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Abstract

We have investigated the origins of photoluminescence from quantum dots (QD) layers
prepared by alternating depositions of sub-monolayers and a few monolayers of size-mismatched
species, termed sub-monolayer (SML) epitaxy, in comparison with their Stranski-Krastanov (SK)
QD counterparts. Using measured nanostructure sizes and local In-compositions from local-
electrode atom probe (LEAP) tomography as input into self-consistent Schrodinger-Poisson
simulations, we compute the 3D confinement energies, probability densities, and
photoluminescence (PL) spectra for both InAs/GaAs SML- and SK-QD layers. A comparison of
the computed and measured PL spectra suggests one-dimensional electron confinement, with
significant 3D hole localization in the SML-QD layers that contribute to their enhanced PL

efficiency in comparison to their SK-QD counterparts.
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Self-assembled Stranski-Krastanov quantum dots (SK-QDs)!? are often proposed for novel
optoelectronic devices due to their ability to confine carriers in three dimensions (3D), in contrast
to the one-dimensional (1D) confinement of quantum wells (QWs). Due to their absorption of
normal-incidence radiation, as well as their reduced dark currents and higher detectivities, SK-
QDs are often used in place of QWs in infrared photodetectors.>” Furthermore, in principle, the
3D confinement in SK-QDs enables the splitting of quasi-Fermi levels,®® as needed for
intermediate band solar cells (IBSCs). However, the observed lower open-circuit voltage and
efficiencies for SK-QD IBSCs in comparison to their QW counterparts,'®!! have limited their use
in solar cells.

It has been suggested that InAs/GaAs sub-monolayer quantum dots (SML-QDs),
consisting of alternating depositions of sub-monolayers and a few monolayers of size-mismatched
species, result in stacks of vertically-aligned 1-ML-height islands with 3D carrier confinement.
Remarkably, InAs/GaAs SML-QDs have led to a higher open-circuit voltage and higher efficiency

6.7.1617 and lower threshold current

in solar cells,'®" higher detectivity in infrared photodetectors,
and higher output power in lasers compared to SK-QDs and QWs.!32! It is often suggested that
the enhanced performance of SML-QD devices is due to 3D confinement of both electrons and
holes in columnar nanostructures.5”'> Meanwhile, two-dimensional (2D) cross-sectional scanning
tunneling microscopy (XSTM) suggests that SML-QDs consist of InxGai-xAs clusters embedded

in an InyGai-yAs/GaAs QW with lower In composition (x>y),?2?

although the precise x and y
values remain unknown. Using 2D projections of nanostructure sizes and local indium
compositions from XSTM as input into Schrodinger-Poisson simulations, it has been instead

suggested that electrons are confined in 1D, with holes localized in 3D.'**® Since realistic

calculations involving the 3D topology and In compositions have yet to be performed, the
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influence of the 3D nanostructure of InAs/GaAs SML-QDs on their electronic states and optical
properties remain unknown.

Here, we report on the origins of PL from InAs/GaAs SML-QD layers. We use the 3D
topology and local In compositions, X, from local electrode atom probe tomography (LEAP) as
input into self-consistent Schrodinger-Poisson simulations of 3D confinement energies,
probability densities, and photoluminescence (PL) spectra for both SML-QDs and SK-QDs. This
work provides important insight into the origins of the enhanced PL efficiency for SML-QDs in
comparison to their SK-QDs counterparts, providing a pathway for high efficiency optoelectronics
and photovoltaics.

For these studies, SML-QDs and "reference" SK-QDs were prepared using molecular-
beam epitaxy, using the substrate temperatures and growth rates described in the Supplementary
Material. For LEAP studies, heterostructures consisting of multiple sets of QD layers, each
separated by ~40 nm thick GaAs spacer layers, intended to prevent coupling between QD layers,
were prepared by molecular-beam epitaxy (MBE). Multiple conical-shaped LEAP specimens
(“tips”) were prepared from 3 different epitaxial samples that contained a total of 22 distinct QD
layers, a subset of which are discussed in this paper. These QD layers are buried at least 500nm
from the top surface of each epitaxial heterostructure. Since the thickness of the QD capping layers
influences the emission intensities, separate PL. samples, each containing SK or SML-QDs, with
otherwise identical layer structures, including 50 nm capping layers, were prepared. Here, we
discuss three types of QD layers: InAs/GaAs SML-QD layers consisting of 6 repeats of 0.5ML
InAs followed by 2.5 ML GaAs formed on either c(4x4) or (2x4) GaAs(001) surfaces, as well as
InAs/GaAs SK-QD layers obtained from deposition of 2.2 MLs of InAs on a c(4x4) GaAs(001)

surface. For simplicity, we refer to these nanostructures as c(4x4) SML-QD, (2x4) SML-QD, and
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SK-QD layers, respectively. For the SML-QD layers, we consider both (2x4) and c(4x4) surface
reconstructions, allowing comparison with both our SK-QD and those SML-QD layers from earlier
reports suggesting that 2D island formation growth with the (2x4) reconstruction.?*?

