
Improving the Efficiency of In-Memory-Computing Macro with a
Hybrid Analog-Digital Computing Mode for Lossless Neural

Network Inference

Qilin Zheng1, Ziru Li1, Jonathan Ku1, Yitu Wang1, Brady Taylor1,
Deliang Fan2, Yiran Chen1,

1Duke University, 2Johns Hopkins University

qilin.zheng@duke.edu

ABSTRACT

Analog in-memory-computing (IMC) is an attractive technique

with a higher energy efficiency to process machine learning work-

loads. However, the analog computing scheme suffers from large

interface circuit overhead. In this work, we propose a macro with

a hybrid analog-digital mode computation to reduce the precision

requirement of the interface circuit. Considering the distribution

of the multiplication and accumulation (MAC) value, we propose

a nonlinear transfer function of the computing circuits by only

accurately computing low MAC value in the analog domain with a

digital mode to deal with the high MAC value with smaller possi-

bility. Silicon measurement results show that the proposed macro

could achieve 160 𝐺𝑂𝑃𝑆/𝑚𝑚2 area efficiency and 25.5 TOPS/W

for 8b/8b matrix computation. The architectural-level evaluation

for real workloads shows that the proposed macro can achieve up

to 2.92× higher energy efficiency than conventional analog IMC

designs.

KEYWORDS

Processing-in-Memory, SRAM, Machine Learning Acceleration

1 INTRODUCTION

In-memory-computing (IMC) technology has attracted a lot of atten-

tion in recent years as a solution for low power neural network pro-

cessing [1–9]. In particular, static random access memory (SRAM)

based analog in-memory computing schemes are showing great

potential to improve the energy efficiency by moving the key op-

eration, multiplication and accumulation (MAC) into analog do-

main [10? –15]. Typically, the IMC macro supports vector-matrix

multiplication (VMM) as the computation primitive. The elements

of the matrix are stored in the memory array as logical values, and

two or more transistors are added to the memory cell to convert

the logical values to the analog currents in the SRAM array. Then,

each element of the vector is converted into the voltage generated

by the wordline driver and applied to the corresponding wordline

of the array. The accumulation result can be represented as the

accumulated current on the bitlines or other customized accumula-

tion lines. The current is then converted to digital domain by an

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DAC ’24, June 23–27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3658472

analog-to-digital converter (ADC) for the subsequent process. Since

multiple wordlines are activated in parallel, the normalized through-

put and energy efficiency can be extremely improved comparing

with conventional digital MAC unit. However, the high efficiency

of the analog IMC computing scheme sacrifices the computation

accuracy, due to non-ideal effect of the analog computing units

and interface ADCs. Consequently, existing analog IMC macros are

usually used for highly customized neural networks [16, 17], such

as binary, ternary neural networks.

To integrate analog IMC into general purpose NN inference

accelerators, one key design metric is to support lossless MAC

operations. To achieve this specific requirement, the analog accu-

mulation process should be robust to PVT variations and enough

margin should be provided for successive sensing, and an ADC

with enough effective number of bits (ENOB) is required to accu-

rately generate the accumulation results. Prior efforts to improve

the robustness include investigating the usage of advanced analog

computing schemes such as capacitive coupling [18]. However, to

implement the capacitive coupling scheme, one or more capacitors

are required to be added to each memory cell, and multiple tran-

sistors are required to implement the switches. For example, [18]

uses 10T-1C SRAM cell to implement the in-memory charge shar-

ing scheme. The computation accuracy is improved at the expense

of memory density. In addition, the advanced analog computing

scheme scheme only resolves the robustness issue, while the ENOB

requirement of the ADC can not be eliminated. There will still be

considerable energy cost of the interface circuits to convert the

analog value into digital domain.

An alternative approach to solve the problem is to design a fully-

digital IMCmacro [3, 19, 20]. The basic digital IMC implementations

is based on local AND computation and a in-memory adder trees.

