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Abstract
In this paper, we introduce a Physics-Informed Neural Networks (PINNs)-based Topology optimization method that is free 
from the usual finite element analysis and is applicable for both self-adjoint and non-self-adjoint problems. This approach 
leverages the continuous formulation of TO along with the continuous adjoint method to obtain sensitivity. Within this 
approach, the Deep Energy Method (DEM)—a variant of PINN-completely supersedes traditional PDE solution procedures 
such as a finite-element method (FEM) based solution process. We demonstrate the efficacy of the DEM-based TO frame-
work through three benchmark TO problems: the design of a conduction-based heat sink, a compliant displacement inverter, 
and a compliant gripper. The results indicate that the DEM-based TO can generate optimal designs comparable to those 
produced by traditional FEM-based TO methods. Notably, our DEM-based TO process does not rely on FEM discretiza-
tion for either state solution or sensitivity analysis. During DEM training, we obtain spatial derivatives based on Automatic 
Differentiation (AD) and dynamic sampling of collocation points, as opposed to the interpolated spatial derivatives from 
finite element shape functions or a static collocation point set. We demonstrate that, for the DEM method, when using AD to 
obtain spatial derivatives, an integration point set of fixed positions causes the energy loss function to be not lower-bounded. 
However, using a dynamically changing integration point set can resolve this issue. Additionally, we explore the impact of 
incorporating Fourier Feature input embedding to enhance the accuracy of DEM-based state analysis within the TO context. 
The source codes related to this study are available in the GitHub repository: https:// github. com/ xzhao 399/ DEM_ TO. git.
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1 Introduction

Topology optimization (TO) is a computational design 
method in engineering, seeking optimal material distribution 
within structures under specified loads, boundary conditions, 
and constraints. This method significantly contributes to 
enhancing design efficiency and minimizing material usage, 
finding extensive applications in various industrial designs 
(Bendsoe and Sigmund 2003; Eschenauer and Olhoff 2001). 

With the increasing prominence of machine learning (ML) 
across numerous scientific and engineering disciplines 
(Frank et al. 2020; Brunton and Kutz 2022), there is a grow-
ing interest in integrating ML techniques with topology opti-
mization processes (Woldseth et al. 2022; Shin et al. 2023; 
Chandrasekhar and Suresh 2021).

A significant advancement in ML-based computational 
physics is the emergence of the physics-informed neural 
network (PINN) (Karniadakis et al. 2021). PINNs offer an 
ML-based approach to solving partial differential equa-
tions (PDEs) by training neural networks without requiring 
labeled data. The essence of PINNs lies in developing neural 
networks that closely approximate PDE solutions, with a 
loss function defined by the adherence to physical laws. By 
minimizing this loss function, the neural network’s outputs 
are constrained to approximate PDE solutions while comply-
ing with these laws. The PINN framework has introduced 
novel capabilities in computational physics, particularly its 
mesh-free characteristic, which simplifies the management 
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of complex numerical domains where mesh generation is 
challenging (Jagtap and Karniadakis 2021; Xiang et al. 
2022; Costabal et al. 2024). Furthermore, PINNs allow for 
an integration of physical models with empirical data (Raissi 
et al. 2019; Cai et al. 2021; He et al. 2020), enabling the neu-
ral network to simultaneously conform to observed data and 
the governing physical laws. This integration is particularly 
beneficial in scenarios where the physical understanding is 
incomplete, allowing for the resolution of realistic problems 
using experimental data (Cai et al. 2021), and facilitating 
the data-driven discovery of new PDEs (Raissi et al. 2019).

The versatility of PINNs has spurred interest in develop-
ing various PINN variants, each encoding different physics 
aspects (Raissi et al. 2019; Haghighat et al. 2021; Kharazmi 
et al. 2019, 2021; Samaniego et al. 2020; Yu et al. 2018; 
Nguyen-Thanh et al. 2020; Fuhg and Bouklas 2022). These 
variants can be broadly categorized based on the nature of 
the encoded physics laws: strong-form PDE-based PINNs 
(Raissi et al. 2019; Haghighat et al. 2021), variational for-
mulation-based PINNs (Kharazmi et al. 2019, 2021), and 
functional minimization formulation-based PINNs (Sam-
aniego et al. 2020; Yu et al. 2018; Nguyen-Thanh et al. 
2020; Fuhg and Bouklas 2022). The strong-form PDE-based 
PINN, as proposed by Raissi et al. (2019), directly inputs 
spatial and temporal coordinates into the neural network to 
output PDE solution values at those points. The loss func-
tion comprises the strong-form PDE residuals at collocation 
points and boundary condition discrepancies at boundary 
points, ensuring the network’s outputs satisfy both the PDE 
and boundary conditions. Despite the straightforward imple-
mentation of strong-form PDE-based PINNs, their require-
ment for higher-order derivatives, as opposed to variational 
or minimal functional formulations, makes them computa-
tionally intensive. The variational formulation-based PINN, 
introduced by Kharazmi et al. (2019, 2021), constructs its 
loss function from the residuals of the PDE’s variational 
formulation, involving lower-order derivatives and hence 
less computational demand. However, this approach neces-
sitates defining a test function space, adding complexity to 
the implementation. The minimal functional formulation-
based PINN, or Deep Energy Method (DEM), advocated by 
Yu et al. (2018), Nguyen-Thanh et al. (2020), and Samaniego 
et al. (2020), builds the loss function on a functional minimi-
zation approach. This method, applicable to a broad range of 
engineering problems, offers computational efficiency and 
simplifies implementation by avoiding the need for higher-
order derivatives and test functions (Li et al. 2021), although 
it is limited to PDEs that can be expressed in a minimal 
functional form.

In recent years, several PINN-based TO frameworks have 
emerged, offering promising alternatives to traditional PDE 
solver-based TO methods (Lu et al. 2021; Jeong et al. 2023a, 
b; He et al. 2023; Zehnder et al. 2021). Lu et al. (2021) 

utilized a strong-form PDE-based PINN for TO in optics and 
fluid dynamics, training two neural networks concurrently 
for design parameterization and state analysis. The loss 
function, formulated via penalty and augmented Lagrangian 
methods, treats strong-form PDEs as constraints, achieving 
accurate state analysis only upon optimization completion. 
This approach completely replaces the sensitivity analysis 
in traditional TO with automatic differentiation. However, 
since it simultaneously solves the necessary conditions of 
optimality for the density parameterization network param-
eters as well as the state analysis network parameters, a pre-
mature termination of the approach does not provide any 
analysis results for the current design. Recently, it has been 
shown by Li et al. (2021) that the DEM has better efficiency 
than strong-form PDE-based PINN for solving PDEs. Uti-
lizing DEM, Zehnder et al. (2021), He et al. (2023), and 
Jeong et al. (2023a, b) have also developed PINN-based TO 
frameworks. These frameworks adopt a Nested ANalysis and 
Design (NAND) method for TO, featuring a primary outer 
loop for design optimization and a secondary inner loop 
for state analysis using DEM. So far, these DEM-based TO 
frameworks have only been applied to compliance minimiza-
tion problems. In the frameworks proposed by Zehnder et al. 
(2021), He et al. (2023), Jeong et al. (2023a), the design 
sensitivities expressions are derived from the continuous or 
discrete Adjoint Variable Method (AVM). Since the com-
pliance minimization problems are self-adjoint, where the 
adjoint problem solution coincides with the primal problem 
solution, the procedure of sensitivity computation in those 
frameworks only requires solving the primal problem. Nei-
ther of these frameworks can be directly applied to more 
general non-self-adjoint topology optimization problems, 
for which the sensitivity calculation needs to solve an addi-
tional adjoint problem besides the primal problem. In the 
recent work done by Jeong et al. (2023b), the sensitivities 
for design update are obtained fully utilizing automatic 
differentiation, not dependent on the derivation of AVM. 
In this work, two neural networks, for state analysis and 
design parameterization respectively, are trained in series 
to solve the TO problem (Jeong et al. 2023b). However, this 
approach hasn’t been applied to TO problems other than the 
minimal compliance problem. Furthermore, among those 
DEM-based TO frameworks, in He et al. (2023) and Jeong 
et al. (2023a), finite element discretization is employed for 
estimating design sensitivities. In He et al. (2023), the spa-
tial derivatives of the state variables are interpolated using 
finite element shape functions when estimating the DEM 
training loss function. Thus the DEM-based TO frameworks 
proposed by both He et al. (2023) and Jeong et al. (2023a) 
are still dependent on finite element discretization of the 
domain.

