2023 IEEE International Conference on Edge Computing and Communications (EDGE) | 979-8-3503-0483-1/23/$31.00 ©2023 IEEE | DOI: 10.1109/EDGE60047.2023.00047

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

Context-Aware Task Handling in
Resource-Constrained Robots with Virtualization

Ramyad Hadidi®
Rain Al
ramyad @rain.ai

Nima Shoghi Ghaleshahi
Georgia Tech
nimash @ gatech.edu

Abstract—Intelligent mobile robots are critical in several sce-
narios. However, as their computational resources are limited,
mobile robots struggle to handle several tasks concurrently
while guaranteeing real timeliness. To address this challenge
and improve the real-timeliness of critical tasks under resource
constraints, we propose a fast context-aware task handling tech-
nique. To effectively handle tasks in real-time, our proposed
context-aware technique comprises three main ingredients: (i)
a dynamic time-sharing mechanism, coupled with (ii) an event-
driven task scheduling using reactive programming paradigm
to mindfully use the limited resources; and, (iii) a lightweight
virtualized execution to easily integrate functionalities and their
dependencies. We showcase our technique on a Raspberry-
Pi-based robot with a variety of tasks such as Simultaneous
localization and mapping (SLAM), sign detection, and speech
recognition with a 42% speedup in total execution time compared
to the common Linux scheduler.

Index Terms—Edge Al, Software, Mobile Robots, Middleware
and Programming Environments, Reactive and Sensor-Based
Planning,

I. INTRODUCTION & MOTIVATION

Unlike conventional industrial or commercialized robots
that perform a set of pre-programmed and routine tasks,
intelligent mobile robots manipulate their environment using
their perception and physical resources to achieve a myriad
of goals. Such robots must be capable of dynamically switch-
ing between navigation, planning, reasoning, recognition, and
sensing their environment. Intelligent robots need to interact
with a dynamic, complex, and non-deterministic world. These
robots must execute numerous tasks such as controlling their
physical resources (e.g., arms), understanding data derived
from sensors, or executing perception and planning.

Intelligent robots are always in a never-ending conflict
between available computation resources, their energy storage,
and the tasks at hand. This conflict is particularly emphasized
in resource-constrained robots because even the concurrent
execution of a few rudimentary tasks is extremely demanding
with only a few processing cores. For example, a Rasp-
berry Pi with only four cores could be fully utilized by the
operation system (OS), processing the data from a single
sensor, and simple navigation and control algorithms. Adding
more sensors and tasks only causes the robot to miss real-
time deadlines. Thus, ensuring efficient handling of critical

This work was supported in part by the NSF grant number 2103951.
§This work was done when the authors were affiliated with Georgia Tech.

Bahar Asgari?
University of Maryland
bahar@umd.edu

Hyesoon Kim
Georgia Tech
hyesoon.kim@gatech.edu

tasks and meeting critical deadlines is the key challenge for
resource-constrained robots.

To extend the capabilities of resource-constrained robots and
meet real-time demands, the common practices are adding
extra hardware or utilizing cloud/fog computation [1]-[7].
However, in several scenarios, adding new hardware is either
infeasible or uneconomical. For example, adding extra pro-
cessing units to a lightweight drone requires heavier batteries,
which in turn demands stronger motors. Further, cloud and fog
are not always available. Additionally, privacy concerns limit
the suitability of cloud-based computation.

To enable intelligent mobile robots to efficiently utilize
limited resources, we propose a context-aware task handling
technique that simplifies the world and planning tasks by
dynamically reducing the number of tasks in a certain context
to only the critical ones. For example, limited human-robot
interaction is expected while the robot is performing an already
assigned task. This technique enables resource-constrained
robots to efficiently perform manifold functionalities while
meeting their real-time constraints.

To be effective in handling tasks using our context-aware
technique, we propose using a virtualized execution that (i)
integrates several tasks while providing dynamic, low-cost, and
kernel-level control over the scheduling policy; (ii) enables
easier context-aware implementation by providing manageable
control over tasks; and (iii) provides a uniform and practical
environment for building new robots in the community.