The local AND is implemented by a NOR gate with two reversed

inputs to improve the area efficiency. A 4T-NOR gate is added to

each memory cell, and the output of the NOR gate is connected to

a local adder tree, which counts the bits "1" of the 4T-NOR gate and

generate a bit-wise accumulation results. The results are sent to

the same local PE for successive post processing, which is same as

the analog IMC macro. Since all the computation is in the digital

domain, the proposed IMC scheme is robust to PVT variations

with arbitrary bitwidth. However, this specific scheme has large

hardware overhead due to additional digital circuits, where the local

adder tree consumes about 10× area compared to the memory cell,

so the memory density will be extremely degraded. In summary, to

achieve higher energy and area efficiency of analog IMC macros,



we need to find a solution that can improve the sensing margin and

reduce the ENOB requirements of the ADC at the same time.

In this paper, we propose an alternative solution to the lossless

SRAM-based analog IMC macro, instead of focusing on pure circuit

level innovation to build up robust computing schemes. The basic

idea is to leverage the sparsity in typical NN workloads, where

the computation results will mainly be small values. Simulation

results show that, when 64 rows are activated in parallel, 90% ac-

cumulation results are within 8 instead of following a uniform

distribution. Different from the conventional analog IMC design

methodology where all accumulation results in the analog domain

are treated equally, we propose an analog computing scheme based

on a nonlinear transfer function which only covers an accurate

computation for the low MAC value region. Significant energy ef-

ficiency improvement can be observed as the ENOB requirement

for the interface ADC can be reduced. Our contributions can be

summarized as follows:

• We propose a partial sum distribution aware computation

scheme with a nonlinear transfer function to improve the

sensing margin by 7× as well as a 3bit ENOB reduction for

the interface ADC.

• We further propose a hybrid digital/analog computation

scheme with an additional digital data path to provide loss-

less computation capability with only 13% area overhead.

• We verify our ideas on a fabricated silicon in 65nm tech-

nology. The result show that the energy efficiency can be

improved by 2.92× higher than conventional current domain

IMC macros.

R
W

L/
C

W
L 

D
riv

er Memory Array

Mem.
Ctrl

Col. MUX
ADC

Shift & Adder

Analog IMC Macro

Col. MUX
ADC

BL

RBL

WL

BLB

RWL

8T Current-domain IMC

10T-1C Charge-domain IMC

BL CBL

WL

BLB

CWL

BL

To
 L

oc
al

 A
dd

er
 T

re
e

WL

BLB

CWL

4T-NOR

10T Digital IMC

C
W

L 
D

riv
er

Memory Array

Mem.
Ctrl

Digital IMC Macro

Shift & Adder

Lo
ca

l A
dd

er
 T

re
e

Lo
ca

l A
dd

er
 T

re
e

Col. MUX

Figure 1: Illustration of analog IMCmacro, digital IMCmacro

and related cell design.

2 BACKGROUND

2.1 Analog IMC

Analog IMC is characterized by the use of specific memory tech-

nology to perform MAC operations. It leverages the values stored

in memory to directly modulate analog input signals into weighted

analog output signals. A typical analog IMC macro contains a word-

line driver, one or multiple memory arrays, readout circuitry (in-

cluding column multiplexers (Col. MUXs) and ADC), and a shift

adder for multi-bit accumulation. Depending on the computing

scheme, the design methodology of the interface circuits and mem-

ory cells may vary slightly. Here, we review two representative

approaches to implement analog domain computation.

2.1.1 Current Domain. One representative approach to implement

the analog computation is based on 8Tmemory cell [10]. The logical

value is stored in the conventional 6T cells and two additional

transistor is used as a current source. We first present the basic

computation scheme where the input and weights are both 1 bit.

Before the computation is performed, each RBL is first pre-charged

to the supply voltage 𝑉𝐷𝐷 . When the computation starts, the input

vector is encoded as a binary value and a pulse will be applied

on the read wordline (RWL) in the macro. When the logical value

stored in the memory array is 1 and the RWL is driven to high

voltage for a short period (𝑇0), 2 serial-connected NMOS will form

a current source to discharge the RBL (assume the current is 𝐼𝐷𝑆 ).