Thus far, there has not been any DEM-based TO approach 
that has been validated for its effectiveness in solving 
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non-self-adjoint TO problems while also being free from 
FEM discretization. Building on these developments, our 
work proposes a DEM-based TO framework suitable for 
both self-adjoint and non-self-adjoint problems, and mean-
while not dependent on any FEM discretization for both 
PDE solutions and the design sensitivity calculation. In 
this work, the design sensitivity expressions are derived 
by AVM, since it is the most effective method for calculat-
ing derivatives in topology design (Bendsoe and Sigmund 
2003). Both the primal equation and the adjoint equation 
are solved utilizing DEM. For free from FEM discretiza-
tion, we use the continuous adjoint method instead of the 
discrete adjoint method for sensitivity analysis, and we use 
automatic differentiation for estimating spatial derivatives 
when evaluating the DEM training loss and design sensitiv-
ity. Moreover, when calculating the DEM training loss, we 
use a dynamic set of collocation points instead of a static set 
to avoid the unbounded DEM training loss issue and make 
the DEM solution of PDEs better regularized in the whole 
spatial domain.

Our DEM-based TO approach, depicted in Fig.  1, 
employs a nested analysis and design strategy. In each opti-
mization cycle, two neural networks are trained by mini-
mizing DEM losses for approximating the solutions for the 
primal problem and the adjoint problem respectively. With 
the two trained neural networks, the spatial derivatives of 
the primal and adjoint problems’ solutions can be directly 
evaluated through automatic differentiation. The sensitivity 
in each cycle is calculated using the spatial derivatives. The 
design is updated using the sensitivity. The optimal design 
is obtained when the converge criterion is met and the opti-
mization loop ends.

We illustrate the effectiveness of our approach through 
three examples: heat sink design, compliant displacement 
inverter, and compliant gripper designs. Key highlights of 
our proposed framework include:

• Versatility in addressing both self-adjoint and non-self-
adjoint TO problems.

• Obviating finite element discretization, reducing compu-
tational complexity.

• A fully unsupervised learning-based approach to TO that 
eliminates the need for offline data set generation.

• High accuracy of DEM solutions in solving both the pri-
mal equation and adjoint equation.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews the density-based TO method and benchmark 
TO problems. Section 3 introduces the deep energy method 
and then discusses the issues one may encounter in DEM 
implementation for spatial derivative estimation and colloca-
tion point sampling. Section 4 validates the efficacy of our 
proposed framework with three benchmark TO problems, 
and discuss the performance of the proposed framework on 
state analysis accuracy and efficiency. Also, we do two abla-
tion studies to show the contributions of Fourier Feature 
input embedding and dynamic training set. Section 5 sum-
marizes findings and future work directions.

Fig. 1  The flowchart diagram 
of the proposed DEM-based TO 
framework
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2  Topology optimization

2.1  Problem formulation of TO

A design optimization aims to find an optimal design vari-
able, 𝛾 , that minimizes an objective function subject to 
constraints, which can be formulated as:

where u is the state variable linked to the design variable 𝛾 
via the state equation D(u(𝛾)) = 0 , and gj are the inequality 
constraints.

Topology optimization (TO) seeks the best material dis-
tribution within a design domain, denoted by the density 
function 𝛾  [0, 1] , where 0 indicates material absence and 
1 indicates material presence as is shown in Fig. 2a.

The design representation in TO is akin to a black-and-
white image as shown in Fig. 2b, where each ‘pixel’ cor-
responds to a constant value of the density function, 𝛾 . 
The parameterization of the density function is given by:

The optimization problem thus becomes the optimization of 
the variable set {𝛾ei|i = 1, 2,… ,Nele}.

Material properties for intermediate value of 𝛾 are inter-
polated using the Solid Isotropic Material with Penaliza-
tion (SIMP) method:

(1)min
𝛾

fobj(𝛾) = F(𝛾 , u(𝛾))

(2)s.t. D(u(𝛾)) = 0,

(3)gj(𝛾)  0, j = 1, 2,… , p,

(4)𝛾(x) =

Nele∑

i=1

f𝛾ei(x), f𝛾ei(x) =

{
𝛾ei if x  Ωei,

0 otherwise.

where 𝜅(𝛾) is the interpolated material property, 𝜅min is the 
property for void, 𝜅0 for solid, and p is the penalization expo-
nent, typically chosen as p = 3.

A density filter is applied to achieve a mesh-independent 
design (Bendsoe and Sigmund 2003). The filtered density 
 "ei is computed as:

where Ne,i is the neighborhood set of elements within the 
filtering domain around  ei , a circular region with radius R. 
The center of element  ei is the circle’s center. Element  ej 
has a center at xcj within Ne,i . vj is the area of  ej , and wj is 
the weight for 𝛾ej in computing  "ei:

2.2  Sensitivity analysis using the continuous 
adjoint method

Sensitivity analysis is fundamental for gradient-based opti-
mization algorithms, guiding the iterative process towards an 
optimal solution by quantifying how small changes in design 
variables affect the objective or constraints. The adjoint vari-
able method is the most effective method for calculating sen-
sitivities in topology optimization, which typically involves 
a large number of design variables and a moderate number 
of constraints. Bendsoe and Sigmund (2003) in this study, 
the adjoint sensitivity analysis is conducted at the continu-
ous level since the utilization of DEM requires a continuous 
form of the PDE.

(5)
𝜅(𝛾) =𝜅min + (𝜅0  𝜅min)𝛾

p,

𝜅(𝛾 = 0) = 𝜅min, 𝜅(𝛾 = 1) = 𝜅0,

(6) "ei =

 
j Ne,i

wjvj"ej
 

j Ne,i
wjvj

,

(7)wj = R   xcj  xci .

Fig. 2  Illustrations of a the density function and b design parameterization
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For the PDE-constrained optimization problem in (1), if one 
calculates the sensitivity 𝜕fobj 𝜕𝛾 using the chain rule:

The term 𝛁𝛾u(𝛾) is challenging to compute due to the 
implicit dependence of u on 𝛾.

The AVM simplifies this by introducing a Lagrangian func-
tional L:

where v is the adjoint variable. The gradient  fobj for a given 
𝛾 is obtained from:

where v is determined by solving the adjoint equation 
duL(u, 𝛾 , v;𝛿u) = 0.

Utilizing design parameterization from (4), the derivative 
𝜕fobj 𝜕𝛾ei is:

For sensitivity approximation, Gaussian quadrature is 
employed:

where ( )|x=xquadji is the integrand value at the jth Gaussian 
point in  i , and wij is the corresponding weight. Here, 
Nquad = 4 for second-order quadrature in 2D elements.

With the density filter, the sensitivity of the objective func-
tion with respect to the design variables is calculated using 
the chain rule:

where the term  #̃i  #j is:

The same approach is used for the sensitivities of other con-
straints, like volume constraints, with respect to the design 
variables 𝛾.

(8)𝛁fobj(𝛾) = 𝛁𝛾F(𝛾 , u(𝛾)) + 𝛁uF(u(𝛾))𝛁𝛾u(𝛾).

(9)L(u, 𝛾 , v) = F(𝛾 , u(𝛾)) + ∫ D(u)  v dx,

(10)∫ ∇fobj(𝛾)𝛿𝛾 dx = d𝛾L(u(𝛾), 𝛾 , v;𝛿𝛾),

(11)
𝜕fobj

𝜕𝛾ei
= ∫ ei

∇fobj(𝛾) dx.

(12)∫ ei

( ) dx ≈

Nquad∑

j=1

( )|x=xquadij wij,

(13)
 fobj

 "j
=

∑

i Ne,j

 fobj

 "̃i

 "̃i

 "j
,

(14)
 #̃i

 #j
=

wjvj
 

k Ne,i
wkvk

.

2.3  Benchmark TO problems

To demonstrate the effectiveness of the proposed DEM-
based TO framework, three benchmark TO problems are 
used. The problem set includes: (1) Heat sink optimization, 
(2) compliant displacement inverter design, and (3) compli-
ant gripper design. The math formulations and boundary 
conditions for the three benchmark problems are shown in 
this subsection. The detailed derivations of the adjoint equa-
tions and sensitivity expressions for the three benchmark 
problems can be found in Appendix C.

2.3.1  Heat sink optimization

The goal of this problem is to optimize the efficiency of heat 
transfer away from the heat sources, subject to the material 
volume constraint. In continuous form, the heat sink optimi-
zation problem can be written as:

Here the objective functional is thermal compliance. In the 
direct state equations (15)–(20), T denotes temperature, 𝜅 
represents the heat conductivity, s denotes the heat source, Td 
represents the specified temperature on the Dirichlet bound-
ary  D , q represents the heat flux specified on the Neumann 
boundary  N , and s represents the heat source in the volume.

