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Abstract

In this paper, we introduce a Physics-Informed Neural Networks (PINNs)-based Topology optimization method that is free
from the usual finite element analysis and is applicable for both self-adjoint and non-self-adjoint problems. This approach
leverages the continuous formulation of TO along with the continuous adjoint method to obtain sensitivity. Within this
approach, the Deep Energy Method (DEM)—a variant of PINN-completely supersedes traditional PDE solution procedures
such as a finite-element method (FEM) based solution process. We demonstrate the efficacy of the DEM-based TO frame-
work through three benchmark TO problems: the design of a conduction-based heat sink, a compliant displacement inverter,
and a compliant gripper. The results indicate that the DEM-based TO can generate optimal designs comparable to those
produced by traditional FEM-based TO methods. Notably, our DEM-based TO process does not rely on FEM discretiza-
tion for either state solution or sensitivity analysis. During DEM training, we obtain spatial derivatives based on Automatic
Differentiation (AD) and dynamic sampling of collocation points, as opposed to the interpolated spatial derivatives from
finite element shape functions or a static collocation point set. We demonstrate that, for the DEM method, when using AD to
obtain spatial derivatives, an integration point set of fixed positions causes the energy loss function to be not lower-bounded.
However, using a dynamically changing integration point set can resolve this issue. Additionally, we explore the impact of
incorporating Fourier Feature input embedding to enhance the accuracy of DEM-based state analysis within the TO context.
The source codes related to this study are available in the GitHub repository: https://github.com/xzhao399/DEM_TO.git.

Keywords Topology optimization - Physics-informed neural networks - Deep energy method - Compliant mechanisms

1 Introduction

Topology optimization (TO) is a computational design
method in engineering, seeking optimal material distribution
within structures under specified loads, boundary conditions,
and constraints. This method significantly contributes to
enhancing design efficiency and minimizing material usage,
finding extensive applications in various industrial designs
(Bendsoe and Sigmund 2003; Eschenauer and Olhoff 2001).
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With the increasing prominence of machine learning (ML)
across numerous scientific and engineering disciplines
(Frank et al. 2020; Brunton and Kutz 2022), there is a grow-
ing interest in integrating ML techniques with topology opti-
mization processes (Woldseth et al. 2022; Shin et al. 2023;
Chandrasekhar and Suresh 2021).

A significant advancement in ML-based computational
physics is the emergence of the physics-informed neural
network (PINN) (Karniadakis et al. 2021). PINNs offer an
ML-based approach to solving partial differential equa-
tions (PDEs) by training neural networks without requiring
labeled data. The essence of PINNs lies in developing neural
networks that closely approximate PDE solutions, with a
loss function defined by the adherence to physical laws. By
minimizing this loss function, the neural network’s outputs
are constrained to approximate PDE solutions while comply-
ing with these laws. The PINN framework has introduced
novel capabilities in computational physics, particularly its
mesh-free characteristic, which simplifies the management
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of complex numerical domains where mesh generation is
challenging (Jagtap and Karniadakis 2021; Xiang et al.
2022; Costabal et al. 2024). Furthermore, PINNs allow for
an integration of physical models with empirical data (Raissi
et al. 2019; Cai et al. 2021; He et al. 2020), enabling the neu-
ral network to simultaneously conform to observed data and
the governing physical laws. This integration is particularly
beneficial in scenarios where the physical understanding is
incomplete, allowing for the resolution of realistic problems
using experimental data (Cai et al. 2021), and facilitating
the data-driven discovery of new PDEs (Raissi et al. 2019).

The versatility of PINN s has spurred interest in develop-
ing various PINN variants, each encoding different physics
aspects (Raissi et al. 2019; Haghighat et al. 2021; Kharazmi
et al. 2019, 2021; Samaniego et al. 2020; Yu et al. 2018;
Nguyen-Thanh et al. 2020; Fuhg and Bouklas 2022). These
variants can be broadly categorized based on the nature of
the encoded physics laws: strong-form PDE-based PINNs
(Raissi et al. 2019; Haghighat et al. 2021), variational for-
mulation-based PINNs (Kharazmi et al. 2019, 2021), and
functional minimization formulation-based PINNs (Sam-
aniego et al. 2020; Yu et al. 2018; Nguyen-Thanh et al.
2020; Fuhg and Bouklas 2022). The strong-form PDE-based
PINN, as proposed by Raissi et al. (2019), directly inputs
spatial and temporal coordinates into the neural network to
output PDE solution values at those points. The loss func-
tion comprises the strong-form PDE residuals at collocation
points and boundary condition discrepancies at boundary
points, ensuring the network’s outputs satisfy both the PDE
and boundary conditions. Despite the straightforward imple-
mentation of strong-form PDE-based PINNSs, their require-
ment for higher-order derivatives, as opposed to variational
or minimal functional formulations, makes them computa-
tionally intensive. The variational formulation-based PINN,
introduced by Kharazmi et al. (2019, 2021), constructs its
loss function from the residuals of the PDE’s variational
formulation, involving lower-order derivatives and hence
less computational demand. However, this approach neces-
sitates defining a test function space, adding complexity to
the implementation. The minimal functional formulation-
based PINN, or Deep Energy Method (DEM), advocated by
Yu et al. (2018), Nguyen-Thanh et al. (2020), and Samaniego
et al. (2020), builds the loss function on a functional minimi-
zation approach. This method, applicable to a broad range of
engineering problems, offers computational efficiency and
simplifies implementation by avoiding the need for higher-
order derivatives and test functions (Li et al. 2021), although
it is limited to PDEs that can be expressed in a minimal
functional form.

In recent years, several PINN-based TO frameworks have
emerged, offering promising alternatives to traditional PDE
solver-based TO methods (Lu et al. 2021; Jeong et al. 2023a,
b; He et al. 2023; Zehnder et al. 2021). Lu et al. (2021)
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utilized a strong-form PDE-based PINN for TO in optics and
fluid dynamics, training two neural networks concurrently
for design parameterization and state analysis. The loss
function, formulated via penalty and augmented Lagrangian
methods, treats strong-form PDEs as constraints, achieving
accurate state analysis only upon optimization completion.
This approach completely replaces the sensitivity analysis
in traditional TO with automatic differentiation. However,
since it simultaneously solves the necessary conditions of
optimality for the density parameterization network param-
eters as well as the state analysis network parameters, a pre-
mature termination of the approach does not provide any
analysis results for the current design. Recently, it has been
shown by Li et al. (2021) that the DEM has better efficiency
than strong-form PDE-based PINN for solving PDEs. Uti-
lizing DEM, Zehnder et al. (2021), He et al. (2023), and
Jeong et al. (20234, b) have also developed PINN-based TO
frameworks. These frameworks adopt a Nested ANalysis and
Design (NAND) method for TO, featuring a primary outer
loop for design optimization and a secondary inner loop
for state analysis using DEM. So far, these DEM-based TO
frameworks have only been applied to compliance minimiza-
tion problems. In the frameworks proposed by Zehnder et al.
(2021), He et al. (2023), Jeong et al. (2023a), the design
sensitivities expressions are derived from the continuous or
discrete Adjoint Variable Method (AVM). Since the com-
pliance minimization problems are self-adjoint, where the
adjoint problem solution coincides with the primal problem
solution, the procedure of sensitivity computation in those
frameworks only requires solving the primal problem. Nei-
ther of these frameworks can be directly applied to more
general non-self-adjoint topology optimization problems,
for which the sensitivity calculation needs to solve an addi-
tional adjoint problem besides the primal problem. In the
recent work done by Jeong et al. (2023b), the sensitivities
for design update are obtained fully utilizing automatic
differentiation, not dependent on the derivation of AVM.
In this work, two neural networks, for state analysis and
design parameterization respectively, are trained in series
to solve the TO problem (Jeong et al. 2023b). However, this
approach hasn’t been applied to TO problems other than the
minimal compliance problem. Furthermore, among those
DEM-based TO frameworks, in He et al. (2023) and Jeong
et al. (2023a), finite element discretization is employed for
estimating design sensitivities. In He et al. (2023), the spa-
tial derivatives of the state variables are interpolated using
finite element shape functions when estimating the DEM
training loss function. Thus the DEM-based TO frameworks
proposed by both He et al. (2023) and Jeong et al. (2023a)
are still dependent on finite element discretization of the
domain.

