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Abstract—System programs are frequently coded in memory-
unsafe languages such as C/C++, rendering them susceptible to
a variety of memory corruption attacks. Among these, just-in-
time return-oriented programming (JIT-ROP) stands out as an
advanced form of code-reuse attack designed to circumvent code
randomization defenses. JIT-ROP leverages memory disclosure
vulnerabilities to dynamically harvest reusable code gadgets
and construct attack payloads in real-time. To counteract JIT-
ROP threats, researchers have developed multiple execute-only
memory (XoM) prototypes to prevent dynamic reading and
disassembly of memory pages. XoM, akin to the widely deployed
WoX protection, holds promise in enhancing security. However,
existing XoM solutions may not be compatible with legacy and
commercial off-the-shelf (COTS) programs, or they may require
patching the protected binary to separate code and data areas,
leading to poor reliability. In addition, some XoM methods have
to modify the underlying architectural mechanism, compromising
compatibility and performance.

In this paper, we present PXoM, a practical technique to
seamlessly retrofit XoM into stripped binaries on the x86-64
platform. As handling the mixture of code and data is a well-
known challenge for XoM, most existing methods require the
strict separation of code and data areas via either compile-
time transformation or binary patching, so that the unreadable
permission can be safely enforced at the granularity of memory
pages. In contrast to previous approaches, we provide a fine-
grained memory permission control mechanism to restrict the
read permission of code while allowing legitimate data reads
within code pages. This novelty enables PXoM to harden stripped
binaries but without resorting to error-prone embedded data
relocation. We leverage Intel’s hardware feature, Memory Pro-
tection Keys, to offer an efficient fine-grained permission control.
We measure PXoM’s performance with both micro- and macro-
benchmarks, and it only introduces negligible runtime overhead.
Our security evaluation shows that PXoM leaves adversaries
with little wiggle room to harvest all of the required gadgets,
suggesting PXoM is practical for real-world deployment.

I. INTRODUCTION

The perpetual competition between cyber adversaries and
defenders on memory corruption vulnerabilities has intensi-

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA

ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240825
www.ndss-symposium.org

fied, resulting in an ongoing struggle [1]-[6]. The prevalence
of W@X protection (i.e., memory cannot be writable and
executable at the same time) in modern operating systems
has led attackers to reuse code snippets from the vulnerable
program to construct attacks. Adversaries identify these code
snippets, also known as “gadgets,” by examining the disas-
sembled binary code [7]. Subsequently, they connect these
gadgets in a precise sequence to create harmful payloads
and redirect the control flow to the gadgets to launch the
attack. To mitigate this threat, researchers have proposed
various code randomization techniques [8]-[19] to impede
the construction of gadgets by reorganizing the code layout
in memory. However, code randomization is susceptible to
memory disclosure, which makes the randomized code layout
evident to attackers and undermines the fundamental memory
secrecy assumption of code randomization [20]. The technique
of JIT-ROP [21] leverages repeated exploitation of memory
disclosure vulnerabilities to collect code gadgets on-the-fly.
This is accomplished by utilizing the leaked code pointers
present on memory pages. Consequently, JIT-ROP can cir-
cumvent code randomization protection, even rendering fine-
grained randomization strategies ineffective [22]. The premise
of JIT-ROP relies on the disclosure of memory pages, where
attackers must first traverse disassembled code to gather the
required gadgets for the payload construction. Therefore, a
common JIT-ROP defense is to enforce a fine-grained memory
permission policy to restrict arbitrary read to code pages.
Execute-only memory (XoM) [23]-[29] has emerged as a
prominent defense against memory disclosure. By revoking the
read privilege of executable memory, XoM deprives attackers
of the ability to inspect the code after code randomization has
been applied. XoM implementations have utilized software
emulation [23], [24], [26], [29] or hardware features [25],
[27], [28] to achieve this objective. Unfortunately, existing
XoM prototypes have failed to gain popularity, and one of the
major obstacle comes from the false alarms caused by legal
data-in-code reads. Ideally, if code and data areas are strictly
separated, XoM can safely remove the read privilege only from
code sections. However, for optimization purposes, code-data
mixture cases are not rare. For example, compilers may emit
data near their accessing code to exploit spatial locality [30].



XnR [23] is the first approach to leverage XoM to defend
against JIT-ROP attacks, based on the assumption that no data
is embedded in the code segment. Subsequent XoM papers
have attempted to address code-data separation in two ways.
The first class of work explicitly separates code and data areas
through custom compilers and linkers [24]-[26]. Obviously,
they cannot protect a large number of legacy and COTS
binaries. The second class of XoM work attempts to harden
binary code [27]-[29]. Nonetheless, they either rely on debug
symbols or error-prone binary patching to differentiate embed-
ded data from code, making these approaches impractical. In
particular, HideM [27] modifies the architectural mechanism
by segregating all data and code into separate caches. This
cache mode change has a negative impact on performance and
compatibility, as modern CPUs no longer have separate code
and data caches. These limitations necessitate further research
in restricting adversaries’ ability to exploit memory disclosure.
On the other hand, Destructive Code Reads (DCR) [31], [32]
can tolerate code disclosure by destroying the disclosed code
immediately after it is read, thus preventing its execution.
DCR addresses the challenge of handling legitimate data reads
within code pages, thereby offering enhanced compatibility for
protecting binaries. However, the security guarantees of DCR
have been compromised by code inference attacks [33].

This paper contributes to the ongoing research in XoM
policy enforcement by presenting a novel technique called
PXoM. Our approach safeguards stripped binaries from JIT-
ROP attacks on the x86-64 platform without the need for em-
bedded data relocation. The core of PXoM lies in an efficient
and fine-grained memory access control policy, which assigns
the R®X permission to different blocks within a memory
page. This approach is in contrast to the previous method
that required patching of the protected binary [28], which
involved relocating embedded data out of code pages and
updating code-to-data references. We note that binary rewriting
for relocating embedded data remains a nascent technique, as
highlighted in the latest study [34]. Our technique enables
legitimate data-in-code reads by enforcing the execute-only
permission on code areas only, rather than at the granularity
of the whole memory page. We take advantage of a Intel
hardware feature, Memory Protection Keys (MPK) [35], [36],
to regulate read requests to code areas and embedded data
areas at the kernel level, thus minimizing the performance
overhead of our approach.

Specifically, to bypass the barrier of precise binary disas-
sembly [37], [38], we propose a Unidirectional Disassembly
strategy, which is able to identify all data embedded in
code areas without false negatives. We customize the binary
loader in Linux kernel to load the PXoM-protected binaries,
and implement a runtime monitor in kernel to dynamically
scrutinize all read requests to code pages. To further enhance
PXoM'’s performance on frequently accessed embedded data,
we have developed a cache-like optimization policy. Our
secure evaluation measures the adversaries’ ability to launch a
ROP attack. Our results have revealed a minimal presence of
gadgets in the PXoM-protected binaries, and these leftover

gadgets are far from being sufficient to construct a harm-
ful payload. We conduct a multifaceted performance evalua-
tion with microbenchmarks, marcobenchmarks, and real-world
applications, including Imbench [39], SPEC CPU 2006 &
2017 [40], [41], three web servers, and four database software.
The results show that PXoM only incurs negligible runtime
overhead, ranging from 0.22% to 0.82% on average.

In a nutshell, we make the following key contributions:

e« We propose a new hardware-assisted XoM technique,
PXoM, which hardens stripped binaries to impede mem-
ory disclosure attempts and eventually prevent JIT-ROP
attacks. Our work is an advancement in the utilization of
hardware features for systems security.

e Our novel fine-grained memory access control policy
enable us to overcome the critical limitations of existing
work. Our technique allows for legitimate data reads
in executable memory without necessitating error-prone
embedded data relocation.

o To the best of our knowledge, PXoM reveals minimal
runtime overhead when compared to existing XoM tools.
Our extensive evaluation demonstrates that PXoM is a
viable solution for real-world adoption.

Open Source PXoM’s source code and datasets are available
at Zenodo to facilitate reproduction, replication, and reuse.

II. BACKGROUND, MOTIVATION, AND RELATED WORK

In this section, we provide background information on
JIT-ROP attacks and the importance of addressing memory
disclosure vulnerabilities. We also review existing approaches
for enforcing the XoM policy on userland programs and
identify their limitations, which have prompted our research.
Finally, we introduce the hardware feature that we leverage
to implement our fine-grained permission control mechanism
and kernel-level XoM protection.

A. Overview of Just-In-Time ROP

With the advancement of fine-grained code randomiza-
tion [8], [9], [13], [16], [19], traditional code-reuse attacks [42]
have evolved into more sophisticated styles like JIT-ROP
attacks [21], which generate ROP payloads at runtime. As
illustrated in Figure 1, a typical JIT-ROP attack consists of
two stages. First, attackers recursively scan code pages using
memory disclosure vulnerabilities to search for gadgets (@) in
Figure 1), which typically are code sequences ending with a
return instruction. In the second stage, the collected gadgets
are linked together to create a payload that exploits a memory
corruption vulnerability (e.g., buffer overflow or use after free)
to hijack the program’s control flow (@ in Figure 1). To
complete the search of the whole gadget chain within a small
time window (e.g., a few seconds), JIT-ROP attackers require
“unfettered access to a large number of the code pages” [21] to
find usable gadgets quickly. Therefore, preventing disclosure
of memory pages is crucial to mitigating these attacks.

Programs susceptible to JIT-ROP attacks primarily fall into
the following two categories:
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Figure 1: Overview of a typical JIT-ROP attack. Memory disclosure is the premise of a JIT-ROP attack.

Server-side programs, such as web servers and databases,
which allow multiple user interactions, are particularly vul-
nerable to JIT-ROP attacks. An attacker can interact with
the compromised program remotely, incrementally disclosing
parts of its code. The search for gadgets and the construction
of the malicious payload take place on the attacker’s device,
while the final payload is executed on the victim’s machine.