The Eq. (19) is the material volume constraint, in which 
 
 
𝛾dx is the evaluation of the material volume, V is the 

volume of the design domain, Vf  is a pre-specified volume 
constraint. The Eq. (20) denotes the upper bound and lower 
bound of the design variable 𝛾 . In this study, we consider

(15)min
𝛾

fobj(𝛾) = ∫ 𝜅(𝛾)|𝛁T|
2dx,

(16)s.t.  𝛁  (𝜅𝛁T) = s, for x ∈ Ω,

(17) 𝜅𝛁T  n = q, for x ∈ ΓN ,

(18)T = Td, for x  ΓD,

(19) 
 
𝛾dx

V
≤ Vf ,

(20)0  𝛾  1.

(21)s = 0.001,

(22)q = 0,

(23)Td = 0.
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The heat conductivity 𝜅 is interpolated by using the SIMP 
scheme (5).

The design domain and boundary conditions of the heat 
sink optimization problem are shown in Fig. 3a. Figure 3b 
shows the reduction of the domain by applying a symmetry 
treatment.

2.3.2  Compliant displacement inverter design

The goal of the compliant displacement inverter design 
problem is to maximize the output displacement uout at 
the output port, subject to a volume constraint. The design 
domain, loading conditions, and boundary conditions are 
depicted in Fig. 4. In continuous formulation, the optimiza-
tion problem can be written as:

(24)min
𝜸

fobj =  uout = ∫Γout u  (𝛿(x  xout)ex)ds,

(25)s.t. 𝛁  𝝈 + b = 0, x  Ω,

(26)𝝈  n = t, x  ΓN ,

Here the objective functional is the x-displacement at the 
output port on the top-right corner, and the notation ex rep-
resents the unit vector in the x-axis direction. The Eq. (25) 
denotes the linear elasticity equation, in which 𝝈 denotes 
the stress tensor, b denotes the body force. The 𝛿(x  xout) 
denotes a direct delta function. The system is subject to 
Neumann boundary condition (26) and Dirichlet boundary 
condition (27). The stress 𝝈 can be computed by using the 
constitutive law:

in which E, 𝜈 denotes the material properties Young’s modu-
lus and Poisson ratio respectively, 𝝐 denotes the stress ten-
sor. Considering small deformation, the strain tensor can 
be given by:

In this study, we consider:

The Young’s modulus E is interpolated by using the SIMP 
scheme (5).

2.3.3  Compliant gripper design

As for the compliant displacement inverter design, the goal 
of the compliant gripper design problem is also to maximize 
the uout at the output port subject to a volume constraint. The 
design domain, loading conditions, and boundary conditions 
are depicted in Fig. 5a. The continuous formulation, constitu-
tive relationship, strain tensor expression, and material prop-
erties are the same as the Eqs. (24)–(33) for the compliant 
displacement inverter problem.

Different from the compliant displacement inverter design 
problem, the compliant gripper case has two passive regions 
for design in the top-right corner.

(27)u = 0, x  ΓD,

(28) 
 
𝛾dx

V
≤ Vf ,

(29)0  𝛾  1.

(30)𝝈 =
E

1 + 𝜈
𝝐 +

E𝜈

(1 + 𝜈)(1  2𝜈)
tr(𝝐)I,

(31)𝝐 =
1

2

(
𝛁u + 𝛁u

T
)
.

(32)b = 0,

(33)𝜈 = 0.3.

Fig. 3  Design domain and boundary conditions for the primal equa-
tions in the heat sink optimization problem. a Original design domain 
and boundary conditions. b Design domain and boundary conditions 
after applying a symmetry treatment

Fig. 4  Design domain and boundary conditions for the compliant 
mechanism displacement inverter design problem
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3  Deep energy method for solving PDE

In this section, we introduce the implementation of the Deep 
Energy Method. For illustrative purposes, the 2D heat con-
duction problem in Eqs. (16)–(18) is used as an example 
(Fig. 6).

3.1  Deep neural network representation of PDE 
solution

In the DEM for 2D heat conduction, the solution T  is 
approximated by a neural network TNN = NNT (x;𝜽T ) , where 
x are spatial inputs and 𝜽T represents the network’s trainable 
parameters.

Information flow in the network from input to output is 
given by:

where al
k
 is the output of the kth neuron in the lth layer, wl

jk
 

and bl
j
 are the weights and biases, and fact is the activation 

function introducing non-linearity.
In this study, Fourier Feature Embeddings (FFE) are 

employed to help the DEM model learn the high-frequency 
components in the solution more effectively so that enhance 
the accuracy of DEM solutions (Wang et al. 2021). For more 
details about FFE and its applications on PINN, we recom-
mend readers refer to references (Tancik et al. 2020) and Wang 
et al. (2021). FFE introduces a random Fourier mapping 𝜙(x) 
to the inputs, expressed as:

where B   m×d , with its elements sampled from N(0, 𝜎2
FFE

) . 
Here, m represents the number of Fourier features, and d 
indicates the dimensionality of the input.

3.2  Definition of the DEM loss function

The calculus of variation identifies an important class of PDEs 
whose solutions can be gained by minimizing the correspond-
ing energy functional (Evans 2022; Le Dret and Lucquin 
2016). The DEM loss function approximates this energy func-
tional to solve the corresponding PDE. For the heat conduction 
problem, the minimal functional problem is:

(34)al
j
= fact

(
∑

k

wl
jk
al 1
k

+ bl
j

)

,

(35)𝜙(x) = [cos(2𝜋Bx), sin(2𝜋Bx)]T,

(36)min
T

J(T) =
1

2 ∫ 𝜅|∇T|
2dx − ∫ sTdx,

Fig. 5  Design domain and boundary conditions for the compliant 
mechanism gripper design problem

Fig. 6  Computational framework of DEM for solving the equilibrium temperature distribution in the 2D heat conduction problem (16)–(18)
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subject to T = 0 on  D . This minimal functional formula-
tion can be derived from the strong-form PDE, the steps of 
deriving the expression (36) can be found in Appendix A.

The DEM loss function, Ltotal , incorporates J(T) and a 
penalty for Dirichlet boundary conditions ( LDBC):

where J(TNN) is the DEM energy loss and LDBC enforces 
boundary conditions. The optimal parameters 𝜽 

T
 minimize 

Ltotal , determined iteratively using gradient-based optimiza-
tion. The gradient 𝜕Ltotal 𝜕𝜽T is evaluated by AD.

For calculating the DEM energy loss, we use a dynamic 
integration point set for numerical integration, which 
means the positions of integration points are updated 
repeatedly during the DEM training. The Monte Carlo 
integration is utilized since it is more convenient for using 
a dynamic integration point set. In Monte Carlo integra-
tion, since each point has the same weight, there is no 
need to update weights after each change in the point set. 
With Monte Carlo integration, the evaluation of J(TNN) is 
given by:

where Q =  
 
dx , N  represents the number of Monte 

Carlo integration points within   , which are randomly sam-
pled from a uniform distribution, and the subscript i denotes 
evaluation at the ith integration point xi.

The penalty term LDBC is calculated by:

in which N D
 denotes the number of points uniformly sam-

pled on the Dirichlet boundary, and 𝜆 denotes the penalty 
coefficient. In this work, we simply take 𝜆 = 1.

For estimating J with the formula (38), one needs 𝜅i on 
the integration points, which can be calculated through 
the SIMP formula (5) with 𝛾i . For any sampled integration 
point xi , the density value is given by 𝛾i = 𝛾(xi) using for-
mula (4). In this study, the value of 𝛾i is obtained using the 
Nearest-neighbor interpolator (Rukundo and Cao 2012) in 
the Scipy package. The reason we use the Nearest-neigh-
bor interpolator is to efficiently evaluate the density func-
tion values at the integration points after each update of 
the dynamic integration point set. Figure 7 demonstrates 
that the use of the Nearest-neighbor interpolator gives the 
same value as the original function 𝛾(x) . In Fig. 7b, red 
dots mark element centers. The Nearest-neighbor algo-
rithm lets the 𝛾 value at any sampled point equal the 𝛾 
value at the nearest element center, which gives the same 
value as 𝛾(x).

(37)Ltotal = J(TNN) + LDBC,

(38)J(TNN) =
1

2

Q 
N 

N ∑

i=1

𝜅i|∇TNN|
2
i
−

Q 
N 

N ∑

i=1

siTNN,i,

(39)LDBC = 𝜆
1

N D

N D∑

i=1

(TNNi)
2

3.3  Distinctions in our implementation and issues 
in DEM training

Key distinctions in our implementation include:

• For spatial derivative evaluation: Unlike methods relying 
on FEM discretization for  TNN (e.g., He et al. 2023), our 
approach employs AD for direct and efficient computa-
tion. FEM discretization-based spatial derivative evalua-
tion results in not adequate regularization of TNN , which is 
only at the FEM nodes. The accuracy of the neural network 
prediction TNN inside the FEM elements is not assured.