For LEAP studies, samples were coated with a 500-nm thick Pt layer, welded onto a silicon
post, milled into conical shapes ("tips") using a focused-ion beam,?® and loaded into the Cameca
LEAP 5000XR, which is maintained at cryogenic temperatures (<25 K) under ultra-high vacuum
conditions (3.0x10!! Torr). LEAP experiments were performed in laser mode with a wavelength
of 355 nm, pulse energy of 1 pJ, pulse frequency of 100 kHz, and detection rate of 0.005
atom/pulse. For the three types of QDs, the total region-of-interest (ROI) volumes exceeded 80,000
nm’. 3D reconstructions of LEAP datasets were produced using Cameca's Integrated Visualization
and Analysis software (IVAS) in AP Suite 6.3 The PL spectra were acquired at 50 K using a 19.2
uW solid-state laser emitting at 730 nm and a Si CCD (InGaAs diode-array detector) for SML-
QDs (SK-QDs). Finally, using the nanostructure volumes and local xm values from LEAP,
probability densities, confined state energies, and photoluminescence spectra were computed using
3D Schrodinger-Poisson simulations in the effective mass approximation at 50 K using nextnano.

To examine In incorporation and visualize InGaAs clusters and QDs within the QD layers,
we present x-z views of LEAP reconstructions containing the (2x4) SML-QD layers (Fig. 1(a)),
the c(4x4) SML-QD layer (Fig. 2(a)), and the SK-QD layers (Fig. 3(a)). The corresponding
spatially-averaged 1D profiles of xm, reveal maximum xm values of 0.12, 0.19, and 0.18 for (2x4)
SML-QD, c(4x4) SML-QD, and SK-QD layers, with xm < 0.0005 within the GaAs spacer regions.
Meanwhile, 2D contour plots, with local xm values averaged over 2-nm regions of interest (ROI)
vertically-centered about each QD layer, reveal ~5 nm-sized InxGai-xAs clusters embedded in

InyGai-yAs QWs (y < x), for the SML-QD layers (Figs. 1(b) and 2(b)) and ~20nm-sized InxGai-
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xAs QDs atop wetting layers (WL) for the SK-QD layers (Fig. 3(b)), consistent with earlier XSTM
reports.?>232” The apparent drop in X at the edges in (b) is due to a LEAP analysis artifact related
to the limited counts available for the 2D contour plots.

The process for developing nanostructural models for input into the Schrodinger-Poisson-
continuity simulations is illustrated by x-y isosurfaces for each type of QD layer in Figs. 1-3. For
the (2x4) SML-QDs, x-y isosurfaces with xm > 0.09 (Fig. 1(c)) and xm > 0.14 (Fig. 1(d)) reveal
the presence of 4-5 nm InxGaixAs (x > 0.14) clusters embedded in an InyGai-yAs quantum well (y
~0.09). For the c(4x4) SML-QD layers, x-y isosurfaces with xm > 0.14 (Fig. 2(c)) and xm > 0.21
(Fig. 2(d)) reveal 5-6 nm InxGaixAs (x > 0.21) clusters embedded in an InyGaiyAs quantum well
(y = 0.14). For the SK-QD layers, x-y isosurfaces with xm > 0.18 (Fig. 3(c)) and xm > 0.42 (Fig.
3(d)) reveal ~20nm InxGaixAs QDs (x > 0.18) with higher composition (up to x = 0.6) "cores".
For each isosurface, all clusters with sizes > 4.2 nm? and their local xi(X, y, z) were identified. To
quantify local xm values within In-rich clusters (or QDs) and the surrounding QWs (or WLs), we
analyzed 2D contour plots from seven 1-nm thick ROI spanning each type of QD layer. For the
2D regions (QWs or WLs), the clusters were excluded from the analysis; a series of 2D contour
plots shifted in the z-direction were used to obtain <xm(z)>xy. For each cluster, we use xm(X, y, z)
to model a series of ellipsoids as described in the supplementary materials.