Thus far, there has not been any DEM-based TO approach
that has been validated for its effectiveness in solving
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non-self-adjoint TO problems while also being free from
FEM discretization. Building on these developments, our
work proposes a DEM-based TO framework suitable for
both self-adjoint and non-self-adjoint problems, and mean-
while not dependent on any FEM discretization for both
PDE solutions and the design sensitivity calculation. In
this work, the design sensitivity expressions are derived
by AVM, since it is the most effective method for calculat-
ing derivatives in topology design (Bendsoe and Sigmund
2003). Both the primal equation and the adjoint equation
are solved utilizing DEM. For free from FEM discretiza-
tion, we use the continuous adjoint method instead of the
discrete adjoint method for sensitivity analysis, and we use
automatic differentiation for estimating spatial derivatives
when evaluating the DEM training loss and design sensitiv-
ity. Moreover, when calculating the DEM training loss, we
use a dynamic set of collocation points instead of a static set
to avoid the unbounded DEM training loss issue and make
the DEM solution of PDEs better regularized in the whole
spatial domain.

Our DEM-based TO approach, depicted in Fig. 1,
employs a nested analysis and design strategy. In each opti-
mization cycle, two neural networks are trained by mini-
mizing DEM losses for approximating the solutions for the
primal problem and the adjoint problem respectively. With
the two trained neural networks, the spatial derivatives of
the primal and adjoint problems’ solutions can be directly
evaluated through automatic differentiation. The sensitivity
in each cycle is calculated using the spatial derivatives. The
design is updated using the sensitivity. The optimal design
is obtained when the converge criterion is met and the opti-
mization loop ends.

Fig.1 The flowchart diagram
of the proposed DEM-based TO |
framework v
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We illustrate the effectiveness of our approach through
three examples: heat sink design, compliant displacement
inverter, and compliant gripper designs. Key highlights of
our proposed framework include:

e Versatility in addressing both self-adjoint and non-self-
adjoint TO problems.

e Obviating finite element discretization, reducing compu-
tational complexity.

¢ A fully unsupervised learning-based approach to TO that
eliminates the need for offline data set generation.

e High accuracy of DEM solutions in solving both the pri-
mal equation and adjoint equation.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews the density-based TO method and benchmark
TO problems. Section 3 introduces the deep energy method
and then discusses the issues one may encounter in DEM
implementation for spatial derivative estimation and colloca-
tion point sampling. Section 4 validates the efficacy of our
proposed framework with three benchmark TO problems,
and discuss the performance of the proposed framework on
state analysis accuracy and efficiency. Also, we do two abla-
tion studies to show the contributions of Fourier Feature
input embedding and dynamic training set. Section 5 sum-
marizes findings and future work directions.

Train uyy = NN, (x, 8,) with DEM
UNN
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Solve the primal problem with N bl )
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2 Topology optimization
2.1 Problem formulation of TO
A design optimization aims to find an optimal design vari-

able, y, that minimizes an objective function subject to
constraints, which can be formulated as:

myin fobj(J/) = ]:(V,u(}’)) (1)
s.t. D(u(y)) =0, 2
G <0, j=12...p, 3)

where u is the state variable linked to the design variable y
via the state equation D(u(y)) = 0, and g;are the inequality
constraints.

Topology optimization (TO) seeks the best material dis-
tribution within a design domain, denoted by the density
function y € [0, 1], where 0 indicates material absence and
1 indicates material presence as is shown in Fig. 2a.

The design representation in TO is akin to a black-and-
white image as shown in Fig. 2b, where each ‘pixel’ cor-
responds to a constant value of the density function, y.
The parameterization of the density function is given by:

Ny, .
. { Vo ifX € Q,;,

0= D00, f =14 @
=1 '

The optimization problem thus becomes the optimization of
the variable set {y,;|i = 1,2, ..., Ny }.

Material properties for intermediate value of y are inter-
polated using the Solid Isotropic Material with Penaliza-
tion (SIMP) method:

QO
d
\_//—\/

0<yx)<1
With material ()

vx) = 1 No material

yx)=0

(a)

Fig. 2 Illustrations of a the density function and b design parameterization
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K()/) =Kpin T (KO - Kmin)yp’

K()/ = 0) = Kmin» (5)

kKy=1= Ko,

where k(y) is the interpolated material property, k,,;, is the
property for void, k, for solid, and p is the penalization expo-
nent, typically chosen as p = 3.

A density filter is applied to achieve a mesh-independent
design (Bendsoe and Sigmund 2003). The filtered density

7,; 1s computed as:

o Zjen, Vit ©
Vo= ="
E,-eNe,l. w;V;

where N, ; is the neighborhood set of elements within the
filtering domain around €2, a circular region with radius R.
The center of element Q,,; is the circle’s center. Element €2,

has a center at x; within N, ;. v; is the area of Q,;, and w; is
the weight for y,; in computing 7,;:
W= R= Iy = X, ™

2.2 Sensitivity analysis using the continuous
adjoint method

Sensitivity analysis is fundamental for gradient-based opti-
mization algorithms, guiding the iterative process towards an
optimal solution by quantifying how small changes in design
variables affect the objective or constraints. The adjoint vari-
able method is the most effective method for calculating sen-
sitivities in topology optimization, which typically involves
a large number of design variables and a moderate number
of constraints. Bendsoe and Sigmund (2003) in this study,
the adjoint sensitivity analysis is conducted at the continu-
ous level since the utilization of DEM requires a continuous
form of the PDE.

= &

Nele
0= U 'Qei
i=1

- 1 Negje = Neix X Nely

Nelx

(b)
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For the PDE-constrained optimization problem in (1), if one
calculates the sensitivity df;,;/dy using the chain rule:

Viowj() =V, Fy, uy)) + V,Fu(y)V,u(y). ®)

The term V,u(y) is challenging to compute due to the
implicit dependence of u on y.

The AVM simplifies this by introducing a Lagrangian func-
tional L:

L(u,y,v) = Fy,u(y)) + / D(u) - vdx, )

Q

where v is the adjoint variable. The gradient Vf,,; for a given
y is obtained from:

Q

where v is determined by solving the adjoint equation
d,L(u,7,v;ou) = 0.

Utilizing design parameterization from (4), the derivative
I opi /0y, 1s:

afo j
P L / Vi) dX. (11)
Q.

ei i

For sensitivity approximation, Gaussian quadrature is
employed:

Nquad

/ (-)dx ~ Z(.)|xzxqm__wij, (12)
Q =1 Y

where (-)|X:qudﬂ is the integrand value at the jth Gaussian

point in €, and w; is the corresponding weight. Here,

Ngyaa = 4 for second-order quadrature in 2D elements.
With the density filter, the sensitivity of the objective func-

tion with respect to the design variables is calculated using

the chain rule:

o v 0,
o, = & o (13)
Vi iew,, 9% 9

where the term 97, /9y; is:

G WY

= 14
9 Dken,, WiVk (14

The same approach is used for the sensitivities of other con-
straints, like volume constraints, with respect to the design
variables y.

2.3 Benchmark TO problems

To demonstrate the effectiveness of the proposed DEM-
based TO framework, three benchmark TO problems are
used. The problem set includes: (1) Heat sink optimization,
(2) compliant displacement inverter design, and (3) compli-
ant gripper design. The math formulations and boundary
conditions for the three benchmark problems are shown in
this subsection. The detailed derivations of the adjoint equa-
tions and sensitivity expressions for the three benchmark
problems can be found in Appendix C.