The final voltage at RBL depends on the number of activated 2T

current-sources which represents the bit-wise multiplication and

accumulation results. The voltage at RBL will then be sampled and

held on a column capacitor (𝐶𝑅𝐵𝐿), and then converted by ADCs

located in each column. The relationship between voltage at RBL

and desired output (transfer function between analog output and

input vector) can be written as follows:

𝑉𝑅𝐵𝐿 = 𝑉𝐷𝐷 −

∫ 𝑇0

0

∑
𝑊𝑖𝑋𝑖 ∗ 𝐼𝐷𝑆 ∗ 𝑑𝑡

𝐶𝑅𝐵𝐿
(1)

If 𝑉𝑅𝐵𝐿 is large enough to keep 𝐼𝐷𝑆 as a constant, the equation can

be reformulated as follows:

𝑉𝑅𝐵𝐿 = 𝑉𝐷𝐷 −

∑
𝑊𝑖𝑋𝑖 ∗ 𝐼𝐷𝑆 ∗𝑇0

𝐶𝑅𝐵𝐿
. (2)

Here𝑊𝑖 and 𝑋𝑖 represent the logical values of weights and inputs.

To deal with the multi-bit operands, the input vector and weight

matrices are stored as a 2’s complementary value. Consequently, we

need to further perform a post accumulation to add the ADC output

from different column. A shift-adder is used to add the results at

different column for multi-bit accumulation purpose.

𝑃𝑠𝑢𝑚 =
∑∑

𝐷𝑜𝑢𝑡𝑖, 𝑗2
𝑖+𝑗 ∗ (−1)𝑖==7 | 𝑗==7 (3)

The -1 term is used to implement negative weights or input.

Assume the analog computing results are represented as voltage

with a full range of 𝑉𝐹𝑢𝑙𝑙 , the vector length to be accumulated in

the analog domain is 2𝑁 , and the bitwidth of the input vector is 1.

In this case, the possible analog accumulation results would range

from 0 − 2𝑁 , and the sensing margin will be 𝑉𝐹𝑢𝑙𝑙/2
𝑁 . As shown

in the transfer function, two terms will significantly generate vari-

ations to affect the sensing margin. The first term is the current

generated by each cell (𝐼𝐷𝑆 ), which will be affected by threshold

2



voltage variations. The second term is the pulse period 𝑇0, which
will be affected by the pullup/pulldown drivability of the driver in

the RWL. In a practical design example, 𝑉𝐹𝑢𝑙𝑙 is about 0.7V and 𝑁
is 6. The sensing margin will be around 10mV and an ADC with

6-bit ENOB is required. To achieve this sensing margin, the 3𝜎
variation of 𝐼𝐷𝑆 and𝑇0 should be less than 2%, However, simulation

results show that the 3𝜎 𝐼𝐷𝑆 variation can reach 20% under 1.0V

voltage supply at 65nm with W/L=240n/120n. Despite the current

domain accumulation scheme is simple, it is generally challeng-

ing to implement lossless computation based on current domain

accumulation.

2.1.2 Charge Domain. Another representative approach is based

on capacitive coupling scheme [18]. The memory cell is shown in

Figure 1. Before the computation is performed, each CBL is first

pre-discharged to the ground. When the computation start, the

input vector is encoded as a binary value and a DC voltage will be

applied on the read wordline (CWL) in the macro. When the logical

value stored in the memory array is 1 and the CWL is driven to

high voltage, charges 𝑉𝐶𝑊𝐿/𝐶𝑖 will be accumulated on the CBL,

while there will be zero charge if CWL is 0 or logical value stored

in the memory cell is 0. The final voltage at CBL will depend on the

total charge which represents the bit-wise multiplication and accu-

mulation results. The successive conversion and post processing

is similar as current domain. The relationship between voltage at

CBL and desired output (transfer function analog output and input

vector) can be written as follows:

𝑉𝐶𝐵𝐿 =
∑
𝑄𝑖𝑉𝐶𝑊𝐿𝑖 ∗𝐶𝑖∑

𝐶𝑖
. (4)

Here, the major term that affects the computing accuracy is the

capacitance of 𝐶𝑖 , and 𝑉𝐶𝑊𝐿 can be designed with an accurate

voltage reference. The capacitance variance can be reduced to 1%

with a 2fF customized metal-oxide-metal capacitor. The charge

domain design provides some potential to implement lossless analog

domain IMC. However, the area and energy efficiency is relatively

lower than current domain as multiple capacitors are added to each

CWL to ignore the parasitic capacitance, and the complexity of the

cell structure is large due to the presence of switches.