For each type of QD layer, the conduction-band edge (CBE), valence-band edge (VBE),
and confined states computed along the black dotted lines intersecting clusters in Figs. 1(c), 2(c),
and 3(c) are shown in Figs. 4 (a)-(c), with the main findings summarized in Table S4. For each of
the x, y, and z directions, if the electron (hole) level is below (above) the edge of the QW
conduction (valence) band, the carrier is considered to be confined. For the SK-QD layers, the

computed CBE and VBE band diagrams along the x-direction reveal that Eei (Enn1) lies 100 (115)
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meV below (above) the CBE (VBE) of the surrounding WL (xm = 0.05) and 35 (65) meV below
(above) the CBE (VBE) of the WL with xm = 0.14. Along z-direction, Ee1 (Enn1) lies 30 (70) meV
below (above) the CBE (VBE) of the surrounding WL. Thus, 3D confinement of both electrons
and holes in SK-QD is confirmed. On the other hand, for the (2x4) SML-QD layers, Eei (Enn1) is
28 (21) meV above (below) the CBE (VBE) of the surrounding QW along the x-direction, with
Eei (Enn1) is 20 (41) meV above (below) the CBE (VBE) of the surrounding QW along the z-
direction. Similarly, for the c(4x4) SML-QD layers, Eei (Enn1) is 42 (27) meV above (below) the
CBE (VBE), with Eei (Enn1) is 28 (35) meV above (below) the CBE (VBE) along the z-direction.
Therefore, for the SML-QD layers, 1D carrier confinement is apparent, similar to the QW case, in
contrast to assumptions of 3D confinement inferred from XSTM and PL data.'>?328

To confirm the hypothesis of 1D carrier confinement in SML-QD layers, we computed
electron and heavy-hole probability densities for each type of QD layer (Fig. 5), quantifying carrier
“localization" as the fraction of probability density that is inside the clusters or QDs. A padding of
15 nm is added to all sides of simulation area (full size = 55 x 55 nm?) to minimize the truncation
of probability densities induced by Dirichlet boundary condition. For the SK-QD layers in Fig.
5(c), both electrons and heavy-holes are localized to the In-rich clusters, consistent with earlier
reports.?>* On the other hand, for both types of SML-QD layers, the electron probability densities
are distributed across and modulated by several In-rich clusters (see 1D probability densities
profile insets), while the heavy-hole probability densities are localized to certain In-rich clusters,
suggesting a “quasi-1D” carrier confinement. The localization of heavy-holes is more significant
than that of electrons, presumably due to their substantially higher effective masses. For the In-
rich clusters indicated by arrows in Fig. 5, the fractions of heavy-hole probability density within

10 nm? are 0.20 and 0.38 for the (2x4) and c(4x4) SML-QD layers. The increase in heavy-hole
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localization for the c(4x4) SML-QD layers is likely due to the larger cluster sizes and higher xm
values.

We next compute the spontaneous emission vs. energy for comparison with the measured
values of PL intensity vs energy for the QD layers. For these calculations, both the ground states,
shown in Figs. 4(a) - 4(c), plus the excited states, shown in the Supplementary Material, were
included. Figure 5 presents the measured (solid) and computed (dashed) PL data for the SK-QD
layers (green), c(4x4) SML-QD layers (blue), and the (2x4) SML-QD layers (red). Similar trends
in the relative PL emission energies and emission intensities are observed for the measured and
computed PL data, with emission intensities increasing from c(4x4) SML-QD layers (blue) to SK-
QD layers (green) to (2x4) SML-QD layers (red). For each type of QD layer, the systematic blue-
shift (to higher energy) of the computed PL emission energies with respect to the measured values
may be due to the higher thickness of the overgrown layers (= 500 nm for LEAP structures vs. 50
nm for PL structures) grown at temperatures sufficiently high to generate In out-diffusion.’!-**
Thus, for the QD layers within the LEAP structures, the lower In concentrations would lead to
higher computed PL emission energies. Furthermore, although both SML-QD and SK-QD layers
exhibit compositional inhomogeneities, the quasi-1D confinement in the SML-QD layers leads to
narrower emission linewidths typical of QWs.3* To understand the trends in PL emission
intensities, we consider both the real-space overlap of the electron-heavy-hole probability
densities®’ (i.e. the transition intensity) and the total number of states contributing to the
emission.

For the SK-QD layers, the probability densities are confined inside the QDs, resulting in
significant real-space overlap of the electron-heavy-hole probability densities, but only ground

state electrons and heavy-holes contribute to the emission. On the other hand, for both types of
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SML-QD layers, the electron probability densities are distributed across several In-rich clusters
while the heavy-hole probability densities are localized in the vicinity of certain In-rich clusters.
However, as mentioned above, for the (2x4) SML-QD layers, there are 3 electron and 7 heavy-
hole states contributing to the emission (see Table S5 of Supplementary Material) which ultimately
leads to the high PL emission intensity of the (2x4) SML-QD layers. The emission intensity of the
c(4x4) SML-QD layers is predominantly determined by their improved heavy hole localization
that decreases the real-space overlap of the electron-hole probability densities, causing the
emission of c(4x4) SML-QD layers to be less intense than that of the SK-QD layers despite the
number of states contributing to total emission.