2.3.1 Heat sink optimization

The goal of this problem is to optimize the efficiency of heat
transfer away from the heat sources, subject to the material
volume constraint. In continuous form, the heat sink optimi-
zation problem can be written as:

min  fo(7) = /Q K()|VT|*dx, (15)
st. =V-.-(kVI)=s, for xe€Q, (16)
—kVIl-n=gq, for xely, a7)
Tr=7, for xelp, (18)
far® (19)
0<y<l (20)

Here the objective functional is thermal compliance. In the
direct state equations (15)—(20), T denotes temperature,
represents the heat conductivity, s denotes the heat source, 7,
represents the specified temperature on the Dirichlet bound-
ary I';, g represents the heat flux specified on the Neumann
boundary I'y, and s represents the heat source in the volume.
The Eq. (19) is the material volume constraint, in which
Jo vdx is the evaluation of the material volume, V is the
volume of the design domain, V; is a pre-specified volume
constraint. The Eq. (20) denotes the upper bound and lower
bound of the design variable y. In this study, we consider

s = 0.001, (1)
q=0, (22)
T;=0. (23)

@ Springer
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Iy _ u=0,xer,, 27
Jo vdx
o’
L/10:I:| I Q L . v <V (28)
© L2
N 0<y<l (29)

(a) (b)

Fig.3 Design domain and boundary conditions for the primal equa-
tions in the heat sink optimization problem. a Original design domain
and boundary conditions. b Design domain and boundary conditions
after applying a symmetry treatment

Kin ‘ | kout
D‘NLCL&Q_O_Q_O_O_Q_AM
T fin Ity Uout Tout
Q
L/2

L/60 T \4

™1 L »/

< <l

Fig.4 Design domain and boundary conditions for the compliant
mechanism displacement inverter design problem

The heat conductivity « is interpolated by using the SIMP
scheme (5).

The design domain and boundary conditions of the heat
sink optimization problem are shown in Fig. 3a. Figure 3b
shows the reduction of the domain by applying a symmetry
treatment.

2.3.2 Compliant displacement inverter design

The goal of the compliant displacement inverter design
problem is to maximize the output displacement u,, at
the output port, subject to a volume constraint. The design
domain, loading conditions, and boundary conditions are
depicted in Fig. 4. In continuous formulation, the optimiza-
tion problem can be written as:

myin fobj = TUow = / u-(6(x _xout)ex)ds’ 24
l—‘()Lll

st. V-o+b=0,xe€Q, (25)

c-n=txely, (26)

@ Springer

Here the objective functional is the x-displacement at the
output port on the top-right corner, and the notation e, rep-
resents the unit vector in the x-axis direction. The Eq. (25)
denotes the linear elasticity equation, in which ¢ denotes
the stress tensor, b denotes the body force. The 6(x — x,,)
denotes a direct delta function. The system is subject to
Neumann boundary condition (26) and Dirichlet boundary
condition (27). The stress o can be computed by using the
constitutive law:

c = E €+ Ev
T l4v o (I+w)(1=2v

e, (30)

in which E, v denotes the material properties Young’s modu-
lus and Poisson ratio respectively, € denotes the stress ten-
sor. Considering small deformation, the strain tensor can
be given by:

e==(Vu+Vu'). (31)

N —

In this study, we consider:

b=0, (32)

v=023. (33)

The Young’s modulus E is interpolated by using the SIMP
scheme (5).

2.3.3 Compliant gripper design

As for the compliant displacement inverter design, the goal
of the compliant gripper design problem is also to maximize
the u,,, at the output port subject to a volume constraint. The
design domain, loading conditions, and boundary conditions
are depicted in Fig. 5a. The continuous formulation, constitu-
tive relationship, strain tensor expression, and material prop-
erties are the same as the Eqs. (24)—(33) for the compliant
displacement inverter problem.

Different from the compliant displacement inverter design
problem, the compliant gripper case has two passive regions
for design in the top-right corner.
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Fig.5 Design domain and boundary conditions for the compliant
mechanism gripper design problem

3 Deep energy method for solving PDE

In this section, we introduce the implementation of the Deep
Energy Method. For illustrative purposes, the 2D heat con-
duction problem in Egs. (16)—(18) is used as an example
(Fig. 6).

3.1 Deep neural network representation of PDE
solution

In the DEM for 2D heat conduction, the solution 7 is
approximated by a neural network Ty = NN, (x;60;), where
X are spatial inputs and @, represents the network’s trainable
parameters.

Information flow in the network from input to output is
given by:

DNN: TNN = NNT(X, OT)

(34)

I _ [ 1-1 !
4; —fact( Wi +b_,'>’
k

where a; is the output of the kth neuron in the /th layer, w}’.k

and b]l. are the weights and biases, and f,, is the activation
function introducing non-linearity.

In this study, Fourier Feature Embeddings (FFE) are
employed to help the DEM model learn the high-frequency
components in the solution more effectively so that enhance
the accuracy of DEM solutions (Wang et al. 2021). For more
details about FFE and its applications on PINN, we recom-
mend readers refer to references (Tancik et al. 2020) and Wang
et al. (2021). FFE introduces a random Fourier mapping ¢(x)
to the inputs, expressed as:

d(x) = [cos(27Bx), sin(2zBx)]7, 35)

where B € R, with its elements sampled from MO0, o7,
Here, m represents the number of Fourier features, and d
indicates the dimensionality of the input.

3.2 Definition of the DEM loss function

The calculus of variation identifies an important class of PDEs
whose solutions can be gained by minimizing the correspond-
ing energy functional (Evans 2022; Le Dret and Lucquin
2016). The DEM loss function approximates this energy func-
tional to solve the corresponding PDE. For the heat conduction
problem, the minimal functional problem is:

minJ(T) = 1 / K|VT|*dx — / sTdx, (36)
T 2 Jo Q

Loss: Liotar =J + Lppc Training

i Estimate the
functional ]

Minimize Le¢oeqr
Ltotal >

find 87 = argmin Lgora;
[

Fig.6 Computational framework of DEM for solving the equilibrium temperature distribution in the 2D heat conduction problem (16)—(18)
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subject to 7 = 0 on I',. This minimal functional formula-
tion can be derived from the strong-form PDE, the steps of
deriving the expression (36) can be found in Appendix A.
The DEM loss function, L., incorporates J(T') and a
penalty for Dirichlet boundary conditions (Lppe):

Lo = J(Txn) + Lpges 37

where J(Tyy) is the DEM energy loss and Ly enforces
boundary conditions. The optimal parameters 9* minimize

L,.;» determined iteratively using gradient- based optimiza-
tion. The gradient dL,, /06y is evaluated by AD.

For calculating the DEM energy loss, we use a dynamic
integration point set for numerical integration, which
means the positions of integration points are updated
repeatedly during the DEM training. The Monte Carlo
integration is utilized since it is more convenient for using
a dynamic integration point set. In Monte Carlo integra-
tion, since each point has the same weight, there is no
need to update weights after each change in the point set.
With Monte Carlo integration, the evaluation of J(Tyy) is
given by:

Ng

= ZS TxNio (38)

i=1

ITy) = IQQZ VT2

where Q, = fQ dx, N represents the number of Monte
Carlo integration points within €, which are randomly sam-
pled from a uniform distribution, and the subscript i denotes
evaluation at the ith integration point x;.

The penalty term Lpgc is calculated by:

|
Lope = A— Y (Tan)? 39
one = A7 ;( ) (39)

in which N denotes the number of points uniformly sam-
pled on the Dirichlet boundary, and A denotes the penalty
coefficient. In this work, we simply take 4 = 1.

For estimating J with the formula (38), one needs k; on
the integration points, which can be calculated through
the SIMP formula (5) with y,. For any sampled integration
point x;, the density value is given by y; = y(x;) using for-
mula (4). In this study, the value of y; is obtained using the
Nearest-neighbor interpolator (Rukundo and Cao 2012) in
the Scipy package. The reason we use the Nearest-neigh-
bor interpolator is to efficiently evaluate the density func-
tion values at the integration points after each update of
the dynamic integration point set. Figure 7 demonstrates
that the use of the Nearest-neighbor interpolator gives the
same value as the original function y(x). In Fig. 7b, red
dots mark element centers. The Nearest-neighbor algo-
rithm lets the y value at any sampled point equal the y
value at the nearest element center, which gives the same
value as y(x).

