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ABSTRACT

Analog in-memory-computing (IMC) is an attractive technique
with a higher energy efficiency to process machine learning work-
loads. However, the analog computing scheme suffers from large
interface circuit overhead. In this work, we propose a macro with
a hybrid analog-digital mode computation to reduce the precision
requirement of the interface circuit. Considering the distribution
of the multiplication and accumulation (MAC) value, we propose
a nonlinear transfer function of the computing circuits by only
accurately computing low MAC value in the analog domain with a
digital mode to deal with the high MAC value with smaller possi-
bility. Silicon measurement results show that the proposed macro
could achieve 160 GOPS/mm? area efficiency and 25.5 TOPS/W
for 8b/8b matrix computation. The architectural-level evaluation
for real workloads shows that the proposed macro can achieve up
to 2.92% higher energy efficiency than conventional analog IMC
designs.
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1 INTRODUCTION

In-memory-computing (IMC) technology has attracted a lot of atten-
tion in recent years as a solution for low power neural network pro-
cessing [1-9]. In particular, static random access memory (SRAM)
based analog in-memory computing schemes are showing great
potential to improve the energy efficiency by moving the key op-
eration, multiplication and accumulation (MAC) into analog do-
main [10? —15]. Typically, the IMC macro supports vector-matrix
multiplication (VMM) as the computation primitive. The elements
of the matrix are stored in the memory array as logical values, and
two or more transistors are added to the memory cell to convert
the logical values to the analog currents in the SRAM array. Then,
each element of the vector is converted into the voltage generated
by the wordline driver and applied to the corresponding wordline
of the array. The accumulation result can be represented as the
accumulated current on the bitlines or other customized accumula-
tion lines. The current is then converted to digital domain by an
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analog-to-digital converter (ADC) for the subsequent process. Since
multiple wordlines are activated in parallel, the normalized through-
put and energy efficiency can be extremely improved comparing
with conventional digital MAC unit. However, the high efficiency
of the analog IMC computing scheme sacrifices the computation
accuracy, due to non-ideal effect of the analog computing units
and interface ADCs. Consequently, existing analog IMC macros are
usually used for highly customized neural networks [16, 17], such
as binary, ternary neural networks.

To integrate analog IMC into general purpose NN inference
accelerators, one key design metric is to support lossless MAC
operations. To achieve this specific requirement, the analog accu-
mulation process should be robust to PVT variations and enough
margin should be provided for successive sensing, and an ADC
with enough effective number of bits (ENOB) is required to accu-
rately generate the accumulation results. Prior efforts to improve
the robustness include investigating the usage of advanced analog
computing schemes such as capacitive coupling [18]. However, to
implement the capacitive coupling scheme, one or more capacitors
are required to be added to each memory cell, and multiple tran-
sistors are required to implement the switches. For example, [18]
uses 10T-1C SRAM cell to implement the in-memory charge shar-
ing scheme. The computation accuracy is improved at the expense
of memory density. In addition, the advanced analog computing
scheme scheme only resolves the robustness issue, while the ENOB
requirement of the ADC can not be eliminated. There will still be
considerable energy cost of the interface circuits to convert the
analog value into digital domain.

An alternative approach to solve the problem is to design a fully-
digital IMC macro [3, 19, 20]. The basic digital IMC implementations
is based on local AND computation and a in-memory adder trees.
The local AND is implemented by a NOR gate with two reversed
inputs to improve the area efficiency. A 4T-NOR gate is added to
each memory cell, and the output of the NOR gate is connected to
a local adder tree, which counts the bits "1" of the 4T-NOR gate and
generate a bit-wise accumulation results. The results are sent to
the same local PE for successive post processing, which is same as
the analog IMC macro. Since all the computation is in the digital
domain, the proposed IMC scheme is robust to PVT variations
with arbitrary bitwidth. However, this specific scheme has large
hardware overhead due to additional digital circuits, where the local
adder tree consumes about 10X area compared to the memory cell,
so the memory density will be extremely degraded. In summary, to
achieve higher energy and area efficiency of analog IMC macros,



we need to find a solution that can improve the sensing margin and
reduce the ENOB requirements of the ADC at the same time.