Client-side programs, such as Matlab, Autodesk Maya, and
JIT engines (e.g., JavaScript), are also vulnerable to JIT-ROP
attacks. Attackers exploit these vulnerabilities by utilizing
scripting languages. When the victim executes a malicious
script, it dynamically searches for code on the victim’s ma-
chine and constructs the attack payload in real-time. Among
these programs, JIT engines are especially prone to exploita-
tion. Attackers can automate exploitation by directing victims
to websites hosting malicious scripts, prompting the browser
to execute the exploit without user awareness.

B. Execute-only Memory Defense

The concept of Execute-only Memory (XoM) was once
introduced by Multics as early as 1967 [43]. However, it was
not adopted by modern operating systems and hardware until
JIT-ROP emerged as an urgent threat. Next, we introduce XoM
approaches designed to protect userspace software from JIT-
ROP attacks.

First XoM Defense against JIT-ROP The first approach
to reintroduce XoM into Linux on the x86 architecture as
a defense against JIT-ROP attacks was XnR [23]. Since
there was no hardware feature on x86 supporting XoM, XnR
configures the PTE_PRESENT bit in PTE (Page Table Entry)
of code pages as the “no present” state, causing all read
operations to be intercepted by XnR’s page fault handler.
However, due to the substantial overhead incurred by XnR’s
software implementation, it makes a trade-off to allow several
code pages to exist in the present state. This trade-off causes
XnR to miss read operations to these co-existing code pages,
leaving memory disclosure opportunities. More importantly,
XnR neglected to handle legitimate read operations that point
to code pages. As acknowledged by XnR’s authors, XnR will
be hindered by such data-in-code reads. It is clear that the two
main factors limiting the deployment of XnR are hardware
support and backward compatibility. These challenges have

also hindered the broader adoption of XoM since its reintro-
duction by XnR over a decade ago.

Hardware Support When XoM was first reintroduced by
XnR, XoM permissions were not supported by hardware and
could only be implemented through software emulation, which
resulted in significant overhead. Later, on the x86 architecture,
Intel’s Extended Page Tables (EPT) [35] hardware virtual-
ization mechanism was utilized to implement execute-only
permissions, improving performance to some extent. However,
EPT requires programs to run within a virtual machine,
and virtualization itself introduces additional performance
overhead. Android previously supported XoM on the ARM
architecture. However, due to implementation flaws that could
lead to the failure of Privileged Access Never (PAN) [44], the
flawed XoM implementation was removed beginning with An-
droid 11 [45]. Fortunately, Intel’s introduction of Memory Pro-
tection Keys (MPK) restored the ability to efficiently separate
read and execute permissions, making it the preferred method
for implementing execute-only permissions. The Linux kernel
has begun supporting execute-only permissions at the kernel
level using MPK [46]-[48]. In this paper, we also leverage
MPK to efficiently enforce execute-only memory permissions.
MPK allows us to overcome performance challenges of XoM,
enabling us to focus on addressing the other major obstacle to
the widespread adoption of XoM: backward compatibility.
Backward Compatibility A major factor limiting the
widespread adoption of XoM is the challenge of protecting the
vast number of precompiled programs. The XnR method [23]
is built on the strong assumption that code pages do not contain
any data. However, this assumption is not always valid in
practice. Despite modern compilers favoring the separation
of code and data, non-code bytes such as jump table data
and static read-only data often appear in code sections [31],
[49]. This is confirmed by Pang et al.’s SoK study on main-
stream binary disassembly tools [37], which found that the
mixture of code and data is very common in programs. For
instance, the authors discovered 295 hard-coded bytes from
the code pages of three test cases and 21,586 jump tables
embedded in the code pages of 57 programs. Inline assembly
code [50] in C libraries also frequently embeds data in code
sections, such as in the case of OpenSSL, BoringSSL, and
FFmpeg, which use handwritten assembly to speed up their
calculations. VirtualBox also employs handwritten assembly



to achieve function lazy loading and its virtual extensible
firmware interface. Furthermore, if a binary file links library
functions that mix code and data, its code section will also
contain embedded data.

The utilization of code and data in conjunction is also
required by some security solutions. One such example is
KCFI [51], which places the hash value of a function’s
prototype in the code section via a custom LLVM pass. KCFI
reads the embedded hash value to verify the control-flow
integrity at runtime. As admitted by KCFI’s developer, it is
incompatible with execute-only memory like XnR.

Compile-time Transformation In an effort to separate
data and code areas for enforcing XoM, one category of
follow-up work employs compile-time transformation [24]-
[26]. LR? [24] is an example of this approach, which compiles
source code using a custom compiler and designates code
and data to different memory spaces. This effectively prevents
all read operations to code pages, thereby enabling XoM.
However, LR? uses a pure software approach, which involves
adding a series of stub code in front of each memory load
instruction to verify the legality of read operations, leading
to significant overhead. Another solution, Readactor [25], also
employs a custom compiler and linker to separate code and
data. It utilizes Intel EPT, a hardware-assisted virtualization
technique, to manage the read permission of all code pages
when mapping the virtual machine’s physical address to the
host’s physical address. Finally, uXoM [26] provides XoM
protection on ARMv7-M architecture for embedded devices
by manipulating the Memory Protection Unit (MPU). It does
this by implementing a custom LLVM pass to convert memory
load instructions to unprivileged instructions.

However, all of these solutions require recompiling source
code to create code-data-separated binaries, leaving pre-built
legacy programs and COTS binaries unprotected. Further-
more, these approaches cannot cover handwritten assembly
functions, which are often used by libraries for enhanced
optimization purposes. For instance, our analysis of OpenSSL
1.1.1q’s code section revealed that up to 172, 058 bytes of data
are embedded in the code section.

Binary Hardening Another category of research aims to
enforce the XoM policy with only binary files. HideM [27]
and SECRET [29] rely on debug information (e.g., function
symbols and DWARF) to identify data in code sections prior to
runtime. During runtime, HideM’s XoM is achieved by desyn-
chronizing ITLB (Instruction Translation Lookaside Table)
and DTLB (Data Translation Lookaside Table). This causes
code and data with the same virtual address to be mapped to
distinct physical addresses, effectively segregating code and
data pages. HideM then redirects read operations for code
pages to the separate data page. However, this revision disrupts
the TLB flush mechanism, leading to performance penalties.
In addition, the split-TLB feature is no longer supported—
modern processors released after 2008 have replaced the split-
TLB with unified second-level TLBs. NORAX [28] disas-
sembles AArch64 stripped binaries and relocates executable

data' to a non-code segment via binary patching. During
relocation, NORAX must correctly update all references to
the relocated data. Failing to do so may trigger an access
violation and cause protected programs to crash. Unfortu-
nately, updating static data references, such as those from code
and the symbol table, is not a simple task [52]. Even more
challenging is updating references generated dynamically, such
as those from the global offset table (.got) and read-only global
data (.data.rel.ro) [6]. Furthermore, our findings reveal that
NORAX’s embedded data identification strategy may fail to
properly handle cases where code is misidentified as data. In
the event of such an occurrence, NORAX’s functionality will
cease to operate properly. For instance, if a small function is
mistakenly classified as embedded data, the references to the
function (e.g., through a function pointer) are also updated to a
non-executable area, which may cause the protected program
to crash when the function pointer is dereferenced at runtime.
Destructive Code Reads To address the issue of XoM meth-
ods not supporting legitimate data reads within code pages,
Heisenbyte [31] proposed a variant of XoM mechanism, called
Destructive Code Reads (DCR). Heisenbyte allows memory
disclosure but prevents executing the previously disclosed code
by destroying the disclosed code right after it is read. Heisen-
byte marks each executable memory page as execute-only and
maintains a duplicate copy for each execute-only page. When
a read operation occurs on the execute-only page, Heisenbyte
overwrites the read data with random bytes and returns the
corresponding data values from the duplicate page. Thus,
legitimate read operations for data-in-code work correctly, but
attackers cannot run disclosed executable memory. NEAR [32]
is another DCR approach building upon Heisenbyte, providing
a more reliable and efficient memory destruction mechanism.
Although DCR successfully supports legitimate data reads
within code pages, the code inference attacks proposed by
Snow et al. [33] have completely undermined DCR’s security
guarantees. The core idea of code inference attacks is to
disclose a piece of code but not to execute it. Instead, another
piece of code that is strongly related to it will be executed,
such as an exact same copy of the disclosed code in a different
memory area, or the relevant code that can be predicted
based on the disclosed ones. Despite the possible evasion to
DCR, it still provides valuable insights for advancing XoM. It
underscores the critical challenge of preventing code exposure
while simultaneously permitting legitimate reads to embedded
data. This inherent dilemma serves as a compelling motivation
for our current research.

Comparison of XoM Techniques Table 1 presents a com-
parison of various XoM approaches that aim to provide user-
land software protection. XnR does not require source code
or binary rewriting. However, it doesn’t support legitimate
reading of embedded data because it assumes no presence of
data residing in executable code areas. Furthermore, the N-
page window of XnR leaves an attack surface for adversaries.

INORAX refers to data residing in executable code regions as “executable
data,” while we refer to executable data as “embedded data” in the following
sections.



Table 1: Comparison of representative XoM approaches that protect userland programs.

No Source No Debug Support Data-in-Code Hardware' No Binary Architecture Runtime Memory

Code Needed?  Symbols Needed? Reads? Feature Patching Needed? Slowdown  Overhead
XnR [23] v v N/A v x86/x86-64 8.4% Negligible
LR2 [24] N/A N/A N/A ARMvS 6.6% Negligible
Readactor [25] N/A EPT N/A x86/x86-64 Negligible
uXoM [26] N/A N/A N/A ARMvV7-M 7.3% High
HideM [27] v v Split-TLB2 v x86-64
NORAX [28] v v AP/XN Bits ARMvS
SECRET [29] v N/A x86 14.4% High
Heisenbyte [31] v v v EPT x86-64 18.3% High
NEAR [32] v v v EPT X86-64/ARMv8 5.7%
PXoM v v v MPK v X86-64 0.36%  Negligible

n this column, EPT, TLB, AP/XN, and MPK represents Extended Page Table, Translation Lookup Table, Access Permission, eXecute Never, and Memory Protection
Keys, respectively. “N/A” means XoM is achieved using page table manipulation [23] or a form of software-fault isolation [24], [26], [29].
2The split TLB technique is not supported anymore by modern x86 processors since the Nehalem microarchitecture (released in 2008).

