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proofs (ZKP). ECC is composed of modular arithmetic, where modu- design | A ﬁ‘,\’,;,'ﬂ Our

lar multiplication takes most of the processing time. Computational
complexity and memory constraints of ECC limit the performance.
Therefore, hardware acceleration on ECC is an active field of re-
search. Processing-in-memory (PIM) is a promising approach to
tackle this problem. In this work, we design ModSRAM, the first
8T SRAM PIM architecture to compute large-number modular mul-
tiplication efficiently. In addition, we propose R4CSA-LUT, a new
algorithm that reduces the cycles for an interleaved algorithm and
eliminates carry propagation for addition based on look-up ta-
bles (LUT). ModSRAM is co-designed with R4CSA-LUT to support
modular multiplication and data reuse in memory with 52% cycle
reduction compared to prior works with only 32% area overhead.
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1 INTRODUCTION

Security has become increasingly important in recent years as
people care more about privacy and the protection of personal data
on the Internet. Public key cryptography (PKC) is commonly used
for various applications, such as digital signature and encryption,
to name a few. Elliptic curve cryptography (ECC) [10] is one of the
popular algorithms. It has the benefit of fewer bitwidth for private
keys compared to RSA [22] with the same security level. Another
application that is based on ECC is zero-knowledge proof (ZKP)
[7], which is an emerging cryptographic protocol that can prove to
the verifier that one statement is true without sharing any secret
information other than the statement itself.

However, ECC needs to perform modular multiplications for
operands with a large bitwidth (at least 224 bits [6]), and a large
number of intermediate results will be generated during the compu-
tation process. Thus, deploying the ECC algorithm on the hardware
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Figure 1: Algorithm complexity and performance compari-
son with previous work.

efficiently is a challenging issue due to its high memory bandwidth

requirement and high computational complexity. For example, [28]

mentioned it requires 2.98 TB/s bandwidth in 100 MHz to compute

a ZKP scheme, which is impractical for the current systems. To

mitigate this problem, processing-in-memory (PIM) is an emerging

field of research that aims to minimize the gap between computing
and memory units. Previous works [5, 9, 14, 25, 29] have shown

promising results in ML PIM and the works [12, 13, 19, 20, 23, 26, 27]

have demonstrated possible solutions in cryptographic applications

ranging from advanced encryption standard (AES), homomorphic
encryption (HE) to post-quantum cryptography (PQC). However,
none of them target ECC as the computation requires large bitwidth.

As shown in Figure 1, the computation cycles and bitwidth of ECC

are higher than PQC. The interface circuit sizes or processing cycles

scale up exponentially for large-number modular multiplication.

As a result, the existing design methodology for PIM is unsuitable

for performing an efficient computation on ECC.

To alleviate the computational complexity problem, in this work,
we propose an algorithm-hardware co-design methodology cus-
tomized for PIM-based architecture. Inspired by previous works
[8, 15], our proposed algorithm uses a radix-4 encoder and carry
save addition features to reduce the computational complexity of
the large modular multiplication. In addition, we further customized
an SRAM-based PIM architecture to efficiently support the algo-
rithm. Bitwise logic in-memory circuit and simple near-memory
circuit features in our proposed SRAM-based PIM architecture pro-
vide a significant hardware efficiency improvement due to greater
throughput and short critical path.

Overall, our work has the following contributions:

e We propose R4CSA-LUT, a novel algorithm based on interleaved
modular multiplication co-designed with ModSRAM. The latency
is greatly improved by using a radix-4 encoder to reduce iterative
cycles and employing carry-save addition to eliminate interme-
diate carry propagation.
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Algorithm 1 Interleaved Modular Multiplication

Require: n-bit A = (ap-1,...,a0),B,p;0 < A B<p
Ensure: C=A X B mod p

1: C«0

2: for a; from a,_; to ap do

3: C«—2xC

4: if C > p then
5: C—C-p
6: end if

7: C—C+a; XB
8: if C > p then
9: C—C-p
10: end if

11: end for

Algorithm 2 Radix-4 Modular Multiplication

Require: n-bit A = (an-1,...,a0),B,p;0 < A B<p
precomputed radix-4 encoding & overflow LUT
Ensure: C=A X B mod p
1: C«—0
2: for i from [§ — 1] to 0 do
3: Ce4xC

4: if C > p then

5: C « LUT(C)

