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ABSTRACT: The variability of Arctic sea ice extent (SIE) on interannual and multidecadal time scales is examined in
29 models with historical forcing participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) and
in twentieth-century sea ice reconstructions. Results show that during the historical period with low external forcing
(1850-1919), CMIP6 models display relatively good agreement in their representation of interannual sea ice variability
(IVSIE) but exhibit pronounced intermodel spread in multidecadal sea ice variability (MVSIE), which is overestimated
with respect to sea ice reconstructions and is dominated by model uncertainty in sea ice simulation in the subpolar North
Atlantic. We find that this is associated with differences in models’ sensitivity to Northern Hemispheric sea surface temper-
atures (SSTs). Additionally, we show that while CMIP6 models are generally capable of simulating multidecadal changes
in Arctic sea ice from the mid-twentieth century to present day, they tend to underestimate the observed sea ice decline
during the early twentieth-century warming (ETCW; 1915-45). These results suggest the need for an improved characteri-
zation of the sea ice response to multidecadal climate variability in order to address the sources of model bias and reduce
the uncertainty in future projections arising from intermodel spread.

SIGNIFICANCE STATEMENT: The credibility of Arctic sea ice predictions depends on whether climate models
are capable of reproducing changes in the past climate, including patterns of sea ice variability which can mask or am-
plify the response to global warming. This study aims to better understand how latest-generation global climate models
simulate interannual and multidecadal variability of Arctic sea ice relative to available observations. We find that mod-
els differ in their representation of multidecadal sea ice variability, which is overall larger than in observations. Addi-
tionally, models underestimate the sea ice decline during the period of observed warming between 1915 and 1945. Our
results suggest that, to achieve better predictions of Arctic sea ice, the realism of low-frequency sea ice variability in
models should be improved.
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1. Introduction and in future projections. The Coupled Model Intercomparison
Project (CMIP) provides a valuable framework for evaluating
and improving the representation of sea ice in latest-generation
GCMs. Over the years, significant advancements have been
made in model formulation and realism, with consequent im-
provements in terms of sea ice extent and edge (Davy and

The rapid decline of Arctic sea ice since the beginning of
the satellite era (e.g., Cavalieri et al. 2003; Comiso et al. 2008)
has created a growing need for accurate predictions of future
Arctic climate changes, including estimates of the timing of
ice-free conditions in summer (e.g., Jahn et al. 2024), and for
enhanced understanding on the variability of sea ice. Global ~ Outten 2020) and better representation of spatial patterns
climate models (GCMs) are the most comprehensive tool for an- ~ (Long et al. 2021). Recent assessments showed that over the
alyzing trends and variability of Arctic sea ice, both historically ~ central Arctic, CMIP6 models outperform the ERAS reanal-
ysis in capturing the observed warming trend (Tian et al.
2024).

Despite these promising results, CMIP6 models still exhibit
large intermodel spread, and discrepancies with observations
persist (Shen et al. 2021; Notz and SIMIP Community 2020;
Watts et al. 2021). Several factors can contribute to the
P Supplemental information related to this paper is available ~ mismatch between simulated and observed Arctic changes,

gt&tge 1Journals Online website: https://doi.org/10.1175JCLI-D-23- jncluding a biased representation of sea ice and other climate
Sl.

Denotes content that is immediately available upon publica-
tion as open access.

system components (e.g., Topal et al. 2020; Khosravi et al.
2022; Massonnet et al. 2018). A number of studies have
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important reason for why model simulations often differ from
observations (Winton 2011; Mahlstein and Knutti 2012;
Rosenblum and Eisenman 2017). Specifically, Notz and
SIMIP Community (2020) showed that the majority of
CMIP6 models simulate insufficient sea ice sensitivity to global
mean surface temperatures. At short weather time scales
(<20 days), models tend to simulate too little sea ice variabil-
ity compared to observations (Blanchard-Wrigglesworth et al.
2021).

Besides model formulation, substantial uncertainty arises
from internal climate variability associated with atmospheric
(e.g., Olonscheck et al. 2019) and oceanic (e.g., Li et al. 2017)
drivers. The observational record represents only one plausi-
ble trajectory of sea ice response to changes in anthropogenic
forcing and internal climate variability. Considerable effort
has gone toward assessing the relative contributions of these
two factors to recent Arctic changes (e.g., Ye and Messori
2021; Shen et al. 2021), with many studies concluding that a
substantial portion (20%-50%) of the observed sea ice trend
is attributable to natural variability (Kay et al. 2011; Ding et al.
2017,2019; England et al. 2019; Dorr et al. 2023).

The physical processes that influence sea ice variability can
vary considerably across time scales. For instance, sea ice vari-
ability on synoptic to subseasonal time scales in GCMs has
been linked to local wind and ocean wave characteristics
(Blanchard-Wrigglesworth et al. 2021), while interannual and
interdecadal changes have been associated with tropical-arctic
teleconnections (e.g., Baxter et al. 2019; Clancy et al. 2021),
though the robustness of the teleconnections is unclear (Bonan
and Blanchard-Wrigglesworth 2020). On decadal and multi-
decadal time scales, sea ice variability occurs in response to
thermodynamic processes associated with atmospheric and oce-
anic forcing (Bitz et al. 1996), particularly ocean heat transport
from the Atlantic Ocean (Zhang 2015; Li et al. 2017; Yeager
et al. 2015) and AMOC variability (Liu and Fedorov 2022).
However, our understanding of multidecadal sea ice variability
remains limited, largely because the insufficient temporal cover-
age of sea ice observations has so far limited characterization of
these time scales. Moreover, the satellite record provides a
single realization of the climate system that is also undergo-
ing rapid changes, which complicates the disentanglement of
forced and natural contributions (England et al. 2019; Ding
et al. 2019).