For experiments, we use a custom-built Raspberry-Pi-based
robot using an iRobot Roomba [8] equipped with one Rasp-
berry Pi 4 (RPi4) [9] as the only processing unit. Our
iRobot, shown in Figure 1, has several sensors (i.e., LIDAR,
inertial measurement unit (IMU), cameras, and microphone),
and control devices (i.e., motors for navigation, robotic arm,
and speakers). For software, we use Docker [10], a popular
virtualization tool, and implement our context-aware technique
to collect and process sensor data, simultaneous localization
and mapping (SLAM), voice recognition, and sign recognition.
Our contributions are as follows:

o Context-aware task planning to effectively use the limited
resources and hence extend the number of tasks that a
robot can handle.

o OS-level dynamic time-sharing to implement the context-
aware scheduling in real-time.

2767-9918/23/$31.00 ©2023 IEEE 255
DOI 10.1109/EDGE60047.2023.00047
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 02,2025 at 01:55:36 UTC from IEEE Xplore. Restrictions apply.

(«>| Lidar
< [Speaiar]
[

Navigation Motors

Fig. 1: Modified iRobot with RPi4 and additional sensors.

Event-driven task scheduling to be mindful of using the
limited resources for scheduling itself.

Lightweight virtualized execution, using Docker and reac-
tive programming paradigm to enable easily manageable
and yet kernel-level dynamic task scheduling policy.

II. RELATED WORK

Real-Time Operating Systems & Scheduling Polices: The
operating system (OS) schedules applications either based on
the order of the events (event-driven), order of processes (e.g.,
round-robin), or time sharing. To minimize the latency of
accepting a process real-time operating system (RTOS) has
been designed. RTOSes have preemptive schedulers [11] (e.g.,
fixed-priority preemptive scheduling). Since optimal schedul-
ing is an NP-complete problem [11], [12], even RTOSes can
not guarantee hard deadlines. Therefore, hard real-time robotic
systems usually either implement fixed schedulers (e.g., com-
mercial drones) or use extra dedicated cores to provide enough
computation performance. As neither solutions align with our
goal of context-aware task handling using limited resources,
this paper tunes the OS scheduler (Section IV-C).

Robot Operating System (ROS): Robot Operating System
(ROS) [13] is a popular example of a robotic environment
to manage the complexity of various aspects of robotic
systems, from simulation to hardware implementation. ROS
also manages the process execution, while providing stand-
alone libraries for hardware components. As ROS does not
offer real-time operations, ROS2 has been upgraded to handle
hard real-time tasks [14] by prioritizing real-time threads and
avoiding the sources of non-determinism such as memory
allocation [15]. Nevertheless, ROS2 does not support dynami-
cally changing priorities in runtime. Moreover, ROS2 requires
additional kernel support [16], still in early development.

III. DECONSTRUCTING TASKS

To design our context-aware task handling, we first cate-
gorize tasks as the following: The first category is elemental
or atomic tasks that consist of a single event. The second
category, compound task, is decomposed into multiple steps

256

Speech Recognition Task

Capability Constraint

Capability Constraint
4-core, 700 MB mem
250 ms slice

Capability Constraint
1-core, 100 MB mem
30 ms slice

Sub-Task
keyword spotting

(simple computation)

Sub-Task

1-core, 20 MB,
10 ms slice
speech recognition

i

i

i

!

! record

i microphone (DNN-based)

Sensors & Chatbot Task
Outputs | g ewsreey T[T T T ey~

Pre-Condition

Sub-Task
answer generation
(database based)

’]
' |
i |
i | microphone | !
i i
| |
i i
| ;
|

i |
|

Fig. 2: Graph representation for speech recognition and chatbot tasks.
A representation of ({4 }i=1:n, pt)-

or a set of subtasks. To satisfy a compound task, every sub-
task of it must be done. The third category, complex tasks, are
also decomposable into subtasks, whereas to satisfy a complex
task, not all subtasks are required to be done.