2.2 Digital IMC

To overcome the ADC overhead and inaccurate computation of

analog IMCs, researchers also presented multiple digital implemen-

tation of the IMC macro [3, 19]. In the literature, one representative

approach of digital IMC implementations is based on local adder

trees. The local AND operation is implemented by a NOR gate

with two reversed inputs to improve the area efficiency. As shown

in Figure 1, in the digital IMC, a 4T-NOR gate is added to each

memory cell, and the output of the NOR gate is connected to a

local adder tree. Each local adder tree counts the bits "1" of the

4T-NOR gate and generate a bit-wise accumulation results. The

results are sent to the same local PE for successive post processing,

which is same as the analog IMC macro. Since all the computation

is in the digital domain, the proposed IMC scheme is robust to

PVT variations with arbitrary bitwidth. However, this scheme has

one main drawback. The local adder tree consumes about 10× area

0 5 10 15 20 25 30

Psum Value

0

0.05

0.1

0.15

0.2

Pr
ob

ab
ilit

y

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 2: Psum value distribution of Resnet-20 on CIFAR-10

dataset.

Q0,0 Q0,1 Q0,63Q0,2

Q1,0 Q1,1 Q1,63Q1,2

Q2,0 Q2,1 Q2,63Q2,2

Q63,0 Q63,1 Q63,63Q63,2

RWL[0]

RWL[1]

RWL[2]

RWL[63]

RBL[0] RBL[1] RBL[2] RBL[63]BL[0]

BLB[0]

BL[1]

BLB[1]

BL[2]

BLB[2]

BL[63]

BLB[63]

WL[0] WL[1] WL[2] WL[63]

R
/W

 In
te

rfa
ce

R
W

L 
D

riv
er

In
M

em
PE

RBL Voltages

3-b MBSA x8

NearMemPE

Low MAC Out[2:0][7:0]

Din[0:63]

High MAC Out[6:0]IMC 
Ctrl

ADCMSB[7:0]
Input Data

Output Data

BLB[i]

BL[i]

RWL[i]

RBL[j] WL[j]

Qi,j

WLDecoder & DriverAddr[5:0] Design Feature 1: Additional 
Data Path with Digital Bitcounter

Design Feature 3: 
Nonlinear 

Computing 
Transfer Function 
& Low/High Mode 

Selection

Design Feature 2:
8T Transposable
SRAM Array for
Hybrid Analog-
Digital Mode

Figure 3: The overall architecture of our proposed macro.

overhead compared to the memory cell, so the memory density will

be reduced extremely.

3 DESIGN METHODOLOGY

3.1 Partial Sum Aware Accumulation

In a typical neural network model, the activations and weights

are naturally sparse. Thus, the bit-wise accumulation results are

usually small due to the sparsity. To understand the partial sum

distribution, we choose ResNet-20 model on CIFAR-10 dataset, and

calculate the partial sum value distribution under an assumption

that 64 rows are activated in parallel. As shown in Figure 2, over

90% MAC results at each bitline are within 8 when 64 rows are

activated in parallel. Based on this observation, we are motivated to

design two different data paths for the low MAC value results (less

than a specific threshold value) and high MAC value results (higher

than a specific threshold value). Here, we choose the Low/High

threshold as 8 to achieve a better trade-off between efficiency and

implementation cost. For the low MAC value case, we can directly

use the conventional analog IMC design method to implement the

MAC operation in current domain. Since the low MAC value is less

than 8, we only need to differentiate 8 possible states instead of 64

states in conventional analog IMC design. The sensing margin can

be increased to 100mV when the full range is 0.7V, and the ENOB

requirement of the ADC will be reduced to 3 bits. For the high MAC

value case, we can design an additional data path based on digital

IMC. Since only less than 10% MAC value is high, we can minimize

the area overhead by sharing the digital path among a number of

columns.

3



0 2 4 6 8 10 12 14 16
Computed Result

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t V

ol
ta

ge
 (V

)

Low MAC Region
High MAC Region
Conventional
Proposed

Figure 4: Simulated transfer function of proposed macro and

conventional macro.