Observations of Arctic temperatures throughout the twen-
tieth century have revealed patterns of multidecadal variabil-
ity characterized by an early period of warming over 191545,
cooling over 1945-75, and the modern, ongoing period of
warming since 1975 (Polyakov et al. 2003; Bengtsson et al.
2004). The first period of warming is known as the early
twentieth-century warming (ETCW) and was characterized
by abrupt temperature increases in the Arctic with compa-
rable warming trends to the modern satellite-era warming,
albeit of shorter duration (Bengtsson et al. 2004; Johannessen
et al. 2004; Hegerl et al. 2018). Evidence of significant sea ice
decline during the ETCW has been documented in twentieth-
century sea ice extent reconstructions (Brennan et al. 2020),
with an estimated loss of Arctic sea ice area of 1.5 million km?
over 1915-45. The driving mechanisms of the ETCW are still a
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subject of debate. Several previous studies concluded that the
warming originated from an internally generated superposition
of Northern Hemispheric climate anomalies (e.g., Overland and
Wang 2005; Wood and Overland 2010; Johannessen et al. 2004;
Beitsch et al. 2014), enhanced by positive feedbacks in the
Arctic (Bokuchava and Semenov 2021). Other studies (Fyfe
et al. 2013; Hegerl et al. 2018; Aizawa et al. 2021) have sug-
gested a contribution of external forcing agents, including pos-
itive radiative forcing from black carbon and decline in late
19th century/early twentieth century volcanism, though rela-
tive roles are uncertain. On the other hand, the relative cool-
ing and associated sea ice recovery that followed the ETCW
in the mid-twentieth century have been ascribed to increased
emissions of anthropogenic aerosols (England et al. 2021;
Aizawa et al. 2022). The magnitude and potentially recurrent
nature of the ETCW highlight the importance of characteriz-
ing the sensitivity and low-frequency variability of Arctic sea
ice in GCMs, in order to gain confidence in their representa-
tion of the present and future Arctic climate. Moreover, ear-
lier generations of climate models (CMIP3 and CMIP5) have
consistently failed to capture the magnitude and duration of
the ETCW (Fyfe et al. 2013; Wang et al. 2007), which moti-
vates us to investigate whether CMIP6 models show any im-
provement in replicating this event.

In this study, we examine changes and variability of Arctic
sea ice in 29 CMIP6 historical simulations (1850-2014) using
available observations for comparison. By analyzing a large
subset of CMIP6 models with all their available ensemble
members, we illustrate the range of simulated sea ice variabil-
ity between models, taking into account differences in model
sensitivity as well as the uncertainty originating from internal
climate variability.

Specifically, we address the following questions: 1) How do
CMIP6 models compare in simulating interannual and multi-
decadal sea ice variability over the historical period? 2) How
is sea ice variability on these time scales linked to global
ocean and air temperatures? And finally, 3) do CMIP6 mod-
els capture multidecadal sea ice changes and in particular the
decline associated with the ETCW?

2. Data and methods

We analyze fully coupled, free-running simulations with
historical forcing (1850-2014) from 29 CMIP6 models origi-
nating from 19 institutions, using all their available ensemble
members. All but six CMIP6 models (CMCC-CM2-HR4,
CMCC-ESM2, CNRM-CM6-1-HR, GFDL-CM4, SAMO-
UNICON, and TaiESM1) include multiple ensemble members
ranging up to 65. A brief description of the CMIP6 subset em-
ployed in this study is provided in Table 1.

In addition to CMIP6 historical simulations, we consider
annual Arctic sea ice extent (SIE) reconstructions since 1850
from Brennan et al. (2020, hereafter B20SIE). The product re-
lies on an ensemble Kalman filter data assimilation approach,
combining model data from fully forced Last Millennium simu-
lations covering the period 850-1849 with instrumental temper-
ature observations. In particular, we consider two B20SIE
ensembles generated with the MPI-ESM-P model assimilating
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TABLE 1. List of the 29 CMIP6 models analyzed in this study with their ensemble size, native nominal ocean grid resolution, and sea
ice model component.