6: end if

7: E=ENC(azi+1, azi, a2i-1)
8: C—C+Exp

9: if C > p then

10: C—C-p

11: end if

12: end for

o We design ModSRAM, our cryptographic accelerator. It is an 8T
SRAM PIM architecture that is co-designed with R4CSA-LUT.
ModSRAM utilizes bitwise logic operations to efficiently compute
carry save addition in SRAM with simple in/near-memory cir-
cuits. Our accelerator is the first to realize large-number modular
multiplication in SRAM.

o ModSRAM is implemented and verified through simulation in
TSMC 65nm PDK. We have our result through circuit-level simu-
lation and layout, which achieves 52% fewer cycles with only 32%
area overhead under large bitwidth compared to prior works.

2 BACKGROUND AND RELATED WORK

This section provides the necessary background useful in under-
standing R4CSA-LUT and previous works on logic PIM !. One of
the applications for logic PIM is cryptography. Even though the
target applications from previous works are different than ours, we
provide them for completeness.

2.1 Modular Multiplication Algorithms

In modular reduction while doing multiplication, interleaved algo-
rithm [3] shown in Algorithm 1 is the fundamental algorithm. It
is based on the traditional shift-and-add fashion to do multiplica-
tion with a reduction step in every iteration. The total iterations
scale with bitwidth, which can be a serious issue in large num-
bers. Booth-encoded multipliers [4] are used in modern computers
to accelerate multiplication. Instead of iterating through each bit,
booth-encoded radix-4 multipliers process three bits at a time with
one bit overlapping, which is equivalent to processing two bits in
every iteration. Thus, the total iterations are cut in half with the use
of an extra encoder. The encoder follows the logic from Table 1a.
Radix-8 multipliers are very similar. Four bits are processed with
one bit overlapping. As a result, the total iterations are cut down by

!Logic PIM here is categorized for PIM computing bitwise logic operations, which is
in opposition to ML PIM.
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Table 1: Radix-4 Computation Tables
(a) Radix-4 Booth Encoder  (b) Radix-4 Precomputation LUT

a1 a; a1 | ENC ENC |  LUT-radix4

0 0 0 0 0 0

0 0 1 +1 +1 B

0 1 0 +1 +2 2X B mod p
0 1 1 +2 -2 —2X B mod p
1 0 0 -2 -1 —-1X B mod p
1 0 1 -1

1 1 0 -1

1 1 1 0

one-third. The idea of a booth-encoded multiplier can be integrated
with the interleaved algorithm as shown in Algorithm 2. Hardware
implementation results are shown in [8] with significant reduction.

The work [15] proposed a carry-save addition-based interleaved
algorithm to improve performance. For every loop in Algorithm 1,
there is a shift, two comparisons followed by subtractions, and a full
addition. Shift induces an extra reduction step (comparison then
subtraction) since the result is doubled and full addition induces
carry propagation, thus increasing hardware resources and latency.

To mitigate this issue, the shift can be considered as adding a new
value that is the original value after reduction. The new value can be
determined by an extra bit induced by the shift, which we call carry
overflow. Since the intermediate results are not our concern, we
can adopt carry-save addition to replace full addition. This makes
the operation much easier to implement in hardware.

2.2 Cryptographic PIM

Recently, there have been many cryptographic PIM accelerators in
SRAM [12, 23, 26, 27] and ReRAM [13, 19, 20] that tried to compute
cryptographic schemes in/near-memory. Among all these works,
AES and PQC are the most popular. The basic operations in AES
are bitwise logic and shift, which are proposed in many logic PIMs
[1, 11, 23] already. HE and PQC, on the other hand, is a rising
field. HE is an encryption scheme that allows computation directly
on ciphertext where plaintext after deciphered, is computed as
well. PQC is the field for encryption algorithms that are safe from
quantum attacks. No matter the target application, they are all
based on polynomial computation, which is usually computed via
number theoretical transform (NTT) [21]. It is a generalization
for discrete Fourier transform (DFT) over a finite field. The basic
operation to do so is modular arithmetic. For these applications, the
accelerators are designed for small bitwidth, commonly in 14/16-bit.
These designs don’t scale with bitwidth in applications such as
ECC, where at least 224 bits [6] is recommended to date.