Compile-time transformations require the presence of source
code, which fails to protect pre-compiled legacy applications.
Binary hardening methods, on the other hand, can work with
binaries, but only HideM supports the reading of embedded
data. However, HideM relies on an obsolete hardware fea-
ture and changes the normal cache model, making it less
compatible. NORAX’s binary patching may fail to update
data references, which changes the original functionality of
the protected program. DCR methods can work on binaries
and support the reading of embedded data, offering the best
compatibility among all previous methods. Unfortunately, their
protections can be bypassed by code inference attacks [33].
Additionally, XoM implementations via software emulation,
such as LR?, uXoM, and SECRET, incur relatively high
overhead. In conclusion, these limitations highlight the need
for further research in developing a practical XoM technique.

In contrast, as demonstrated in §VI and §VII, PXoM effec-
tively thwarts the disclosure of executable memory while in-
curring minimal performance and memory overhead. Besides,
PXoM does not require source code or debug information.
At last, PXoM does not interfere with the original operating
system or architectural mechanisms, and unprotected programs
remain unaffected by PXoM’s kernel components.

C. Memory Protection Keys

Intel Memory Protection Keys (MPK) is a hardware feature
that enables stricter permission control on code pages without
the need for page table modifications. The MPK mechanism
uses a Protection Key Rights Register (PKRU) to maintain
access rights of individual keys associated with specific pages.
It supports three different page permissions: read & write,
read-only, and no access. Notably, MPK controls read and
write permission on memory pages, while traditional permis-
sion management mechanisms continue to manage execution
permission. The MPK mechanism can be utilized to configure
a memory page’s permission as execute-only by disabling the
page’s read and write permissions. One of the significant ad-
vantages of MPK is its high performance. The processors only
need to execute a non-privileged instruction (i.e., WRPKRU)
to update PKRU, which takes less than 20 cycles and does not
require any TLB flush or context switching [53]. However,

as MPK keys are localized to each thread, it may lead to
inconsistencies between MPK keys of different threads within
the same process. To ensure the synchronization of execute-
only MPK keys between different threads within a process,
we have utilized the synchronization primitive provided by
libmpk [36].

D. Kernel-level XoM Protection

PXoM and related works [23]-[29] consider the kernel
to be part of the Trusted Computing Base and thus do not
protect against kernel memory disclosure. Another parallel
direction is kernel-level XoM protection, as the kernel itself
may be exploited under certain circumstances. For example,
ret2usr attacks [54]-[57] can redirect control and data flow to
user space, compromising the entire system. KHide [58] and
kR™X [59] counteract kernel-level JIT-ROP attacks by enabling
XoM protection for kernel memory. They both rearrange the
memory layout of the kernel space, placing executable code
in execute-only areas and readable data in read-only areas.
KHide [58] employs the hardware feature Hardware Assisted
Paging (HAP) to enforce the XoM policy by mediating access
on HAP violation, while kR*X [59] utilizes Intel Memory
Protection Extension (MPX) to enforce XoM permission in a
more efficient manner. However, Intel has discontinued MPX
support since the 10th generation of Intel Core processors in
2019 [60]. IskiOS [61] simply uses MPK to revoke the read
permission of kernel’s code pages. However, their solution is
not applicable to stripped binaries as it does not address the
issue of legitimate embedded data reads.

E. Control-Flow Integrity

A precise implementation of Control-Flow Integrity (CFI)
offers significant potential to safeguard applications against
ROP attacks by preventing control-flow hijacking. Currently,
hardware mechanisms such as ARM’s Pointer Authentica-
tion Code (PAC) [62] and Intel’s Control-flow Enforcement
Technology (CET) [63] provide support for CFI enforcement.
Although CFI can still potentially be bypassed under spe-
cific circumstances [64]-[69] and may introduce performance
overhead [70], it can be deployed alongside other defense
mechanisms, thus providing an additional layer of security
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Figure 2: Overview of PXoM.

protection. From a defense-in-depth [71] standpoint, it is
imperative that a critical system incorporates multiple com-
plementary security defenses in practice.

III. THREAT MODEL

PXoM aims to defend against JIT-ROP by preventing at-
tackers from dynamically disclosing memory, based on a well-
defined adversary model. The model includes the following
assumptions:

o W&X: The target system ensures that the executable and
writable permissions cannot coexist on the same memory
page. This assumption forms the basis of ROP defenses.
Otherwise, attackers could simply execute the injected
shellcode directly, without the need for ROP techniques.

+ Randomization: The target program uses a fine-grained
code randomization technique, which frustrates adver-
saries to determine the protected program’s memory
layout in advance.

o Control-Flow Hijacking: The target program is vulnerable
to memory corruption attacks that allow the adversary to
hijack the control flow.

o Transparent Configuration: The adversary has knowledge
of the target system’s configuration, as well as access to
the source code of the target program.

This adversary model is consistent with previous offen-
sive and defensive papers [21], [23], [25], [27], and specif-
ically aligns with the robust model introduced in JIT-ROP
attacks [21]. We exclude side channels and self-modifying
binaries protection from our threat model, because they are
outside the scope of this paper and are also excluded by other
peer works.

Crane et al. [25] pointed out that there still exists an
indirect memory disclosure attack that can infer the code
layout without directly reading the code pages by harvesting
code pointers in stack and heap. They proposed a method to
prevent indirect memory disclosure by redirecting the code
pointers to an unreadable trampoline, and thus solved the
indirect memory disclosure problem. As this defense still
requires XoM protection to ensure its effectiveness, we focus
on addressing the remaining issues in XoM protection. PXoM
aligns with the constraint acknowledged by NORAX [28],
which also works on COTS binaries.

IV. OVERVIEW

Our study continues the line of research on retrofitting XoM
into stripped binaries. One of our design goals is to avoid
relocating embedded data via binary patching. To this end,
we develop a new fine-grained memory permission control
mechanism, enabling the accommodation of legitimate data-in-
code reads. Figure 2 shows PXoM’s architecture that bridges
all layers of the software stack.

User-space Components To determine the areas that are
authorized to read, we first identify all embedded data in the
binary prior to runtime. To circumvent the inherent complexity
of precisely identifying embedded data, we employ a Unidirec-
tional Disassembly strategy (@) in Figure 2). This disassembly
strategy ensures no embedded data will be identified as code.
Subsequently, we append the list of embedded data to the end
of the protected binary file and revoke the code segment’s
read permission (@). In scenarios where data-in-code reads
occur frequently, we also customize an optimization policy
to speed up the read-legality check. We create an independent
optimization list to store the embedded data that are frequently
accessed (the right side of @). Please note that in this step,
we do not rewrite the binary code. Instead, we simply add the
addresses of embedded data to the end of the binary while
marking the code segments as execute-only.

Kernel Components At the kernel level, we modify the
binary loader in Linux kernel to load the protected binary. In
addition to loading the protected binary, the modified binary
loader also loads two embedded data lists into kernel-space
memory (@) in Figure 2) and initializes the exception handler
(@). When mapping the code segment, the custom loader
loads it as execute-only using the MPK mechanism. The
exception handler is responsible for ensuring the legality of
data-in-code reads based on two embedded data lists. It also
dynamically adjusts the optimization list on-the-fly (@). If
the address of a read request lies in either the regular list
or optimization list, the exception handler will allow this
read request. Otherwise, the read request will be rejected,
and PXoM will terminate the process and save the context
information for further forensics investigation. The exception
handler uses the MPK mechanism to efficiently check read
request legality (@), resulting in very low runtime overhead.
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memory permission control with Unidirectional Disassembly.

V. DESIGN

In this section, we follow the workflow of hardening an
application to describe each component of PXoM.

A. Fine-Grained Memory Permission Control

The management of permissions in modern OSs is limited
to memory pages, which we call coarse-grained control over
memory permissions. As a result, previous XoM methods
have to relocate embedded data within code pages and update
all references to ensure that the program can access them.
However, the precise identification of code and data within
binary remains an undecidable problem [52]. Previous dis-
assembly efforts [72]-[77] aimed to minimize both code-to-
data and data-to-code misidentifications, which we can refer
to as Precise Disassembly. For example, the left side of
Figure 3 shows a code page containing an embedded data
block, while the middle section displays the Precise Disas-
sembly result of this code page. In previous XoM methods,
erroneous identification of code as data (@ in Figure 3)
leads to the inadvertent relocation of code outside code pages,
thereby altering program semantics. On the other hand, when
embedded data are misinterpreted as code, the legitimate read
of this data will be prohibited (@) in Figure 3). Both of
these errors pose significant crash risks. Moreover, updating
references to relocated embedded code presents a substantial
challenge. Failure to update references to embedded data
following relocation may result in program crashes when
attempting to read these segments.

We have implemented a fine-grained memory permission
control mechanism to assign different permissions to vari-
ous memory regions within the same memory page. This
mechanism enables the removal of read permissions for code
segments while retaining read permissions specifically for
embedded data within the same memory page. This approach
serves the dual purpose of safeguarding code against disclosure
while facilitating legitimate reads of embedded data. We

capture all read requests in executable areas and scrutinize
their legitimacy in the kernel’s page fault exception handler,
which we will detail in §V-E. However, as previously noted,
employing Precise Disassembly may result in both code-to-
data and data-to-code misidentifications. In the event of code-
to-data misidentification, although it may potentially expose
small code segments to the risk of memory disclosure, the
program can still function correctly because PXoM does not
relocate embedded data. Conversely, misinterpreting any data
as code may lead to the program crash caused by legitimate
read attempts. Therefore, we require a disassembly strategy
to circumvent the inherent complexity of precisely identifying
embedded data, thereby preventing potential crashes.