• For integration point sampling: In contrast to the static 
integration point sets utilized in studies such as He et al. 
(2023) and Jeong et al. (2023a), our method uses dynamic 
integration point set, which means randomly resampling 
the integration points every 10 epochs. A static integration 
points set makes the DEM energy loss function not lower 
unbounded when combined with AD-based spatial deriva-
tives, while the dynamic integration point set solves this 
issue.

Overall, our implementation is distinct in that it uses AD to 
obtain spatial derivatives and uses a dynamic integration point 
set. This combination solved the key issues caused by using 
the FEM discretization-based spatial derivatives  TNN and by 
using a static integration point set. We use a 1-D Poisson equa-
tion problem to explain the reasons for these issues.

3.4  Justification of the limitations on FEM 
discretization-based  TNN and static integration 
points

Consider the 1-D Poisson’s equation:

(40) 
d2T

dx2
= 2, x ∈ [0, 1],

(41)T = 0, for x = 0,

Fig. 7  Demonstration of using the Nearest-neighbor interpolator to 
obtain 𝛾i : a Original density function 𝛾(x) . b The value of 𝛾i at the 
sampled points given by the Nearest-neighbor interpolator. (Color fig-
ure online)



Physics-informed neural network based topology optimization through continuous adjoint  Page 9 of 25 143

with the analytical solution:

When solved with DEM, the total loss function Ltotal is 
defined as:

Figure  8 shows the problem when using finite ele-
ment shape function interpolation for calculating the spa-
tial derivatives in the DEM loss function. Let the points 
x0, x1, ..., x5 be the set of 1D finite element nodes. Follow-
ing the work in He et al. (2023), when evaluating Ltotal , 
dTNN dx are interpolated on the integration points using 
finite element shape functions, mathematically represented 
as dTinterp dx =

 5

i=1
d𝜙i(x) dxTNN(xi) , where 𝜙i(x) denotes 

(42)dT

dx
= 0, for x = 1,

(43)T(x) =  x2 + 2x.

(44)

Ltotal =
1

2N 

N ∑

i=1

(
dTNN
dx

)2

i

−
1

N 

N ∑

i=1

2TNNi + 𝜆T2
NN

|x=0,

the shape function, and TNN(xi) denotes neural network out-
put TNN at node xi . This approach results in regularization 
being confined only to the nodes, neglecting the regions in 
between and the true derivative of the neural network output 
dTNN dx across the domain.

Figure 9 shows the problem of unbounded Ltotal with a 
static set of integration points. This time we let the points 
x0, x1, ..., x5 be the set of integration points. With the 
shape of TNN shown in the Fig. 9, since TNN(xi) = 0 for 
i = 0, 2, ..., 5 and (dTNN dx|xi )AD = 0 for i = 0, ..., 5 , we have 
Ltotal = ( 2∕5)TNN|x=x1 . If TNN|x=x1 goes to +  , Ltotal goes 
to  ∞ . The Ltotal is not lower bounded. This occurs because 
the DEM model can have sudden value changes and high 
spatial gradient in the middle of two adjacent points, which 
aren’t captured due to the lack of integration points in those 
regions. No matter how dense the integration points are 
sampled, as long as the training set is static, the unbounded 
issue of the loss function exists. Using a Dynamic integra-
tion point set can solve this issue since it allows sampling in 
these regions during updates.

Fig. 8  Illustration of the problem for FEM discretization-based evaluation of  TNN

Fig. 9  Illustration of the unbounded loss function problem with a static set of integration points
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4  Examples and discussion

This section presents the application of the DEM-based TO 
framework to three benchmark problems outlined in Sect. 2.

We utilize transfer learning between consecutive DEM-
based TO iterations to reduce the training time. Specifically, 
for the first DEM-TO iteration, the DEM model parameters 
are initialized using the Glorot normal initializer and trained 
from scratch to solve the primal PDE and adjoint PDE. For all 
subsequent TO iterations, the model parameters of the DEM 
model learned in the previous TO iteration are used to ini-
tialize the model parameters for the current iteration. Since 
the TO designs are similarly in adjacent iterations, the cor-
responding solutions of the primal PDE and adjoint PDE are 
also similar. This parameter migration avoids the need to train 
from scratch, thereby helping to reduce the total training time.

All examples of DEM-TO were run using TensorFlow 
(v2.6.2) and the Adam optimizer on an NVIDIA RTX 3060 
GPU with 32 GB RAM. FEM-TO is implemented based on 
Aage (2019). The DEM hyperparameters are listed in Table 1. 
These hyperparameters are optimized using Bayesian optimi-
zation for minimizing the error of solving the primal PDE of 
the linear elasticity problem, employing the package described 
in Bergstra et al. (2013). These hyperparameters are used in 
all examples shown in Sect. 4. The first example employs a 
single neural network for the scalar T, while the latter two train 
separate networks for each displacement vector component.

4.1  Application to 2D heat sink design problem

The domain dimensions are (L,H) = (100, 50) with grid size 
100  50 , and we set the heat conductivity 𝜅 to 1 and 𝜅min to 
1e 3 . The density filter radius is R = 4.2L 100 . The volume 
fraction for TO is set as Vf = 0.5.

For the TO problem defined in (15)–(20), the detailed deri-
vation of the adjoint problem and the sensitivity can be found 
in Appendix C.1.

The adjoint problem given by the AVM is:

The primal problem in (16)–(18) coincides with the adjoint 
PDE in (45)–(47). Thus only the solution of the direct state 
problem is needed for TO.

(45)𝛁  (𝜅𝛁v) + s = 0, x  Ω,

(46) 𝜅𝛁v  n = 0, x ∈ ΓN ,

(47)v = 0, x  ΓD.

The sensitivity  fobj  #̃i is:

4.1.1  DEM-TO vs. FEM-TO

For this example, both DEM-based TO and FEM-based TO are 
conducted with 100 TO iterations and with the same param-
eters for the MMA optimizer. Figure 10 shows the comparison 
between the DEM-TO result and FEM-TO result.

Figure 10a, b show that both DEM-based and FEM-based 
TO procedures can successfully minimize thermal compliance 
and satisfy the volume constraint. Comparing DEM-TO and 
FEM-TO designs at various iterations (Fig. 10c), one can note 
a similar progression and final designs, with the DEM-TO pro-
cess manifesting branch features slightly sooner. Despite small 
differences in the final designs, the relative objective functions 
for DEM-TO and FEM-TO are closely matched at 0.192 and 
0.190, respectively.

4.1.2  Effect of mesh size

We analyze the effect of changing TO mesh size on the quality 
of the optimal design given by the proposed DEM-TO frame-
work. In Fig. 11, the three topologies are obtained with mesh 
size 100  50 , 200  100 and 400  200 respectively. The neu-
ral network architectures for obtaining the three topologies are 
the same as in Table 1. For all three topologies, the filter size 
is 4.2 times the element sizes, the number of TO iterations is 
500, and the number of training epochs is 10 for each TO itera-
tion except the 1st TO iteration. At the first TO iteration, the 
number of DEM training epochs is 1000 for obtaining all three 
topologies. We observe that there are no obvious irregular 
branches for all of the three topologies. The results show that 
the proposed DEM-TO framework can generate fine structures.

Figure 12 shows the effect of changing mesh size on the 
computational time for both DEM-TO and FEM-TO for the 
heat sink design problem. Here we present the total wall-
clock time for DEM-TO and FEM-TO. FEM-TO computation 
is based on CPU and the computation of DEM-TO is based 
on GPU. For DEM-TO, this includes parameter initialization, 
DEM model training to solve the Primal and Adjoint PDEs, 
design sensitivity calculation, and density filtering. For FEM-
TO, this includes parameter initialization, solving the Primal 
and Adjoint PDEs using FEM and a direct solver, sensitiv-
ity calculation, and density filtering. The main difference in 

(48)
 fobj

 #̃ei
=  

1

2

(
d$

d#̃

)

i
∫Ωei

𝛁T  𝛁Tdx.