Since the operation in cryptographic PIM can further decompose
into bitwise logic and simple logic near-memory, architectures from
logic PIM provides the basic design. 2-input logic operations in
SRAM are supported in previous works [1, 11] and 3-input logic
operations in SRAM are first implemented in [23]. It is the first to
realize XOR3 and MA]J (majority) logic functions, which are the
sum and carry for addition. The logic-SA module they proposed is
illustrated in Figure 2.

3 R4CSA-LUT ALGORITHM

Modular multiplication algorithms can be generalized into two
groups as mentioned in Section 1. Montgomery reduction [18]
and Barrett reduction [2] are the two most popular methods in
reduction after multiplication. Montgomery reduction avoids carry
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Figure 2: Logic-SA module for addition proposed in [23] and
latch-type SA structure [24].

Algorithm 3 Proposed Modular Multiplication in-SRAM

Require: n-bit A = (ap-1,...,a0),B,p;0 < A B<p
LUT-radix4 & LUT-overflow
Ensure: C = A X B mod p
1: sum « 0
2: carry < 0
: for i from [ 5 — 1] to 0 do
[overflowgym, sum] « sum << 2
[overflowcarry, carry| ¢ carry << 2
overflow < overflowsym + overflowcarry + MSB(LUT-radix4)
sum «— XOR3(LUT-radix4(a;41, a;, aj—1), sum, carry)
carry < MAJ(LUT-radix4(a;+1, ai, aj—1), sum, carry)
9: carry «— carry << 1
10: sum « XOR3(LUT-overflow(overflow), sum, carry)
11: carry «— MAJ(LUT-overflow(overflow), sum, carry)
12: carry «— carry << 1
13: end for
14: C « sum + carry

> remain n+1 bits
> remain n+1 bits

propagation and prevents expensive modular operation by first
transforming the operands into Montgomery form. The computa-
tions in the Montgomery form are much easier than in its direct
form. As a result, the speedup in Montgomery reduction is obvious.
Barrett reduction uses another multiplication in place of division
for modular reduction. Unfortunately, both of them involve n-bit
multiplication, resulting in 2n-bit intermediate results that require
more hardware resources to store and compute. In addition, Mont-
gomery reduction requires extra transformation into and out of
Montgomery form, which is an unavoidable real modular opera-
tion. Barrett reduction induces a 3n-bit intermediate result after the
regular multiplication for modular reduction, which takes up even
more hardware resources. Both of them reduce the computational
latency at the cost of a very complex circuit and memory design in
tradeoff. Interleaved modular multiplication [3], on the other hand,
is a potential hardware-friendly solution for reduction while doing
multiplication. Numerous algorithms have been proposed based
on interleaved algorithm as in Section 2.1. The proposed algorithm
overview and the mapping to our hardware will be discussed.

3.1 Algorithm Overview

In view of the strengths and weaknesses of previous works, we
proposed a new algorithm combining the merits of each algorithm
called radix-4 carry save addition, a look-up table based interleaved
algorithm (R4CSA-LUT). Since the classical interleaved algorithm
has long latency due to a large number of iterations, radix-4 modular
multiplication in Algorithm 2 is adopted in R4CSA-LUT to cut
iterations in half with only an extra booth encoder as in Table 1a.
The value added every iteration can be precomputed as in Table 1b
since there are only five possible values and only three of them need
computation. These results can be reused as long as the multiplicand
remains the same. However, Algorithm 2 still suffers from carry
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Table 2: Carry Overflow Precomputation LUT

ny3  Apy2 Gngr | LUT-overflow

0 0 0 0

n+1 bits

—_——
1 001 (0...0) mod p
0 010 (0...0) mod p
1 011 (0...0) mod p
0 100 (0...0) mod p
1 101 (0...0) mod p
0 110 (0...0) mod p
1 111 (0...0) mod p

[ )
_— oo k= o

propagation. This issue seriously affects performance when the
numbers to be multiplied become larger. Carry save addition can
be adopted into the original radix-4 modular multiplier to eliminate
long carry propagation latency as previously mentioned. The values
for carry overflow can also be precomputed for eight possible cases.
They can be reused as long as the modulo number remains the same.
R4CSA-LUT is shown in Algorithm 3. It achieves half iterations
compared to an interleaved algorithm without carry propagation
via carry-save addition. It is co-designed with our architecture so
that the operations are hardware-friendly and data can be reused
through LUT, which will be introduced in Section 4.