Ensemble Native nominal

Model name Modeling center Country members®  ocean resolution (km) Sea ice model
ACCESS-CM2 CSIRO-ARCCSS Australia 3 100 CICES.1.2
ACCESS-ESM1-5 CSIRO Australia 5 100 CICE4.1
BCC-ESM1 BCC China 3 50 SIS2
CAMS-CSM1-0 CAMS China 3 100 SIS1.0
CESM2 NCAR United States 11 100 CICES.1
CESM2-WACCM NCAR United States 3 100 CICES.1
CMCC-CM2-HR4 CMCC Italy 1 25 CICE4.0
CMCC-ESM2 CMCC Italy 1 100 CICEA4.0
CNRM-CM6-1 CNRM-CERFACS France 21 100 Gelato6.1
CNRM-CM6-1-HR CNRM-CERFACS France 1 25 Gelato6.1
CNRM-ESM2-1 CNRM-CERFACS France 6 100 Gelato6.1
CanESM5 CCCma Canada 65 100 LIM2
CanESM5-CanOE CCCma Canada 3 100 LIM2
E3SM-1-0 E3SM-Project United States 5 50 MPAS-Seaice
EC-Earth3 EC-Earth-Consortium  Europe 23 100 LIM3
GFDL-CM4 NOAA-GFDL United States 1 25 GFDL-SIM4p25
GFDL-ESM4 NOAA-GFDL United States 3 50 GFDL-SIM4p2
HadGEM3-GC31-LL MOHC NERC United Kingdom 4 100 CICE-HadGEM3-GSI8
IPSL-CM6A-LR IPSL France 32 100 NEMO-LIM3
MIROC-ES2L MIROC Japan 31 100 COCO4.9
MIROC6 MIROC Japan 50 100 COCO04.9
MPI-ESM1-2-LR MPI-M AWI Germany 10 250 Unnamed®
MRI-ESM2-0 MRI Japan 6 100 MRI-COM4.4
NASA-GISS-E2-1-H  NASA-GISS United States 25 100 GISS SI
NCC-NorCPM1 NCC Norway 30 100 CICE4
NCC-NorESM2-MM  NCC Norway 100 CICE
SAMO-UNICON SNU Korea 1 100 CICE4.0
TaiESM1 AS-RCEC Taiwan 1 100 CICE4
UKESM1-0-LL MOHC NERC United Kingdom 16 100 CICE-HadGEM3-GSI8

# Refers to the number of available ensemble members for the variable “siconc.” This may vary for other variables.
® Thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model.

HadCRUTH4 temperatures (B20SIE MPI-HadCRUT4) and the
CCSM4 model combined with Berkeley Earth observations
(B20SIE CCSM4-BE). Each B20SIE ensemble consists of five
independent iterations that each uses a 200-member prior en-
semble, for a total of 1000 members. For additional comparison,
we use sea ice observations from the National Snow and Ice
Data Center (NSIDC) Sea Ice Index, version 3.0 (Fetterer et al.
2017; https://nsidc.org/data/g02135/versions/3) for the satellite
period (1979-2020).

To assess sea ice variability during a time of low external
forcing, we focus on 1850-1919, a period with minimal anthro-
pogenic influence and little global warming, when no statisti-
cally significant trend in ensemble mean SIE can be detected.

We compute Arctic SIE by integrating the area of sea ice
above 15% concentration (SIC) between 40° and 90°N on
each model’s native grid. Time series of annual mean SIE
anomalies are partitioned into multidecadal (MVSIE) and in-
terannual (IVSIE) time series. MVSIE is obtained by applying
a Butterworth low-pass filter with a 10-yr cutoff frequency.
IVSIE is then derived by subtracting the filtered time series
from annual SIE anomalies to retain interannual and sub-
interannual frequencies of variability. By using a 10-yr cutoff

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 11/08/24 02:54 PM UTC

frequency, the influence of climate variability modes that op-
erate at interannual time scales, such as El Nifio-Southern
Oscillation (ENSO; 2-7 year periodicity), is separated from
low-frequency modes, namely, the Atlantic multidecadal os-
cillation (AMO) and Pacific decadal oscillation (PDO),
which affect Arctic sea ice on multidecadal time scales (e.g.,
Zhang 2015). We apply the same filtering method to annual
anomalies of sea surface temperature (SST) and near-surface
air temperature (SAT) for the same period in order to quan-
tify models’ sensitivity to global temperature patterns and
identify large-scale sources of sea ice variability.

The last 100 years of historical simulations (1915-2014) are
characterized by periods of warming and relative cooling un-
der greater external anthropogenic forcing and are therefore
analyzed separately. In this study, our main aim is to assess
whether CMIP6 models simulate a realistic ETCW sea ice de-
cline with respect to the B20SIE reconstructions. We addi-
tionally examine SIE and SAT trends in the 29 CMIP6
models along with the B20SIE reconstructions and satellite
observations for the modern warming period (1979-2014) and
the intermediate period of observed Arctic cooling following
the ETCW (1946-78). To accomplish this, we obtain time
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series of global and Arctic (70°-90°N) near-surface surface
temperature from gridded observations of Met Office Hadley
Centre/Climatic Research Unit global surface temperature da-
taset analysis, version 5.0.1.0 (HadCRUTS) (Morice et al. 2021;
https://crudata.uea.ac.uk/cru/data/temperature/). HadCRUTS
observations are expressed as anomalies relative to the 1961-90
period and rely on a statistical infilling method to improve
the representation of sparsely observed regions. For the ETCW,
we also utilize the HadCRUTS noninfilled dataset, which adopts
the gridding method of HadCRUT4 (Morice et al. 2012),
to quantify temperature changes where measurements are
available.

3. Results

a. Interannual and multidecadal sea ice variability during
1850-1919

We first examine the variability of MVSIE and IVSIE dur-
ing the first 70 years of historical simulations (1850-1919).
This period is characterized by a nonsignificant trend in simu-
lated sea ice and minimal anthropogenic forcing, and thus in-
ternal climate variability is expected to be the dominant
factor influencing sea ice fluctuations.