Table 1  Hyperparameters of the 
DEM model Layers Neurons Activation function N Nbatch Nepoch Learning rate 𝜎FFE

4 86 Swish 40,000 2000 200 1e 3 1.32
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time between the two methods is due to the difference in time 
required for DEM model training versus the direct solver. With 
the settings used in this paper, we observe that the total compu-
tation time of FEM-TO increases faster than that of DEM-TO 
as the number of TO elements increases. For the mesh size 
400  200 , the computation time of DEM-TO is 7171.43 s , 
shorter than the computation time of FEM-TO, which is 
18692.31 s . One should note that the purpose of presenting the 
computation time is not to strictly demonstrate that DEM-TO 
is more efficient than FEM-TO, as this is not the main focus 
of this paper, but rather to provide readers with a concrete 
sense of the time required for our method. The computational 
time for DEM-TO and FEM-TO can depend on many other 
factors, such as whether the FEM method uses a direct solver 
or an iterative solver, whether parallel acceleration is used, 

Fig. 10  Comparison of DEM-TO and FEM-TO at various TO itera-
tions for minimal thermal compliance design. a The history of the 
relative reduction of thermal compliance during DEM-based and 

FEM-based TO. b The history of the volume fraction during DEM-
based and FEM-based TO. c The designs given by FEM-based and 
DEM-based TO at different TO iterations

Fig. 11  DEM-TO optimal 
topologies under various mesh 
sizes

Fig. 12  Computation time of DEM-TO and FEM-TO
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the model and batch size used in DEM training, as well as 
the programming language, operating system, and processing 
power. The discussion about computational time here is lim-
ited to the hardwares and parameter settings used in this work. 
A fair comparison of the efficiency of DEM-TO and FEM-TO 
methods requires a more rigorous discussion of these factors.

4.2  Application to compliant displacement inverter 
design problem

The domain dimensions are L = 120 with gird size 120  60 . 
We set the Young’s modulus E to 1 and set Emin to 1e 3 . The 
Poisson ratio 𝜈 is set to be 0.3. The spring stiffness coeffi-
cients are set to kin = 1, kout = 0.001 . The density filter radius 
is R = 4.2L 120 . The volume fraction is set as Vf = 0.3.

The details of deriving the adjoint problem and sensitivity 
expression are shown in Appendix C.2.

The adjoint problem given by AVM is:

The sensitivity is:

To calculate the sensitivity, one needs to solve both the 
direct state PDE and adjoint PDE.

The DEM can be naturally applied to the primal PDE in 
this example since the linear elasticity problem naturally has 
the minimal functional statement, which is the principle of 
minimal potential energy. The system’s potential energy   is 
expressed as:

(49)𝛁  𝝈v = 0, for x  Ω,

(50)v  ey = 0, 𝝈v
 n  ex = 0, for x  Γtp,

(51)v = 0, for x  Γlb,

(52)
𝝈v

 n = 𝛿Direc(x  xout)[ kout(v  ex) + 1]ex, for x ∈ Γout,

(53)𝝈v
 n = 𝛿Direc(x  xin)[ kin(v  ex)]ex, for x ∈ Γin,

(54)𝝈v
 n = 0, for x  Γrm.

(55)
 fobj

 #̃i
=  

dEi

d#̃ei ∫Ωei

𝝈̂ ∶ 𝛁vdx.

(56) (u) = Win(u) −Wex(u),

(57)Win(u) =
1

2 ∫ 𝝈 ∶ 𝝐 dx,

(58)Wex(u) = ∫ f  u dx + ∫ΓN t  u ds,

where   , Win , and Wex denote the total potential energy, 
internal strain energy, and work done by external forces, 
respectively, with f as the body force and t as the traction 
force on the Neumann boundaries.

For the adjoint PDE in (49)–(54), the minimal potential 
energy formulation is also applicable. The expression for the 
potential energy is the same as in (56)–(58) with different 
boundary conditions.

4.2.1  DEM-TO result vs. FEM-TO result

In Fig. 13, we compare the DEM-TO and FEM-TO designs 
at the TO iteration 400. The designs given by DEM-TO and 
FEM-TO have discrepancies, and the design performances 
are comparable but slightly different. The final objective 
function values at the 400th TO iteration are  1.340 and 
 1.412 for DEM-TO and FEM-TO respectively. One can 
notice in panel (a) and panel (b) that both DEM-TO and 
FEM-TO can minimize the objective function and achieve 
optimal TO designs while satisfying the volume constraint.

4.2.2  Solution error of DEM models

Figure 14 shows the relative error of the DEM model solu-
tions at various TO iterations. Here the relative root mean 
squared error (Relative RMSE) is used. The expression for 
the Relative RMSE between two vector A and B is:

in which N represents the number of entries in both A and B. 
In Fig. 14, panel (a) and panel (b) show the relative RMSE 
for the DEM primal solution and the DEM adjoint solution 
respectively. In both panel (a) and panel (b), the light red 
curves show the original data of relative errors, and the blue 
curves show the window moving average to highlight the 
main tendency. One can observe the decreasing tendencies 
of DEM solution errors for both the primal PDE solution and 
the adjoint PDE solution. Figure 15 shows the comparison 
between the DEM solutions and the FEM solutions for the 
direct state PDE and the adjoint PDE at TO iteration 400. 
One can observe that at the end of DEM-TO, the solutions 
given by DEM and FEM are very close. The relative RMSEs 
for the primal PDE solution and the adjoint PDE solution are 
9.53  e−3 and 1.09  e−2 respectively.

The reason for the higher DEM solutions error possibly 
lies in two aspects: First, more sufficient training in the later 
stage of TO. In the process of DEM-TO, we utilize transfer 
learning. The training for each TO iteration is initialized with 
the neural network parameters obtained from the end stage of 
the preceding TO iteration. Thus, with more TO iterations, 

(59)Relative RMSE(A,B) =

 
1

N

∑N

i=1
(Ai  Bi)

2

Bmax  Bmin

,
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the training of the neural network is more sufficient, which 
can make a decreasing trend of prediction errors. Second, less 
design change in the later stage of TO. Figure 16 shows the 
dissimilarity of the updated design with the old design at vari-
ous TO iterations. Here the definition of the design dissimilar-
ity is given by

(60)
Dissimilarity(𝛾old, 𝛾updated)

= 1  Cosine Similarity(𝛾old, 𝛾updated),

A dissimilarity of 0 implies that the two adjacent designs are 
perfectly aligned, and a dissimilarity of 1 indicates that the 
two adjacent design vectors are orthogonal, which means no 
similarity. From Fig. 16 one can observe a decreasing trend 
of design dissimilarity, which means the design changes less 
in the later TO stage. At a DEM-TO iteration, if the updated 
design is similar to the old design, the initialization of the 
neural network parameters can be closer to the target values, 

(61)

Cosine Similarity(𝛾old, 𝛾updated)

=

 n

i=1
𝛾oldi  𝛾updatedi√ n

i=1
𝛾old

2
i
 
√ n

i=1
𝛾updated

2
i

.

Fig. 13  Comparison of DEM-TO and FEM-TO for compliant mecha-
nism displacement inverter design. a The history of the objective 
function during DEM-based and FEM-based TO. b The history of 

the volume fraction during DEM-based and FEM-based TO. c The 
designs given by FEM-based and DEM-based TO at the TO iteration 
400

Fig. 14  Relative errors of DEM 
for a primal equation solutions 
and b adjoint equation solutions 
at various TO iterations for 
compliant mechanism displace-
ment inverter design
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thus the training at the iteration can be more sufficient and 
the DEM solutions can be more accurate.

For the oscillation of the DEM solution errors shown 
in Fig. 14, the reason possibly lies in two aspects: First, 
the oscillation of design similarity. One can also observe 
an oscillation in Fig. 16, which means the similarity of 
adjacent designs oscillates. Second, the oscillation of the 
DEM solution error may related to the dynamic sampling 
of the training set. In each DEM training, to avoid the 
problem of the unbounded loss function, we randomly 
resample the training points, which may add variability to 
the training process. This may also affect the DEM solu-
tion at various TO iterations, contributing to the oscilla-
tion of the DEM solution errors.

Fig. 15  DEM solutions vs. FEM solutions at TO iteration 400 (Primal solution Relatie RMSE = 9.53  e−3 , adjoint solution Relatie RMSE = 
1.09  e−2)

Fig. 16  Dissimilarity of design at various DEM-TO iterations
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4.3  Application to compliant gripper design 
problem with passive elements

The sensitivity expression of this example is the same as 
in 4.2. The solution to the adjoint PDE is equivalent to 
the equilibrium solution of the elastic system depicted 
in Fig. 5b, the derivation of the adjoint equation is not 
discussed again.

The domain size, grid resolution, filter radius, volume 
fraction, and material properties in the complaint inverter 
example are also used here. The stiffness coefficients of 
the springs are kin = 1, kout = 0.005 for the input port and 
output port respectively.

4.3.1  DEM-TO result vs. FEM-TO result

In Fig. 17 shows the objective function history, volume 
fraction history, and the optimal TO designs for DEM-TO 
and FEM-TO. The final objective functions values are 
fobj =  0.6063 and fobj =  0.6200 for DEM-TO and FEM-
TO respectively, which is comparable. Both DEM-TO and 
FEM-TO minimize the objective function and achieve the 
optimal designs while satisfying the volume constraint.