3.2 Mapping to Hardware

The algorithm can be separated into three parts: precomputation,
main iteration and computation for the final result. Precomputation
can be stored for later use during the main iteration. The LUTs re-
quired to store precomputation results are represented in Tables 1b
and 2, which are stored in each wordline (WL) in SRAM. The sum
and carry overflow can be used to determine the value added for
the next cycle. It depends on the most significant four bits of sum,
carry, and the most significant bit (MSB) of radix-4 LUT. They can
be computed with a rather low cost compared to the whole modular
multiplication because their bitwidths are at most n+3 bits. These
results can be reused over multiple iterations and multiple calcula-
tions, thus reducing memory movement and maximizing data reuse.
For the main iteration, carry save addition is the essential operation
and bitwise XOR3 and MA]J logic functions represent the sum and
carry, respectively. The left shift by two is due to processing two
bits in radix-4 modular multiplication. 3-input logic functions are
made possible to compute in-memory by logic-SA module [23] in
Figure 2. This provides the fundamental building block to realize
R4CSA-LUT in SRAM. The final step is a full addition of the sum
and carry in n+1 bits with a reduction step to get the final value.
This is inevitable and is best to be computed near-memory. Com-
bining all previous parts, we get our proposed algorithm that can
run efficiently on our designed hardware.

4 MODSRAM ARCHITECTURE
4.1 Architecture Overview

Figure 4 illustrates the overall architecture of ModSRAM. It is an
SRAM PIM design with custom in/near memory computing cir-
cuits to execute the R4CSA-LUT algorithm, which aims to compute
modular multiplication in 256 bits efficiently. ModSRAM consists
of a 64x256 8T SRAM array with a read port and a write port. The
in-memory computing (IMC) circuit is the logic-SA module used
to implement XOR3 and MA] bitwise logic function for carry save
addition discussed in detail in Section 4.2. The rest of the peripheral
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circuits include read wordline (RWL) and write wordline (WWL)
decoders as well as near-memory computing (NMC) circuits. They
are a radix-4 encoder, combinational logic for overflow, three D
flip-flops (DFF) for sum, carry, multiplicand and a controller (Ctrl.),
which will be discussed in Section 4.3.

4.2 In-Memory Computing

The IMC part includes precharges, SRAM array and a modified
sense amplifier (SA) block to enable logic operation. The SRAM cell
is standard 8T that supports one read port and one write port. We
adopt this design because our algorithm is based on XOR3 and MA]J
logic operations, which are three-input logic operations that open
three WLs simultaneously. Traditional 6T SRAM suffers from read
disturb since read and write share one single port. This issue is even
worse when activating two WLs to enable IMC. Since three WLs
will be activated simultaneously in our design, read disturbance is
no longer negligible. Therefore, a separate read port is necessary to
prevent read disturbance while improving read latency. We adopt
the logic-SA module shown in Figure 2a from [23]. Three SAs are
used for each read bitline (RBL) to differentiate RBL voltage levels
for all the 3-input logic functions in this module, with a total of
256 RBLs. SAs used in ModSRAM are conventional voltage-based
latch-type sense amplifiers.

4.3 Near-Memory Computing

Outputs from the IMC circuit are sent to the NMC circuit. They
are first stored in FFs, shifted and written back to SRAM for the
next iteration. Part of the bits are used to do computation and pass
through a MUX to select LUT. To start the iteration, the multiplier is
read from SRAM to the near-memory FF. To get the radix-4 encoded
computation results in LUT, we take the most significant three bits
of the multiplier fetched and encode the following Table 1. For

every iteration, the multiplier is shifted to the left by two to get the
next value for encoding.

The whole iteration can be partitioned into two sections, which
include the first operation for radix-4 LUT and the second operation
for overflow LUT. They basically follow the same dataflow, except
the data retrieved are in different LUTs, which are different WLs in
SRAM. The dataflow for near-memory components is as follows.
First, the sum and carry from the previous iteration are shifted to
the left by two bits, namely multiplying by four. The overflow bits
are stored in a temporary FF for computation in the second section.
Next, the encoded result mentioned previously is used to activate
WL in radix-4 LUT along with sum and carry. The result from IMC
is written back to SRAM with sum first and carry second because
during the writeback of sum, carry will be shifted to the left by one
bit due to the nature of carry. The overflow bits calculated at the
beginning are used to activate WL in overflow LUT along with sum
and carry. The result again follows the same datapath.