3.2 Macro Overview

Figure 3 shows the overall architecture of the proposed macro. Our

macro is based on conventional analog current domain IMC design,

with several moderate modifications. The proposed macro contains

a wordline decoder and drivers, read/write interface (R/W Inter-

face), several multi-bit sense amplifiers (MBSAs), one RWL driver

and one or multiple memory array(s). Beyond the standard macro

components, our macro has three key modifications to support the

hybrid analog-digital computing mode. Firstly, we add an additional

digital data path for high MAC value computing, motivated by the

digital IMC computing scheme [21], to provide a simple and robust

digital accumulation for high MAC value. The InMemPE is com-

posed of several AND gates, a digital bitcounter, which is used to

perform a lossless bit-wise MAC no matter what the MAC value is.

One input for the InMemPE is the input vector and the other input

is directly connected to BL/BLB. Secondly, the memory cell in the

proposed design is implemented as a transposed 8T cell, where the

RWL(RBL) is vertical to the standard WL(BL/BLB). This transpos-

ing design enables two separated data paths for both analog and

digital computing. Thirdly, the IMC controller (IMC Ctrl) circuit is

designed with additional functionalities to switch the analog-digital

computing mode. The ADCMSB signal connected to the IMC Ctrl

is used to indicate whether a specific MBSA detects a high MAC

value. The NearMemPE is still a shift-adder to receive the low MAC

results from the MBSAs, with an additional data path to receive the

high MAC output from the InMemPE.

3.3 Nonlinear Transfer Function

Instead of forcing the desired output and analog voltages at RBL to

be linear, we make the transfer function into two regions, as shown

in the following equations:

𝑉𝑅𝐵𝐿 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
𝑉𝐷𝐷 −

∑
𝑊𝑖𝑋𝑖 ∗ 𝐼𝐷𝑆 ∗𝑇0

𝐶𝑅𝐵𝐿
,

∑
𝑊𝑖𝑋𝑖 < 𝑁

0,
∑

𝑊𝑖𝑋𝑖 >= 𝑁

(5)

Here, N is a pre-defined threshold value to differentiate low and

high MAC regions. For the low MAC region, we keep the original

linear transfer function, where the desired computing results are

linear to the voltage generated at RBL. For the high MAC region,

we make the output voltage to a near zero value. Figure 4 shows

the simulated transfer function of our proposed IMC macro and

conventional IMC macro. Since we only need to convert the MAC

results in the low MAC region accurately, the sensing margin can

0
0.5

1
CLK

0
0.5

1
RBL[i] RWL[j]

0
0.5

1
SAEN

0
0.5

1

Vo
lta

ge
 (V

)

BUSY

0
0.5

1 WL[j]

0
0.5

1
BL[i] BLB[i]

0.999 1 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008

Time (us)

0
0.5

1 ACCUM[i]

Figure 5: Simulated timing diagram of analog mode and digi-

tal mode computation.
be improved by up to 7 × comparing with conventional design with

linear transfer function.

It is worth noting that the nonlinear transfer function of the

analog computation scheme is naturally supported. The only modi-

fication is to reduce the value of 𝐶𝑅𝐵𝐿 or increase the value of 𝐼𝐷𝑆

and 𝑇0. In this case, the 𝐼𝐷𝑆 can be designed as a constant only less

than 𝑁 current sources are activated, denote to the low MAC value

region. Otherwise, the 𝐼𝐷𝑆 will naturally goes to near zero as the

current source turns to the linear region.

3.4 MAC in Analog Domain

Before the computing starts, the RBL is pre-charged to 𝑉𝐷𝐷 . A

input bit vector is sent to the RWL driver, and the trigger clock will

generate a short pulse on each RWL if the corresponding input bit

is 1. The current at each RBL will discharge the capacitor𝐶𝑅𝐵𝐿 to a

certain voltage level, following the nonlinear transfer function we

implemented. After the voltage at 𝐶𝑅𝐵𝐿 is stable, a positive edge of

the sense-enabling signal (SAEN) will trigger the interface circuits

to sense the𝑉𝑅𝐵𝐿 . we use a MBSA with 7 different voltage reference

to differentiate 8 different voltage level generated by the analog

current summation. An additional comparator with another volt-

age reference adjusted to differentiate whether the output voltage

crosses the ranges of low MAC value. If the output is within the low

MAC region, the converted digital output will be directly sent to

the NearMemPE to perform the bit-wise accumulation. Otherwise,

the column index will be sent to the IMC Ctrl for successive MAC

in digital domain.