Figure 1 illustrates the variability of MVSIE and IVSIE
over 1850-1919 (expressed as standard deviations of SIE
anomalies, onvsie and opysig) in 29 CMIP6 models and its re-
lation to the mean sea ice state. For comparison, we also show
omvsie and opysie in B20SIE reconstructions covering the
same period. The oyysie in CMIP6 models is generally over-
estimated with respect to the B20SIE reconstructions (with a
multimodel mean oyvse of 0.34 million km? compared to
0.13-0.2 million km? in B20SIE) and exhibits substantially
larger uncertainty than oyysig, both in terms of intermodel
discrepancies and ensemble spread within individual GCMs.
The spread in MVSIE is almost fivefold between the most
and least variable models (0.77 million km? in EC-Earth3 ver-
sus 0.16 million km?* in MIROCS, as further illustrated by the
time series in Fig. S1 in the online supplemental material).
Generally, the simulated variability of MVSIE is about twice
as large as that of IVSIE (Fig. S2). Overall, CESM2-WACCM
and GFDL-ESM4 exhibit the closest agreement with the
B20SIE reconstructions for both MVSIE and IVSIE variabil-
ities, although this could in part be influenced by their small
ensemble size. From Fig. 1a, it is apparent that the ensemble
mean opysig in EC-Earth3 is overestimated compared to the
other models. Conversely, MIROC6 and MIROC-ES2L sim-
ulate the smallest SIE variability among the CMIP6 subset on
both time scales. We find that these models also exhibit biased
low mean SIE during 1850-1919. Across the CMIP6 multimo-
del ensemble, models with greater mean state sea ice cover
tend to simulate enhanced variability; however, the relation-
ships are weak (r = 0.36 for IVSIE and r = 0.24 for MVSIE,
which is not significant at the 95% threshold; Figs. 1c,d). This
indicates that while the models’ ability to simulate interannual
sea ice variability is in part influenced by their representation
of the mean sea ice state, this factor alone is not sufficient to
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explain the pronounced model spread and bias with respect to
B20SIE that is observed at multidecadal time scales.

Next, we analyze the spatial distribution of multidecadal
and interannual SIE variability in CMIP6 models to diagnose
the regions that drive sea ice variability and where models
agree or disagree. Figure 2 shows the CMIP6 multimodel
mean (MMM) and intermodel spread o of the correlation be-
tween SIE and SIC on multidecadal and interannual time
scales (where MVSIC and IVSIC are defined by applying the
same filtering method described in section 2 to SIC) in models
with at least 10 ensemble members. MVSIE variability in the
MMM is driven by MVSIC in the Barents and the subarctic
seas, especially in the North Atlantic, likely due to the influ-
ence of low-frequency variations in North Atlantic Ocean
temperatures (further discussed in section 3b).

On the other hand, IVSIE variability is driven by IVSIC vari-
ability in the Barents Sea and along the Siberian Arctic but less
so by IVSIC variability in the subarctic North Atlantic (note
the difference to the east and south of Greenland between
Figs. 2a,b). Consistent with the pattern of intermodel spread of
pan-Arctic SIE variability (Fig. 1), individual models display
large uncertainty in the representation of MVSIE (Figs. 2c and
3, which shows individual models’ {MVSIE, MVSIC] but rela-
tively good agreement in simulating the regional drivers of
IVSIE (Figs. 2d and 4, which shows individual models’ /[IVSIE,
IVSIC]. On multidecadal time scales, models show the largest
disagreement in the contribution of MVSIC variability to
MVSIE in the Atlantic Arctic sector, particularly in the Labra-
dor and Greenland seas, whereas practically all models agree in
the large contribution of MVSIC in the Barents Sea to MVSIE
(note the low o values in the Barents Sea in Fig. 2c).

b. Simulated sea ice sensitivity to global temperatures

Building on the understanding that Arctic sea ice on inter-
annual and longer time scales is strongly coupled to global
temperatures (e.g., Mahlstein and Knutti 2012; Winton 2011;
Gregory et al. 2002), we explore the links between SIE and
global SST to assess whether the intermodel spread in SIE
variability is attributable to differences in models’ sensitivity
to large-scale climate variability and to investigate the differ-
ences in the patterns of Arctic SIE-global climate coupling
across multidecadal and interannual time scales. Figure 5
shows the MMM regression of MVSIE and IVSIE on stan-
dardized global SST during 1850-1919. Regression maps for
individual models can be found in the supplemental material.
Temperature anomalies are standardized prior to computing
the regressions to facilitate intermodel comparison.

MVSIE in the MMM is tightly coupled to multidecadal sea
surface temperature (MVSST) in the Northern Hemisphere,
as reflected by the significant regression coefficients extending
from the Arctic Ocean to the equatorial Atlantic and Pacific
Oceans (Fig. 5a). Conversely, the link between SIE and SST
on interannual time scales is primarily limited to the Arctic
Ocean north of 60°N (Fig. 5b), illustrating how in general
MVSIE is coupled to global climate, whereas IVSIE appears
to be isolated to Arctic climate variability. The patterns of
SIE-SAT coupling on both time scales (Fig. S5) are largely
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F1G. 1. Standard deviations of (a) multidecadal and (b) interannual Arctic SIE anomalies (1850-1919) in
29 CMIP6 models and B20SIE reconstructions with two model priors [lower panels in (a) and (b)]. Single dots indi-
cate individual ensemble members, shaded boxes indicate the interquartile range, and white diamonds mark the en-
semble mean for each model/product. The CMIP6 MMM in (a) and (b) denotes the average across the ensemble
mean SIE standard deviations of models with at least 10 ensemble members. Dashed lines in the MMM mark
one standard deviation from the mean. The ensemble of dots in each B20SIE reconstruction corresponds to the
1000-member model prior ensemble and represents the uncertainty due to sampling error. (c),(d) The relation
between (c) multidecadal and (d) interannual ensemble mean SIE standard deviations and mean sea ice state
(1850-1919) in the 29 CMIP6 models.

