2023 IEEE International Conference on Edge Computing and Communications (EDGE) | 979-8-3503-0483-1/23/$31.00 ©2023 IEEE | DOI: 10.1109/EDGE60047.2023.00029

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

Creating Robust Deep Neural Networks With
Coded Distributed Computing for IoT

Jiashen Cao
Georgia Tech
jlashenc@gatech.edu

Ramyad Hadidi®
Rain Al
ramyad @rain.ai

Abstract—The increasing interest in serverless computation
and ubiquitous wireless networks has led to numerous connected
devices in our surroundings. Such IoT devices have access to
an abundance of raw data, but their inadequate resources in
computing limit their capabilities. With the emergence of deep
neural networks (DNNs), the demand for the computing power
of IoT devices is increasing. To overcome inadequate resources,
several studies have proposed distribution methods for IoT
devices that harvest the aggregated computing power of idle IoT
devices in an environment. However, since such a distributed
system strongly relies on each device, unstable latency, and
intermittent failures, the common characteristics of IoT devices
and wireless networks, cause high recovery overheads. To reduce
this overhead, we propose a novel robustness method with a close-
to-zero recovery latency for DNN computations. Our solution
never loses a request or spends time recovering from a failure.
To do so, first, we analyze how matrix computations in DNNs
are affected by distribution. Then, we introduce a novel coded
distributed computing (CDC) method, the cost of which, unlike
that of modular redundancies, is constant when the number of
devices increases. Our method is applied at the library level,
without requiring extensive changes to the program, while still
ensuring a balanced work assignment during distribution.

Index Terms—Edge Al, Reliability, IoT, Edge, Distributed
Computing, Collaborative Edge & Robotics

I. INTRODUCTION

Recent years have witnessed the emergence of deep neural
network (DNN) applications. Additionally, with the prolifera-
tion of Internet-of-Things (IoT) devices, they became insepara-
ble from our daily lives. The conventional methods to process
raw IoT data are to offload them to cloud services. However,
moving such a tremendous amount of data incurs a high
amount of monetary cost and delay, besides creating a major
concern of privacy leakages. Therefore, serverless and edge
computation paradigms are recognized as promising solutions.
As a result, pushing the frontier of DNNs computations to
the edge is receiving a tremendous amount of interest both
from academia [1]-[9] and from the industry with commercial
edge-tailored hardware accelerators such as NVIDIA Jetson
Nano, edge TPU, and Intel Movidius.

Processing IoT data locally in the edge may suffer from poor
performance and energy efficiency because the computational
demand from DNNs outweighs the computation capacity
and energy constraints of IoT devices. Furthermore, the
computational demands are escalated because these devices
have to meet real-time constraints. Even for edge-tailored
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hardware accelerators, the real timeliness of applications is
not guaranteed [10], [11]. Nevertheless, privacy concerns,
unreliable connection to the cloud, tight real-time requirements,
and personalization are still pushing inferencing to the edge.
To address the resource constraint challenges, a solution is
to distribute heavy computations among idle devices [1], [2],
[4], [12] because the state-of-the-art IoT networks are formed
with various IoT sensors and recording agents, such as HD
cameras and temperature sensors, many of which are capable
of performing computations. However, such a distribution is
susceptible to failures, from short disconnectivity and user
interaction to losing a device. This fact necessitates developing
a robust method for tolerating these failures. Additionally,
since loT networks use wireless technology, unreliability and
variability in their networks are much higher than acceptable
limits to ensure a robust system.

We extend studies that enable distributed single-batch
inference of DNNs in the edge [1], [2], [4], [12] to tolerate
failures with close-to-zero recovery latency. We first analyze
general methods of distributing the computations of DNNs
and how their underlying general matrix-matrix multiplication
(GEMM) is affected by distribution. Such a detailed study is
necessary to introduce a general seamless method within the
underlying library or machine learning framework. Then, we
propose a new recovery method based on coded distributed
computing (CDC) that enables distributed DNN models on
IoT devices to tolerate failures. Our method is inspired by
CDC applications in big data analytics [13], and speeding up
distributed learning using codes [14].