@ Springer
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Fig.7 Demonstration of using the Nearest-neighbor interpolator to
obtain y;: a Original density function y(x). b The value of y; at the
sampled points given by the Nearest-neighbor interpolator. (Color fig-
ure online)

3.3 Distinctions in our implementation and issues
in DEM training

Key distinctions in our implementation include:

e For spatial derivative evaluation: Unlike methods relying
on FEM discretization for VT (e.g., He et al. 2023), our
approach employs AD for direct and efficient computa-
tion. FEM discretization-based spatial derivative evalua-
tion results in not adequate regularization of Ty, which is
only at the FEM nodes. The accuracy of the neural network
prediction Ty inside the FEM elements is not assured.

e For integration point sampling: In contrast to the static
integration point sets utilized in studies such as He et al.
(2023) and Jeong et al. (2023a), our method uses dynamic
integration point set, which means randomly resampling
the integration points every 10 epochs. A static integration
points set makes the DEM energy loss function not lower
unbounded when combined with AD-based spatial deriva-
tives, while the dynamic integration point set solves this
issue.

Overall, our implementation is distinct in that it uses AD to
obtain spatial derivatives and uses a dynamic integration point
set. This combination solved the key issues caused by using
the FEM discretization-based spatial derivatives VTyy and by
using a static integration point set. We use a 1-D Poisson equa-
tion problem to explain the reasons for these issues.

3.4 Justification of the limitations on FEM
discretization-based VT, and static integration
points

Consider the 1-D Poisson’s equation:

d2
“4lo2 xep (40)

T=0, forx=0, 41
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dT

— =0, forx=1,

™ or x 42)
with the analytical solution:

T(x) = —x> + 2x. 43)

When solved with DEM, the total loss function L, is
defined as:

1 NSE dTNN 2 1 NSZ )

Liga = N, ; <K>l A ; 2T + ATl i=0-
(44)
Figure 8 shows the problem when using finite ele-
ment shape function interpolation for calculating the spa-
tial derivatives in the DEM loss function. Let the points
Xg, X1, ..., X5 be the set of 1D finite element nodes. Follow-
ing the work in He et al. (2023), when evaluating L,
dTyn/dx are interpolated on the integration points using
finite element shape functions, mathematically represented
a8 ATjerp/dx = 30 dep,(x)/dxTyey(x;), Where ¢b,(x) denotes

interp

the shape function, and Ty (x;) denotes neural network out-
put Ty at node x;. This approach results in regularization
being confined only to the nodes, neglecting the regions in
between and the true derivative of the neural network output
dTyn/dx across the domain.

Figure 9 shows the problem of unbounded L, with a
static set of integration points. This time we let the points
X, X],....X5 be the set of integration points. With the
shape of Tyy shown in the Fig. 9, since Tyy(x;) = 0 for
i=0,2,..,5and (dTNN/dxlxi)AD =0fori=0,...,5, we have
Liga = (_2/5)TNN|x=x1' If TNle:x] goes to +o00, Ly, goes
to —oo. The L, is not lower bounded. This occurs because
the DEM model can have sudden value changes and high
spatial gradient in the middle of two adjacent points, which
aren’t captured due to the lack of integration points in those
regions. No matter how dense the integration points are
sampled, as long as the training set is static, the unbounded
issue of the loss function exists. Using a Dynamic integra-
tion point set can solve this issue since it allows sampling in
these regions during updates.

A
Tnn(xs) S
TNN(x‘l') 7777-------:-------____7. ___________ § _______ F~—" . * . dTinterp
Ty (3) ——---------%L----------a% —————————— :—‘—((‘——————4%—-------»—; =o— Tyn(x), givenby 67 = n’é}rn Lyotal (Tinterps dx )
s s
TNN(XZ) ”""""T _________ | “T_““““T ---------- ] Tinterp(x) = Z‘pi(x)TNN(xi)
; ; ; ; i=0
TawCey) [ — T(x)=—x%*+2x
T (xo) l l l l >
X0 X1 X2 X3 X4 X5 x

Fig. 8 Illustration of the problem for FEM discretization-based evaluation of VT

__________________________________________

------------------------------------------

---------------------------------------------

? | | s

*—>
Xo X1 X2 X3 X4 X5 X

. . . dTnn
-0— Tyn(x), givenby 07 = min Leotal (Tnns (—) )
T AD

dx

— T(x) = —x%+2x

For this shape of Ty,

Tnn (%) = Tun(x2)= Tyn (x3)= Tyn (x4) = Tyn(x5) = 0
ar .
(ﬂlxi)AD =0, fori=01,..,5

dx

- Ltotal = _ETNNOQ) — unbounded

Fig.9 Illustration of the unbounded loss function problem with a static set of integration points
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4 Examples and discussion

This section presents the application of the DEM-based TO
framework to three benchmark problems outlined in Sect. 2.
We utilize transfer learning between consecutive DEM-
based TO iterations to reduce the training time. Specifically,
for the first DEM-TO iteration, the DEM model parameters
are initialized using the Glorot normal initializer and trained
from scratch to solve the primal PDE and adjoint PDE. For all
subsequent TO iterations, the model parameters of the DEM
model learned in the previous TO iteration are used to ini-
tialize the model parameters for the current iteration. Since
the TO designs are similarly in adjacent iterations, the cor-
responding solutions of the primal PDE and adjoint PDE are
also similar. This parameter migration avoids the need to train
from scratch, thereby helping to reduce the total training time.
All examples of DEM-TO were run using TensorFlow
(v2.6.2) and the Adam optimizer on an NVIDIA RTX 3060
GPU with 32 GB RAM. FEM-TO is implemented based on
Aage (2019). The DEM hyperparameters are listed in Table 1.
These hyperparameters are optimized using Bayesian optimi-
zation for minimizing the error of solving the primal PDE of
the linear elasticity problem, employing the package described
in Bergstra et al. (2013). These hyperparameters are used in
all examples shown in Sect. 4. The first example employs a
single neural network for the scalar 7, while the latter two train
separate networks for each displacement vector component.

4.1 Application to 2D heat sink design problem

The domain dimensions are (L, H) = (100, 50) with grid size
100 x 50, and we set the heat conductivity x to 1 and x,;, to
le~3. The density filter radius is R = 4.2L/100. The volume
fraction for TO is setas V; = 0.5.

For the TO problem defined in (15)—(20), the detailed deri-
vation of the adjoint problem and the sensitivity can be found
in Appendix C.1.

The adjoint problem given by the AVM is:

V- (kVv)+s5s=0, x€Q, (45)
-kVv-n=0, xeTly, (46)
v=0, xeIlp. 47)

The primal problem in (16)—(18) coincides with the adjoint
PDE in (45)—(47). Thus only the solution of the direct state
problem is needed for TO.

The sensitivity df,,; /97, is:
Of i

ob :_1<d_’f> / VT - VTdx. 8)
07.i 2\d7 /;Ja,

4.1.1 DEM-TO vs. FEM-TO

For this example, both DEM-based TO and FEM-based TO are
conducted with 100 TO iterations and with the same param-
eters for the MMA optimizer. Figure 10 shows the comparison
between the DEM-TO result and FEM-TO result.

Figure 10a, b show that both DEM-based and FEM-based
TO procedures can successfully minimize thermal compliance
and satisfy the volume constraint. Comparing DEM-TO and
FEM-TO designs at various iterations (Fig. 10c), one can note
a similar progression and final designs, with the DEM-TO pro-
cess manifesting branch features slightly sooner. Despite small
differences in the final designs, the relative objective functions
for DEM-TO and FEM-TO are closely matched at 0.192 and
0.190, respectively.

4.1.2 Effect of mesh size

We analyze the effect of changing TO mesh size on the quality
of the optimal design given by the proposed DEM-TO frame-
work. In Fig. 11, the three topologies are obtained with mesh
size 100 x 50,200 x 100 and 400 x 200 respectively. The neu-
ral network architectures for obtaining the three topologies are
the same as in Table 1. For all three topologies, the filter size
is 4.2 times the element sizes, the number of TO iterations is
500, and the number of training epochs is 10 for each TO itera-
tion except the 1st TO iteration. At the first TO iteration, the
number of DEM training epochs is 1000 for obtaining all three
topologies. We observe that there are no obvious irregular
branches for all of the three topologies. The results show that
the proposed DEM-TO framework can generate fine structures.