The resulting subtasks have a set of relationships with each
other, possible pre-conditions, and capability constraints. For
instance, the pre-condition of executing the speech recognition
task is to have a speech input. In this case, the speech
recognition task has a relationship with speech input. Be-
sides, tasks have relationships with the capability constraint
to execute a workload within a deadline. For instance, to
execute speech recognition effectively, we require full access
to all the cores of the processor and a certain amount of
memory. For a task ¢, we show such relationships with a
directed graph structure, p, the vertices of which are sub-
tasks/conditions/constraints and its edges are the relationships.
Therefore, the pair ({£4;}i=1.n, pt), for a task ¢, represents all
sub-tasks, conditions, constraints, and relationships. Figure 2
illustrates an example of speech recognition and chatbot
tasks. For instance, keyword spotting processes microphone
recording and requires a single-core and 100 MB memory. A
compiler analysis can extract this graph automatically. In the
following, we present a manual low-overhead approach.

Containerizing Modules: In the first step, each independent
task is wrapped as containerized modules implemented as
Docker [10] containers. Docker implementations are easy to
configure and distribute. Meanwhile, since the lower-level OS
abstraction and common libraries and dependencies are shared,
the overhead of using Docker is minimal.

Adding Event-Driven Initiatives: By using Reactive Ex-
tensions (RX) framework [17], next, the user adds a sim-
ple event-driven initiative for each module. This declarative
configuration sets scheduling scores (more in Section IV-B)
of modules while abstracting low-level implementation (e.g.,
synchronization, thread-safety, concurrent data structures, and
non-blocking I/0). RX provides tools for operating on, filter-
ing, and managing asynchronous streams of data. Such streams
are called observable streams and indicate sensor readings
over time. For example, in the below example, the inertial
measurement unit (IMU) sensor is a single observable stream

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 02,2025 at 01:55:36 UTC from IEEE Xplore. Restrictions apply.

Controller

1
1
Context-Aware H
P2 ; Camera
= i8E| (o]
User Config (= N ..

' Dockers (modues) ______. ooooooioo o Wil
: [Prlonty 9] _____ Prlorlty & W \|
E Docker 1| |Docker 2 I Docker 3 |eee|Dockern i
'oamu) (SLAM (Arm) (Speech) :
e e R — e i

[Publlsh & Subscribe Communlcatlon

Fig. 3: High-level system overview.

of accelerometer and gyroscope readings over time. We filter
this stream for receiving readings that have a non-zero vector.

Listing 1: Constructing observable streams for IMU.

imu.pipe(filter (lambda value: 1
value["accelerometer"] ["x"] != 0 and 2
value["accelerometer"] ["y"] != 0 and 3
value["accelerometer"]["z"] != 0)) 4

IV. CONTEXT-AWARE TASK HANDLING

To reduce the number of tasks at each moment to only the
critical ones, we propose a context-aware and event-driven
task handling technique, a high-level overview of which is
shown in Figure 3. The implementation is separated into two
groups: (i) the controller, and publish and subscribe com-
munication medium, which manages the dynamic OS-level
prioritizing/scheduling and communications among modules,
respectively, and (ii) the modules that carry out the tasks,
represented as containers, or Dockers. This section describes
the first group, and how they achieve mentioned goals.

A. Publish-Subscribe Communication

Publish-subscribe communication pattern provides an ef-
ficient medium for sending and receiving data. While the
modules are usually isolated and operate independently of each
other, communication is necessary (e.g., when the navigation
requires mapping information from the SLAM). We implement
a lightweight and resource-efficient publish-subscribe system
among modules, in which the events can subsequently be
wrapped with an RX observable stream and fed back into
the controller. This enables inputting any output of a module
to the controller if needed. Additionally, the shared memory
interface is used to share parsed binary information among
applications. This is especially efficient if such information is
already serialized without the extra cost of repacking.

B. The Controller

The controller is a lightweight program for dynamically
setting the priorities of modules based on the context. Based on
added event-driven initiatives (Section III), the controller uses
incoming sensors and modules data to dynamically decide the
best scheduling scores or weights, w. To calculate scheduling
scores, the controller processes the observable streams and
if it detects a context change, it will change the priorities

257

Contex-Aware
777
Capabll\ty Constraint Capability Constraint Capability Constraint

1
i 1-core, 20 MB, 1-core, 100 MB mem 4-core, 700 MB mem
Sensors & | 10 ms slice 30 ms slice 250 ms slice

I, Outputs 1
record keyword spotting speech recognition
m1cr‘ophone (simple computation) (DNN-based)

Fig. 4: The modified context-aware graph representation for speech

i Pre- Condlt\on
;
[BS
recognition with a simple context-aware condition.

accordingly in the Linux kernel scheduler. The calculation
of scheduling scores executes only when the dependent sen-
sor/module values update, saving valuable calculation time on
resource-constrained platforms.