To enable robustness in distributed IoT, we introduce an
extra coded computation per device. We propose a novel fault
recovery method based on CDC that has close-to-zero recovery
latency, does not disturb the balanced work assignment in
distribution, requires minimal changes to the program, and
has a constant cost with the increasing number of devices.
Our introduced extra computations are derived by thoroughly
analyzing how general methods of distributing the compu-
tation of DNNs affect their underlying GEMM. The added
computations are similar in nature to those of DNNs, which
eases balancing the work among IoT devices and reduces the
deployment cost. Balanced distribution is essential in attaining
the expected performance. Additionally, since our method is
implemented at the library level, it does not require changes to
the program. Moreover, unlike approaches that sacrifice latency
for robustness to recompute the missing part of the data, our
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Fig. 1: Arrival time histogram of data packets in a WiFi network for

a four-device IoT system with RPis.
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method, even at the time of failures, provides close-to-zero
recovery time, which is necessary for critical time-sensitive
tasks. Finally, compared with conventional modular redundancy
methods with redundant computation by introducing a linear
number of additional devices, our method has a constant cost as
the number of devices increases. We demonstrate our method
on Raspberry Pis (RPis), which represents the de facto choice
for several small and edge use cases.

II. MOTIVATION

To illustrate unreliability in the communication latency of
IoT systems, Figure 1 shows a histogram of the arrival times
for data packets in an IoT system of four RPis (system setup
in Section IV). This system performs the computation for
a fully-connected (FC) layer of size 2048 in a distributed
fashion and waits for the response, the measured time for
the computation on a single device is 50 ms. This is why, in
Figure 1, no packet arrives earlier than 50 ms. As seen, around
34% of the arrival times is within 100 ms, and 42% is within
150 ms. Even after 2x the computation time, around 34% of
the packets have not arrived yet. Such behavior in distributed
systems causes straggler problem, in which the slowest node
in the distributed system defines the total latency. Our method,
by introducing robustness in such systems, can additionally
alleviate the straggler problem while also guaranteeing close-
to-zero recovery latency.

To understand how failures are destructive in DNN applica-
tions, we perform another set of experiments, in which some
part of data within a layer is lost. We choose two models:
LeNet-5 [15] and Inception v3 [16]. LeNet-5 is a simple model
that detects handwritten digits from 10 classes and consists of
only five layers. On the other hand, Inception v3 is a DNN
model for image recognition for 1k classes with 159 layers.
Figure 2 illustrates the accuracy drop in these models when
some part of the data in a layer is lost. As seen, for large
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Fig. 2: High percentage data loss, common in distributed IoT systems,

causes destructive accuracy drops.
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percentages of data loss (> 70%) per layer that are common
in distributed IoT systems, the accuracy drop is destructive.
Additionally, by comparing Figures 2a and b, we see that the
sensitivity to data loss in more generalized models will only
become worse. Since the amount of data loss happens in larger
granularities, the current robustness methods in DNNs (e.g., bit-
level tolerance) are insufficient to recover the loss. In contrast,
our proposed robustness method is designed specifically for
such a high amount of data loss and can recover from it with
close-to-zero latency.

III. ROBUSTNESS WITH CDC

This section first describes how distribution methods change
computation, which helps us apply our robustness method at
the library level. Next, we provide a simple example of our
method and then we generalize it.