The first cycle in Figure 5 shows a simulated timing diagram of

proposed analog computing scheme when the computation results

fall into a high MAC value region. After SAEN is triggered, the

digital components (BUSY) will be activated due to a high MAC

value is detected. In this case, the computation of the next cycle

will goes to digital domain for high MAC value. Otherwise, the next

cycle will be used for analog computation for the other columns or

input bit vector, and there will be no throughput loss.

3.5 MAC in Digital Domain

When a high MAC value is detected, the IMC Ctrl circuit will store

the column index of the high MAC value column and switch the

4



MACRO
64x64

Memory Array
72x72 (with dummy cells)

InMemPE

M
B

SA x8
R/W Interface

W
L 

D
ec

od
er

IMC Ctrl

N
ea

rM
em

PEP

Memory Array
51%InMemPE

13%
NearMemPE

12%

MBSA
8%

IMC Ctrl
7%

Others
9%

Figure 6: The die photograph, layout of our proposed macro,

and the area breakdown results.

0.7 0.75 0.8 0.85 0.9 0.95 1
Supply Voltage (V)

10 2

10 3

En
er

gy
/M

AC
 (f

J) Digital Mode
Analog Mode

Figure 7: Measured energy consumption for digital mode and

analog mode.

macro into the digital mode. The second cycle in Figure 5 illustrates

the timing diagram of the digital computing scheme. A specific

address will be generated in the IMC Ctrl to activate the wordline

driver based on the column index detected to compute a high MAC

value. Once the wordline is activated, the weight data stored in

one column of the memory array will be read out through BL/BLB

discharging process. The input vector is directly sent to the In-

MemPE to the weight data at BL/BLB will be sent to the InMemPE

to perform a local digital computing with the input vector. At the

same time, the NearMemPE is configured to receive the 7-bit output

from the InMemPE. IMC Ctrl also generates the shift value for this

accumulation depending on the column index.

4 EXPERIMENTS

4.1 Circuit-Level Measurement Results

We fabricated the SRAM IMC macro in GP 65nm technology node.

The die photo and the detailed layout of the macro are shown in

Figure 6. The proposed macro occupies 0.025 𝑚𝑚2, with a 2.4 ×
0.9𝑢𝑚2 8T SRAM bitcell. Most of the area is the memory array (51%),

and the digital/analog interface only occupies 0.002𝑚𝑚2, and it

takes about 8% of the whole macro, since we reduced the ENOB to

only 3bit. Both of the InMemPE and the NearMemPE occupy 13%

of the whole macro.

4.1.1 Energy Consumption. Figure 7 depicts the measured energy

consumption for both digital mode and analog mode. When the

Digital Modei ogDi it l M di

1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1 6.6 7.2 7.8 8.4 9 9.6 10.2 10.8
500
550
600
650
700
750
800
850
900
950

1000

VD
D

 (m
V)

Analog Moden g oggA l M d

1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1 6.6 7.2 7.8 8.4 9 9.6 10.2 10.8

Access Time (ns)

500
550
600
650
700
750
800
850
900
950

1000

VD
D

 (m
V)

Figure 8: Measured Shmoo plot for the proposed macro for

the digital mode and analog mode.
supply voltage is 1.0V, the digital mode requires about 450fJ to

execute an 8-bit MAC, where it will be reduced to 154 fJ when the

supply voltage is 0.7V. The effective energy efficiency is 2.22-6.89

TOPS/W for the digital mode computation. In contrast, the analog

mode can provide significant energy reduction comparing with

the digital mode. The energy consumption is 101 and 39.2 fJ when

the supply voltage is 1.0 and 0.7 V, respectively. In this case, the

effective energy efficiency in this mode is around 9.9-25.5 TOPS/W.