To give users the power to define contexts, the controller
can also receive input from the user with a configuration file.
This configuration file first specifies the relative priority of the
tasks, and second, it may extend the context-aware decisions
in the controller. For instance, the user may specify that no
microphone-related task should run while the robot is moving.
Therefore, the speech recognition task never executes while
the robot is moving, and accordingly, no microphone input is
processed. In other words, the controller dynamically modifies
the task graphs based on sensor events and user configuration,
which leads the system to automatically adapt new scheduling
scores. An example is shown in Figure 4 by modifying the
speech recognition task in Figure 2.

C. Scheduling Policy

In robotics, real-time functionality and scheduling cus-
tomizability are important. However, by default, Linux uses
the completely fair scheduler (CFS, SCHED_OTHER) [18]
to provide an optimal setting for desktops and servers. As
reviewed in Section II, ROS2 requires extra kernel support
for real-time prioritization and still is unstable. To address
these issues, while relying on stable and fully-supported Linux
features, we dynamically tune the parameters of the scheduler
per module as we receive real-time value updates. We apply
this approach with two methods: (i) using CFS policies (i.e.,
SCHED_OTHER) and tuning the CFS parameters of each mod-
ule, and (ii) Using real-time policies [18] (i.e., SCHED_FIFO
or SCHED_RR) and adjusting real-time parameters of each
module. The following provides the implementation details.

1) Tuning the CFS Parameters: In CFS, we use the
cpu-period and cpu-quota flags in modules to cus-
tomize resource allocation. cpu—quota is the total amount of
CPU time that a module can use in each cpu-period. For
this feature, note that the Linux kernel should be compiled
with CFS bandwidth control flag [19]. Additionally, Docker
provides a combined flag, cpus, which allows us to directly
allocate CPU resources to a container.

2) Adjusting Real-Time Parameters: Although Linux real-
time (RT) policies [18] provide a better determinism to pro-
cesses, the policies do not allow changes to the priorities dur-
ing runtime. In detail, in both SCHED_FIFO or SCHED_RR
policies, each process gets a time-slice or exclusive access to
the CPU defined during the process startup (SCHED_FIFO

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 02,2025 at 01:55:36 UTC from IEEE Xplore. Restrictions apply.

runs real-time processes until it finishes. SCHED_RR builds
on top of SCHED_FIFO by implementing a round-robin
time-slice system based on some priority). To tune real-
time scheduling parameters during runtime, we limit the total
number of microseconds each module runs using Docker at
real-time priority by setting the cpu-rt-runtime with the
controller. This flag is set to a value between Ous and s,
and it represents the total number of microseconds reserved.
We use this feature to use contextual information to change
the real-time resource allocation for each module dynamically.
In summary, using Docker and RX, we are able to create a
dynamic two-level scheduler that is (i) event-based due to the
reactive programming paradigm of the controller, (ii) time-
sharing due to the Docker ability for setting time-slice value
(in our case, through the controller), and (iii) dynamic because
the controller changes the time-slices during runtime based on
the context (supplied by the user and extracted from tasks).

D. Calculating Scheduling Parameters

Here, we describe how the controller calculates scheduling
parameters for each module based on the context. Every
module defines (automatically or from the user) an instantia-
tion function that returns an observable stream representing
the scheduling score as a floating-point value, or w;. This
function can take any RX stream as its input (from sensors
or other modules). When the system starts, the controller
calls all the instantiation functions and creates observable
streams which produce floating-point values representing the
scheduling score. Then, the controller combines all of the
observable streams into a single observable stream. This
aggregated stream is an observable stream that outputs the
entire set of scheduling scores. For each container ¢ with
scheduling score w, (specified by user and/or from context)
received from the aggregated observable stream, we calculate
the scheduling parameters for two scheduling types (Section
IV-C) as follows. For CFS (Section IV-C1), the CPU share
value (cpus), s, is calculated with the equation below, where
N is the number of processors in the system:
wC

Do wi .