In this paper, we propose an alternative solution to the lossless
SRAM-based analog IMC macro, instead of focusing on pure circuit
level innovation to build up robust computing schemes. The basic
idea is to leverage the sparsity in typical NN workloads, where
the computation results will mainly be small values. Simulation
results show that, when 64 rows are activated in parallel, 90% ac-
cumulation results are within 8 instead of following a uniform
distribution. Different from the conventional analog IMC design
methodology where all accumulation results in the analog domain
are treated equally, we propose an analog computing scheme based
on a nonlinear transfer function which only covers an accurate
computation for the low MAC value region. Significant energy ef-
ficiency improvement can be observed as the ENOB requirement
for the interface ADC can be reduced. Our contributions can be
summarized as follows:

e We propose a partial sum distribution aware computation
scheme with a nonlinear transfer function to improve the
sensing margin by 7x as well as a 3bit ENOB reduction for
the interface ADC.

e We further propose a hybrid digital/analog computation
scheme with an additional digital data path to provide loss-
less computation capability with only 13% area overhead.

e We verify our ideas on a fabricated silicon in 65nm tech-
nology. The result show that the energy efficiency can be
improved by 2.92X higher than conventional current domain
IMC macros.
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Figure 1: Illustration of analog IMC macro, digital IMC macro
and related cell design.

2 BACKGROUND

2.1 Analog IMC

Analog IMC is characterized by the use of specific memory tech-
nology to perform MAC operations. It leverages the values stored
in memory to directly modulate analog input signals into weighted
analog output signals. A typical analog IMC macro contains a word-
line driver, one or multiple memory arrays, readout circuitry (in-
cluding column multiplexers (Col. MUXs) and ADC), and a shift
adder for multi-bit accumulation. Depending on the computing
scheme, the design methodology of the interface circuits and mem-
ory cells may vary slightly. Here, we review two representative
approaches to implement analog domain computation.

2.1.1  Current Domain. One representative approach to implement
the analog computation is based on 8T memory cell [10]. The logical
value is stored in the conventional 6T cells and two additional
transistor is used as a current source. We first present the basic
computation scheme where the input and weights are both 1 bit.
Before the computation is performed, each RBL is first pre-charged
to the supply voltage Vpp. When the computation starts, the input
vector is encoded as a binary value and a pulse will be applied
on the read wordline (RWL) in the macro. When the logical value
stored in the memory array is 1 and the RWL is driven to high
voltage for a short period (Tp), 2 serial-connected NMOS will form
a current source to discharge the RBL (assume the current is Ipg).
The final voltage at RBL depends on the number of activated 2T
current-sources which represents the bit-wise multiplication and
accumulation results. The voltage at RBL will then be sampled and
held on a column capacitor (Crpr ), and then converted by ADCs
located in each column. The relationship between voltage at RBL
and desired output (transfer function between analog output and
input vector) can be written as follows:
T;
VRBL = VDD — O w (1
0 RBL

If Vgpy is large enough to keep Ipg as a constant, the equation can
be reformulated as follows:
2 WiX; = Ips * Ty

CRBL '

@

VrBL = VDD —

Here W; and X represent the logical values of weights and inputs.
To deal with the multi-bit operands, the input vector and weight
matrices are stored as a 2’s complementary value. Consequently, we
need to further perform a post accumulation to add the ADC output
from different column. A shift-adder is used to add the results at
different column for multi-bit accumulation purpose.

Poum = Z ZDouti’ﬂH’j * (—l)i::7|j::7 (3)

The -1 term is used to implement negative weights or input.
Assume the analog computing results are represented as voltage
with a full range of V,,j;, the vector length to be accumulated in
the analog domain is 2N, and the bitwidth of the input vector is 1.
In this case, the possible analog accumulation results would range
from 0 — 2N, and the sensing margin will be Vp,,;;/2"V. As shown
in the transfer function, two terms will significantly generate vari-
ations to affect the sensing margin. The first term is the current
generated by each cell (Ips), which will be affected by threshold



voltage variations. The second term is the pulse period Ty, which
will be affected by the pullup/pulldown drivability of the driver in
the RWL. In a practical design example, Vg, is about 0.7V and N
is 6. The sensing margin will be around 10mV and an ADC with
6-bit ENOB is required. To achieve this sensing margin, the 30
variation of Ipg and Ty should be less than 2%, However, simulation
results show that the 30 Ipg variation can reach 20% under 1.0V
voltage supply at 65nm with W/L=240n/120n. Despite the current
domain accumulation scheme is simple, it is generally challeng-
ing to implement lossless computation based on current domain
accumulation.