consistent with those of SIE and SST, though with lower re-
gression coefficients in the Arctic due to the larger internal
variability of atmospheric temperatures relative to SST, which
is constrained close to the freezing point in regions of sea ice
cover. We note that the coupling between Atlantic SST and
Arctic SIE that emerges from the CMIP6 MMM (Fig. 5a) is
also consistent with observations (Fig. S6, showing the regres-
sion of annual B20SIE anomalies on global SST observations
from HadSST4).
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Individual models display considerable differences in their
representation of SIE sensitivity to global SST (Figs. S3 and
S4). MIROC6 and MIROC-ES2L stand out because of re-
markably low regression coefficients outside the Arctic on
both time scales, suggesting insufficient sea ice sensitivity to
changes in Northern Hemispheric SST. This in part explains
the smaller MVSIE and IVSIE variability that is observed in
these models (Fig. 1), particularly in the Atlantic Arctic (Fig. 3).
Conversely, EC-Earth3 and E3SM-1-0 display unrealistic high
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F1G. 2. (a),(b) Multimodel mean and (c),(d) standard deviation of the correlation between Arctic SIE and grid-
point SIC during 1850-1919 for (a),(c) multidecadal and (b),(d) interannual timescales. Only models with at least
10 members are included in the multimodel ensemble. The correlations are Fisher-Z-transformed prior to computing
the multimodel mean. Stippling in (a) and (b) denotes 95% significance according to a Student’s # test.

and widespread sea ice sensitivity to multidecadal SST,
though this feature does not emerge on interannual time
scales. For EC-Earth3, the biased high sensitivity of MVSIE
to global SST is consistent with the overestimated MVSIE
variability (Fig. 1a).

Furthermore, we find that models that simulate lower
MVSIE variability in the Greenland and Labrador Seas relative
to the CMIP6 MMM (including CESM2, CESM2-WACCM,
MIROC6, MIROC-ES2L, and MPI-ESM1-2-LR; Fig. 3) also
display weak regressions with MVSST in the Northern Hemi-
sphere (Fig. S3). We examine whether these differences origi-
nate from sensitivity biases or rather a misrepresentation of
Northern Hemispheric SST variability. Figure 6 illustrates the
links between the multidecadal variability of Arctic MVSIE
(omvsie) and Northern Hemispheric SST (‘TMVSSTNH) during
1850-1919. Models with especially low (high) MVSIE sensitivity
to MVSSTnu (Fig. 6a, Fig. S3) tend to have smaller (larger)
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omvsie (Fig. 6a) and OMVSST,, (Fig. 6b), suggesting that the
strength of MVSIE-MVSST coupling is largely explained by
models’ representation of Northern Hemispheric SST variabil-
ity (Fig. 6¢). For instance, EC-Earth3’s overestimated onysie
is due to the combined contributions of high sensitivity
(Figs. 6a,b) and a generally overestimated Northern Hemi-
spheric climate variability (Fig. 6¢c, Fig. S7a). It is worth noting
that the correlation between MVSIE and MVSSTyy in CMIP6
models peaks when MVSSTny leads MVSIE by 1 year and is
significant up to a lag of 3 years (Fig. S8a), suggesting that the
main direction of causality is temperature variability forcing
sea ice variability.

¢. Multidecadal sea ice changes and the ETCW

In the following section, we shift our focus to the final
century of CMIP6 historical simulations, covering the years
1915-2014. The observational record of Arctic temperatures
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FIG. 3. Ensemble mean correlation between multidecadal Arctic SIE and gridpoint SIC in 29 CMIP6 models. Values in parentheses
refer to the number of ensemble members. For any given model, the ensemble mean correlation is computed as the average correlation
across the model’s ensemble members after Fisher’s Z transformation.
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FIG. 4. As in Fig. 3, but for interannual SIE and SIC.

(blue line in Fig. 7b) reveals a pronounced warming dur-
ing the ETCW (1915-45), followed by a cooling phase
(1946-78) and the modern anthropogenic warming (1979
to present). Similar multidecadal variability is observed in

global temperatures (black line in Fig. 7b), though with a
smaller amplitude.

Figure 7c illustrates simulated trends of annual pan-Arctic
SIE anomalies in the 29 CMIP6 models over the 30-yr period
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FIG. 5. MMM regressions of Arctic SIE on standardized global SST for (a) multidecadal and (b) interannual anom-
alies. Only models with at least 10 members are included in the multimodel ensemble. Stippling denotes 95% signifi-

cance according to a Student’s ¢ test.

corresponding to the ETCW (1915-45) together with obser-
vational estimates using the B20SIE reconstructions. Ensem-
ble mean trends (marked in diamonds) range from —0.31 to
0.15 million km?* decade ™", with some models showing relatively
pronounced sea ice decline (e.g., CMCC-ESM2, GFDL-CM4,
and NASA-GISS-E2-1-H) and others exhibiting little or no sea
ice loss (e.g., GFDL-ESM4, HadGEM3-GC31-LL, and MPI-
ESM1-2-LR). With exception for CNRM-ESM2-1 and NCC-
NorCPM1, which show positive ensemble mean SIE trends
during the ETCW, all CMIP6 models have ensemble mean trends
below zero. However, when considering models with at least
10 members, negative trends are only statistically significant in
less than half of them (10 of out 23; bold diamonds in Fig. 7c).