4.1.2 Speed. Figure 8 presents the measured shmoo plot for the

proposed macro. The digital mode computation could achieve up to

2.3ns access time without any computation loss under 1.0V voltage

supply. Even with the supply voltage at 0.6V, the access time could

still achieve 4.9 ns to provide an accurate computing results. For the

analog mode, the macro can reach 3.7ns under 1.0V supply voltage

and 6ns under 0.7V supply voltage.

4.1.3 Comparative Results. Table 1 shows the comparative results

with state-of-the-art IMC design. [10] is a conventional current do-

main design with a linear transfer function. Our design can achieve

higher energy efficiency because our design does not require an

ADC with large ENOB. The design in [10] shows higher area ef-

ficiency, which sacrifices the capability to provide a 8b lossless

computation. Comparing with charge domain design in [11], our

design also achieves higher energy efficiency and higher area effi-

ciency due to the current-domain computation scheme.

We also compare our design with some designs implemented in

advanced nodes, [22] and [3]. [22] is an extended version of [10]

and their computing scheme is similar. Our design can achieve 2.65

× higher energy efficiency and 5.33× area area efficiency than this

scheme. The current domain implementation has a low energy and

area efficiency as a result of an interface ADC with a 6bit ENOB

to support lossless computation. [3] is one representative work of

digital IMC. All the analog IMC macro can achieve higher energy

efficiency and memory density, as the local adder tree extremely

increases the area overhead. In particular, our design could reach

around 2× energy efficiency improvement over the fully digital

design.

4.2 Architecture-Level Simulation Results

The computation flow and weight mapping scheme follows the

principle shown in [1] and [2] for convolution neural networks and

mobile convolution neural networks. We use an event-driven simu-

lation framework in [23] to generate the area normalized through-

put (denote to area efficiency) and energy efficiency for running 6

5



Table 1: Comparison with State-of-the-art IMC Design

Work This work JSSC19 [10] JSSC21 [22] ISSCC22 [3] JSSC19 [11]

Technology Node 65 55 28 28 65

Speed (ns) 4 10.2 8.4 3.3 150

Area Efficiency (𝐺𝑂𝑃𝑆/𝑚𝑚2) 160 572 120 200 126

8b Lossless Yes No Yes Yes No

Energy Efficiency (TOPS/W) 25.5 (8b-8b) 18.37 (4b-5b) 16.63 (8b-8b) 27.4 (8b-8b) 28.1 (8b-1b)

Cell Structure 8T T8T 6T+LCC 6T+LCC 10T-1C

Computing Scheme hybrid current-digital current current digital charge

ResNet-20 ResNet-32 ResNet-18 ResNet-34 MobileNet-V1 MobileNet-V2

Area Efficiency

0

1

2

3

4

R
at

io

Analog Digital Proposed

ResNet-20 ResNet-32 ResNet-18 ResNet-34 MobileNet-V1 MobileNet-V2

Energy Efficiency

0

0.5

1

1.5

2

2.5

3

3.5

R
at

io

Analog Digital Proposed

Figure 9: Architecture simulation results for area efficiency

and energy efficiency on various machine learning model.

different models trained on CIFAR-10 and ImageNet datasets, based

on the circuit-level evaluation results. We used a fully analog IMC

macro in current domain in [22], and a fully digital IMC macro

in [3] to build the same architecture, and scale our area efficiency

and energy efficiency results into the same technology node.

The architecture-level simulation results are shown in Figure 9.

The architecture based on our proposed IMC macro could achieve

2.52× to 3.84× improvement of the area efficiency comparing with

the architecture based on a fully analog IMC macro. In terms of

the energy efficiency, the architecture based on our proposed IMC

macro could achieve 2.14× to 2.92× improvement comparing with

the architecture based on a fully analog IMC macro.

5 CONCLUSION

In this paper, we implement lossless 8b MAC operation with a hy-

brid digital/analog computing scheme. We first propose a nonlinear

transfer function of the analog accumulation to reduce the ENOB

and improve the sensing margin of the conventional current do-

main IMC scheme for low MAC values. We further propose a in

memory digital computing scheme to compensate the error gener-

ated by analog computing. Chip measurement results show that the

proposed macro could achieve 160 𝐺𝑂𝑃𝑆/𝑚𝑚2 area efficiency and

25.5 TOPS/W for 8b/8b matrix computation. The architectural-level

evaluation for real workloads shows that the proposed macro can

achieve up to 2.92× higher energy efficiency than conventional

analog IMC designs.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation under

grant 2328805 and 2112562.