2.1.2  Charge Domain. Another representative approach is based
on capacitive coupling scheme [18]. The memory cell is shown in
Figure 1. Before the computation is performed, each CBL is first
pre-discharged to the ground. When the computation start, the
input vector is encoded as a binary value and a DC voltage will be
applied on the read wordline (CWL) in the macro. When the logical
value stored in the memory array is 1 and the CWL is driven to
high voltage, charges Ve /Ci will be accumulated on the CBL,
while there will be zero charge if CWL is 0 or logical value stored
in the memory cell is 0. The final voltage at CBL will depend on the
total charge which represents the bit-wise multiplication and accu-
mulation results. The successive conversion and post processing
is similar as current domain. The relationship between voltage at
CBL and desired output (transfer function analog output and input
vector) can be written as follows:

2 QiVewri *Ci

Vest SC - 4
Here, the major term that affects the computing accuracy is the
capacitance of C;, and Veyp can be designed with an accurate
voltage reference. The capacitance variance can be reduced to 1%
with a 2fF customized metal-oxide-metal capacitor. The charge
domain design provides some potential to implement lossless analog
domain IMC. However, the area and energy efficiency is relatively
lower than current domain as multiple capacitors are added to each
CWL to ignore the parasitic capacitance, and the complexity of the
cell structure is large due to the presence of switches.

2.2 Digital IMC

To overcome the ADC overhead and inaccurate computation of
analog IMCs, researchers also presented multiple digital implemen-
tation of the IMC macro [3, 19]. In the literature, one representative
approach of digital IMC implementations is based on local adder
trees. The local AND operation is implemented by a NOR gate
with two reversed inputs to improve the area efficiency. As shown
in Figure 1, in the digital IMC, a 4T-NOR gate is added to each
memory cell, and the output of the NOR gate is connected to a
local adder tree. Each local adder tree counts the bits "1" of the
4T-NOR gate and generate a bit-wise accumulation results. The
results are sent to the same local PE for successive post processing,
which is same as the analog IMC macro. Since all the computation
is in the digital domain, the proposed IMC scheme is robust to
PVT variations with arbitrary bitwidth. However, this scheme has
one main drawback. The local adder tree consumes about 10x area
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Figure 2: Psum value distribution of Resnet-20 on CIFAR-10
dataset.
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Figure 3: The overall architecture of our proposed macro.

overhead compared to the memory cell, so the memory density will
be reduced extremely.

3 DESIGN METHODOLOGY
3.1 Partial Sum Aware Accumulation

In a typical neural network model, the activations and weights
are naturally sparse. Thus, the bit-wise accumulation results are
usually small due to the sparsity. To understand the partial sum
distribution, we choose ResNet-20 model on CIFAR-10 dataset, and
calculate the partial sum value distribution under an assumption
that 64 rows are activated in parallel. As shown in Figure 2, over
90% MAC results at each bitline are within 8 when 64 rows are
activated in parallel. Based on this observation, we are motivated to
design two different data paths for the low MAC value results (less
than a specific threshold value) and high MAC value results (higher
than a specific threshold value). Here, we choose the Low/High
threshold as 8 to achieve a better trade-off between efficiency and
implementation cost. For the low MAC value case, we can directly
use the conventional analog IMC design method to implement the
MAC operation in current domain. Since the low MAC value is less
than 8, we only need to differentiate 8 possible states instead of 64
states in conventional analog IMC design. The sensing margin can
be increased to 100mV when the full range is 0.7V, and the ENOB
requirement of the ADC will be reduced to 3 bits. For the high MAC
value case, we can design an additional data path based on digital
IMC. Since only less than 10% MAC value is high, we can minimize
the area overhead by sharing the digital path among a number of
columns.
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Figure 4: Simulated transfer function of proposed macro and
conventional macro.

3.2 Macro Overview

Figure 3 shows the overall architecture of the proposed macro. Our
macro is based on conventional analog current domain IMC design,
with several moderate modifications. The proposed macro contains
a wordline decoder and drivers, read/write interface (R/W Inter-
face), several multi-bit sense amplifiers (MBSAs), one RWL driver
and one or multiple memory array(s). Beyond the standard macro
components, our macro has three key modifications to support the
hybrid analog-digital computing mode. Firstly, we add an additional
digital data path for high MAC value computing, motivated by the
digital IMC computing scheme [21], to provide a simple and robust
digital accumulation for high MAC value. The InMemPE is com-
posed of several AND gates, a digital bitcounter, which is used to
perform a lossless bit-wise MAC no matter what the MAC value is.
One input for the InMemPE is the input vector and the other input
is directly connected to BL/BLB. Secondly, the memory cell in the
proposed design is implemented as a transposed 8T cell, where the
RWL(RBL) is vertical to the standard WL(BL/BLB). This transpos-
ing design enables two separated data paths for both analog and
digital computing. Thirdly, the IMC controller IMC Ctrl) circuit is
designed with additional functionalities to switch the analog-digital
computing mode. The ADCMSB signal connected to the IMC Ctrl
is used to indicate whether a specific MBSA detects a high MAC
value. The NearMemPE is still a shift-adder to receive the low MAC
results from the MBSAs, with an additional data path to receive the
high MAC output from the InMemPE.