Furthermore, only about two thirds of models have at least
one ensemble member that falls within one standard devia-
tion of the B20SIE mean trend, and the CMIP6 MMM SIE
trend during the ETCW is —0.12 million km? decade™!, sig-
nificantly smaller than the B20SIE estimates of —0.24/—0.34
million km? decade ™ '. This illustrates that while CMIP6 mod-
els tend to simulate a decline in SIE during the ETCW, they
generally underestimate the extent of sea ice loss compared
to sea ice reconstructions.

The ensemble spread of trends within individual models il-
lustrates the role that internal climate variability may have
had on the observed sea ice decline during the ETCW. When
normalizing ETCW SIE trends relative to the 1850-1919
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FIG. 7. (a) Arctic SIE anomalies in B20SIE reconstructions and NSIDC observations. Bold lines mark the ensemble mean of B20SIE.
Anomalies are centered about 1979-2013. Gray dashed lines mark the 1850-1919 period, and red dashed lines indicate the period corre-
sponding to the ETCW. (b) Global (black) and Arctic (blue) temperature observations from HadCRUTS analysis, expressed as anomalies
relative to 1961-90. Thinner lines indicate the version of HadCRUTS with no statistical infilling. (c) Linear trends of Arctic SIE during the
ETCW in 29 CMIP6 models and B20SIE reconstructions. Diamonds mark ensemble mean SIE trends. Bold diamonds denote statistically
significant ensemble mean trends. (d) As in (b), except that ETCW SIE trends are expressed relative to the models’ background SIE vari-
ability in 1850-1919. (e),(f) Asin (c), except that trends are calculated separately for the () Atlantic Arctic and (f) the Pacific Arctic.
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background SIE variability [i.e., as the ratio of ETCW SIE
trends to osig(1850-1919), Fig. 7d], none of the models replicate
the reconstructed ETCW sea ice loss (<—10), even if some
CMIP6 ensemble mean trends approach the reconstructed
mean trend shown in Fig. 7c. This suggests that either the
B20SIE reconstructions have too low a SIE variability during
1850-1919, or that CMIP6 models fail to capture the full magni-
tude of the ETCW (if the ETCW was mostly forced) and/or that
the ETCW was an extreme realization of internal variability.

Moreover, partitioning of ETCW SIE trends between the
Atlantic- and Pacific-influenced sectors of the Arctic Ocean
(defined by dividing the Arctic region longitudinally along the
90° and 270° meridians) reveals that the SIE decline is almost
entirely limited to the Atlantic Arctic (Figs. 7e,f). This finding
is consistent with previous observations of temperature anom-
alies during the ETCW, which also showed a similar spatial
distribution dominated by warming in the Atlantic-adjacent
Arctic (Johannessen et al. 2004).

To explore the sources of model spread in ETCW SIE
trends, we analyze Arctic sea ice trends in relation to global
and Arctic SAT. Figure 8 shows scatterplots of Arctic SIE
versus global and Arctic SAT trends during the ETCW
(1915-45) and in the recent warming period (1979-2014) in
CMIP6 and observations. As expected from Fig. 5 and previ-
ous literature, models with greater global and Arctic tempera-
ture trends show greater SIE trends. The correlation between
Arctic SIE and global SAT trends in CMIP6 model ensemble

Broug
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means is stronger during 1979-2014 (r = —0.87) than during
the ETCW (r = —0.66; Figs. 8a,b). However, the simulated
sensitivity of SIE loss to an increase in global SAT is consis-
tent across the two periods, as indicated by regression coeffi-
cients of —2.98 million and —3.06 million km? °C~! during
1979-2014 and 1915-45, respectively. During the ETCW, the
simulated sensitivity is generally consistent with the correspond-
ing observed sensitivity (e.g., —2.53/—2.09 million km* °C~" for
B20SIE-CCSM4/HadCRUTS). This suggests that the biased
representation of sea ice loss in CMIP6 models stems from
not simulating sufficient warming during the ETCW, rather
than from a biased sensitivity to the temperature trend.

The correlation between Arctic SIE and Arctic SAT trends
(Figs. 8c,d) is consistently strong across the two periods
(r = —0.9 and r = —0.82 in 1979-2014 and 1915-45, respec-
tively), supporting previous evidence that the ETCW temper-
ature anomaly was primarily characterized by warming at
high northern latitudes (e.g., Johannessen et al. 2004). The
sensitivity of SIE loss to Arctic warming is higher during
the modern period than during the ETCW, both in models
(—0.75 vs —0.57 million km? °C™') and observations (—0.87
for NSIDC/HadCRUTS vs —0.49 million km> °C™' for
B20SIE-CCSM4/HadCRUTS, in 1979-2014 and 1915-45, re-
spectively). It is worth noting that changes in observed sensitivity
to Arctic and global temperatures across the two periods could
be in part explained by internal variability, which over recent
decades has contributed to enhanced Arctic warming but damp-
ened global warming (Sweeney et al. 2023).
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We additionally find a significant correlation between
CMIP6 ensemble mean trends of Arctic SIE in the two peri-
ods (r = 0.42; Fig. 8e), suggesting that models that simulate
weaker SIE trends during the ETCW generally tend to under-
estimate the recent sea ice decline, and vice versa. Models
with lower sensitivity to global and Arctic SAT, such as
CMCC-CM2-HR4, NCC-NorCPM1, and NCC-NorESM2-
MM (Figs. 8a—d), underestimate ensemble mean SIE trends
in both periods relative to the CMIP6 MMM and B20SIE re-
constructions (Fig. 8¢). Conversely, CanESMS5, CanESMS-
CanOE, and E3SM-1-0, which exhibit higher sensitivity to
SAT, are better able to capture the ETCW but overestimate
the 1979-2014 sea ice decline.

