hetero-GNN structure

is a description of the components and connections of

the circuit. The netlist contains the names, values, and

nodes of the components, such as resistors, capacitors,

inductors, sources, etc. The nodes are numbered from N0

to NM , where 0 is the ground node and M is the total

number of nodes in the circuit.

2) The algorithm assigns 1 and -1 values at the correspond-

ing circuit nodes that the components are connected to.

The ground node 0 is ignored for an optimized graph

output. For example, voltage source (V) is connected to

node N1 and ground, so N1 field is assigned 1 while the

ground net is ignored.

3) The algorithm sums the values at each net, and if the sum

is even number, it is considered 0 and if odd number it

is 1. and then takes the binary negation of the sum. The

binary negation output represents the type of junction to

which the node is assigned.

4) The algorithm outputs an optimized bond graph by merg-

ing every consecutive 1 or 0 nodes. The bond graph con-

sists of bond graph junction which the CNGA extracted

and the circuit elements, which are connected to these

junctions by directed edges that represent the power flow
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(a) (b)

Fig. 5 – a) Confusion matrix of classifier output, b) 2D representation of the classified circuits

between the circuit elements to the circuit.

5) The algorithm identifies the series junctions and assign

them the components that have 1 in their node column.

Series junctions have the highest priority, so they can

claim the components first. Series junctions are the nodes

that have a sum of zero or an even number.

6) Parallel junctions are assigned the remaining components

that have 1 in their node column. Parallel junctions are

nodes that have a sum of an odd number.

7) Bond graph is built by starting from the highest sum value

and connecting the junctions and components by bonds.

Rows that have 1 & -1 indicate a jump from junction to

junction (orange arrow).

C. Graph Neural Network Model

GNNs are are scalable and permutation invariant, i.e input

layer is not fixed and node re-ordering will not affect the

NN layer output, which satisfies the requirements needed for

physical circuits representations. This allows each node to

have knowledge about self information, surrounding neighbour

information, and knowledge about graph structure. The graph-

ical representation of physical systems as Bond graphs that

capture the energy exchange and conservation among different

components is not directly equivalent to heterogeneous graphs,

and require a proper mapping and interpretation to be used

as input data for GNN models. Moreover, designing a GNN

model that can learn from heterogeneous graphs representing

physical systems can be cumbersome [16], since accommodat-

ing different types of circuit elements, junctions, and edges,

as well as their features and physical interactions is not trivial.

Heterogeneous graphs are more complex and diverse than

homogeneous graphs, and require special handling of the

different types and features of nodes and edges.

III. ML APPLICATIONS USING HETERO-GNN

The general structure of the GNN model shown in Fig. 4

utilizes three GCN layers to exchange messages across nodes.

The GCN layers, aggregates feature vectors representing CE

and junction features in the neighborhood nodes by message-

passing algorithm, then passes the result to a dense NN layer,

then apply a RELU non-linearity as an activation function. The

output is fed to the Hetero-global mean pooling (GMP) layer,

which returns the average node features of each node type

across the node features dimension. The GMP layer output

two vectors representing CE and junction features, each is of

size d. The output of this general GNN structure can be used

in classification and regression tasks with minor modifications

to suit the application needs.

A. Circuit Structure Identification

To test the capability of the proposed framework of decou-

pling and differentiating between the physical and structural

properties of electric circuits, a circuit classifier that takes three

continuous filter circuits with identical circuit elements but

different arrangement is built. The classifier application can

be further utilized for digital twin applications. The classifier

is fed circuits in graph forms (G) with different number of

nodes (N), along with their corresponding node features (X),

and adjacency matrix (A) as inputs and outputs the probability

(Y) of a converter to belong to a certain class (C).

With the classifier GNN model structure implemented, a

fully connected (FC) layer takes CE and junction embeddings

from the (GMP) layer and outputs and generates a score for

each circuit belonging to every defined class, while (Softmax)

output layer is used to calculate the probability in range of (0-

1) of the possibility of each circuit belonging to certain class.

The classifier is fed with a 12000 graph dataset representing

the three converter topologies with 70% to 30% split ratio

between training and testing datasets, and the loss function
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Fig. 6 – Regression model predictions corresponding to converter control and parameter variations. a) Efficiency prediction,

b) Output voltage prediction
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Fig. 7 – Prediction error histograms in load voltage and efficiency
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is cross entropy loss function. The trained classifier scored

100% for testing data, when trained for 100 epochs. In Fig.

5, a 2-D output representation of 3600 test dataset graphs

are plotted and colorized according to their predicted class.

The scatter plots titled “Circuit Element Embeddings” and

“Junction Embeddings” provide a visual representation of

how the NN model processes and classifies the data. Despite

the uniformity in the number and values of circuit elements

across the classes i.e having the same type and values of

circuit components, the model has differentiated them into

distinct clusters, as evident in the “Junction Embeddings” plot.

Also, the confusion matrix provided in Fig. 5a indicate the

classifier’s high level of accuracy, as demonstrated by the

substantial values along the main diagonal, which represent

the true positives for each class (0, 1, and 2).

B. Converter Performance Prediction

The hetero-GNN based model in Fig. 4 is adjusted in order

to obtain converter dynamics predictions based on variable

component values. The model takes converter circuits in graph

forms (G), node features (X), adjacency matrix (A), edge

features (Z) as input, and outputs the predicted variables (Y ).

Multiple case studies including single and multi-variable re-

gression problems are shown, including obtaining predictions

of the most essential outputs of converter circuits, namely

Voltage gain and efficiency, with the potential to scale up

to include many more variables and more prediction outputs.

Two types of variations are tested with the proposed regression

model, namely hardware and controller parameter variations.

Hardware variation are when circuit component values are

changed, which is a real life equivalent of changing resistor

values or changing the supply voltage. The model is fed

a dataset that contains circuit data after being transformed

into its graph forms and assigned node and edge features,

as well as information about the prediction targets, obtained

from simulations. Model output shown in Fig. 6 highlights

the prediction output compared to a straight line representing

the ideal case of the model having 100% accuracy, while the

dots represents the predicted output at this instant. The overall

performance of the model was highly accurate, as indicated by

the minimal prediction error. The histogram in Fig. 7 indicates

error distribution in model output when exposed to changes

in load resistance, supply voltage and duty cycle variations

across testing dataset range. The prediction error mean(µ) and

standard deviation (σ) are used to assess the model’s error,

while it is shown that the model can attain high prediction

accuracy, while maintaining prediction error percentage less

than 10%.

IV. CONCLUSION

This paper presented a mapping of the physical and struc-

tural properties of electric circuits using heterogeneous graphs.

Bond graphs are used as a primary modelling technique to

model electric circuit, then are transformed to heterogeneous

graphs for heterogeneous GNN based ML applications. Fea-

ture extraction and assignment is shown in this paper, with

theoretical explanations on how GNN can distinguish between

structural and physical explanation. A classifier model was

created and trained using the generated dataset and was able

to obtain accuracy of 100%, while showing it can distinguish

between the energy domains of circuits and their structural

configurations. Additionally, a regression model is trained to

predict the circuit performance when subjected to variations in

operating conditions, load variations and controller variations.
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