Figure 12 shows the effect of changing mesh size on the
computational time for both DEM-TO and FEM-TO for the
heat sink design problem. Here we present the total wall-
clock time for DEM-TO and FEM-TO. FEM-TO computation
is based on CPU and the computation of DEM-TO is based
on GPU. For DEM-TO, this includes parameter initialization,
DEM model training to solve the Primal and Adjoint PDEs,
design sensitivity calculation, and density filtering. For FEM-
TO, this includes parameter initialization, solving the Primal
and Adjoint PDEs using FEM and a direct solver, sensitiv-
ity calculation, and density filtering. The main difference in

Table 1 Hyperparameters of the
DEM model

Layers Neurons

Activation function No

N batch N,

epoch Learning rate OrrE

4 86 Swish

40,000 2000 200 le™3 1.32
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Relative reduction of f;;
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TO iteration
(a)

FEM-TO

Iter: 10, Obj: 0.232 Iter: 20, Obj: 0.222

Iter: 40, Obj: 0.203

Volume fraction

0.50

—— DEM-TO
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0.46
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TO iteration
(b)

Iter: 60, Obj: 0.195 Iter: 100, Obj: 0.190

DEM-TO

Iter: 10, Obj: 0.235 Iter: 20, Obj: 0.221

Fig. 10 Comparison of DEM-TO and FEM-TO at various TO itera-
tions for minimal thermal compliance design. a The history of the
relative reduction of thermal compliance during DEM-based and

M U

Iter: 40, Obj: 0.200

Iter: 60, Obj: 0.196 Iter: 100, Obj: 0.192

(c)

FEM-based TO. b The history of the volume fraction during DEM-
based and FEM-based TO. ¢ The designs given by FEM-based and
DEM-based TO at different TO iterations

Fig. 11 DEM-TO optimal
topologies under various mesh

. FEM-TO
S1Z€es

DEM-TO

100x50

—&— DEMTO
—e— FEMTO

17500 1
15000 1
12500 1
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5000 -
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Fig. 12 Computation time of DEM-TO and FEM-TO

-

200x100 400%x200

time between the two methods is due to the difference in time
required for DEM model training versus the direct solver. With
the settings used in this paper, we observe that the total compu-
tation time of FEM-TO increases faster than that of DEM-TO
as the number of TO elements increases. For the mesh size
400 x 200, the computation time of DEM-TO is 7171.43s,
shorter than the computation time of FEM-TO, which is
18692.31 s. One should note that the purpose of presenting the
computation time is not to strictly demonstrate that DEM-TO
is more efficient than FEM-TO, as this is not the main focus
of this paper, but rather to provide readers with a concrete
sense of the time required for our method. The computational
time for DEM-TO and FEM-TO can depend on many other
factors, such as whether the FEM method uses a direct solver
or an iterative solver, whether parallel acceleration is used,
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the model and batch size used in DEM training, as well as
the programming language, operating system, and processing
power. The discussion about computational time here is lim-
ited to the hardwares and parameter settings used in this work.
A fair comparison of the efficiency of DEM-TO and FEM-TO
methods requires a more rigorous discussion of these factors.

4.2 Application to compliant displacement inverter
design problem

The domain dimensions are L = 120 with gird size 120 X 60.
We set the Young’s modulus E to 1 and set E,;, to le~>. The
Poisson ratio v is set to be 0.3. The spring stiffness coeffi-
cients are set to k;, = 1, k,,, = 0.001. The density filter radius
is R = 4.2L/120. The volume fraction is setas V, = 0.3.

The details of deriving the adjoint problem and sensitivity
expression are shown in Appendix C.2.

The adjoint problem given by AVM is:

V-6"=0, for xe€Q, 49)
v-e, =0, c'-n-e, =0, for x €T, (50)
v=0, for x eIy, (51)
o' -n =6 (X — Xy )[—kou(V-€)+ 1le,, for xeTl,,
(52)
o' -n =6 (x —x )k (v-e)le, for xeTy, (53)
c'-n=0, for xerl,,. (54)
The sensitivity is:
oy dE;
L N (55)
97; d7,; Ja,

To calculate the sensitivity, one needs to solve both the
direct state PDE and adjoint PDE.

The DEM can be naturally applied to the primal PDE in
this example since the linear elasticity problem naturally has
the minimal functional statement, which is the principle of
minimal potential energy. The system’s potential energy IT is
expressed as:

(u) = W,,(u) — W, (u), (56)
W, (u) = 1 / o @ edx, (57
2 Ja
Wex(u)=/f-udx+/ t-uds, (58)
Q Iy

@ Springer

where II, W, , and W,, denote the total potential energy,
internal strain energy, and work done by external forces,
respectively, with f as the body force and t as the traction
force on the Neumann boundaries.

For the adjoint PDE in (49)—(54), the minimal potential
energy formulation is also applicable. The expression for the
potential energy is the same as in (56)—(58) with different

boundary conditions.

4.2.1 DEM-TO result vs. FEM-TO result

In Fig. 13, we compare the DEM-TO and FEM-TO designs
at the TO iteration 400. The designs given by DEM-TO and
FEM-TO have discrepancies, and the design performances
are comparable but slightly different. The final objective
function values at the 400th TO iteration are —1.340 and
—1.412 for DEM-TO and FEM-TO respectively. One can
notice in panel (a) and panel (b) that both DEM-TO and
FEM-TO can minimize the objective function and achieve
optimal TO designs while satisfying the volume constraint.

4.2.2 Solution error of DEM models

Figure 14 shows the relative error of the DEM model solu-
tions at various TO iterations. Here the relative root mean
squared error (Relative RMSE) is used. The expression for
the Relative RMSE between two vector A and B is:

< Zg\;l(Ai - B))?
. _ VN (59)
Relative RMSE(A, B) = B B ,

in which N represents the number of entries in both A and B.
In Fig. 14, panel (a) and panel (b) show the relative RMSE
for the DEM primal solution and the DEM adjoint solution
respectively. In both panel (a) and panel (b), the light red
curves show the original data of relative errors, and the blue
curves show the window moving average to highlight the
main tendency. One can observe the decreasing tendencies
of DEM solution errors for both the primal PDE solution and
the adjoint PDE solution. Figure 15 shows the comparison
between the DEM solutions and the FEM solutions for the
direct state PDE and the adjoint PDE at TO iteration 400.
One can observe that at the end of DEM-TO, the solutions
given by DEM and FEM are very close. The relative RMSEs
for the primal PDE solution and the adjoint PDE solution are
9.53 x e3> and 1.09 x ¢~2 respectively.

The reason for the higher DEM solutions error possibly
lies in two aspects: First, more sufficient training in the later
stage of TO. In the process of DEM-TO, we utilize transfer
learning. The training for each TO iteration is initialized with
the neural network parameters obtained from the end stage of
the preceding TO iteration. Thus, with more TO iterations,
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Fig. 13 Comparison of DEM-TO and FEM-TO for compliant mecha-
nism displacement inverter design. a The history of the objective
function during DEM-based and FEM-based TO. b The history of

Fig. 14 Relative errors of DEM

Relative RMSE-primal
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TO iteration

(b)

DEM-TO
Iter: 400, Obj: -1.3160

the volume fraction during DEM-based and FEM-based TO. ¢ The
designs given by FEM-based and DEM-based TO at the TO iteration
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Relative RMSE-adjoint
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and b adjoint equation solutions 10
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compliant mechanism displace-

ment inverter design

10° T o L

e Original Data
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50-Point Moving Average
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..........................
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TO iteration

(a)

the training of the neural network is more sufficient, which
can make a decreasing trend of prediction errors. Second, less
design change in the later stage of TO. Figure 16 shows the
dissimilarity of the updated design with the old design at vari-
ous TO iterations. Here the definition of the design dissimilar-
ity is given by

Dissimilarity (¥4, yupdmed)

= 1 — Cosine Similarity(¥oyg» Yupdated)s (60)

300 400 100 200 300 400
TO iteration

(b)

Cosine Similarity(y,iq, Yupdated)

n
Zi:l Yoldi X yupdatedi
n 2 n 2
\/Zi:l Yold; X \/Zi:l Yupdated;

A dissimilarity of 0 implies that the two adjacent designs are
perfectly aligned, and a dissimilarity of 1 indicates that the
two adjacent design vectors are orthogonal, which means no
similarity. From Fig. 16 one can observe a decreasing trend
of design dissimilarity, which means the design changes less
in the later TO stage. At a DEM-TO iteration, if the updated
design is similar to the old design, the initialization of the
neural network parameters can be closer to the target values,