B. Unidirectional Disassembly Strategy

We employ a disassembly strategy designed to avoid
misidentifying data as code, while tolerating some code being
misidentified as data, in order to meet the requirements of our
fine-grained memory permission control mechanism. Rather
than attempting to precisely identify all embedded data, our
strategy identifies a superset of embedded data that includes
both all actual embedded data and a very small amount of
code. We refer to this approach as Unidirectional Disassembly.
We use Figure 4(A), a code section containing embedded
data, as an example to demonstrate step-by-step process of
the Unidirectional Disassembly.

Initially, the entire code section is marked as embedded data
superset (as shwon in Figure 4(B)). Then, we apply the recur-
sive traversal algorithm [78], following the control flow from
the program entry point to identify the code located on the
main paths. Recursive traversal disassembly partially meets the
requirements of our fine-grained memory permission control
mechanism by avoiding any data-to-code misinterpretation.
This method performs disassembly exclusively on instructions,
tracking the program’s control flow and thereby preventing
the misidentification of data as code. We then exclude the
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Figure 4: Workflow of Unidirectional Disassemblystrategy. The blue, green, and red sections represent code, embedded data, and
the superset of embedded data, respectively. The left side shows a code section containing embedded data. The middle section
illustrates the embedded data superset when only recursive traversal disassembly is conducted. The right side demonstrates the
minimized embedded data superset after applying the full Unidirectional Disassembly strategy.

identified code from the superset, resulting in a smaller super-
set (Figure 4(C)). However, recursive traversal disassembly
struggles with handling indirect calls and unreachable func-
tions [78], potentially missing up to 49.35% of the code on
average [37]. This can lead to a large embedded data superset,
thereby exposing too many readable areas to adversaries. To
further reduce the superset, we conduct multiple additional
analyses to uncover missed code entry points, subsequently
applying recursive traversal disassembly to these identified
entry points. During disassembly from each entry point, the
identified code is excluded from the superset, thereby minimiz-
ing the embedded data superset (Figure 4(D)). Specifically,
our analyses include examining jump tables, frame unwind
information, address-taken functions [6], and employing func-
tion entry identification heuristics [79] to identify additional
code entry points that were not reached by recursive traversal
disassembly. We also provide a detailed algorithm for the
Unidirectional Disassembly, please see Appendix C.

After obtaining the embedded data superset, we make the
entire superset readable and prohibit read permissions for all
remaining executable areas using our fine-grained memory
permission control mechanism. This ensures that all legitimate
embedded data reads are confined to this superset, while any
code disclosure attempts outside of this superset are prohibited.
For example, as shown in the right section of Figure 3, no
embedded data are misinterpreted as code, but two instructions
are misidentified as embedded data (9 in Figure 3). As a
result, in addition to real embedded data, a small amount
of code also retains the read permission. For the sake of
convenience, we will refer to the embedded data superset
simply as embedded data in the following context, as the entire
superset will be made readable, and the misidentification of
code as data does not affect the executability of the code. In
§VI, we will measure the coverage of disassembly results and
evaluate whether embedded data are exploitable. The results
demonstrate that our approach provides sufficient protection
against memory disclosure without compromising practicality.
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Figure 5: New ELF format for PXoM protected binary file.

C. New ELF Format

We define a new ELF format to interact with PXoM'’s kernel
components. Our minor changes to the original ELF format
include utilizing the reserved field and optional section of
the ELF file format to store PXoM flags and the embedded
data list. Figure 5 shows a visual representation of the new
ELF file format we have devised. First, we use a reserved
byte in the ELF header as the PXoM specific flag byte,
XOM_ENABLE, to indicate whether the program is protected
by PXoM. This byte is the second byte in the EI_PAD array,
which is a field of e_ident in the ELF header. By checking this
byte, our custom loader can decide whether to enable PXoM
protection. Afterward, the embedded data list is included in an
optional section called .xom. The OPT_LIST and REGR_LIST
represent the optimization list and regular list, respectively.

Please note that the new ELF format remains backward
compatible with non-customized loaders because they will
disregard the XOM_ENABLE flag and the .xom section. The
unaltered kernel can execute PXoM-protected binaries without
any issues as conventional programs.

D. Custom Loader

The custom loader is a kernel component of PXoM that
loads protected binaries and initializes related structures in
the kernel. To determine if PXoM’s protection is enabled, the



loader checks the XOM_ENABLE flag in the ELF header. If
yes, the loader loads the embedded data list stored in the .xom
section (e in Figure 2) and initializes an exception handler
to ensure data-in-code reads are legitimate (@ in Figure 2).
The exception handler is also a kernel component to check
the legitimacy of data-in-code reads, and we will introduce it
later. If the PXoM flag is not enabled, the standard binary
file-loading process takes over. To prevent attackers from
disclosing or tampering with PXoM information, all PXoM-
related metadata is stored in kernel memory. The PXoM flag,
optimization list pointer, and regular list pointer are stored
in the task_struct. Each process has its own task_struct
object, which stores the context of the process. Once the lists
have been loaded, the custom loader begins mapping the code
segment into memory. During this mapping process, the loader
assigns an execute-only PKey, and sets the code section as
execute-only with this PKey. The PKey is a part of the MPK
mechanism to set the permission for a group of pages. This
allows our exception handler component to detect any read
operation to code pages and determine if it is a legitimate
data-in-code read or a malicious memory disclosure attempt.

E. Exception Handler

We implement an exception handler based on the original
page fault handler for the MPK mechanism to prevent memory
disclosure. With the read permission of all code pages removed
via the MPK mechanism, any read request to a code page will
trigger a page fault and be caught by our exception handler.
The exception handler then determines if the target address is
located in the embedded data areas. If not, we promptly deter-
mine that the running program is under a memory disclosure
attack and terminate the compromised process, while saving
the context information for further forensics investigation.
Please note that legitimate read operations for data embedded
in the code will not trigger PXoM’s attack response. Instead,
we take the following actions to allow such a data-in-code
read: 1) we restore the read privilege of the target page to
allow it to be read temporarily. 2) We set the single-step trap
flag to execute only the read instruction and halt at the next
instruction. 3) Once the legal read operation is complete, we
revoke the code page’s read permission again and clear the
single-step trap flag to resume the program’s normal execution.
To keep track of whether a read operation is legal, we maintain
a flag, called XOM_ALLOW_READ, in the task_struct
and set it to false by default. Once a read operation occurs and
is determined to be legal, we set the XOM_ALLOW_READ to
true. The single-step trap handler uses this flag to determine
whether to allow the read operation. If true, the data read
operation is permitted. Subsequently, upon completion of the
read operation and restoration of the page permission, the
XOM_ALLOW_READ flag is reset to false.

Next, we define the legitimacy of data-in-code reads. A
legitimate data-in-code read should not access memory out of
the embedded data list. If a data-in-code read only includes the
whole or a subsection of a data area that is in the embedded
data list, we take it as a legitimate read. On the other hand,
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Figure 6: Different types of data-in-code read requests. A read
request may access multiple bytes at the same time.

if a data-in-code read covers a part of memory that is absent
from the embedded data list, it is deemed an illegitimate read.
Figure 6 illustrates all legitimate and illegitimate reads. The
Dy ~ Dy represent embedded data areas recorded by the
embedded data list, while the shadowed areas represent code
areas. The data-in-code reads A; and A, in the first line are
legitimate data reads, while Bj, By, and Bs in the second
line are illegitimate data reads. On the x86-64 architecture,
it is possible for a data-in-code read to access multiple bytes
using a single instruction. For instance, the MOV instruction
enables the retrieval of up to 8 bytes of data, while Streaming
SIMD Extensions allow simultaneous access to a maximum
of 16 bytes of data. A; covers the entire data block of D1,
while A5 covers a portion of Ds. These areas fall within the
boundaries of D; and Ds, thereby qualifying as legitimate
reads. Conversely, the regions of B;, Bs, and Bj intersect
portions of code segments, and therefore, they are regarded as
memory disclosure attempts.

In the scrutiny of a read request, PXoM faces potential
performance bottlenecks when iteratively navigating an exten-
sive list of embedded data, a concern exacerbated in programs
featuring a large number of code-data interleaving cases. Our
empirical observations of real-world programs reveal that, in
scenarios where data-in-code reads occur frequently, the read
targets tend to cluster around a confined subset of embedded
data. For example, during the execution of AES-256-CBC
encryption in OpenSSL, the program exclusively accesses a
mere 15 out of 8142 embedded data blocks. This motivates us
to implement a cache-like optimization policy that accelerates
the legitimacy determination of frequently-read embedded
data. We segregate the high-frequency read embedded data into
a separate optimization list, while preserving other embedded
data in a regular list. We ensure that the optimization list
remains concise, prioritizing its iteration when validating the
legitimacy of data-in-code reads. Our strategy for creating
the optimization list encompasses both static and dynamic
policies. Under the static policy, we consider the frequency
of references to embedded data, relegating embedded data
with over 10 references to the optimization list. Meanwhile,
the dynamic policy involves real-time monitoring within the
exception handler, recording the frequency of reads for em-
bedded data. Data surpassing 100 reads dynamically qualifies
for inclusion in the optimization list. We have empirically
determined the threshold of 10 references and 100 reads
to achieve the optimal performance. PXoM turns on this
optimization policy by default. For the evaluation of how this



optimization policy affects the performance of high-frequency
inline data reads, please refer to Appendix C.

VI. SECURITY EVALUATION

In this section, we first examine the outcomes of Unidi-
rectional Disassembly to gauge the completeness of PXoM’s
protection. Following this assessment, we delve into an explo-
ration of PXoM’s attack surface to ascertain its effectiveness.
Through a series of experiments, our findings consistently
demonstrate that PXoM offers a comprehensive defense mech-
anism against JIT-ROP attacks. Please be aware that the
“embedded data” in this section is actually the superset of
embedded data, as described in §V-B.