To further assess the time evolution of multidecadal
changes in CMIP6 and observations, we calculate linear
trends of Arctic SIE, Arctic SAT, and global SAT for succes-
sive segments of approximately 30 years (1915-45, 1946-78,
and 1979-2014). Figure 9 shows the multimodel distribution
of CMIP6 trends along with B20SIE reconstructions and ob-
servations over the three subperiods. Similarly to CMIP5
models, which showed reduced Arctic warming during the
ETCW compared to observations (e.g., Fyfe et al. 2013),
CMIP6 models, as a group, underestimate the magnitude of
the ETCW event with respect to temperature observations,
consistent with the weaker SIE trends relative to the B20SIE
reconstructions. It should be noted that confidence in the ac-
curacy of observations during the instrumental era is reduced
due to sparse and heterogeneous data acquisition (e.g., Morice
et al. 2021), as further indicated by the discrepancy between
observed trends in the versions with and without infilling of
HadCRUTS (Figs. 8 and 9). However, given the multimodel
ensemble of 360+ realizations, which can be regarded as a rep-
resentative sample of internal climate variability trajectories,
our results show that CMIP6 models are deficient in their rep-
resentation of the ETCW. Nevertheless, models and observa-
tions show better agreement in sea ice and temperature changes
during the mid-twentieth century cooling period (1946-78) and
the modern anthropogenic warming (1979-2014). The 1946-78
observed Arctic cooling is slightly underestimated by models, in
agreement with England et al. (2021). The spread of individual
model realizations is pronounced in all subperiods, suggesting a
critical contribution of internal climate variability to multideca-
dal changes. We note that the CMIP6 multimodel trends de-
picted in Fig. 9 are not impacted by the different ensemble
sizes of models, and the distributions do not change when
limiting the number of ensemble members per model to n = 20
(not shown).

4. Discussion and conclusions

The current understanding of Arctic sea ice variability is
limited by the relatively short temporal coverage of satellite
observations and by the uncertainty in GCM simulations that
arises from model bias and background climate variability.
Assessing model performance in historical simulations is a
critical task, as the robustness of future projections hinges on
the demonstrated ability of models to realistically represent
changes in the past climate.
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Here, we have analyzed Arctic sea ice variability on inter-
annual and multidecadal time scales using historical simula-
tions from a subset of 29 CMIP6 models with all available
realizations. Analysis of the portion of the historical time se-
ries with low external forcing (1850-1919) reveals that models
display realistic interannual sea ice variability relative to sea
ice reconstructions (Fig. 1b), with relatively little intermodel
spread (Fig. 2d). This finding is consistent with Wyburn-Powell
et al. (2022), who demonstrated good agreement between
CMIPS single model initial-condition large ensemble (SMILE)
models and observations in terms of interannual sea ice vari-
ability, albeit with seasonal and regional differences. On the
other hand, we found substantial uncertainty in models’ repre-
sentation of multidecadal sea ice variability, both in terms of
intermodel spread (Figs. 1a and 2c) and differences with re-
spect to the B20SIE sea ice reconstructions (Fig. 1a). The sub-
polar North Atlantic is the key region determining model
uncertainty in MVSIE, likely tied to ocean forcing of sea ice
(e.g., Bitz et al. 2005), and model uncertainty in the coupling
of ocean modes of variability (such as the AMOC) and North
Atlantic SST (e.g., Tandon and Kushner 2015; Liu and
Fedorov 2022). Our results highlight different sources of inter-
model spread in sea ice variability, which differ across time
scales. The intermodel spread of interannual sea ice variability is
in part explained by mean-state biases (Fig. 1d). This finding has
emerged in previous studies (e.g., Shu et al. 2020), though with
considerable seasonal variations (Blanchard-Wrigglesworth
et al. 2021). On multidecadal time scales, sensitivity to North-
ern Hemispheric temperatures contributes substantially to
the intermodel spread of SIE variability (Figs. 5 and 6). Mod-
els with biased low sensitivity to Northern Hemispheric SST
tend to underestimate MVSIE variability with respect to the
CMIP6 multimodel mean, particularly in the Greenland and
Labrador Seas (Fig. 3; Figs. S3 and S4), and vice versa. Inter-
estingly, the simulated NH SST variability itself is correlated
to the sensitivity of SIE to SST (Fig. 6b), with models that
simulate greater SST variability also simulating greater SIE
to SST sensitivity (even after normalizing SST variability).
This result supports the notion that a realistic representation
of long-term sea ice changes depends on models’ ability to ac-
curately simulate sea ice sensitivity to large-scale climate var-
iability, as pointed out in previous studies (Mahlstein and
Knutti 2012; Rosenblum and Eisenman 2017; Notz and SIMIP
Community 2020; Long et al. 2021). However, it is worth not-
ing that estimates of simulated sea ice sensitivity cannot be ad-
equately interpreted without taking into account the influence
of internal climate variability (Ding et al. 2019), meaning that
these two aspects should not be regarded as separate sources
of uncertainty among GCMs.