After the last iteration, we will get n+1 bits of sum and carry,
which requires a full addition and reduction to get our final value.
However, since the bitwidth is reduced, this step is rather cheap
compared to 2n bits without reduction while doing multiplication.
The whole NMC circuit is compact as there are only shifters, three
full-bitwidth FFs for the multiplier, sum, carry, and some negligi-
ble FFs for overflow. Controller for all SRAM operations such as
precharge, activating WLs, enabling SA and FSM for near-memory
are all realized via Verilog.

4.4 Algorithm Illustration

A simplified version of the 5-bit R4CSA-LUT demonstration on
ModSRAM is illustrated in Figure 3. For 5-bit modular multiplica-
tion, there are three iterations. In Figure 3, only the first iteration
is shown. The first step is to read multiplier A into near-memory
FF. Then it will be left shifted by two to select the WL in radix-4
LUT. Three WLs are activated at the same time for IMC. The results
of IMC are XOR and MA]J, which will be stored in FFs. They are
then left-shifted and written back to SRAM. The next step follows
the same, except this time overflow LUT is used for IMC. The final
results are shown in the end.

5 EVALUATION AND DISCUSSION
5.1 Evaluation Methodology

We evaluate ModSRAM using TSMC 65nm technology PDK. Full-
custom circuits including SRAM array and IMC modules are de-
signed in Cadence Virtuoso. Digital circuits including WL decoders,
NMC modules, and a controller are designed in Verilog, and synthe-
sized in Synopsys Design Compiler. Simulations are done in both
HSPICE as well as Verilog testbench to get the experimental results.
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Figure 5: Area breakdown on ModSRAM and full custom layout for SRAM array and in-memory circuit.

A full-custom layout and synthesis result are included in the anal-
ysis to get the design area. The area breakdown and full-custom
layout are shown in Figure 5.

5.2 Memory Utilization

Since we aim for ECC applications, the security level recommended
by NIST is at least 224 bits [6]. Among all the popular elliptic
curves (EC), Secp256k1 and BN254 are used for Bitcoin and Zcash,
respectively. As a result, we chose 256-bits to be our target. Each
WL stores an operand that can be either multiplicand, multiplier,
or modulo. Our design is accommodated to fit operands of a point
addition operation in EC which are composed of several modular
multiplications. During the computation stage, only sum and carry
are considered intermediate results that need to be stored in SRAM.
Radix-4 and overflow LUTs require a total of 13 WLs, but they can
be reused for multiple iterations and for multiple calculations, thus
not considered intermediate results. Figure 6 shows the memory
utilization comparison for operand storage and intermediate of our
work along with existing SRAM PIMs [12, 26]. LUTs are introduced
in our work as shown.

5.3 Experimental Results

The number of clock cycles for doing one modular multiplication
is recorded in Table 3. For 256-bit, it can be done in 767 cycles
with the clock frequency given as 420 MHz. R4CSA-LUT algorithm
has a complexity of O(n), which scales linearly to bitwidth. The
computation result is in the direct form, so no extra conversion cost
is needed. The area achieved is small since it only demonstrates the
operation of one modular multiplication. The area breakdown in
Figure 5 shows that the memory array occupies two-thirds of the
whole design. SAs constitute most of the area in the in-memory
circuits with the area of MUX as two transistors negligible. Since our
design computes in-memory, the near-memory circuit is compact
with very small WL decoders. ModSRAM induces only 32% area
overhead by including near-memory circuits and two SAs since the
regular SRAM design includes a WL decoder and an SA already.

5.4 Comparison with existing PIM works

Even though no PIM works currently implement large bitwidth
modular multiplication for ECC applications, some works demon-
strated the possibility of PQC NTT [12, 13, 19, 20, 26]. The problems
in previous works motivated our work. Their number of cycles of a
single modular multiplication are scaled to meet our bitwidth and
compared. The rest of the experimental data are extracted directly
from the works, which are shown in Table 3.