A. Unidirectional Disassembly Result Analysis

Our proposed Unidirectional Disassembly strategy ensures
the comprehensive coverage of data within code areas, which
endeavors to maximize the identification of code areas while
ensuring zero misinterpretation of embedded data. We present
several metrics in this section to gauge the correctness and
extent of coverage achieved by this methodology.

The first metric is the Code Coverage, which represents the
ratio of disassembled results to the total code bytes. Code
coverage is calculated by Equation 1 (CC is short for “Code
Coverage.”):

Disassembled Code Bytes
Real Code Bytes

This metric illuminates PXoM’s efficacy in safeguarding the
actual code present in binary files. The core of this capability
is rooted in PXoM’s ability to restrict read access solely to
the code sections identified through the disassembly process,
while relaxing read access for the remaining regions. While
the real code is more likely to be used as gadgets by attackers,
the embedded data could also be used as gadgets under certain
conditions. Hence, we introduce the second metric, the Overall
Coverage, which denotes the proportion of disassembled code
relative to all executable bytes, comprising real code and em-
bedded data. The Overall Coverage is computed by Equation 2
(OC is short for “Overall Coverage.”):

Disassembled Code Bytes @)
Real Code + Embedded Data

The third metric is the Number of Embedded Data Blocks,
representing how many embedded data blocks in the binaries.
The last metric is the Average Embedded Data Block Size.
These two metrics indicate the distribution density of embed-
ded data blocks within the program.

To gauge the correctness and extent of coverage achieved by
our Unidirectional Disassembly, we use extensive of datasets,
including open source applications and COTS closed-source
applications, to evaluate the above four metrics. For open
source applications, we can extract their ground truth, allowing
us to accurately measure these metrics. For the COTS closed-
source applications, although we are unable to measure their
code coverage (due to the unavailability of their ground truth),
we still evaluated their overall coverage, number of embedded
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Table 2: Disassembly result of Unidirectional Disassembly on
open source applications. The “EDB” in the fourth and fifth
columns represents “Embedded Data Block.”

Benchmark Code Overall #. of Avg. EDB
Coverage Coverage EDB Size (B)
SPEC 2017 97.58% 96.34% 3020 30
Webservers 99.39% 98.96% 593 9
Databases 97.67% 98.29% 9408 17
OpenSSL 95.61% 86.43% 8142 31
Pang et al. [38] 96.01% 95.79% 1096 52
Overall 97.07% 95.29% 4290 31

data blocks, and average embedded data block size. This is still
meaningful in providing supplementary evidence of PXoM’s
protection capabilities.

Analysis of Results on Open Source Applications We eval-
uate a wide variety of stripped binaries compiled with different
optimization options, encompassing SPEC CPU 2017 bench-
marks, web servers such as Nginx, Apache, and Lighttpd,
along with databases including MySQL, MongoDB, Redis,
and SQLite. We also evaluate a substantial binary dataset
obtained from the recent binary disassembly study by Pang
et al. [38].This dataset consists of approximately 4,000 bi-
nary files with a total size of around 20GB, serving as a
reliable source of ground truth for disassembly assessments.
Additionally, they released a compilation toolchain capable of
extracting ground truth from compiled binaries. We utilized
this toolchain to compile the open source applications and
extract ground truth.

The evaluation results of above four metrics for open source
applications is shown in Table 2. The lowest code coverage,
obtained in OpenSSL at 95.61%, can be attributed to the
extensive use of handwritten assembly. The average code
coverage stands at 97.07%, implying that PXoM can protect
a significant portion of the code present within the binary.
For the overall coverage, OpenSSL still reveals the lowest OC
metric at 86.43%. However, the average overall coverage of
95.29% suggests that PXoM can safeguard the majority of
executable memory from potential attackers. The fourth and
fifth columns of Table 2 provide insights into the number of
embedded data blocks and their average size in bytes. The
latter indicates the amount of consecutive bytes that attackers
can potentially disclose if they manage to identify readable
embedded data blocks. The average size of an embedded data
block is a mere 31 bytes, which implies that attackers can
consecutively disclose only 31 bytes on average when they
locate a readable block in the executable area.

Analysis of Results on COTS Closed-Source Applications
We collected 15 different COTS closed-source applications
and analyzed them using Unidirectional Disassembly. Due to
the lack of ground truth information for these closed-source
binaries, we are unable to definitively identify the actual code
and embedded data, preventing us from reporting a precise
Code Coverage metric. However, we assessed other relevant
metrics, including Overall Coverage, the number of embedded
data blocks, and the average size of these blocks. The results
are shown in Table 3. The first column of Table 3 lists the



application names and their respective versions used in our
evaluation. The second column presents the Overall Coverage.
The lowest Overall Coverage was observed in OracleDB,
at 86.44%. On average, the Overall Coverage is 96.94%,
demonstrating that PXoM can protect approximately 96.94%
of the code in these COTS applications from being exposed to
attackers. The third column displays the number of embedded
data blocks, with an average of 1,217 across the analyzed
applications. The last column shows the average size of the
embedded data blocks, which is 55 bytes. This means that if
attackers gain access to an embedded data block with read
permissions, they would only be able to read an average of 55
bytes.

Case Studies Since we cannot obtain the ground truth for
COTS closed-source applications, we manually verified some
of embedded data and used them as case studies to illustrate
how these COTS applications utilize embedded data. For
detailed case studies, please refer to Appendix B.

Our experimental results are encouraging, as they validate
our claim for embedded data identification. These results
provide further assurance that PXoM can effectively impose
execute-only permission on code areas. Next, we will present
additional evidence to support that the residual embedded data
are insufficient to construct a payload.

B. Attack Surface Analysis

To tolerate legitimate data-in-code reads, we allow embed-
ded data to remain readable. Nonetheless, the disassembly
process of PXoM may still experience some false positives,
whereby code is misidentified as data. Consequently, the
embedded data list provided by PXoM includes both the
true embedded data and some misidentified code, as shown
in the second and third columns of Table 2. Given the
embedded data list delivered by PXoM, it is imperative to
evaluate adversaries’ capabilities to harvest reusable gadgets
and subsequently construct an attack payload. We conduct
a gadget search experiment on the embedded data sections
for each binary in the dataset utilized in Section VI-A. The
objective of this experiment is to quantify the number of
gadgets that can be identified within embedded data regions.

ROP Gadget Search After applying the ROP gadget search
tool ROPGadget [80], we found that available gadgets are a
rare commodity, even for binaries that contain a significant
amount of embedded data. On average, only seven gadgets can
be extracted from embedded data, which are comprised of 287
small blocks. That means these gadgets are distributed among
287 different locations throughout the entire code section.
These seven gadgets represent the upper limit of potential ad-
versary exploitation. With fine-grained randomization enabled,
adversaries lack prior knowledge of where the data blocks are
distributed, making it extremely difficult to disclose all the
gadgets at once.

As embedded data consist of small data blocks distributed in
the code section, we present the average embedded data block
size in the last column of Table 2. For the overall dataset, the
average embedded data block size is only 31 bytes, and the
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Table 3: Disassembly result of Unidirectional Disassembly on
COTS closed-source applications. The “EDB” in the fourth
and fifth columns represents “Embedded Data Block.” The
“VMWare” represents VMWare Workstation Pro.

COTS Overall # of Avg. EDB
Application Coverage EDB Size (B)
Skype (8.129.0.202) 99.98% 718 58
DaVinci Resolve (19.0.1) 98.39% 425 41
IBM DB2 (15.5.9) 98.95% 401 15
LiteSpeed (6.3.1) 99.91% 43 68
Matlab (R2024b) 98.94% 690 125
AutoDesk Maya (2025_2) 98.67% 1254 17
OracleDB (193000) 86.44% 577 31
Spotify (1.2.45.454) 99.75% 1637 39
Intel DPC++ (2.1.79) 92.59% 2233 68
Intel Fortran (2.1.80) 92.19% 2559 75
Steam (1726604483) 99.27% 1190 16
TeamViewer (15.58.4) 94.49% 2461 25
Unity (6000.0.20f1) 98.90% 434 51
VMWare (17.6.0) 98.65% 780 109
Zoom (6.2.0) 97.00% 2740 90
Overall 96.94% 1217 55

total of embedded data accounts for 4.71% (i.e., 1-95.29%) of
the whole code section. This indicates that if an adversary
were to choose an address randomly in the code segment
and attempt to disclose code, the probability of this address
landing in the readable area is only 4.71%. If attackers are
fortunate enough to find an embedded data block that can be
read through this 4.71% probability, then the average amount
of data they can disclose is only 31 bytes. This is insufficient
to build a ROP chain, as previous ROP gadget search papers
have supported [81], [82]. The “microgadgets” technique [82]
attempts to use the gadgets restricted to 2 or 3 bytes in length
to construct the ROP chain; however, it needs to scan at least
3MB of code to find enough microgadgets. Schwartz et al. [81]
developed an offline verification technique to facilitate ROP
attacks necessitating Turing-completeness, but it still requires
at least 20KB of code to construct a complete payload chain.

Case Studies To show the effectiveness of PXoM protection
on real-world threats, we leverage the JIT-ROP attack frame-
work, jitrop-native [83], to exploit a Nginx arbitrary memory
disclosure vulnerability. We also conducted an experiment to
show that the WRPKRU instruction does not pose a threat to
PXoM protection. Please refer to Appendix A for details.

Our comprehensive experimental results demonstrate that
PXoM can effectively safeguard programs against the threat
posed by JIT-ROP attacks.

VII. PERFORMANCE EVALUATION

Our performance experiments evaluate PXoM from five
aspects: 1) performance on microbenchmarks; 2) performance
on macrobenchmarks; 3) investigation into overhead causa-
tion; 4) performance on programs exhibiting high-frequency
embedded data reads and the impact of our optimization; 5)
performance comparison with existing work.