In summary, we examined the origins of the narrow and intense PL emission from
InAs/GaAs SML-QD layers—similar to that of a QW—in contrast to the broader and weaker PL
emission typical of SK-QD layers. Using realistic 3D nanostructure sizes and local InGaAs
composition profiles from LEAP as input into self-consistent Schrodinger-Poisson simulations of
SML-QD and SK-QD layers, we demonstrated 1D electron confinement with significant 3D hole
localization in the SML-QD layers, in contrast to 3D confinement of electrons and holes in SK-
QD layers. In other words, SML-QD layers are not strictly three-dimensionally-confined "quantum
dots".*® Despite the significant real-space overlap of the electron-heavy-hole probability densities
in SK-QD layers, SML-QD layers have a larger number of states contributing to their emission,
resulting in higher PL intensities. Furthermore, the real-space overlap of the electron-heavy-hole
probability densities and the total number of states is greatest for the (2x4) SML-QD layers,
leading to their higher PL emission intensity. This work provides important insight into the origins

of the enhanced PL efficiency for SML-QD layers in comparison to their SK-QD counterparts.
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Supplementary materials

The parameters used for molecular-beam epitaxy of InAs/GaAs SML-QD and SK-QD layers,
including the shutter sequences, the elemental incorporation rates (IR), and the substrate
temperatures for all layers, are described in the supplemental materials. In addition, the isosurface
threshold selection criteria and nextnano model development are described. Next, we present
LEAP data, as well as the computed probability density and energy band diagram for the reference
QW. Finally, the computed excited-state probability densities for the SML-QD and SK-QD layers,
and a comparison of the real-space overlap of the electron-heavy-hole probability densities (i.e.
the transition intensities) for all combinations of confined and excited states are presented.
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Captions

Fig. 1: LEAP data for (2x4) SML-QD layers: (a) x-z view of LEAP reconstruction, with
corresponding spatially-averaged 1D profiles of xm, (b) 2D contour plots, and x-y isosurfaces for
(c) xm > 0.09 and (d) xm > 0.14. The horizontal black dotted line in the top of (d) indicates the
position of the x-z isosurface shown in the bottom of (d). The region outlined by the black square
in (d) was used for the nextnano simulations.

Fig. 2: LEAP data for the c(4x4) SML-QD layers: (a) x-z view of LEAP reconstruction, with
corresponding spatially-averaged 1D profiles of xm, (b) 2D contour plots, and x-y isosurfaces for
(c) xm > 0.14 and (d) xm > 0.28. The horizontal black dotted line in the top of (d) indicates the
position of the x-z isosurface shown in the bottom of (d). The region outlined by the black square
in (d) was used for the nextnano simulations.

Fig. 3: LEAP data for the SK-QD layer: (a) x-z view of LEAP reconstruction, with corresponding
spatially-averaged 1D profiles of xm, (b) 2D contour plots, and x-y isosurfaces for (c) xm > 0.18
and (d) xm > 0.42. The horizontal black dotted line in the top of (d) indicates the position of the x-
z isosurface shown in the bottom of (d). The region outlined by the black square in (d) was used
for the nextnano simulations.

Fig. 4: The x- and z-dependence of the conduction-band edge (CBE) (black), valence-band edge
(VBE) (black), and confined states (colorful) for the (a) (2x4) SML-QD, (b) c(4x4) SML-QD and
(c) SK-QD layers, computed along the black dotted lines intersecting clusters in Figs. 1(d), 2(d),
and 3(c). The z-dependence of the CBE and VBE of the clusters/QDs are marked in orange.

Fig. 5: Computed probability densities of the ground state electrons (el) and heavy-holes (hh1)
for (a) (2x4) SML-QDs, (b) c(4x4) SML-QDs, and (c) SK-QDs. The white dotted circles/ovals

indicate the positions of clusters/dots, and the maximum value of the color scale is shown in the
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upper right corner. The arrows indicate the In-rich clusters used to quantify the localization of
heavy-hole probability densities of the SML-QDs. The insets to the ground state electrons (el)
illustrate the 1D probability densities along the black dotted lines in (a), (b), and (c).

Fig. 6: Measured (solid lines) and computed (dashed lines) PL emission vs energy for the SK-QDs
(green), c(4x4) SML-QDs (blue), and (2x4) SML-QDs (red). The energy of the maximum of each
spectrum is indicated. For the SK-QDs, the linewidth of the simulated PL is narrow due to the

inclusion of only one QD in the simulation.
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