Regarding SRAM PIM works, [12] is one of the first SRAM PIMs
in PQC NTT. Their access pattern is bit serial as shown in Figure 6,

256 256 32 32x6 32

|

00

0

250

Cp)(8J(A)
- - .
OO

EE0

Scratch Pad

Near Memory Logic| 6 Intermediate

Routing Near Memory Logic
MeNTT BP-NTT

Near Memory Logic
ModSRAM

Figure 6: Comparison of data organization for different
SRAM PIM designs for modular multiplication.

meaning that the data is stored across the same BL instead of across
WL in order to match with their algorithm. This design faces dif-
ficulties when scaling the bitwidth because all the operands are
stored in the same BL. Doing the computation in 256 bits requires
a total of 1282 rows, which is impractical for an SRAM bank. The
corresponding algorithm needs (n + 1)? cycles shown in Figure 1
compared to 3n—1 cycles in our work. Another work [26] improved
the performance by adopting a bit-parallel algorithm. It applies the
Montgomery transform to avoid carry propagation in their NTT
computation. However, the major issue in this design is the transfor-
mation cost. They assumed the precomputation of the Montgomery
transform for the operands was readily available before they used
the inputs in their PIM. However, when the bitwidth increases, the
transformation cost is no longer negligible.

As for ReRAM PIM works, [19] introduced PQC NTT with three
possible values to choose for modulo. This simplifies the computa-
tion yet limits the generality utilized on other applications. [13, 20]
on the other hand, solved this issue by providing the modulo as an
input. They achieved low latency for NTT at the cost of a large de-
sign done only in a simulator instead of in circuit-level simulation.
The computations are done with modular reduction after multipli-
cation, therefore no cycle results are presented. To accommodate
the need for lossless IMC, both designs required a huge area for
analog-to-digital converters (ADC) that occupied more than 70% of
the total architecture.

6 FUTURE WORK

This work focuses on the design of a modular multiplier. The goal
is to reduce latency and area used in large-scale cryptographic
applications by utilizing memory and computing components in-
memory. The increases in reusability and compactness make it
a desired prototype for further research. This paper serves as a
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Table 3: Comparison on modular multiplication in PIM designs.
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Reference This work | MeNTT [12] | BP-NTT [26] | RM-NTT [20] CryptoPIM [19] X-Poly [13]
application type ECC PQC NTT PQCNTT HE NTT PQC NTT PQCNTT
Computation method direct direct Montgomery | Montgomery | Montgomery/Barrett Barrett
technology 65 nm 65 nm 45nm 28nm 45 nm 45nm
Cell type 8T SRAM 6T SRAM 6T SRAM ReRAM ReRAM ReRAM
Array size 64x256 4x162x256 4x256x256 64x4x128x128 512x512 16x128x128
Frequency(MHz) 420 151 3.8k 400 909 400
Bitwidth 256 14/16/32 2/4/8/16/32/64 14/16 16/32 16
Cycles 767 66049 1465 - - -
Area (mm?) 0.053 0.36 0.063 - 0.152 0.27

: Cycles for other works are generated from frequency, latency and number of modular multiplication in NTT scaled to a fair comparison in the same bitwidth (256b).
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Figure 7: Illustration of the number of operations in ZKP
components: NTT [17], and MSM [28], when the input vector
is of size 21> and each input bitwidth is 256 bits.

Register Writes

pioneer work on realizing large bitwidth modular operation in-
memory that was not possible previously.

With the design of this work as the basis, we plan to integrate
the module into a system-level application. In the future, we aim
to improve elliptic curve computations, both number theoretical
transform (NTT) and multi-scalar multiplication (MSM) algorithms,
which are essential in the scheme of ZKP. Figure 7 illustrates the
scale of memory accesses, modular multiplications, and their inter-
mediate register writes in ZKP components. The values for NTT
in Figure 7 are based on simulations of [16]. The values for MSM
are calculated using the architecture in [28]. Our work computes
large bitwidth modular multiplications efficiently in-SRAM and
avoids intermediate register writes and memory accesses, which
can significantly improve the performance of ZKP.

7 CONCLUSION

In this paper, we propose R4CSA-LUT, a new algorithm based on
LUTs that combines the merits of both radix-4 modular multipli-
cation and carry save addition in the interleaved algorithm. We
also design ModSRAM, an SRAM PIM architecture that aims to
compute modular multiplication for ECC based on our co-designed
algorithm. The operations in R4CSA-LUT are hardware-friendly
and they use LUTs to maximize data reusability. ModSRAM is imple-
mented in state-of-the-art technology and design flow. To the best
of our knowledge, we are the first to implement 256-bit modular
multiplication in SRAM. We demonstrate a possible solution for
combining large-number modular multiplication in SRAM.
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