For real-time scheduler (Section IV-C2), the real-time time-
slice value (cpu—-rt-runtime), t., is calculated as below,
where P is the time-slice period, which is 1s by default:

Se = N -

€]

We
Swi
The result of the above expression creates a dictionary that
maps each container, ¢, to its CPU share value, s. or real-
time time-slice value, t.. Note that the aggregated stream is
also an event-driven operation with all the RX capabilities in
filtering not-related events. Thus, the controller only updates
the time slices if it observes any new event.

te=P-

@

E. Planning Procedure

The formal definition of context-aware task planning is
described in Procedure 1, the input of which is a list of

258

Procedure 1: Context-Aware Task Planning.

Input : ConfigFile: Configuration File with Context-Aware Setting
and Relative Priorities of Tasks.
Input : InputList: Input & Sensor List
1 Initial

2 for input € InputList do

// Create observable stream.
3 stream <— CreateStream (input);

// Instantiate scheduling score function.
4 InstantiateRX (stream);
5 AddToList (stream, StreamlList) ;
6 for context € ConfigFile do

// Create context task graph.
7 graph <— CreateTaskGraph (context) ;

// Create combinator observable stream
8 contextStream <— CreateStream (graph);
9 AddToList (contextStream, TaskGraphList) ;

// Initialize an initial scheduling policy.

10 InitializeScheduling;
1 return StreamList TaskGraphList

// On receiving an event on any stream after its bound
reactive function.
Event-Based Procedure
OnObservableStreamEvent stream
// Calculate scheduling score for the stream.
CalculateScore (stream) ;
// Calculate new real-time time-slices values.
DictTimeSlices +— CalculateTimeSlices () :
// Update the scheduler.
UpdateScheduler (DictTimeSlices) ;

inputs and sensors (InputList) and a configuration file
(ConfigFile) that describes context-aware customization
defined by the user and relative priorities of tasks. Initially,
at lines 2-5, the system creates observable streams for each
input, and instantiates their scheduling score functions. At
lines 6-9, by reading the configuration file, the system creates
a task graph, similar to Section III and Section IV-B. The
graph generation is out of the scope of this paper and we
reuse the common methods from robotic development envi-
ronments [13]. After initializing the scheduler at Line 10, the
processor only updates its setting based on the arrival of new
events. On arrival of such an event that triggers the RX, the
controller calculates a new scheduling score (Line 14) for
that module, calculates a new dictionary of modulus and their
scores at Line 15 based on Equations 1 or 2, and updates the
time-slices in the OS scheduler at Line 16.

V. MODULE IMPLEMENTATIONS

This section provides implementation details of our specific
tasks and their respective dataset.

1) SLAM: With a stereo camera input (Minoru3D [20]),
we run the ORB_SLAM2 [21] algorithm to localize the
robot within its local environment. We use the EuRoC MAV
dataset [22]. In addition to providing a stereo video input and
ground truth values for error calculation, the EuRoC MAV
dataset provides IMU sensor readings with accelerometer and
gyroscope readings. This sensor data is used in deciding the
scheduling of the SLAM module. Because of the computation
demand of IMU, we implement its calculation on a separate
module. These readings are fed into the controller, which
creates an observable stream for each. Other modules (e.g.,
SLAM) then subscribe to these observable streams.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 02,2025 at 01:55:36 UTC from IEEE Xplore. Restrictions apply.

2) Sign Detection: The robot processes the images from its
side cameras and uses a pre-trained neural network (trained on
Street View House Numbers (SVHN) dataset [23]) to decide
the room/street number for the signs. For experiments, the sign
detection module is using the SVHN dataset test inputs.

3) Speech Detection: The robot processes the microphone
input from a microphone and uses the CMU Sphinx library
(specifically, CMU PocketSphinx framework [24]) for key-
word spotting and later a DNN-based implementation [25]
to convert the speech to text. The speech detection module
is using the Speech Commands dataset [26]. This dataset
includes a labeled set of various spoken commands.