3.3 Nonlinear Transfer Function

Instead of forcing the desired output and analog voltages at RBL to
be linear, we make the transfer function into two regions, as shown
Vop—-——F7—7",

in the following equations:
Z WiX; < N
VRBL = CRBL

2 WiXi = Ips = To
(5)
0, Z WiX; >= N

Here, N is a pre-defined threshold value to differentiate low and
high MAC regions. For the low MAC region, we keep the original
linear transfer function, where the desired computing results are
linear to the voltage generated at RBL. For the high MAC region,
we make the output voltage to a near zero value. Figure 4 shows
the simulated transfer function of our proposed IMC macro and
conventional IMC macro. Since we only need to convert the MAC
results in the low MAC region accurately, the sensing margin can
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Figure 5: Simulated timing diagram of analog mode and digi-

tal mode computation.
be improved by up to 7 X comparing with conventional design with

linear transfer function.

It is worth noting that the nonlinear transfer function of the
analog computation scheme is naturally supported. The only modi-
fication is to reduce the value of Crpy or increase the value of Ipg
and Tp. In this case, the Ipg can be designed as a constant only less
than N current sources are activated, denote to the low MAC value
region. Otherwise, the Ipg will naturally goes to near zero as the
current source turns to the linear region.

3.4 MAC in Analog Domain

Before the computing starts, the RBL is pre-charged to Vpp. A
input bit vector is sent to the RWL driver, and the trigger clock will
generate a short pulse on each RWL if the corresponding input bit
is 1. The current at each RBL will discharge the capacitor Cgpy to a
certain voltage level, following the nonlinear transfer function we
implemented. After the voltage at Cgpy, is stable, a positive edge of
the sense-enabling signal (SAEN) will trigger the interface circuits
to sense the Vrpr. we use a MBSA with 7 different voltage reference
to differentiate 8 different voltage level generated by the analog
current summation. An additional comparator with another volt-
age reference adjusted to differentiate whether the output voltage
crosses the ranges of low MAC value. If the output is within the low
MAC region, the converted digital output will be directly sent to
the NearMemPE to perform the bit-wise accumulation. Otherwise,
the column index will be sent to the IMC Ctrl for successive MAC
in digital domain.

The first cycle in Figure 5 shows a simulated timing diagram of
proposed analog computing scheme when the computation results
fall into a high MAC value region. After SAEN is triggered, the
digital components (BUSY) will be activated due to a high MAC
value is detected. In this case, the computation of the next cycle
will goes to digital domain for high MAC value. Otherwise, the next
cycle will be used for analog computation for the other columns or
input bit vector, and there will be no throughput loss.

3.5 MAC in Digital Domain

When a high MAC value is detected, the IMC Ctrl circuit will store
the column index of the high MAC value column and switch the
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macro into the digital mode. The second cycle in Figure 5 illustrates
the timing diagram of the digital computing scheme. A specific
address will be generated in the IMC Ctrl to activate the wordline
driver based on the column index detected to compute a high MAC
value. Once the wordline is activated, the weight data stored in
one column of the memory array will be read out through BL/BLB
discharging process. The input vector is directly sent to the In-
MemPE to the weight data at BL/BLB will be sent to the InMemPE
to perform a local digital computing with the input vector. At the
same time, the NearMemPE is configured to receive the 7-bit output
from the InMemPE. IMC Ctrl also generates the shift value for this
accumulation depending on the column index.

4 EXPERIMENTS

4.1 Circuit-Level Measurement Results

We fabricated the SRAM IMC macro in GP 65nm technology node.
The die photo and the detailed layout of the macro are shown in
Figure 6. The proposed macro occupies 0.025 mm?, with a 2.4 x
0.9um? 8T SRAM bitcell. Most of the area is the memory array (51%),
and the digital/analog interface only occupies 0.002 mm?, and it
takes about 8% of the whole macro, since we reduced the ENOB to
only 3bit. Both of the InMemPE and the NearMemPE occupy 13%
of the whole macro.