4.3.2  Effect of changing Nepoch on DEM solution accuracy 
and DEM-TO efficiency

In this section, we demonstrate that reducing the maximum 
number of training epochs for each DEM training ( Nepoch ) 
leads to an increase in the overall solution error of the DEM 
in the DEM-TO process. However, this reduction enhances 
the efficiency of the DEM-TO process. With smaller Nepoch , 
a comparable level of design performance can be achieved 
with fewer total DEM training epochs. Figure 18 shows the 
DEM solution relative RMSE for the primal PDE and the 
adjoint PDE for Nepoch = 200 , Nepoch = 100 and Nepoch = 10 . 
One can observe that when Nepoch decreases, which means 
the DEM training is less sufficient at each TO iteration, the 
overall error of DEM solutions increases.

When Nepoch is smaller, the total number of DEM training 
epochs decreases for the same number of TO iterations. For 
example, for Nepoch = 200 the total number of DEM training 
epochs at TO iteration 400 equals 200  400  2 =160,000, 
and for Nepoch = 10 the total number of DEM training epochs 
at TO iteration 400 equals 400  10  2 = 8000 . Figure 19 
shows the reduction of the objective function with respect to 
the total number of DEM training epochs for Nepoch = 200 , 
Nepoch = 100 and Nepoch = 10 . It can be observed that to 
attain an equivalent reduction in fobj , fewer total training 
epochs are required when Nepoch is set to a smaller value, 
such as 10. With the same number of total training epochs, 

Fig. 17  Comparison of DEM-TO and FEM-TO for compliant mecha-
nism gripper design. a The history of the objective function during 
DEM-based and FEM-based TO. b The history of the volume frac-

tion during DEM-based TO and FEM-based TO. c The designs given 
by FEM-based and DEM-based TO at iteration 400
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the design performance given by the case Nepoch = 10 is the 
best.

In the proposed approach, we do not apply an early stop 
criterion to DEM training but control the stop of DEM train-
ing by setting the maximum number of epochs for each DEM 
model training. The reason is, that we observe that in the early 
stages of DEM-TO optimization iterations, the accuracy of 
solving the primal and adjoint PDEs does not significantly 
affect the optimality of the final design. Therefore, it is unnec-
essary for DEM training to fully converge during the early 
optimization iterations. This is demonstrated in Figs. 18 and 19 
of the manuscript. Figure 18 shows that with only 10 epochs 
of DEM training per iteration, the error in solving the primal 
and adjoint PDEs is larger in the early optimization iterations 
compared to 100 and 200 epochs. However, Fig. 19 shows 

that the final design objective values achieved by DEM-TO 
are comparable in all three cases.

Figure  20 presents the compliant gripper designs 
obtained from DEM-TO for Nepoch = 200 , Nepoch = 100 and 
Nepoch = 10 . All of those designs are given after 20,000 total 
training epochs. One can observe that with the same number of 
total epoches, the DEM-TO design obtained from Nepoch = 10 
is better than DEM-TO design obtained from Nepoch = 100 and 
a better than DEM-TO design obtained from Nepoch = 200.

In summary, a smaller Nepoch improves DEM-TO efficiency, 
as fewer total training epochs are needed for equivalent design 
performance. However, this can result in higher overall errors 
in DEM solutions, especially in the early stages of DEM-TO. 
Thus, if the primary need is the final DEM-TO design, with 
less emphasis on early-stage DEM solution accuracy, a smaller 
Nepoch is a beneficial choice for greater efficiency.

4.4  Ablation studies

4.4.1  The effect of using Fourier Feature Embedding

With the 2D heat conduction problem as an example, the 
advantages of incorporating Fourier Feature Embedding are 

Fig. 18  Effect of changing Nepoch for DEM-TO on DEM accuracy

Fig. 19  Effect of changing Nepoch on DEM-TO efficiency

Fig. 20  Comparison of compliant gripper designs obtained from 
DEM-TO at various choices of Nepoch , the total number of training 
epochs is 20,000 for all three designs
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demonstrated. Figure 21 illustrates a comparative analysis of 
the Deep Energy Method’s (DEM) prediction accuracy for a 
topology-optimized design, examining the influence of Fou-
rier Feature Embedding (FFE). Panel (a) displays the result 
obtained through the Finite Element Method (FEM), serving 
as a reference. Panel (b) showcases the optimized design 
achieved through topology optimization (TO). Panels (c) to 
panel (h) showcase the DEM prediction results for three dif-
ferent neural network architectures. Panels (c) and (e) depict 
the DEM predictions without the application of FFE, with 
four and eight layers respectively. Panels (g) show the DEM 

prediction utilizing FFE with four layers. The number of 
training epochs is 1000 for all the three cases. All the other 
DEM parameters for the three cases are shown in the follow-
ing Table 1. One can observe that the DEM prediction with 
Fourier Feature Embedding (FFE) successfully captures fine 
features near the branches in the TO design, while without 
FFE, the prediction fails to accurately represent these details, 
despite an increased number of hidden layers in the neural 
network. Table 2 quantitatively shows the increase in DEM 
prediction accuracy for the three cases. One can observe 
that the using of FFE more effectively reduces the relative 

Fig. 21  Comparison of DEM 
prediction accuracy between 
w/ and w/o Fourier Feature 
Embedding
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RMSE than increasing the number of hidden layers in those 
three cases.

4.4.2  Unbounded loss function given by static training set

The problem of the unbounded loss function given by a 
static training set in DEM is shown in Fig. 22. The DEM is 
trained for solving the equilibrium temperature given the TO 

design in 22c. In panel (a), the red curve shows the thermal 
energy functional history calculated on a static training set. 
The black curve shows the thermal energy functional calcu-
lated on a validation set, which is also randomly sampled but 
different from the training set. One can observe the training 
set energy functional is unbounded, which is continuously 
decreasing from epoch 1 to epoch 1300, whereas the valida-
tion set energy functional decreased from epoch 1 to epoch 
300 and began to increase from epoch 300. Moreover, panel 
(d) and panel (f) depict the DEM prediction result at epoch 
300 and epoch 1300 respectively, one can observe that at 
epoch 1300, the prediction error can be very high. The issue 
arises from utilizing a static training set, which results in the 
neural network not being regularized in areas outside of the 
training points.

In this study, to avoid this problem, we randomly resam-
ple the training set in every 10 epochs. Figure 23 shows the 
effectiveness of resampling in avoiding this problem.

Table 2  Comparison of DEM prediction accuracy between w/ and 
w/o Fourier Feature Embedding

Network Nl N𝜽 Relative 
RMSE 
(%)

FDNN w/o FFE 4 22,791 14.37
8 52,719 12.06

FDNN w/ FFE 4 30,101 8.24

Fig. 22  Unbounded loss function in DEM training when using static training set. (Colour figure online)
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5  Conclusions

We have proposed a DEM-based TO approach using con-
tinuous TO formulation, which is applicable to both self-
adjoint and non-self-adjoint problems and free from finite 
element analysis. We apply the proposed DEM-TO frame-
work to a 2D heat sink design problem (self-adjoint case) 
and two compliant mechanism design problems (non-self-
adjoint cases).

Our results validate the DEM-TO framework as a compet-
itive alternative to traditional FEM-based approaches, dem-
onstrating its ability to produce comparable design perfor-
mances. This study also highlights the importance of using 
Fourier Feature Embedding to efficiently improve the DEM 
solution accuracy and the importance of using a dynamic 
training set to avoid the problem of unbounded DEM loss 
function. Additionally, we have observed a decreasing trend 
in the DEM solution error during the DEM-TO process, 
which can be ascribed to to design convergence and trans-
fer learning effect. Moreover, the effect of changing Nepoch 
on DEM solution accuracy and DEM-TO efficiency is dis-
cussed. We demonstrate that a smaller Nepoch can lead to 
higher DEM solutions error in the early stage of DEM-TO, 
but it can drastically improve the computational efficiency 
of the proposed DEM-TO framework. On the other hand, a 
larger Nepoch may reduce computational efficiency but allow 
for more accurate state analysis solutions throughout the 
entire DEM-TO process at each design update iteration.

In our paper, we briefly discuss the computational time 
for DEM-TO and FEM-TO based on the hardware and set-
tings used. However, the computational time for these meth-
ods depends on various factors, such as whether FEM uses 
parallel acceleration and GPU, the model used for DEM 
training, and batch size. A further possible future develop-
ment consists in exploring a rigorous comparison of the effi-
ciency of DEM-TO and FEM-TO methods, considering these 
factors. Additionally, in the work done by Nguyen-Thanh 

et al. (2020), it is practically shown that different integration 
strategies may lead to varying accuracy of DEM solutions. 
An interesting future work is exploring the impact of using 
Simpson’s rule, the trapezoidal rule or Gaussian quadrature 
on the accuracy of DEM solutions with dynamic integration 
point sets in future work.