Our evaluations were conducted on a desktop machine fea-
turing Intel Core 19-13900KF and 64GB of memory, running
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Figure 7: Additional runtime slowdown (%) of PXoM on SPEC CPU 2017 (ref workload).

Table 4: Time for kernel operations related to process creation
and page fault handling (in ps). Smaller is better. In the first
row are the names of benchmarks in Imbench. The “Prot
Fault*” in the last column shows the overhead when data-
in-code read-legality check is triggered.

Kernel Fork Exec Page Prot Prot
erne Proc Proc Fault Fault Fault*
Standard 109 339 0.776 0.484 0.484
PXoM 110 341 0.780 0.487 1.548
Overhead 092% 0.60% 0.52% 0.62%  3.20X

Ubuntu 23.10 with Linux kernel 6.5.0. Our evaluation results
indicate that PXoM’s protection results in negligible additional
overhead, ranging from 0.24% to 0.82% on average. Even
in OpenSSL, which contains a substantial amount of data-in-
code reads, the overhead caused by PXoM is only 0.82%. The
memory overhead incurred by PXoM is also minimal, with an
average of only 0.13%. The following subsections focus on
the measurement of runtime slowdown, whereby we ran both
the standard version and the PXoM-protected version for each
binary, respectively.

A. Microbenchmarks

Compared to the standard Linux kernel, we made modi-
fications to the kernel’s binary loader, page fault exception
handler, and process context structure. Therefore, we run
Imbench [39] on both the standard Linux kernel and the
modified Linux kernel to assess the performance overhead
induced by our kernel modifications.

Table 4 shows the running time for kernel operations related
to process creation and page fault handling. The Fork Proc
and Exec Proc are process creation operations using fork and
exec. They resulted in an overhead of 0.92% and 0.60%,
respectively, due to the additional steps required for loading
XoM metadata. The Page Fault shows the overall page fault
handling overhead, with a 0.52% overhead. The last two Prot
Fault show the protection fault handling overhead without
and with triggering the data-in-code read-legality check. The
first Prot Fault is the overhead on regular prot fault process,
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Table 5: Context switch time (in ps). Smaller is better.

Kernel 2p 2p 2p 8p 8p 16p 16P

0K 16K 64K 16K 64K 16K 64K

Standard 2.10 2.59 2.72 2.58 2.59 2.71 2.73

PXoM 2.13 2.61 2.70 2.64 2.65 2.72 271
Overhead 143% 0.77% -0.74% -093% 2.33% 037% -0.73%

without triggering the read-legality check. However, the han-
dler still needs to check if the PXoM is enbaled, resulting a
0.62% overhead. In the second Prot Fault*, we deliberately
trigger the data-in-code read legality checks to evaluate the
performance overhead on legality checking process. Unlike
the first four configurations that incur negligible overhead,
this configuration incurs a notable overhead with a 3.20 times
slowdown. However, this seemingly unacceptable overhead
does not have a significant impact on the overall performance
of programs. This is attributed to the interleaving of data-in-
code reads with numerous other instructions, rendering the
overall overhead negligible. A more in-depth analysis of this
performance impact will be presented in §VII-C.

We need to store some metadata, such as MPK’s PKey and
embedded data list, in the process’s context structure, which
may cause overhead during context switches in the kernel.
Table 5 shows the context switch time for both standard kernel
and modified kernel. In the first row, the upper half displays
the number of processes involved in the context switches,
while the lower half shows the memory usage of each process.
For instance, “2p/16k™ represents a context switch between
two processes, each of which uses 16 KB of memory. All
entries exhibit overhead values that are clustered around zero,
indicating that PXoM does not have a significant impact on
the performance of kernel context switches. We present other
Imbench results with low correlation to PXoM in a longer
version of this paper (see Appendix C).

B. Macrobenchmarks

We evaluate the performance impact of PXoM on compute-
intensive programs using SPEC CPU 2017, the latest gen-
eration of SPEC CPU benchmarks with larger and more



complex workloads than its predecessors. We compiled both
the standard version of SPEC CPU 2017 and the version that
was protected by PXoM, and ran them using the ref workload
on our test machine. We take the running time of standard
versions as the baseline to measure the additional overhead
incurred by PXoM’s protection. Besides, to compare with
the performance data of previous XoM approaches, we also
conducted a performance evaluation on SPEC CPU 2006 (see
Appendix C).

Figure 7 shows the runtime slowdown caused by PXoM
on SPEC CPU 2017, with the green and blue striped bars on
the rightmost side showing the average and geometric mean
value of overhead, respectively. From Figure 7, we can see
that eleven overhead values are very close to zero, while five
benchmarks (ID numbers: 523, 623, 511, 500, and 600) reveal
relatively high overhead. The peak overhead value happens in
523.xalancbmk. The two xalancbmk benchmarks (523
& 623) transform XML documents into HTML, text, or other
XML document types. The 511.povray is a ray-tracing
program, and the two perlbench benchmarks (500 & 600)
are lightweight Perl interpreters. As all these five benchmarks
contain a lot of switch-loop structures, we conjecture that
frequently reading the jump table to call small handler func-
tions contributes to the larger overhead than the remaining
benchmarks. Nonetheless, the average and geometric mean
overhead of tested SPEC benchmarks are 0.36% and 0.25%,
respectively, indicating that PXoM introduces a negligible
performance impact on CPU-intensive programs. In addition to
SPEC CPU 2017, we also demonstrate that PXoM introduces
minimal runtime overhead to mainstreams web servers and
databases (see Appendix C).

However, we encountered a major challenge in the current
inability to reproduce or replicate previous XoM results, which
is an issue that unfortunately plagues the security field. None
of the preceding XoM studies, to the best of our knowledge,
have made their tools publicly available. We have conducted a
separate experiment on SPEC CPU 2006 in order to compare
the performance data of PXoM with that reported by other
prominent peer tools in their respective papers [23]-[25],
[27], [29], [31], [32]. Please see Appendix C for details. In
summary, PXoM still exhibits the lowest overhead (0.30%)
among all compared XoM prototypes.

C. Overhead Causation Analysis

The performance overhead of PXoM is predominantly in-
fluenced by two key factors: 1) size of the embedded data
list; and 2) frequency of data-in-code reads. We introduce the
term “read intensity” to denote the ratio of data-in-code read
instructions to the total number of executed instructions. Next,
we conduct a quantitative examination of these two factors and
elucidate the rationale behind the observed negligible overhead
incurred by PXoM.

Read Latency Figure 8 illustrates the time taken for perform-
ing different numbers of data-in-code reads under different
embedded data list sizes (N). The horizontal axis denotes
the number of data-in-code reads, while the vertical axis
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Figure 8: The time for different numbers of embedded data
reads for a normal program and PXoM enabled programs with
different embedded data list size. The N in the figure means
the size of the embedded data list.

represents the time taken to complete the specified number
of read requests. In the “Normal” case, which corresponds
to disabling PXoM protection, the completion time for read
requests remains relatively consistent despite an increase in the
amount of reads. However, in cases where PXoM is activated,
an increased volume of read requests correlates with a more
pronounced overhead. Moreover, a larger size of the embedded
data list contributes to a heightened level of overhead. This
observation highlights that when a significant portion of a
program’s instructions is dedicated to data-in-code reads, the
overhead becomes prominent, especially with larger values
of N. However, in real-world programs, data-in-code read
instructions are typically interspersed among a multitude of
other instructions. Furthermore, as shown in Tables 2 and
Table 3, the average size of N (embedded data list size)
for both open-source and COTS programs is relatively small,
with average values of 4,290 and 1,217, respectively. The
consequence is that PXoM incurs minimal runtime overhead
in real-world programs, as evidenced by the performance data
of macrobenchmarks. Next, we will quantitatively evaluate the
performance impact caused by read intensity.

Read Intensity As shown in Figure 8, there is a direct
relationship between a program’s intensity of data-in-code
reads and the resulting overhead. To capture this, we define
the term “Read Intensity,” as given by Equation 3.

# of Read Requests

Read Intensity =
Y # of Executed Instructions

3)

We have gathered statistics on data-in-code reads and the
total number of executed instructions during performance
evaluations for SPEC CPU 2017, webservers, databases, and
OpenSSL. We have calculated their respective Read Intensity
values, as depicted in Figure 9. The program with the lowest
Read Intensity is databases, at 4.8E~'2, indicating that it
performs one data-in-code read for every hundred billion
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Figure 9: Read intensity of difference benchmarks. The Y-axis
values represent the proportion of data-in-code instructions
relative to all executed instructions.

instructions on average. OpenSSL embeds a significant amount
of data within the code region to enhance the performance of
cryptography algorithms. It exhibits the highest Read Intensity
at 1.4E~7. Nevertheless, even in OpenSSL, on average, it takes
a million instructions to perform one data-in-code read. The
average Read Intensity for all programs is 3.51E~8, signifying
one data-in-code read is performed after executing ten million
instructions on average. This illustrates that while data-in-code
reads are not rare in practice, their occurrence rate is extremely
low, resulting in PXoM’s practical overhead being negligible.

VIII. DISCUSSION & CONCLUSION

Kernel Component Security Adding code to the trusted
computing base is risky, so we need to pay extra attention to
ensuring the security of any additions made to the kernel. The
first potential threat is the user-controllable “.xom” section.
When the kernel loads a binary, it parses the contents of the
“.xom” section into the kernel’s structures. Improper checks
during this process could allow an attacker to exploit the
kernel. Therefore, we must conduct careful and strict checks
when parsing this list to prevent buffer overflow attacks. In
addition, we added some pointers in the kernel to store data
related to XoM. When using these pointers, strict checks
must also be enforced to prevent vulnerabilities such as use-
after-free and double-free. Another potential threat is the
race condition between different threads. When embedded
data reading is allowed, the target code page will be in a
readable state for a very short time. If control is taken over
by another thread at this time, that thread may disclose the
readable memory page. Therefore, it should be ensured that
the permission for the reading operation is atomic, and control
cannot be taken away during this operation.