A. Distribution and Matrix Operations
1

Fully-Connected Layer: An FC layer [ performs a

o(W'al=1 + b'), in which W, a, and b are weight, activation,
and bias. First, we consider the GEMM: Wlal-1, Figure 3
illustrates how output splitting affects weight and output
matrices for an example with four devices. Since each device
calculates a set of separate outputs, the output matrix is
created separately by each device (and concatenated later).
Such separation in output generation also divides the weight
matrix along the y-axis, which has a one-by-one relationship
with the output matrix division. Each device needs a copy
of the input matrix, and the input matrix is not divided. In
the input-splitting method, as Figure 4 depicts for the same
four-devices example, the input matrix is divided between the
devices. Similarly, the weights corresponding to those inputs are
divided along the x-axis among devices. Each device calculates
partial sums for all output elements. Finally, all partial sums
are aggregated to create the final output. We can extend the
above reasoning to bias and activation. For output splitting,
biases, and the activation function can also be divided among
the devices. But, for input splitting, both need to be applied
after the aggregation. Since the majority of the computation
time of DNNs is spent on GEMMs, such a difference does not
have a big impact on computation time.
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Convolution Layer: The channel-splitting method divides the
filter weight matrix along the y-axis, as Figure 5 shows for two
devices. Likewise, since the output is unrolled, such division
translates to a similar along-the-y-axis division of the output
matrix. Hence, channel splitting in convolution layers is the
same as output splitting into FC layers and any robustness
analysis is applicable on both, but with a different set of
weights and inputs (i.e., unrolled version of filters and patches
in convolution layers). In the spatial-splitting method, since
each input patch is unrolled column-wise in the input matrix
when we spatially divide the input, this division translates to an
along-the-x-axis division of the input matrix. However, unlike

input splitting in FC layers, filter weights cannot be divided.

Therefore, spatial splitting, as conceptually shown in Figure 6
for two devices, divides the input matrix [ with size HxWxC
in Oxxwry = Wrwr2e X Ip2cxw i, in which C and K are

the number of channels and filters, and filter size is F'’xF'xC.

In the filter-splitting method, a close representation of input
splitting for FC layers, both filter weights and input are divided
depth-wise. Since both filter weights and input are unrolled, we
need to divide the weight and input matrices along the x- and
y-axes, respectively. This distribution is similar to the outer
product approach in matrix multiplication, versus the most

commonly known algorithm of the inner product approach.

Figure 7 shows this approach with two devices. Each device
produces a partial sum for all elements. To create the final
output, the final device aggregates all the elements and applies
the activation function.

B. Robustness: A Simple Example

We propose a simple example of our CDC-based robustness
to facilitate understanding. Consider an FC layer with two
input and output elements, written as:

wir W12 x ay _ @

W21 W22 as az|’
Assume that we perform output splitting. We add a row to the
weight matrix with the value of [w11 + wae; w12 + was) to

create the summation of two outputs, or a; + az. With such
an addition, the above equation becomes:

(€Y

w11 w12 ’ ai
aq
w21 Wa2 X gl = az 2)
w11+ w21 wi2 + w22 2 a1 + az

As the summation of the weights can be done offline and is
not dependent on inputs, we can rewrite the above equation as:

3

Fig. 5: Distribution of channel splitting for convolution layers.
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Fig. 7: Distribution of filter splitting for convolution layers.

The newly added weights to the weight matrix are the column
sums of the weight matrix that is done offline before loading
the weights. Therefore, with the addition of another device,
we can guarantee to recover from one missing output with
only a local subtraction in the final device. This method has
three main benefits: (i) First, this level of guarantee on all
devices is just with the addition of one device, compared to a
double modular redundancy method that duplicates all devices.
(ii) Second, this method is faster than redoing all operations
since the subtraction of two local values that we already have
received is almost more immediate than restarting all operations.
This is because, the vanilla recovery method consists of loading
a set of new weights (corresponding to the missing values) in
the final device, asking for input from previous devices, and
performing multiplications with all of its associated overhead
of communication. (iii) Third, although we introduced the
computations corresponding to a°?®, these computations are
similar in nature to the computations of a; and as. Hence, the
distribution of these newly added computations follows the
same rules and would not create an imbalance in the modified
distribution.

C. Generalization of Robustness

This section extends our simple scenario, where each device
computes only one output element, to a more realistic scenario,
where each device computes hundreds of elements. Similarly,
we showcase the output-splitting method as our example.
Assume an FC layer performing the below equation:

’
wilp wi2 ... Wik a/l ai
w21 W22 ... W2k as az
X . “
Wml Wm2 --- Wmk Y am
mxk ap, 1 px1 mx1