(61)
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(a) DEM-TO design
FEM solution DEM solution Absolute error
1.0
0
Uy 0.5
-1
75 0.0
X-axis X-axis X-axis
1.0
uy 0.5
0.0
X-axis X-axis X-axis
200 200 200
Ux 100 100 100
0 0 0
X-axis X-axis X-axis
100 100 100
Uy 50 50
0 0 50
-50 -50 0
X-axis X-axis X-axis

(b) Solutions for the primal PDE and adjoint PDE

Fig. 15 DEM solutions vs. FEM solutions at TO iteration 400 (Primal solution Relatie RMSE = 9.53 X ¢~3, adjoint solution Relatie RMSE =

1.09 x e72)

)

10 ©

10°
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Fig. 16 Dissimilarity of design at various DEM-TO iterations

Dissimilarity For the oscillation of the DEM solution errors shown
Onsimal Dt in Fig. .14, 'the reason pos's1b'ly l.1es in two aspects: First,
______ 50-Point Moving Average the oscillation of design similarity. One can also observe

an oscillation in Fig. 16, which means the similarity of
adjacent designs oscillates. Second, the oscillation of the
DEM solution error may related to the dynamic sampling
T of the training set. In each DEM training, to avoid the

"""""""""""""""""" problem of the unbounded loss function, we randomly

resample the training points, which may add variability to
the training process. This may also affect the DEM solu-
tion at various TO iterations, contributing to the oscilla-
tion of the DEM solution errors.

100 200 300 400

thus the training at the iteration can be more sufficient and
the DEM solutions can be more accurate.
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4.3 Application to compliant gripper design
problem with passive elements

The sensitivity expression of this example is the same as
in 4.2. The solution to the adjoint PDE is equivalent to
the equilibrium solution of the elastic system depicted
in Fig. 5b, the derivation of the adjoint equation is not
discussed again.

The domain size, grid resolution, filter radius, volume
fraction, and material properties in the complaint inverter
example are also used here. The stiffness coefficients of
the springs are k;, = 1, k., = 0.005 for the input port and
output port respectively.

ut

4.3.1 DEM-TO result vs. FEM-TO result

In Fig. 17 shows the objective function history, volume
fraction history, and the optimal TO designs for DEM-TO
and FEM-TO. The final objective functions values are
Jonj = —0.6063 and f,; = —0.6200 for DEM-TO and FEM-
TO respectively, which is comparable. Both DEM-TO and
FEM-TO minimize the objective function and achieve the
optimal designs while satisfying the volume constraint.

Reduction of foy,;

=== DEM-TO
== FEM-TO

= '00 50 100 150 200 250 300 350 400
TO iteration
(a)

4.3.2 Effect of changing N, on DEM solution accuracy
and DEM-TO efficiency

In this section, we demonstrate that reducing the maximum
number of training epochs for each DEM training (Nepoch)
leads to an increase in the overall solution error of the DEM
in the DEM-TO process. However, this reduction enhances
the efficiency of the DEM-TO process. With smaller N,
a comparable level of design performance can be achieved
with fewer total DEM training epochs. Figure 18 shows the
DEM solution relative RMSE for the primal PDE and the
adjoint PDE for N .o, = 200, Nepoen, = 100 and N, = 10.
One can observe that when N, decreases, which means
the DEM training is less sufficient at each TO iteration, the
overall error of DEM solutions increases.

When N, is smaller, the total number of DEM training
epochs decreases for the same number of TO iterations. For
example, for N, = 200 the total number of DEM training
epochs at TO iteration 400 equals 200 x 400 x 2 =160,000,
and for N, = 10 the total number of DEM training epochs
at TO iteration 400 equals 400 x 10 x 2 = 8000. Figure 19
shows the reduction of the objective function with respect to
the total number of DEM training epochs for N, = 200,
Nepoeh = 100 and Nepop, = 10. It can be observed that to
attain an equivalent reduction in f;;, fewer total training
epochs are required when N, is set to a smaller value,

such as 10. With the same number of total training epochs,

Volume fraction

0.30

0.28

150 200 250 300 350 400
TO iteration

(b)

FEM-TO
Iter: 400, Obj: -0.6063

(c)

Fig. 17 Comparison of DEM-TO and FEM-TO for compliant mecha-
nism gripper design. a The history of the objective function during
DEM-based and FEM-based TO. b The history of the volume frac-

DEM-TO
Iter: 400, Obj: -0.6200

tion during DEM-based TO and FEM-based TO. ¢ The designs given
by FEM-based and DEM-based TO at iteration 400
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Fig. 18 Effect of changing N,
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Fig. 19 Effect of changing N, on DEM-TO efficiency

the design performance given by the case N, = 101is the
best.

In the proposed approach, we do not apply an early stop
criterion to DEM training but control the stop of DEM train-
ing by setting the maximum number of epochs for each DEM
model training. The reason is, that we observe that in the early
stages of DEM-TO optimization iterations, the accuracy of
solving the primal and adjoint PDEs does not significantly
affect the optimality of the final design. Therefore, it is unnec-
essary for DEM training to fully converge during the early
optimization iterations. This is demonstrated in Figs. 18 and 19
of the manuscript. Figure 18 shows that with only 10 epochs
of DEM training per iteration, the error in solving the primal
and adjoint PDEs is larger in the early optimization iterations
compared to 100 and 200 epochs. However, Fig. 19 shows
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Fig.20 Comparison of compliant gripper designs obtained from

DEM-TO at various choices of Ng.q, the total number of training

epochs is 20,000 for all three designs

that the final design objective values achieved by DEM-TO
are comparable in all three cases.

Figure 20 presents the compliant gripper designs
obtained from DEM-TO for N, = 200, Neyoe, = 100 and
Nepocn = 10. All of those designs are given after 20,000 total
training epochs. One can observe that with the same number of
total epoches, the DEM-TO design obtained from N, = 10
is better than DEM-TO design obtained from N, = 100 and
a better than DEM-TO design obtained from N, = 200.
In summary, a smaller N, improves DEM-TO efficiency,
as fewer total training epochs are needed for equivalent design
performance. However, this can result in higher overall errors
in DEM solutions, especially in the early stages of DEM-TO.
Thus, if the primary need is the final DEM-TO design, with
less emphasis on early-stage DEM solution accuracy, a smaller
Nepocn 1s @ beneficial choice for greater efficiency.

4.4 Ablation studies
4.4.1 The effect of using Fourier Feature Embedding

With the 2D heat conduction problem as an example, the
advantages of incorporating Fourier Feature Embedding are
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demonstrated. Figure 21 illustrates a comparative analysis of
the Deep Energy Method’s (DEM) prediction accuracy for a
topology-optimized design, examining the influence of Fou-
rier Feature Embedding (FFE). Panel (a) displays the result
obtained through the Finite Element Method (FEM), serving
as a reference. Panel (b) showcases the optimized design
achieved through topology optimization (TO). Panels (c) to
panel (h) showcase the DEM prediction results for three dif-
ferent neural network architectures. Panels (c) and (e) depict
the DEM predictions without the application of FFE, with
four and eight layers respectively. Panels (g) show the DEM

Fig.21 Comparison of DEM
prediction accuracy between 40
w/ and w/o Fourier Feature

prediction utilizing FFE with four layers. The number of
training epochs is 1000 for all the three cases. All the other
DEM parameters for the three cases are shown in the follow-
ing Table 1. One can observe that the DEM prediction with
Fourier Feature Embedding (FFE) successfully captures fine
features near the branches in the TO design, while without
FFE, the prediction fails to accurately represent these details,
despite an increased number of hidden layers in the neural
network. Table 2 quantitatively shows the increase in DEM
prediction accuracy for the three cases. One can observe
that the using of FFE more effectively reduces the relative

30
0
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N
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(a) FEM result

(b) TO design
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RMSE than increasing the number of hidden layers in those
three cases.