Protection on Dynamically Loaded Code For now, PXoM
is not designed to protect dynamically loaded (dlopen) code
and dynamically generated code, such as in a program running
JavaScript code in a JIT engine. Achieving protection for them
will be our future work. For the dynamically loaded code,
the only difference is the loading process. We will hook the
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GNU C Library to protect dynamically loaded code. For the
dynamically generated code, when the JIT engine generates
JIT compiled code, we can know the location of all embedded
data, so we can mark these locations as readable in the JIT
engine and apply PXoM protection to the generated code.

MPK Security While Memory Protection Keys (MPK)
provides an efficient mechanism for managing memory per-
missions, it also raises concerns regarding its own secu-
rity pitfalls [84]. Fortunately, new defensive strategies have
emerged to further strengthen the security of MPK [85],
[86]. Ongoing improvements and refinements in this evolving
domain continue to enhance the security of MPK. Many
existing works have utilized MPK for sensitive data isolation.
For instance, ERIM [87] and Hodor [88] utilize MPK to
isolate sensitive data and only allow trusted code to access
it by controlling read permissions to these sensitive data
areas. Similarly, Burow et al. [89] investigate using MPK
to provide stronger guarantees for shadow stacks, which are
used to make sensitive data on the stack tamper-resistant [90].
Additionally, Jin et al. [91] employ the MPK mechanism to
safeguard sensitive key-related data in cryptographic algorithm
implementations.

Conclusion Execute-only memory (XoM) is a promising
solution to prevent memory disclosure and counter JIT-ROP
attacks. This paper presents PXoM, a technique that retrofits
XoM into stripped binaries without embedded data reloca-
tion. Unlike existing approaches, PXoMenables fine-grained
memory permission control within a memory page without
requiring compile-time transformations or binary patching.
Performance evaluations on large programs show negligible
runtime overhead, and security assessments suggest PXoMis
viable for real-world adoption, potentially shifting the memory
defense landscape in favor of defenders.
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APPENDIX
A. Case Studies for Security Evaluation

Exploit Memory Disclosure Vulnerability We use the CVE-
2013-2028 [92], a Nginx arbitrary memory disclosure vulner-
ability, to showcase PXoM’s effectiveness. This vulnerability
is a potent stack overflow that enables an attacker to carry
out arbitrary memory reads. We apply PXoM to a vulnerable
binary version of Nginx and run it as a web server. After that,
we modify the JIT-ROP attack framework, jitrop-native [83],
to specifically adapt it to the CVE-2013-2028, and use it to
trigger this vulnerability and dynamically search for gadgets.
The attack is detected and prevented when the exploit tries to
reveal the first code byte, indicating that PXoM is capable of
safeguarding Nginx from memory disclosure.

Construct WRPKRU Gadgets The value of PKRU can be
changed using the WRPKRU instruction at the user level. Intu-
itively, if this instruction is located by attackers in executable
data blocks, they can use it to regain read permission for the
code pages. In order to successfully change the permission of
a page group using the WRPKRU instruction, four operations
must be performed: 1) storing the permission value to EAX;
2) writing zero to ECX; 3) writing zero to EDX; and 4)
executing WRPKRU. Please note that when executing the
WRPKRU instruction, EAX stores the permission value for
all page groups that will later be written into PKRU, and the
values of ECX and EDX must be zero to avoid a general-
protection exception (#GP). Completing these operations may
require more than four gadgets. For instance, in OpenSSL,
only XCHG instructions can change EAX’s value, such as
XCHG EDI, EAX. Thus, an additional gadget is necessary

to write the permission value to EDI, which can then be
swapped with EAX using XCHG. To find gadgets capable of

completing these operations, we conduct a gadget search on
all binaries’ executable data in the Pang et al.’s data set [38].
The dataset revealed that only 23 binaries’ executable data
contain gadgets that can complete one or two operations,
but no binary gadgets that can complete all four operations.
Interestingly, even treating each byte as an opcode, we only
found 26 WRPKRU instructions in the ~ 20G B dataset, and
none of them was in the executable data areas. This rarity of
the byte sequence of WRPKRU (0OF 01 EF) in the compiled
binary could explain the difficulty of finding gadgets capable
of performing all four operations.

Attacker-Controllable Syscalls Despite the fact that at-
tackers may attempt to leverage system calls (e.g., mprotect
and execve) to conduct their second-stage attack, thereby
circumventing the necessity for Turing-complete gadgets and
minimizing gadget requirements, they still necessitate multiple
gadgets to manipulate the parameters of these system calls.
Johannesmeyer et al. [93] enumerated twelve system calls
that could potentially be exploited to implement such attacks.
We conducted an additional experiment to search for gadgets
capable of manipulating the parameters of these twelve system
calls within the embedded data regions of the dataset presented
in Table 2, and no such gadgets were discovered.

B. Case Studies of Embedded Data in COTS Binaries

Through empirical study, we categorized the embedded data
into the following four types:

1) Embedded Constants: Independent constants dispersed
throughout the program, each referenced separately.
These constants can include integers, floating-point
numbers, or other data structures.

2) Embedded Arrays: Groups of constants organized into
arrays, where each element is accessed using an “array
pointer + index.

3) Embedded Strings: Strings embedded directly within the
code section.

4) Jump Tables: Tables that store target addresses for
switch-case structures.

1) Embedded Constants: Using Skype version 8.129.0.202
as an example, Figure Al illustrates the embedded constants
within the binary file skypeforlinux. In lines 1 and 3, two 128-
bit integers are embedded, with the paddd instruction being
used in lines 10 and 12 to add them to the value in the xmmO
register. Similarly, in lines 5 and 7, two 256-bit integers are
embedded, which are then used in lines 14 and 17.

2) Embedded Arrays: Unlike embedded constants, where
each constant has its own reference, embedded arrays group
constants together, with each element accessed via an array
pointer. For example, in the main binary resolve of DaVinci
Resolve (version 19.0.1), there is an embedded array, as shown
in Figure A2. In line 9, an array of 4,160 bytes is embedded,
and in line 1, its reference is loaded into the rbp register.
Lines 3, 5, and 6 show how values from the array are accessed
using the array pointer stored in the rbp register, with the
rsi register serving as the index. The retrieved values are
then loaded into the r8 and r9 registers.
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O 00NN W —

10
11
12
13
14
15
16
17

.text:7D642 lea rsi, Jpt_7D666

.text:7D649 mov rl1l0, rdi

.text:7D64C neg rl0

.text:7D64F add rl10, 40h

.text:7D653 and rl10, 3Fh ;Switch 64 cases

.text:7D666 Jmp rsi ;Switch Jump

jpt_7D666:

.text:7D8CO0 dg 7D8COh - offset loc_7D726,
7D8COh - offset loc_7D723

.text:7D8D0 dg 7D8COh - offset loc_7D72B,
7D8C0Oh - offset loc_7D734

.text:7D8EO0 dg 7D8COh - offset loc_7D741,
7D8C0Oh - offset loc_7D749

.text:7D8F0 dg 7D8COh - offset loc_7D749,
7D8C0Oh - offset loc_7D749

18 ...

O 00NN W —

Figure A4: A jump table in the dpcpp of Intel DPC++.

.text:1A913A0 xmmword_ 1A913A0 xmmword
30000000200000001000000000
xmmword_1A913B0 xmmword
40000000400000004000000040
ymmword_1A913C0 ymmword
0000000002000000040... (256 Bits)
ymmword_1A913E0 ymmword

0800000008000000080... (256 Bits)

.text:1A913B0

.text:1A913C0

.text:1A913E0

.text :1A91C3F paddd xmmO, cs:xmmword_1A913A0

.text:1A91CDB paddd xmm0O, cs:xmmword_1A913B0

.text:1A92631 vpaddd ymmé4, ymm4,
cs:ymmword_1A913CO0

.text:1A926AE vpaddd ymmé4, ymm4,
cs:ymmword_1A913E0

Figure Al: Embedded constants in the skypeforlinux of Skype.

.text :ASDEFF2 lea rbp, gword_AS5DF8CO0;Array Ref

.text :ASDFOAQ0 mov r8, [rbp+rsix8+1000h]

... ; Get values from an array

.text :AS5DF0C6 xor r8, [rbp+trsi*8+0]

.text :AS5DFOCB mov r9, [rbp+rdix8+7]

qword_ASDF8CO: ; An array of 4160 bytes

.text :AS5DF8CO0 dg 2 dup(0D83078C018601818h),
2 dup (2646AF05238C2323h)

.text :AS5DF8EQ0 dg 2 dup (0B891F97EC63FC6C6h),
2 dup (OFBCD6F13E887E8ES8h)

.text :A5DF900 dg 2 dup (0CB13A14C87268787h),
2 dup (116D62A9B8DAB8B8)

Figure A2: An embedded array in the resolve of DaVinci.
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3) Embedded Strings: Embedded strings are a specific type
of embedded constant, characterized by their variable size and
termination with a 0x00 byte. Figure A3 provides an example
of embedded strings found in the teamviewerd daemon of
TeamViewer (version 15.58.4). In lines 6, 7, and 8, three
strings are embedded, with a reference to the string embedded
in line 6 made in line 1.

O 001NN AW —

.text:A748F4 lea rax, aRc48xInt ;String Ref
.text:A748FB mov edx, dword cs:gqword_16781CO0
.text:A74901 Dbt edx, 14h

.text:A74905 Jjb short loc_1F3853
.text:A74940 aRc48xInt db ’'rc4(8x,int)’,0
.text:A7494C aRc48xChar db ’'rc4d (8x,char)’,0
.text:A74959 aRc4le6xInt db ’'rcd(l6x,int)’,0

Figure A3: Embedded strings in the teamviewerd daemon of
TeamViewer.