REFERENCES
[1] Qilin Zheng et al. Lattice: an adc/dac-less reram-based processing-in-memory

architecture for accelerating deep convolution neural networks. In DAC, 2020.
[2] Qilin Zheng et al. Mobilattice: A depth-wise dcnn accelerator with hybrid

digital/analog nonvolatile processing-in-memory block. In ICCAD, 2020.
[3] Bonan Yan et al. A 1.041-mb/mm 2 27.38-tops/w signed-int8 dynamic-logic-based

adc-less sram compute-in-memory macro in 28nm with reconfigurable bitwise
operation for ai and embedded applications. In ISSCC, 2022.

[4] Kodai Ueyoshi et al. Diana: A n end-to-end energy-efficient digital and analog
hybrid neural network soc. In ISSCC, 2022.

[5] Pouya Houshmand et al. Diana: An end-to-end hybrid digital and analog neural
network soc for the edge. JSSC, 2022.

[6] Ziru Li et al. Asters: adaptable threshold spike-timing neuromorphic design with
twin-column reram synapses. In DAC, 2022.

[7] Qilin Zheng et al. Artificial neural network based on doped hfo 2 ferroelectric
capacitors with multilevel characteristics. EDL, 2019.

[8] Zongwei Wang et al. Self-activation neural network based on self-selective
memory device with rectified multilevel states. TED, 2020.

[9] Richard Linderman et al. Apparatus for performing matrix vector multiplication
approximation using crossbar arrays of resistive memory devices, 2015. US Patent
9,152,827.

[10] Xin Si et al. A twin-8t sram computation-in-memory unit-macro for multibit
cnn-based ai edge processors. JSSC, 2019.

[11] Avishek Biswas et al. Conv-sram: An energy-efficient sram with in-memory
dot-product computation for low-power convolutional neural networks. JSSC,
2018.

[12] Yen-Cheng Chiu et al. A 4-kb 1-to-8-bit configurable 6t sram-based computation-
in-memory unit-macro for cnn-based ai edge processors. JSSC, 2020.

[13] Xin Si et al. 15.5 a 28nm 64kb 6t sram computing-in-memory macro with 8b mac
operation for ai edge chips. In ISSCC, 2020.

[14] Win-San Khwa et al. A 65nm 4kb algorithm-dependent computing-in-memory
sram unit-macro with 2.3 ns and 55.8 tops/w fully parallel product-sum operation
for binary dnn edge processors. In ISSCC, 2018.

[15] Edward Choi et al. A 133.6 tops/w compute-in-memory sram macro with fully
parallel one-step multi-bit computation. In CICC, 2022.

[16] Xiaoxuan Yang et al. Improving the robustness and efficiency of pim-based
architecture by sw/hw co-design. In ASP-DAC, 2023.

[17] Qilin Zheng et al. Enhance the robustness to time dependent variability of reram-
based neuromorphic computing systems with regularization and 2r synapse. In
ISCAS, 2019.

[18] Jinseok Lee et al. Fully row/column-parallel in-memory computing sram macro
employing capacitor-based mixed-signal computation with 5-b inputs. In VLSI,
2021.

[19] Yu-Der Chih et al. 16.4 an 89tops/w and 16.3 tops/mm 2 all-digital sram-based
full-precision compute-in memory macro in 22nm for machine-learning edge
applications. In ISSCC, 2021.

[20] Chia-Fu Lee et al. A 12nm 121-tops/w 41.6-tops/mm2 all digital full precision sram-
based compute-in-memory with configurable bit-width for ai edge applications.
In VLSI, 2022.

[21] Qilin Zheng et al. Accelerating sparse attentionwith a reconfigurable non-volatile
processing-in-memory architecture. In DAC, 2023.

[22] Xin Si et al. A local computing cell and 6t sram-based computing-in-memory
macro with 8-b mac operation for edge ai chips. JSSC, 2021.

[23] Qilin Zheng et al. Pimulator-nn: An event-driven, cross-level simulation frame-
work for processing-in-memory-based neural network accelerators. TCAD, 2022.

6