4.4.2 Unbounded loss function given by static training set
The problem of the unbounded loss function given by a

static training set in DEM is shown in Fig. 22. The DEM is
trained for solving the equilibrium temperature given the TO

Table2 Comparison of DEM prediction accuracy between w/ and
w/o Fourier Feature Embedding

Network N, Ny Relative
RMSE
(%)
FDNN w/o FFE 4 22,791 14.37
8 52,719 12.06
FDNN w/ FFE 4 30,101 8.24
](TNN (Xtrain))
0.00
\- dedd A b l
—0.05
0 500 1000
Epoch
J(Tnn Kvaia))
1
0
0 500 1000

Epoch

(a) Energy functional - Epoch

[
40/
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201

Y-axis
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(d) DEM result - 300 Epoch

100

v
E:
s 20 50

100 ©

60 80
X-axis

(f) DEM result - 1300 Epoch

(b) TO initial design

design in 22c. In panel (a), the red curve shows the thermal
energy functional history calculated on a static training set.
The black curve shows the thermal energy functional calcu-
lated on a validation set, which is also randomly sampled but
different from the training set. One can observe the training
set energy functional is unbounded, which is continuously
decreasing from epoch 1 to epoch 1300, whereas the valida-
tion set energy functional decreased from epoch 1 to epoch
300 and began to increase from epoch 300. Moreover, panel
(d) and panel (f) depict the DEM prediction result at epoch
300 and epoch 1300 respectively, one can observe that at
epoch 1300, the prediction error can be very high. The issue
arises from utilizing a static training set, which results in the
neural network not being regularized in areas outside of the
training points.

In this study, to avoid this problem, we randomly resam-
ple the training set in every 10 epochs. Figure 23 shows the
effectiveness of resampling in avoiding this problem.
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Fig.22 Unbounded loss function in DEM training when using static training set. (Colour figure online)
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Fig. 23 Effectiveness of resampling on avoiding unbounded loss function

5 Conclusions

We have proposed a DEM-based TO approach using con-
tinuous TO formulation, which is applicable to both self-
adjoint and non-self-adjoint problems and free from finite
element analysis. We apply the proposed DEM-TO frame-
work to a 2D heat sink design problem (self-adjoint case)
and two compliant mechanism design problems (non-self-
adjoint cases).

Our results validate the DEM-TO framework as a compet-
itive alternative to traditional FEM-based approaches, dem-
onstrating its ability to produce comparable design perfor-
mances. This study also highlights the importance of using
Fourier Feature Embedding to efficiently improve the DEM
solution accuracy and the importance of using a dynamic
training set to avoid the problem of unbounded DEM loss
function. Additionally, we have observed a decreasing trend
in the DEM solution error during the DEM-TO process,
which can be ascribed to to design convergence and trans-
fer learning effect. Moreover, the effect of changing N,
on DEM solution accuracy and DEM-TO efficiency is dis-
cussed. We demonstrate that a smaller N, can lead to
higher DEM solutions error in the early stage of DEM-TO,
but it can drastically improve the computational efficiency
of the proposed DEM-TO framework. On the other hand, a
larger N, may reduce computational efficiency but allow
for more accurate state analysis solutions throughout the
entire DEM-TO process at each design update iteration.

In our paper, we briefly discuss the computational time
for DEM-TO and FEM-TO based on the hardware and set-
tings used. However, the computational time for these meth-
ods depends on various factors, such as whether FEM uses
parallel acceleration and GPU, the model used for DEM
training, and batch size. A further possible future develop-
ment consists in exploring a rigorous comparison of the effi-
ciency of DEM-TO and FEM-TO methods, considering these
factors. Additionally, in the work done by Nguyen-Thanh

et al. (2020), it is practically shown that different integration
strategies may lead to varying accuracy of DEM solutions.
An interesting future work is exploring the impact of using
Simpson’s rule, the trapezoidal rule or Gaussian quadrature
on the accuracy of DEM solutions with dynamic integration
point sets in future work.

Appendix A: steps of deriving the minimal
functional formulation for solving the 2D
heat conduction problem

For the heat conduction problem (16)—(18), the way of deriv-
ing its equivalent minimal functional problem is illustrated
as follows:

e First, we derive the weak formulation of the heat con-
duction equation. We multiply a test function v on
both sides of the Eq. (16) and integral both sides over
the domain Q. The weak formulation reads: Find
TeX={weH Q)] wl, =0}suchthat

a(T,v)y=f@W), WeLX, (A.D
a(T,v) = / k(VT - Vv)dx, (A2)
o
S = /Sde~ (A.3)
Q

e Then we derive an equivalent functional mini-
mization problem utilizing the weak formula-
tion. For a weak formulation of an elliptic equation
(a(T,v) =f(v), VveX), the following proposition
holds: If the bilinear form a(u, v) is symmetric and all
hypotheses in the Lax-Milgram theorem (Evans 2022;
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Le Dret and Lucquin 2016) are satisfied, the unique solu-
tion of the weak formulation is the unique solution of:
mi)r(l Jw) with Jw) = %a(w, w) — l(w). (A.4)
weE.

The proposition is true for the weak formulation in (A.1),

for which the proof is shown in Appendix B. Thus the
solution of weak formulation Eq. (A.1) is the solution of:

min J(T) = 1 / K|VT|*dx — / sTdx, (A.5)
T 2 Q Q

st. T=0, for xel,. (A.6)

Appendix B: proof of Lax-Milgram theorem
for the heat conduction problem

For the 2D heat conduction problem, the weak form is

a(T,v) =f(v), WweX={weH Q)| wl, =0},
(B.1)
a(T,v) = / k(VT - Vv)dx, (B.2)
Q

fov) = /svdx - / qvds. (B.3)
Q Iy

Given

q=0, (B.5)

T, =0, (B.6)

the f(v) becomes

fv) = /svdx. (B.7)
Q

For the heat conductivity x, we have 0 < k,,;, < k < k.

e By applying Cauchy—Schwarz inequality and Poincaré
inequality, we have

la(T,v)| = (B.8)

/ k(VT - Vv)dx‘
Q

< / Ik [VT|[Vv]dx (B.9)
Q

@ Springer

s:co/ IVT||Vv|dx (B.10)
Q
<ol VTl 2 IVVIl 2 (B.11)
<Ko Tl [IV1] (B.12)
The bilinear form a is continuous.
e Also, we have
a(T,v) = / k|VT|*dx (B.13)
Q
> rcmm/ IVT|*dx (B.14)
Q
= Kmin”VT||22(Q)' (B]S)
By Poincaré inequality we have
17Nl 2 < ClIVT |l 12 (B.16)
which give us
a(T,v) 2 all Tl q)- (B.17)

Here « is taken to be the minimum of &, and k,;,/C>.
The bilinear form a is V-elliptic.
e For the linear form f(v), we have
rol= [war<s [ b=l B18)
Q Q

The linear form fis continuous.
Thus the conditions in the Lax—Milgram theorem are met.

Appendix C: derivation of continuous
adjoint sensitivity analysis

Appendix C.1: 2D heat conduction problem

For the TO problem defined in (15)—(20), the continuous
adjoint method is employed to determine the sensitivity of
the objective function with respect to the physical density
variables df;j, we use the continuous adjoint method. The
augmented objective function is given by:

L=1/K|VT|2dx
2 Jo

+ / v(V - (kVT) + 5)dx.
Q

(C.1)
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By applying integration by parts, divergence theorem, and
rearranging terms, we have:

L=1/K|VT|2dx+/v;cVT.nds
2 Q r

—/KVT-Vde+/vsdx.
Q Q

The first-order variation of the augmented Lagrange function
L with respect to the variation of physical density variable
7 is expressed as:

(C.2)

SL =%/5[K‘(VT'VT)]dx+/V5(KVT)-ndS
» g (C.3)
—/5(KVT)-Vvdx+/v5sdx.
Q Q

By substituting
% / S[c(VT - VT)dx

f (C.4)
=—/61<VT-Vde+/s5de,

2 Ja Q
—/5(KVT)-Vde=—/5K‘VT-Vde

“ @ (C.5)
—/KVv-néTds+/V-(1<Vv)5de,

r Q
we have
oL = l/<‘5:<VT-Vde+/s5de (C.6)

2 Ja Q

+/v6(KVT-n)ds (C.7)

r
—/5KVT‘Vde—/KVV'n5TdS

“ r (C.8)
+/V-(KVV)5de

Q
+/v6sdx. (C.9

Q
For the boundary integral terms, we have
/V5(KVT-n)dS—/KVV~n5TdS (C.10)
r r

=/ v61<VT-nds+/ v[;<V(6T)-n]ds+/ vo(x VT - n)ds
l—‘D l—‘D l—‘N
(C.11)

xkVv-néTds.