4) Navigation & Arm Control: For navigation, we send
commands in the format specified in iRobot Create 2 Open In-
terface [27] through a serial port on iRobot. We also read sev-
eral sensors and battery conditions using this serial port. The
navigation commands set the speed of each wheel separately.
Besides, for obstacle detection, we use a low-cost LIDAR
sensor (360° laser range scanner [28]). The LIDAR provides
a 360-degree scan field, 5.5hz/10hz rotating frequency with
an 8-meter ranger distance. We build a simple robot arm that
works with Raspberry Pi on top of our robot [29]. The arm
has simple grips and four servos to control. The module sends
control commands to the arm to move and grab.

VI. EXPERIMENTS

We use iRobot Roomba [8] as our base navigation robot
(Figure 1). We equip the robot with one Raspberry Pi 4 [9].
The power source of the Pi is derived from the battery of
iRobot with a voltage converter. The computation platform
for all the modules is Raspberry Pi.

A. Experiment Design & Reproducibility

In our experiments, each task executes a pre-labeled dataset
while we measure its performance as the controller adjusts the
scheduling parameters dynamically. We use the default Linux
scheduler (CFS) as the baseline and run context-aware (CA)
configuration with two CFS and RT Linux schedulers (Section
IV-C), CFS CA and RT CA. To perform a fair comparison with
the same set of experiments, we build an instrumentation tool,
which uses a set of JSON files as timelines to artificially feed
dataset inputs at certain times. In this way, we can execute the
same set of experiments repeatedly with different schedulers.
The timeline files are collected and constructed from a set
of experiments from the measurements of the real robot. Each
timeline file contains a series of inputs (e.g., images for SLAM
and audio for speech recognition, or arm control commands)
and their respective ground truth values (if any). We use these
files to feed events to the controller while it calculates the
parameters for the scheduler. We design experiments with
different granularity, which includes all the implemented tasks
in Section III. Our first experiment, expl, is the longest
experiment with a total of three minutes of footage, while
exp2 and exp3 experiments are with shorter duration, one
minute and 15 seconds, respectively.

259

Visual Slam —Speech Recongition Event Driven Context Aware

0.8
(a)
CFs
cA

0.6

Weights

0.4

0.2

0.8
(b)
RT
CA

0.6

Weights

0.4

0.2

r,! A

Almost no movement — event driven

Time (Total 2 mins)

Movement — context aware

(c)

/i

Timeline

Fig. 5: Normalized scheduling scores (weights) in a simple exper-
iment with SLAM and speech recognition, (a) with CFS scheduler,
and (b) with RT scheduler. Colored regions show the two phases
of event-driven and context-aware philosophies with a timeline of
sample frames in the footage (c).

B. Experimental Results

1) Proof of Concept: To understand the intuition behind
context-aware task handling, we present a proof-of-concept
experiment. Figure 5a illustrates normalized scheduling scores
(weights) with CFS scheduler for two main tasks, SLAM
and speech recognition (and more sub-tasks such as camera
and microphone inputs). The timeline, shown in Figure Sc,
includes example footage from the EuRoC dataset with the
addition of speech sounds, the beginning half of which has no
movement. The context configuration by the user prioritizes
SLAM computation over speech recognition. When there is no
determined context in the beginning half of the timeline, the
weights are determined by the event-driven design as shown
in Figure 5a. For instance, with a slight movement or upon
a speech input, the weight of SLAM or speech recognition
change accordingly. On the other hand, when the robot moves,
the weight for speech recognition is set to small values because
of the context-aware design and the user configurations that
do not allow speech recognition while the robot moves.
Additionally, Figure 5b shows the normalized weights with
the RT scheduler. As seen, this scheduler has more lag in
responding to changes since the scheduler uses a round-robin
policy with dedicated time slices per task. Figure 5c illustrates
some frames from the timeline. In Section VI-B4, we compare
context-aware RT and CFS schedulers for all the experiments.

2) Per-Task Accuracy Measurements: Throughout the three
experiments, we observe accuracy changes as we changed
scheduling configurations. However, in the baseline implemen-
tation with no context-aware task handling, where all tasks
must run, accuracy drops in exchange for increased perfor-
mance if the underlying computation modules are designed
to sacrifice accuracy for real-time performance (e.g., SLAM
dropping frames when computation takes longer than frame
time). Thus, with context-aware scheduling, the resulting per-
task accuracy is slightly higher.