It remains unclear which underlying physical processes are
represented differently in models with sensitivity to Northern
Hemispheric SST (or SST variability) that depart substantially
from the CMIP6 multimodel mean. While it is challenging to
determine direct causal links to specific model deficiencies,
the large intermodel spread on multidecadal time scales (re-
flected both on Arctic SIE and Northern Hemispheric SST;
Figs. 1 and 6) is consistent with widely documented uncertain-
ties in the representation of ocean circulation and dynamics
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within CMIP6 (e.g., Pan et al. 2023; Cai et al. 2021). For in-
stance, Winkelbauer et al. (2024) showed that intermodel
spread in simulated ocean heat transports, mostly due to tem-
perature biases, is strongly associated with a biased representa-
tion of the mean Arctic state within CMIP6. Other processes
that are believed to be related to the AMOC, a dominant
source of multidecadal variability in the Arctic, still suffer from

inadequate representation and intermodel uncertainty (Fox-
Kemper et al. 2019), including mixed-layer depth (e.g., Jackson
and Petit 2023), deep water properties (Heuzé et al. 2023), sea
surface salinity, and liquid freshwater content (Wang et al.
2022; Zanowski et al. 2021). Model discrepancies in upper
ocean salinity and stratification in the Arctic (Muilwijk et al.
2023; Khosravi et al. 2022), which regulate the influence of the
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Atlantic water layer on sea ice, are a likely source of the pro-
nounced model spread of MVSIE variability in the subpolar
North Atlantic (Fig. 2c). However, more in-depth studies are
needed to quantify these deficiencies, in order to identify spe-
cific areas for improvement in the realism of Arctic climate vari-
ability for the next generations of GCMs.

Moreover, we have shown that while CMIP6 models are
generally capable of reproducing multidecadal sea ice changes
during the recent warming period (1979-2014) and the pre-
ceding cooling period (1946-78) relative to observations
(Figs. 9b,c), they tend to underestimate the sea ice decline as-
sociated with the ETCW (Figs. 7c and 9a). Simulated trends
appear especially small when examined in relation to the
background sea ice variability (1850-1919; Fig. 7d), which is
greater in CMIP6 than in observations (Fig. 1a). This aspect
raises an important question. If CMIP6 models overestimate
the pre-ETCW multidecadal variability, then why do over a
third of them fail to simulate the ETCW sea ice decline?
There are two possible explanations for this discrepancy. The
first is that there is insufficient internal variability in the sea
ice reconstructions. The B20SIE product has demonstrated a
substantial improvement from previous reconstructions of
Arctic sea ice prior to the satellite era (Walsh et al. 2017),
both in terms of larger sea ice variability and in terms of
greater sea ice loss and subsequent recovery during and after
the ETCW, respectively (B20SIE; Brennan and Hakim 2022).
Nevertheless, it is possible that multidecadal variability before
1920 is not fully captured in the B20SIE product due to biases
inherited from the selected model priors (MPI-ESM-P and
CCSM4) and uncertainties in early twentieth century observa-
tions. Moreover, the annual frequency of B20SIE reconstruc-
tions prevents the assessment of seasonal changes in Arctic
sea ice during the instrumental era.

The second alternative explanation is that the ETCW was
at least in part an externally forced event and models do not
simulate a correct response to early twentieth century forcing.
Given the relatively good agreement between simulated and
observed sensitivities to the ETCW (Figs. 8a,c), it is apparent
that the biased low SIE loss during this period is largely due
to the fact that CMIP6 models, as a group, simulate insuffi-
cient warming of both Arctic and global SAT (Figs. 8 and 9).
This finding is in line with previous assessments by Papalexiou
et al. (2020) and Latonin et al. (2021). Fyfe et al. (2013) addi-
tionally concluded that the deficiency of CMIP5 models in
capturing the observed Arctic warming during the ETCW
was linked to an incomplete representation of sulfate and
black carbon aerosols. Recent studies have shown that aerosol-
related forcing can have large effects on multidecadal variations
in Arctic sea ice, but the spread in the representation of aerosol
emissions within CMIP6 remains large (DeRepentigny et al.
2022; Aizawa et al. 2022). Additionally, natural forcings have
been shown to play a significant role in the simulated magnitude
of the Arctic SAT signal during the ETCW (Aizawa et al.
2021). While our study did not specifically investigate the rela-
tive contributions of external forcings and internal climate vari-
ability to the ETCW, the pronounced difference in temperature
trends between models and observations, given the large number
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of realizations considered, points to an insufficient representation
of the forced response.

To reduce the uncertainty in Arctic sea ice projections,
more research work should focus on improving our under-
standing of multidecadal sea ice variability and its drivers.
Since models show relatively good agreement in their repre-
sentation of interannual sea ice variability, which is mostly
driven by Arctic processes, what determines the credibility of
a model is its ability to simulate the sea ice response to low-
frequency hemispheric and global climate variability. More
crucially, the role of internal climate variability in model pro-
jections may be inadequately represented if models overesti-
mate low-frequency sea ice variability in the past. The model
biases highlighted in this study mainly originate from the rep-
resentation of processes coupling Arctic sea ice to Northern
Hemispheric climate and encompassing different components
of the climate system. Thus, these processes and their interac-
tions should be prioritized in order to improve the realism of
next-generation climate models.
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