—/ kVv-néTds — (C.12)

r, Ty
Since §(kVT - m) = 0 on Ty, the term er vé(xVT - n)ds van-
ishes. Since 6T = 0 on I'j, the term — /FD kVv - néTds van-

ishes. Since s = 0 on Q, the term /Q vésdx vanishes. Then
we can reformulate 6L as:

ELZ%/5KVT‘Vde—/5KVT‘Vde+/ voxVT - nds
Q Q

l—‘I)
(C.13)
+ /[V - («Vv) + s]6Tdx +/ v[kV(6T) - n]ds
Q D
: (C.14)
- / kVv-néTds.
l—‘N
We can let
V-«kVv)+s5=0, x€Q, (C.15)
-kVv-n=0, xely, (C.16)
v=0, xeTl,. (C.17)

Then the terms in (C.14) can be eliminated. The equations
in (C.15)—(C.17) are the continuous adjoint equations for
the aforementioned minimal thermal compliance problem,
and we call the governing equations in (16)—(18) the primal
equations for the minimal thermal compliance problem.

Figure 3 shows the design domain and boundary condi-
tions in the 2D heat conduction problem, Fig. 3a is the origi-
nal boundary conditions, Fig. 3b shows the reduction of the
numerical domain by applying a symmetry treatment. In this
study, for this 2D heat conduction state analysis, we consider
the boundary conditions as

s = 0.001, (C.18)
q=0, (C.19)
T,=0. (C.20)

We can notice that with g = 0 and T,; = O for (16)—(18), the
primal equations and the adjoint equations share the same
boundary conditions and governing equations, which means
v =T. In this case, we call the aforementioned topology
optimization problem self-adjoint. The sensitivity expression
in (C.13) can be reduced to:

SL = —% / 5kVT - VTdx. (C.21)
Q

Since 6k = j—';é?, the (C.21) becomes
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5L = —% / 98 57VT - VTdr. (C22)
Q

dy
We can relate the variational form of the sensitivity with the
partial derivative S—L

i

afobj _ ldK'l»

o, 24y, ©23)
/ VT -VTdx,

Qi

in which «; denotes the heat conductivity value in the ith
element, Q, denotes the region in the i element.
Conversely, if the primal equations and the adjoint equa-
tions do not share the same boundary conditions and govern-
ing equations, we need to solve primal equations and adjoint
equations separately. The sensitivity expression in (C.13) is:

1

oL = 5/5KVT'Vde—/5KVT~Vde. (C.24)
Q Q

Appendix C.2: compliant mechanism design
problems

For the two compliant mechanism design problems, to obtain
the sensitivity of the objective function with respect to the
physical density variables 7, we employ the continuous adjoint
method. The augmented objective function is formulated as
below:

L=—-u,, + / v- (V-0 +b)dx. (C.25)

Q
The variation of the augmented Lagrangian function with

respect to the variation of the physical design variable  can
be expressed as:

6L=—5uout+/V-V-(60')dx
Q

(C.26)
+ / v - 5bdx
Q
= — Sug, + / V-V (50)dx. (C.27)
Q

Since b = 0, we have 6b = 0, allowing us to omit the last
term. Applying integration by parts and the divergence theo-
rem to the second term, we obtain:

/v-V-(éo‘)dx:—/éo':Vvdx+/v-5o--nds
Q Q r
(C.28)

@ Springer

= —/ (66" +80") : Vvdx+/v-5o' - nds. (C.29)
Q r
where the §o! and 6™ are defined as
5ol = <06ui N 05uj) Y ddu,,
% =M %y T ox, i ox, (€30
61l = 5 (a”" + au-") + 646, 2
ol = —t 4 —m
U H ox;  0x; Y ox,, (€3

By applying integration by parts and the Gaussian diver-
gence theorem, we arrive at:

—/5a‘:dex=/5u-(V-aV)dx—/5u-aV-nds,
Q Q T

(C.32)
where oV is defined as:
v <6V[ + avj) + A(S aVm
6\ =ul —+ — —
j=H ox, " ox, Fre (C.33)

By substitutions and rearrangement, we get the expression
for the variation of the augmented Lagrangian function:

5L=—5u0ut+/5u-(V-o-V)dx+/V-60'-nds
Q r

(C.39)
—/6u-o-"-nds—/50'II 1 Vvdx.
r Q
We can express oo as:
st
dy 2(1 +v) ox;  0x;
M O (C.35)
A+ v —2v) iox,
dE
= —676,
a7

in which 6 represents the dimensionless stress tensor. Then
we can rewrite the variation of the augmented Lagrange
function as:

OL = — duy, + / éu-(V-o")dx (C.36)
Q
+ /V - 60 - nds (C.37)
r
- /6u -6 - nds (C.38)
r
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dE
— [ =—06y6 : Vvdx. C.39
/Q & (C39)
The strong form of the adjoint equation is given by eliminat-
ing the term that depends on éu for x € Q, which is

V.6'=0, (C.40)

The boundary conditions for the adjoint problem are derived
by eliminating the boundary integral terms dependent on
éu. Here we take the compliant inverter design problem as
an example. The boundary conditions of the primal equa-
tions for the complaint inverter design problems are shown
in Fig. 4a. Mathematically, the boundary conditions are:

u-e,=0, o-n-e, =0, for xeTl, (C.41)
u=0, for xeIly, (C.42)
o-n= 5Direc(x - xout)[_kout(u ' ex)]ex’ for xe I—‘out’
(C.43)
0 - N = Opie (X — X )(—ku-e, +fi)e,, for x €T,
(C.44)
c-n=0, for xel,, (C.45)

From the variations of the boundary conditions, we have

ou-e,=0, o66-n-e,=0, for xel, (C.46)
ou=0, for xely, (C.47)
66 N = Opjrec (X — X )[—ko(Ou-e)le,, for x el
(C.48)
00 - N = Opye. (X — X )(—kou-ee., for xely,
(C.49)
66-n=0, for xel,, (C.50)
For the variation of the objective function —u,,, we have
_5uout = / ou - (5Direc(x _xout)ex)ds (C.51)

By expanding the two boundary integral terms (C.37) and
(C.38), and substituting Egs. (C.46)—(C.51), we can rewrite
oL as

oL = / éu-(V-o")dx (C.52)
Q

+ / v-[(60-n-e)e ]+ (6u-eye, o’ - nds (C.53)
T,

tp

+/ v - 60 - nds (C.54)
1“lb
—/ éu- o’ - nds (C.55)
l—‘l'l11
+ / ou- [6Direc(x - Xout)[_koul(v ' ex)]ex
Cou (C.56)

+ 5Direc(x - Xout)ex -o"- njds

+ ou- [5Direc(x - Xin)[_kin(v : ex)]ex

/d_
5078

In order to eliminate the boundary terms that depend on éu,
we need:

— o' -nlds (C.57)

(C.58)

v-e, =0, ' n-e, =0, for x €Ty, (C.59)
v=0, for xely, (C.60)
o' N =6 (X — X ) [—kou(V-€.)+ 1le,, for xeTl,,
(C.61)
0" N = b (X — X[k (V- e)]e,, for x eTy,
(C.62)
c'-n=0, for xel,, (C.63)

that are the boundary conditions for the adjoint problem. The
visualizations of the adjoint problem boundary conditions
for the compliant inverter are shown in Fig. 4b. Similarly,
we can derive the adjoint problem boundary conditions for
the complaint gripper design problem, which is visualized
in Fig. 5b.

After term elimination, the remaining terms express the
sensitivity of the objective function with respect to the phys-
ical density variable 7:

%576 : Vvdx.

(C.64)

We can relate the variational form expression (C.64) to the

. . . aJ
partial derivative form = as

N _ & 1 Vvdx.
07; dV

(C.65)
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