4) Jump Tables: A jump table is a specialized type of
embedded array and one of the most common data structures
embedded in code. It stores the target addresses for switch-
case structures. In Position Independent Code (PIC), the jump
table holds the offset between the target code and the jump
instruction, while in non-PIC code, it stores the absolute
address of the target code. Although compilers like GCC and
LLVM typically place jump tables in the data segment, some
compilers, such as Intel’s C++ compiler, prefer to embed jump
tables closer to the code that uses them. This approach reduces
the likelihood of cache misses, thereby improving program
performance. In contrast, placing the jump table in a distant
data segment can increase the frequency of cache misses.

Figure A4 provides an example of a jump table in the
dpcpp binary of Intel DPC++ (version 2.1.79). At line 10, a
switch structure with 64 cases is defined. Since this binary is a
position-independent executable (PIE), the jump table starting
at line 10 stores offsets of the target addresses relative to line 7.
In line 1, the address of the jump table is loaded into the rsi
register, and after performing a series of calculations based on
the index value, the target address is determined. Finally, in
line 7, the program jumps to the calculated target address.

C. Longer Version

For algorithm of Unidirectional Disassembly, performance
on real-world applications, other microbenchmark results, per-
formance comparison, and high-frequency data read optimiza-
tion evaluation, please refer to the longer version of this paper
at https://arxiv.org/abs/2412.02110.
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ARTIFACT APPENDIX
A. Description & Requirements

In our paper, we present PXoM, a hardware-assisted
approach to retrofitting XoM (Execute-only Memory) for
stripped binaries, without the need for relocating embedded
data. PXoM is a comprehensive system that includes a full-
stack toolchain, from user-level applications to a custom
kernel, designed to provide XoM protection for programs
while ensuring compatibility with legitimate embedded data
reads within code sections, all without the need for relocating
embedded data.

In this artifact, we provide the following:

1) Virtual Machine (PXoM_Artifact.ova): An out-of-the-
box (OOB) virtual machine with a customized system
kernel and user-space toolchain pre-deployed for easy
access to PXoM. This VM offers a convenient way to
quickly start testing PXoM on various programs and
reproducing the evaluations presented in this paper.

2) Source Code (PXoM_Artifact-0.1.tar.gz): The source
code for the PXoM kernel, user-space toolchain, and all
the experiments described in this artifact.

3) Documentation (PXoM_Artifact.pdf): Detailed instruc-
tions on how to use the PXoM virtual machine and the
workflow for conducting the experiments.

In this artifact appendix, we will outline the hardware
and software requirements for PXoM, the steps to install the
virtual machine, the major claims from our paper, and the
experimental workflows.

How to access

PXoM Virtual Machine: 10.5281/zenodo.13892220

Source Code: 10.5281/zenodo.14251050

PXoM Artifact Documentation: 10.5281/zenodo.14251155

Hardware dependencies
The only required hardware feature is MPK, which is
supported by the following CPUs:

1) Intel® Desktop CPUs, Comet Lake (10th Gen Core™)
and later;

2) Intel® Server CPUs, Xeon® Skylake and later;

3) AMD Desktop CPUs, Ryzen™ 5000 and later;

4) AMD Server CPUs, EPYC™ Milan (7003 Series) and
later.

Software dependencies
There are two options for deploying the PXoM VM:

1) On a host running Ubuntu 22.04 or later, you can import
the PXoM virtual machine using VMWare Workstation
Pro 17.6.0 or higher. Please note that MPK is not
supported on Windows hosts, so VMWare Workstation
Pro must be installed on a Linux-based host.
2) Directly import the PXoM virtual machine on a machine
running ESXi 8.0 Update 3 or later.
Benchmarks
Most of the benchmarks are included with the PXoM VM
image. However, we have excluded Pang et al.’s dataset from
the image due to its large size (~56GB after decompression),

which would make the image excessively bloated. You can
obtain Pang et al’s dataset from their Github repository.
Please refer to the instructions in the artifact documentation
(PXoM_Artifact.pdf) before obtaining the dataset.

B. Artifact Installation & Configuration

The only installation step is to import the PXoM virtual
machine (PXoM_Artifact.ova) into VMWare Workstation Pro
or VMWare ESXi. All the experiments from our paper can be
conducted within this virtual machine.

For instructions on how to import the OVA file into

VMWare Workstation Pro and VMWare ESXi, please refer to
the VMware Workstation documentation and VMware ESXi
documentation. After importing the PXoM virtual machine,
you can adjust its memory size and the number of CPUs.
We recommend allocating more than 32GB of memory and
assigning more than 10 cores.
Optional: To compile the PXoM kernel on a bare-metal
machine, please follow the same process as you would for
the standard Linux kernel. For example, begin with the in-
structions starting at Step 3 in this guide: https://phoenixnap.
com/kb/build-linux-kernel.

C. Major Claims

Our paper makes two major claims:

e (Cl): PXOM can protect stripped binaries from JIT-
ROP attacks while allowing legitimate embedded data
reads, without requiring relocating embedded data. This
is demonstrated through experiments (E1) and (E2).

e (C2): PXOM introduces negligible performance over-
head. This is validated by experiments conducted on
Imbench (E3), SPEC CPU 2017 (E4), Webservers (ES),
and Databases (E6).

D. Evaluation

The experiments are divided into six parts: (E1): JIT-ROP
Defense Demonstration; (E2): Disassembly Result Evaluation;
(E3): Imbench; (E4): SPEC CPU 2017; (ES5): Web Servers;
and (E6): Databases. E1 and E2 support C1, while E3~E6
support C2. We provide instructions to reproduce the experi-
ments described in our paper; however, we do not claim the
“reproduced” badge for two reasons:

1) The dataset for E2 is too large, requiring 5 to 6 days to
fully evaluate the entire dataset.

2) The virtual machine provides the most reliable environ-
ment to ensure PXoM functions correctly by masking
hardware differences, which ensures proper operation
across various devices. However, virtualization may lead
to inaccurate performance evaluation results. Moreover,
Intel’s hybrid architecture of E-Cores and P-Cores can
further amplify experimental inaccuracies.

The ~/PXoM_Artifact/experiments folder within

the virtual machine contains all the experiments. Please con-
duct each experiment in its corresponding folder.
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1) Experiment (EI): [JIT-ROP Defense Demonstration]
[20 human-minutes + 5 compute-minutes]: Demonstrating how
PXoM protects programs from JIT-ROP attacks while allowing 3. Compare the results:

> ./run_pxom.sh

legitimate embedded data reads. > python compare.py
[Workflow] [Results] Performance overhead of PXoM on protecting
1. Run the vulnerable demo server: SPEC CPU 2017
> sudo ./cipher_helper 5) Experiment (E5): [Web Servers] [15 human-minutes +

10 compute-minutes]: Evaluating the performance overhead of
PXoM on protecting web servers.

> python exploit.py [Workflow]

For each web server, the workflow is the same:

1. Start the standard version of the web server:

> sudo ./start_standard

2. Exploit the vulnerable server:

3. Protect the vulnerable server using the PXoM toolchain:

> pxom protect —i cipher_server —o cipher_server.xom

2. Obtain the baseline runtime:
> python run_standard.py

4. Run the protected server and attempt the exploit again:

> sudo ./cipher_helper.xom

> python exploit.py 3. Stop the standard version of the web server:

> sudo ./stop_standard

4. Start the PXoM-protected web server:
> sudo ./start_pxom

5. Run the PXoM-protected tests:
> python run_pxom.py

6. Stop the PXoM-protected web server:
> sudo ./stop_pxom

5. The exploitation will fail, and you can check the kernel
log for details:

> sudo dmesg

2) Experiment (E2): [Disassembly Result Evaluation] [15
human-minutes + 10 compute-minutes (5~6 days for the entire
dataset)]: Evaluating the effectiveness of our disassembly

strategy.
[Workflow] 7. Compare the results:
1. Protect the program and print the embedded data list: > python compare_results.py
> pxom protect —i openss|_O3 —o openss|_0O3.xom [Results] Performance overhead of PXoM on protecting
> pxom print —i openssl_O3.xom > xom_edata each web server.

6) Experiment (E6): [Databases] [20 human-minutes + 60
compute-minutes]: Evaluating the performance overhead of
PXoM on protecting databases.

2. Extract the ground truth using Pang et al.’s toolchain:

> objcopy ——dump-section .rand=tmp_gt.gz openssl_O3
&& gzip —-d tmp_gt.gz

> python extract_gt/extract_edata.py —b openssl_03 -m [Workflow]
tmp_gt —o tmp_pb -L gt_edata For MySQL, MongoDB, and Redis:
1. Start the standard version of the database:

> /start_standard

3. Compare the disassembly results with the ground truth:

> python compare_results.py openss|_O3 xom_edata

gt_edata 2. Obtain the baseline performance data:

> ./run_standard
3. Start the PXoM-protected database:
> ./start_pxom

[Results] Code Coverage and Overall Coverage for binaries.
3) Experiment (E3): [Imbench] [10 human-minutes + 20
compute-minutes]: Evaluating the performance overhead of

PXoM’s kernel modifications. 4. Run the PXoM-protected tests:
[Workflow] > ./run_pxom
1. Run Imbench: 5. Compare the results:
> make results > python compare_results.py

For SQLite:

2. Compare the results with the baseline results. ) )
1. Obtain the baseline performance data:

[Results] Performance overhead of kernel modification.

4) Experiment (E4): [SPEC CPU 2017] [20 human- > ./run_standard
minutes + 6 compute-hours]: Evaluating the performance over- 2. Run the PXoM-protected tests:
head of PXoM’s protection on compute-intensive programs. > ./run_pxom

[Workflow]

3. Compare the results:
> python compare_results.py

1. Run the standard SPEC CPU 2017:
> ./run_standard.sh

[Results] Performance overhead of PXoM on protecting
2. Run the PXoM-protected version of SPEC CPU 2017: each database.
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