4.1.1  Energy Consumption. Figure 7 depicts the measured energy
consumption for both digital mode and analog mode. When the
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Figure 8: Measured Shmoo plot for the proposed macro for

the digital mode and analog mode.
supply voltage is 1.0V, the digital mode requires about 450f] to

execute an 8-bit MAC, where it will be reduced to 154 fJ when the
supply voltage is 0.7V. The effective energy efficiency is 2.22-6.89
TOPS/W for the digital mode computation. In contrast, the analog
mode can provide significant energy reduction comparing with
the digital mode. The energy consumption is 101 and 39.2 ] when
the supply voltage is 1.0 and 0.7 V, respectively. In this case, the
effective energy efficiency in this mode is around 9.9-25.5 TOPS/W.

4.1.2  Speed. Figure 8 presents the measured shmoo plot for the
proposed macro. The digital mode computation could achieve up to
2.3ns access time without any computation loss under 1.0V voltage
supply. Even with the supply voltage at 0.6V, the access time could
still achieve 4.9 ns to provide an accurate computing results. For the
analog mode, the macro can reach 3.7ns under 1.0V supply voltage
and 6ns under 0.7V supply voltage.

4.1.3 Comparative Results. Table 1 shows the comparative results
with state-of-the-art IMC design. [10] is a conventional current do-
main design with a linear transfer function. Our design can achieve
higher energy efficiency because our design does not require an
ADC with large ENOB. The design in [10] shows higher area ef-
ficiency, which sacrifices the capability to provide a 8b lossless
computation. Comparing with charge domain design in [11], our
design also achieves higher energy efficiency and higher area effi-
ciency due to the current-domain computation scheme.

We also compare our design with some designs implemented in
advanced nodes, [22] and [3]. [22] is an extended version of [10]
and their computing scheme is similar. Our design can achieve 2.65
X higher energy efficiency and 5.33x% area area efficiency than this
scheme. The current domain implementation has a low energy and
area efficiency as a result of an interface ADC with a 6bit ENOB
to support lossless computation. [3] is one representative work of
digital IMC. All the analog IMC macro can achieve higher energy
efficiency and memory density, as the local adder tree extremely
increases the area overhead. In particular, our design could reach
around 2X energy efficiency improvement over the fully digital
design.

4.2 Architecture-Level Simulation Results

The computation flow and weight mapping scheme follows the
principle shown in [1] and [2] for convolution neural networks and
mobile convolution neural networks. We use an event-driven simu-
lation framework in [23] to generate the area normalized through-
put (denote to area efficiency) and energy efficiency for running 6



Table 1: Comparison with State-of-the-art IMC Design

Work This work JSSC19 [10] | JSSC21 [22] | 1SSCC22 [3] | JSSC19 [11]
Technology Node 65 55 28 28 65
Speed (ns) 4 10.2 8.4 3.3 150
Area Efficiency (GOPS/mm?) 160 572 120 200 126
8b Lossless Yes No Yes Yes No
Energy Efficiency (TOPS/W) 25.5 (8b-8b) 18.37 (4b-5b) | 16.63 (8b-8b) | 27.4 (8b-8b) | 28.1 (8b-1b)
Cell Structure 8T T8T 6T+LCC 6T+LCC 10T-1C
Computing Scheme hybrid current-digital current current digital charge
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Figure 9: Architecture simulation results for area efficiency
and energy efficiency on various machine learning model.

different models trained on CIFAR-10 and ImageNet datasets, based
on the circuit-level evaluation results. We used a fully analog IMC
macro in current domain in [22], and a fully digital IMC macro
in [3] to build the same architecture, and scale our area efficiency
and energy efficiency results into the same technology node.

The architecture-level simulation results are shown in Figure 9.
The architecture based on our proposed IMC macro could achieve
2.52X to 3.84x improvement of the area efficiency comparing with
the architecture based on a fully analog IMC macro. In terms of
the energy efliciency, the architecture based on our proposed IMC
macro could achieve 2.14X to 2.92X improvement comparing with
the architecture based on a fully analog IMC macro.

5 CONCLUSION

In this paper, we implement lossless 8b MAC operation with a hy-
brid digital/analog computing scheme. We first propose a nonlinear
transfer function of the analog accumulation to reduce the ENOB
and improve the sensing margin of the conventional current do-
main IMC scheme for low MAC values. We further propose a in
memory digital computing scheme to compensate the error gener-
ated by analog computing. Chip measurement results show that the
proposed macro could achieve 160 GOPS/mm? area efficiency and
25.5 TOPS/W for 8b/8b matrix computation. The architectural-level
evaluation for real workloads shows that the proposed macro can
achieve up to 2.92x higher energy efficiency than conventional
analog IMC designs.
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