Appendix A: steps of deriving the minimal 
functional formulation for solving the 2D 
heat conduction problem

For the heat conduction problem (16)–(18), the way of deriv-
ing its equivalent minimal functional problem is illustrated 
as follows:

• First, we derive the weak formulation of the heat con-
duction equation. We multiply a test function v on 
both sides of the Eq. (16) and integral both sides over 
the domain   . The weak formulation reads: Find 
T  X  {w  H1(Ω)| w|ΓD = 0} such that: 

• Then we derive an equivalent functional mini-
mization problem utilizing the weak formula-
tion. For a weak formulation of an elliptic equation 
( a(T , v) = f (v),  v ∈ X  ), the following proposition 
holds: If the bilinear form a(u, v) is symmetric and all 
hypotheses in the Lax-Milgram theorem (Evans 2022; 

(A.1)a(T , v) = f (v),  v ∈ X,

(A.2)a(T , v) = ∫ 𝜅(𝛁T  𝛁v)dx,

(A.3)f (v) = ∫ svdx.

Fig. 23  Effectiveness of resampling on avoiding unbounded loss function
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Le Dret and Lucquin 2016) are satisfied, the unique solu-
tion of the weak formulation is the unique solution of: 

 The proposition is true for the weak formulation in (A.1), 
for which the proof is shown in Appendix B. Thus the 
solution of weak formulation Eq. (A.1) is the solution of: 

Appendix B: proof of Lax–Milgram theorem 
for the heat conduction problem

For the 2D heat conduction problem, the weak form is

Given

the f(v) becomes

For the heat conductivity 𝜅 , we have 0 <  min     0.

• By applying Cauchy–Schwarz inequality and Poincaré 
inequality, we have 

(A.4)min
w X

J(w) with J(w) =
1

2
a(w,w) − l(w).

(A.5)min
T

J(T) =
1

2 ∫ 𝜅|𝛁T|
2dx − ∫ sTdx,

(A.6)s.t. T = 0, for x  ΓD.

(B.1)
a(T , v) = f (v),  v ∈ X  {w ∈ H1(Ω)| w|ΓD

= 0},

(B.2)a(T , v) = ∫ 𝜅(𝛁T  𝛁v)dx,

(B.3)f (v) = ∫ svdx − ∫ΓN qvds.

(B.4)s = 0.001,

(B.5)q = 0,

(B.6)Td = 0,

(B.7)f (v) = ∫ svdx.

(B.8)|a(T , v)| =
||||∫ 𝜅(𝛁T  𝛁v)dx

||||

(B.9) ∫ |𝜅||𝛁T||𝛁v|dx

 The bilinear form a is continuous.
• Also, we have 

 By Poincaré inequality we have 

 which give us 

 Here 𝛼 is taken to be the minimum of 𝜅min and kmin C
2 . 

The bilinear form a is V-elliptic.
• For the linear form f(v), we have 

 The linear form f is continuous.
Thus the conditions in the Lax–Milgram theorem are met.

Appendix C: derivation of continuous 
adjoint sensitivity analysis

Appendix C.1: 2D heat conduction problem

For the TO problem defined in (15)–(20), the continuous 
adjoint method is employed to determine the sensitivity of 
the objective function with respect to the physical density 
variables  fobj

 #̃
 , we use the continuous adjoint method. The 

augmented objective function is given by:

(B.10) 𝜅0 ∫ |𝛁T||𝛁v|dx

(B.11) 𝜅0 𝛁T L2( ) 𝛁v L2( )
(B.12) 𝜅0 T H1 v H1

(B.13)a(T , v) = ∫ 𝜅|𝛁T|
2dx

(B.14) 𝜅min ∫ |𝛁T|
2dx

(B.15)= 𝜅min 𝛁T 
2
L2( )

.

(B.16) T L2( )  C 𝛁T L2( ),

(B.17)a(T , v)  𝛼 T 2
H1( )

.

(B.18) f (v) =   svdx ≤ s   v dx = s‖v‖L2( ).

(C.1)
L =

1

2 ∫ 𝜅|𝛁T|
2dx

+ ∫ v(𝛁  (𝜅𝛁T) + s)dx.
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By applying integration by parts, divergence theorem, and 
rearranging terms, we have:

The first-order variation of the augmented Lagrange function 
L with respect to the variation of physical density variable 
 " is expressed as:

By substituting

we have

For the boundary integral terms, we have

(C.2)
L =

1

2 ∫ 𝜅|𝛁T|
2dx + ∫Γ v𝜅𝛁T  nds

− ∫ 𝜅𝛁T  𝛁vdx + ∫ vsdx.

(C.3)
𝛿L =

1

2 ∫ 𝛿[𝜅(𝛁T  𝛁T)]dx + ∫Γ v𝛿(𝜅𝛁T)  nds

− ∫ 𝛿(𝜅𝛁T)  𝛁vdx + ∫ v𝛿sdx.

(C.4)

1

2 ∫ 𝛿[𝜅(𝛁T  𝛁T)]dx

=
1

2 ∫ 𝛿𝜅𝛁T  𝛁Tdx + ∫ s𝛿Tdx,

(C.5)
 ∫Ω 𝛿(𝜅𝛁T)  𝛁vdx =  ∫Ω 𝛿𝜅𝛁T  𝛁vdx

 ∫Γ 𝜅𝛁v  n𝛿Tds + ∫Ω 𝛁  (𝜅𝛁v)𝛿Tdx,

(C.6)𝛿L =
1

2 ∫ 𝛿𝜅𝛁T  𝛁Tdx + ∫ s𝛿Tdx

(C.7)+ ∫ v𝛿(𝜅𝛁T  n)ds

(C.8)
 ∫Ω 𝛿𝜅𝛁T  𝛁vdx  ∫Γ 𝜅𝛁v  n𝛿Tds

+ ∫Ω 𝛁  (𝜅𝛁v)𝛿Tdx

(C.9)+ ∫ v𝛿sdx.

(C.10)∫ v𝛿(𝜅𝛁T  n)ds − ∫ 𝜅𝛁v  n𝛿Tds

(C.11)

=∫ D v𝛿𝜅𝛁T  nds + ∫ D v[𝜅𝛁(𝛿T)  n]ds + ∫ N v𝛿(𝜅𝛁T  n)ds

Since 𝛿(𝜅𝛁T  n) = 0 on  N , the term  
 N

v𝛿(𝜅𝛁T  n)ds van-
ishes. Since 𝛿T = 0 on  D , the term   

ΓD
𝜅𝛁v  n𝛿Tds van-

ishes. Since 𝛿s = 0 on   , the term  
 
v𝛿sdx vanishes. Then 

we can reformulate 𝛿L as:

We can let

Then the terms in (C.14) can be eliminated. The equations 
in (C.15)–(C.17) are the continuous adjoint equations for 
the aforementioned minimal thermal compliance problem, 
and we call the governing equations in (16)–(18) the primal 
equations for the minimal thermal compliance problem.

Figure 3 shows the design domain and boundary condi-
tions in the 2D heat conduction problem, Fig. 3a is the origi-
nal boundary conditions, Fig. 3b shows the reduction of the 
numerical domain by applying a symmetry treatment. In this 
study, for this 2D heat conduction state analysis, we consider 
the boundary conditions as

We can notice that with q = 0 and Td = 0 for (16)–(18), the 
primal equations and the adjoint equations share the same 
boundary conditions and governing equations, which means 
v = T  . In this case, we call the aforementioned topology 
optimization problem self-adjoint. The sensitivity expression 
in (C.13) can be reduced to:

Since  " = d"

d#
 #̃ , the (C.21) becomes

(C.12) ∫ΓD 𝜅𝛁v  n𝛿Tds  ∫ΓN 𝜅𝛁v  n𝛿Tds.

(C.13)

𝛿L =
1

2 ∫ 𝛿𝜅𝛁T  𝛁Tdx − ∫ 𝛿𝜅𝛁T  𝛁vdx + ∫ΓD v𝛿𝜅𝛁T  nds

(C.14)
+ ∫ [𝛁  (𝜅𝛁v) + s]𝛿Tdx + ∫ΓD v[𝜅𝛁(𝛿T)  n]ds

− ∫ΓN 𝜅𝛁v  n𝛿Tds.

(C.15)𝛁  (𝜅𝛁v) + s = 0, x  Ω,

(C.16) 𝜅𝛁v  n = 0, x ∈ ΓN ,

(C.17)v = 0, x  ΓD.