3) Per-Task Total Execution Time: Our results show that the
CFS CA parameter adjustments had the highest level of impact

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 02,2025 at 01:55:36 UTC from IEEE Xplore. Restrictions apply.

%
.
i

Speedup for Total
Execution Time (s)

Expl
3 min.

Exp2
1 min.

Duration: 15 sec.

Fig. 6: Speedup for total execution time with baseline, CFS context-
aware (CFS CA), and RT contex-aware (RT CA).

on per-task performance. For instance, speech recognition and
sign detection tasks take a heavy performance penalty in expl
when the system prioritized the SLAM module. Therefore, the
configuration of the controller when running under the CFS
CA is very important and must be carefully tuned. Generally
speaking, the RT CA keeps a good balance between fair
scheduling and using sensor events to prioritize the relevant
modules at the right time. This is mainly because of the
technical restrictions with this scheduling policy, effectively
making the RT CA policy an incremental improvement over
the baseline CFS policy.

4) Overall Execution Time: Figure 6 shows the speedup
of different scheduler configurations for the total execution
time of three experiments over the baseline scheduler, Linux
CFS scheduler. As discussed in Section IV-C, our context-
aware technique is implemented with two approaches, CFS
and RT. As seen in Figure 6, with longer run-time, our context-
aware techniques achieve up to 42% speedup compared to the
baseline, a significant speedup by only changing schedulers.
As the run-time reduces, the context-aware configuration loses
its impact and becomes less effective. Empirically, we found
that higher run-time — and therefore increased volumes of
sensor data — leads to higher speed-ups, compared to the
baseline. Our experiments show this up to three minutes, but
our experiments show a similar trend with run times beyond
three minutes. This is because a context-aware setting becomes
more effective when there is a larger number of tasks within
a longer execution time.

Figure 7 illustrates allotted CPU shares in percentage during
the execution of expl, the speedup of which is shown in
Figure 6. This shows the underlying share per task, which
is directly related to the scheduling weights determined by
the controller. The controller is using the context-aware CES
scheduler. As seen, since SLAM is more frequent and has
more computations, most of the time the CPU is processing

——Speech Recognition

Sign Detection ——SLAM

[

Allotted CPU (%)
e 9o © ©
o N - o -]

Time (seconds) 120

Fig. 7: Allotted CPU shares for speech recognition, sign detection,
and SLAM tasks during expl using CFS CA.

260

the SLAM task. However, when a relatively compute-intensive
task requires more CPU (e.g., sign detection), more CPU
shares are allocated to that task depending on the context.
Meanwhile, as seen in the figure, sometimes a task allotted
CPU share is zero, which is because of the context-aware
configuration. As shown in Figure 6, the context-aware con-
figuration allows us to achieve faster execution times.

VII. CONCLUSION

In this paper, we introduced context-aware task handling
for resource-constrained robots to extend their abilities with
limited computation resources. We use a reactive program-
ming paradigm to build a lightweight controller that performs
event-driven task scheduling using supported Linux kernel
schedulers. Our system can dynamically schedule tasks at
the kernel-level by adjusting task scheduling parameters. We
use containerized modules using Docker, which allows users
to create and collaborate independently on several platforms.
Finally, our experiments with Raspberry Pi 4 show significant
speedups while performing multiple tasks such as SLAM, sign
detection, and speech recognition.