(C.18)s = 0.001,

(C.19)q = 0,

(C.20)Td = 0.

(C.21)𝛿L =  
1

2 ∫Ω 𝛿𝜅𝛁T  𝛁Tdx.
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We can relate the variational form of the sensitivity with the 
partial derivative  L

 #̃i
:

in which 𝜅i denotes the heat conductivity value in the ith 
element,  i denotes the region in the i element.

Conversely, if the primal equations and the adjoint equa-
tions do not share the same boundary conditions and govern-
ing equations, we need to solve primal equations and adjoint 
equations separately. The sensitivity expression in (C.13) is:

Appendix C.2: compliant mechanism design 
problems

For the two compliant mechanism design problems, to obtain 
the sensitivity of the objective function with respect to the 
physical density variables  " , we employ the continuous adjoint 
method. The augmented objective function is formulated as 
below:

The variation of the augmented Lagrangian function with 
respect to the variation of the physical design variable  " can 
be expressed as:

Since b = 0 , we have 𝛿b = 0 , allowing us to omit the last 
term. Applying integration by parts and the divergence theo-
rem to the second term, we obtain:

(C.22) L =  
1

2 ∫Ω
d"

d$̃
 $̃𝛁T  𝛁Tdx.

(C.23)

 fobj

 #̃i
=  

1

2

d$i
d#̃i

∫Ωi

𝛁T  𝛁Tdx,

(C.24)𝛿L =
1

2 ∫ 𝛿𝜅𝛁T  𝛁Tdx − ∫ 𝛿𝜅𝛁T  𝛁vdx.

(C.25)L =  uout + ∫Ω v  (𝛁  𝝈 + b)dx.

(C.26)
𝛿L =  𝛿uout + ∫Ω v  𝛁  (𝛿𝝈)dx

+ ∫Ω v  𝛿bdx

(C.27)=  𝛿uout + ∫Ω v  𝛁  (𝛿𝝈)dx.

(C.28)
∫ v  𝛁  (𝛿𝝈)dx = −∫ 𝛿𝝈 ∶ 𝛁vdx + ∫Γ v  𝛿𝝈  nds

where the 𝛿𝝈I and 𝛿𝝈II are defined as

By applying integration by parts and the Gaussian diver-
gence theorem, we arrive at:

where 𝝈v is defined as:

By substitutions and rearrangement, we get the expression 
for the variation of the augmented Lagrangian function:

We can express 𝛿𝝈II as:

in which  𝝈 represents the dimensionless stress tensor. Then 
we can rewrite the variation of the augmented Lagrange 
function as:

(C.29)=  ∫Ω
(
𝛿𝝈I + 𝛿𝝈II

)
∶ 𝛁vdx + ∫Γ v  𝛿𝝈  nds.

(C.30)𝛿𝝈I

ij
= 𝜇

(𝜕𝛿ui
𝜕xj

+
𝜕𝛿uj

𝜕xi

)
+ 𝜆𝛿ij

𝜕𝛿um
𝜕xm

(C.31)𝛿𝝈II

ij
= 𝛿𝜇

(𝜕ui
𝜕xj

+
𝜕uj

𝜕xi

)
+ 𝛿𝜆𝛿ij

𝜕um
𝜕xm

.

(C.32)
 ∫Ω 𝛿𝝈

I ∶ 𝛁vdx = ∫Ω 𝛿u  (𝛁  𝝈v)dx  ∫Γ 𝛿u  𝝈v
 nds,

(C.33)𝝈v

ij
= 𝜇

(𝜕vi
𝜕xj

+
𝜕vj

𝜕xi

)
+ 𝜆𝛿ij

𝜕vm

𝜕xm
.

(C.34)
𝛿L =  𝛿uout + ∫Ω 𝛿u  (𝛁  𝝈v)dx + ∫Γ v  𝛿𝝈  nds

 ∫Γ 𝛿u  𝝈v
 nds  ∫Ω 𝛿𝝈

II ∶ 𝛁vdx.

(C.35)

 𝝈II =
dE

d#̃
 #̃

[(
1

2(1 + $)

)(
%ui
%xj

+
%uj

%xi

)

+
&

(1 + $)(1  2$)
 ij

%um
%xm

]

=
dE

d#̃
 #̃𝝈̂,

(C.36)𝛿L =  𝛿uout + ∫Ω 𝛿u  (𝛁  𝝈v)dx

(C.37)+ ∫ v  𝛿𝝈  nds

(C.38) ∫Γ 𝛿u  𝝈v
 nds
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The strong form of the adjoint equation is given by eliminat-
ing the term that depends on 𝛿u for x  Ω , which is

The boundary conditions for the adjoint problem are derived 
by eliminating the boundary integral terms dependent on 
𝛿u . Here we take the compliant inverter design problem as 
an example. The boundary conditions of the primal equa-
tions for the complaint inverter design problems are shown 
in Fig. 4a. Mathematically, the boundary conditions are:

From the variations of the boundary conditions, we have

For the variation of the objective function  uout , we have

By expanding the two boundary integral terms (C.37) and 
(C.38), and substituting Eqs. (C.46)–(C.51), we can rewrite 
𝛿L as

(C.39) ∫Ω
dE

d 
" 𝝈̂ ∶ 𝛁vdx.

(C.40)𝛁  𝝈v = 0,

(C.41)u  ey = 0, 𝝈  n  ex = 0, for x  Γtp,

(C.42)u = 0, for x  Γlb,

(C.43)
𝝈  n = 𝛿Direc(x  xout)[ kout(u  ex)]ex, for x ∈ Γout,

(C.44)
𝝈  n = 𝛿Direc(x  xin)( kinu  ex + fin)ex, for x ∈ Γin,

(C.45)𝝈  n = 0, for x  Γrm.

(C.46)𝛿u  ey = 0, 𝛿𝝈  n  ex = 0, for x  Γtp,

(C.47)𝛿u = 0, for x  Γlb,

(C.48)
𝛿𝝈  n = 𝛿Direc(x  xout)[ kout(𝛿u  ex)]ex, for x ∈ Γout,

(C.49)
𝛿𝝈  n = 𝛿Direc(x  xin)( kin𝛿u  ex)ex, for x ∈ Γin,

(C.50)𝛿𝝈  n = 0, for x  Γrm.

(C.51) 𝛿uout = ∫Γout 𝛿u  (𝛿Direc(x  xout)ex)ds

(C.52)𝛿L =∫ 𝛿u  (𝛁  𝝈v)dx

(C.53)+ ∫ tp v  [(𝛿𝝈  n  ey)ey] + (𝛿u  ex)ex  𝝈v
 nds

In order to eliminate the boundary terms that depend on 𝛿u , 
we need:

that are the boundary conditions for the adjoint problem. The 
visualizations of the adjoint problem boundary conditions 
for the compliant inverter are shown in Fig. 4b. Similarly, 
we can derive the adjoint problem boundary conditions for 
the complaint gripper design problem, which is visualized 
in Fig. 5b.

After term elimination, the remaining terms express the 
sensitivity of the objective function with respect to the phys-
ical density variable  ":

We can relate the variational form expression (C.64) to the 
partial derivative form  J

 #̃i
 as

Acknowledgements The support from US National Science Foun-
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support of the research fund FAR 2023 DIP - Fondo di Ateneo per 

(C.54)+ ∫ lb v  𝛿𝝈  nds

(C.55) ∫Γrm 𝛿u  𝝈v
 nds

(C.56)
+ ∫ out 𝛿u  [𝛿Direc(x − xout)[−kout(v  ex)]ex

+ 𝛿Direc(x − xout)ex − 𝝈v
 n]ds

(C.57)+ ∫ in 𝛿u  [𝛿Direc(x − xin)[−kin(v  ex)]ex − 𝝈v
 n]ds

(C.58) ∫Ω
dE

d "
#  "𝝈̂ ∶ 𝛁vdx.

(C.59)v  ey = 0, 𝝈v
 n  ex = 0, for x  Γtp,

(C.60)v = 0, for x  Γlb,

(C.61)
𝝈v

 n = 𝛿Direc(x  xout)[ kout(v  ex) + 1]ex, for x ∈ Γout,

(C.62)
𝝈v

 n = 𝛿Direc(x  xin)[ kin(v  ex)]ex, for x ∈ Γin,

(C.63)𝝈v
 n = 0, for x  Γrm,

(C.64) fobj =  L =  ∫Ω
dE

d#̃
 #̃𝝈̂ ∶ 𝛁vdx.

(C.65)
 fobj

 #̃i
=  

dEi

d#̃i ∫Ωi

𝝈̂ ∶ 𝛁vdx.
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