REFERENCES
[1] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on automation
science and engineering, vol. 12, no. 2, pp. 398-409, 2015.
B. Asgari, R. Hadidi, J. Dierberger, C. Steinichen, A. Marfatia, and
H. Kim, “Copernicus: Characterizing the performance implications of
compression formats used in sparse workloads,” in 2021 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). 1EEE, 2021,
pp. 1-12.
L. Wang, M. Liu, and M. Q.-H. Meng, “A hierarchical auction-based
mechanism for real-time resource allocation in cloud robotic systems,”
IEEE transactions on cybernetics, vol. 47, no. 2, pp. 473-484, 2016.
B. Asgari, R. Hadidi, N. S. Ghaleshahi, and H. Kim, “Pisces: power-
aware implementation of slam by customizing efficient sparse algebra,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC). 1EEE,
2020, pp. 1-6.
R. Hadidi, B. Asgari, S. Jijina, A. Amyette, N. Shoghi, and H. Kim,
“Quantifying the design-space tradeoffs in autonomous drones,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
661-673.
B. Asgari, R. Hadidi, and H. Kim, “Ascella: Accelerating sparse
computation by enabling stream accesses to memory,” in 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2020, pp. 318-321.
B. Asgari, R. Hadidi, H. Kim, and S. Yalamanchili, “Lodestar: Creating
locally-dense cnns for efficient inference on systolic arrays,” in Proceed-
ings of the 56th Annual Design Automation Conference 2019, 2019, pp.
1-2.
iRobot Inc., “irobot create 2 programmable robot,” https://www.irobot.
com/%?20about-irobot/stem/create-2, 2019, [Online; accessed 22/02/20].
Raspberry PI Foundation, “Raspberry pi 4b,” https://www.raspberrypi.
org, 2019, [Online; accessed 22/09/20].
C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, pp. 71-79, 2015.
K. Ramamritham and J. A. Stankovic, “Scheduling algorithms and
operating systems support for real-time systems,” Proceedings of the
IEEE, vol. 82, no. 1, pp. 55-67, 1994.
A. S. Tanenbaum and H. Bos, Modern operating systems.
2015.
M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

[3]

[4]

[5]

[6]

[71

[8]
9

[10]

[11]

[12] Pearson,

[13

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 02,2025 at 01:55:36 UTC from IEEE Xplore. Restrictions apply.

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

D. Casini, T. BlaB, I. Liitkebohle, and B. B. Brandenburg, “Response-
time analysis of ros 2 processing chains under reservation-based schedul-
ing,” in Euromicro Conference on Real-Time Systems (ECRTS), 2019.
J. Kay and A. R. Tsouroukdissian, “Real-time control in ros and ros
2.0,” ROSConls, 2015.

L. Torvalds, “kernel/git/torvalds/linux.git,” https : // git . kernel .
org / pub / scm / linux / kernel / git / torvalds / linux . git / commit / ?id =
70e6e1b971e46f5¢1c2d72217ba62401a2edc22b, 2019.

R. Project, “Reactivex: An api for asynchronous programming with ob-
servable streams,” http://reactivex.io/, 2019, [Online; accessed 22/02/20].
Linux Programmer’s Manual, “SCHED,” http://man7.org/linux/man-
pages/man7/sched.7.html, 2019, [Online; accessed 22/02/20].

kernel development community, “Cfs bandwidth control,” https://www.
kernel.org/doc/html/latest/scheduler/sched-bwc.html, 2020.

Minoru 3D, “Minoru 3d webcam,” http://minoru3d.com/, 2017.

R. Mur-Artal and J. D. Tardés, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”

261

[23]

[24]

[25]

[26]

[27]

[28]
[29]

The International Journal of Robotics Research, vol. 35, no. 10, pp.
1157-1163, 2016.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar,
and A. L. Rudnicky, “Pocketsphinx: A free, real-time continuous speech
recognition system for hand-held devices,” in 2006 IEEE International
Conference on Acoustics Speech and Signal Processing Proceedings,
vol. 1. IEEE, 2006, pp. I-1.

Mozilla, “Github mozilla/deepspeech,” https://github.com/mozilla/
DeepSpeech, 2019, [Online; accessed 22/02/20].

P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

iRobot Inc., “irobot create 2 open interface,” https://cdn-shop.adafruit.
com/datasheets/create_2_Open_Interface_Spec.pdf, 2019, [Online; ac-
cessed 22/02/20].

SLAMTEC, “Rplidar al,” http://slamtec.com/en/Lidar/A1, 2019.
MeArm, “Mearm: Build-it-yourself robotic arm for raspberry pi,” https:
//mearm.com/, 2019, [Online; accessed 22/02/20].

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 02,2025 at 01:55:36 UTC from IEEE Xplore. Restrictions apply.