By distributing the computations among two devices, each
of the devices performs the computations for m /2 of output
elements. The computations per each device are
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in which input matrices are the same, but the weight matrix
is divided along the y-axis. Each device creates separate parts
of the output matrix. To introduce robustness, the new weight
matrix would be as follows:
w11+w(%+1)1 w12+w<%+1)2 w1k+w(%+1)k

w21+w(%+2)1 ’w22+w<%+2)2 w2k+’w(%+2)k

N
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T Xk

By multiplying this new weight matrix with inputs, the below
output matrix is created:

a1+ agg 4y
a2 + a(m o)

; ®)

am a
2 + am x1

2
which is is the summation of two output matrices in Equations 5
and 6. Therefore, by introducing such a weight matrix as
Equation 7, we can introduce robustness. Similar to our simple
example, the computation of new weights is done offline,
recovery has a close-to-zero latency, the robustness covers
all devices, and the new computation is balanced. In contrast,
splitting methods that divide the input matrix among the devices
do not yield similar benefits. To illustrate why, we study input
splitting among two devices for the computation of the FC
layer in Equation 4. Input splitting for FC layers divides the
input and the weight matrix along the x-axis. Accordingly, the
computations per device are from Equations 9 and 10.

Each of these equations calculates a partial sum. However,
as seen, no share factor exists between the two computations.
Therefore, to perform coded distribution, a third device needs
to perform the entire calculations of Equations 9 and 10,
which creates unbalanced work between the devices and has
no advantage over just replicating the entire work as modular
redundancy methods do.
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Distribution Techniques Suitable for Robustness: Based on
our discussion, among the distribution methods for DNNs,
only some are suitable for our CDC-based robustness. Such
suitable methods do not split the input elements but split the
weights. Table I provides a summary of all the presented
methods and whether they are suitable for robustness. For FC
layers, the output-splitting method is suitable for robustness.
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TABLE I: Distribution Techniques Suitable for Robustness.

L Distribution || Divides | Divides | Divides | Suitable for
ayer Method Input Weight | Output Robustness
fe | Ouput || X | v | / | Yes

¢ [mput || v | v | X | No
Channel X 4 v Yes

conv Spatial v X v No
Filter 4 v "4 No

For convolution layers, the channel-splitting method has similar
characteristics. Unfortunately, the rest of the distribution
methods are not suitable for robustness because to introduce
robustness, they need to perform the entire computation again,
which causes communication overhead. For instance, in spatial
splitting, although every device has all the weights, they only
own some part of the input. Therefore, with our technique,
we need another device to perform the computation based
on the summation of the input parts. Since input elements
change, computing such a summation has an overhead during
the runtime (2x compute). The filter-splitting method also
suffers from the fact that no element from the input or weights
is shared between computing devices.

IV. EXPERIMENTS

Experiments Setup: We evaluate our method on a distributed
system with RPi with 1.2 GHz Quad Core ARM Cortex-A53
CPU and a 900MHz 1GB RAM LPDDR2 memory. We
choose RPi because they represent the de facto choice for
several IoT systems, they are readily available, and they allow
common software packages. Our implementation is created
with a software stack based on Docker containers. We use
Keras 2.1 with the TensorFlow backend (version 1.5). For
RPC calls and serialization, we use Apache Avro. A local
WiFi network with a measured bandwidth of 94.1 Mbps and a
measured client-to-client latency of 0.3 ms for 64 B is used.

Task Creation & Assignment: The policy of task creation
in IoT-based distributed DNN systems is done with either
profiling or heuristics that use common monitoring/managing
tools such as Kubernetes. The policies create tasks per device
for a given DNN by studying its memory footprint, computation
requirement, and communication overhead. Regardless of the
policy that finds the optimal distribution (out of the scope of
this paper, see [4]), all the pre-trained weights are loaded to
each device storage so that a device can switch its assigned
task easily if needed. For each number of available devices,
a single task allocation file is loaded to all devices and each
device performs its allocated tasks based on the file. We use

an IP table file to assign tasks to each RPi. CDC weights are

also created offline and loaded to the storage. In the case of
a failure, the system uses another pre-defined distribution file
with fewer devices that has a lower performance. In such a
case, since the detection of a missing device takes time, the
system mishandles many requests. Our proposed solution has
tolerance to such failures, so the system never loses a request.
Additionally, with a close-to-zero recovery latency, the system
proactively is more tolerant to straggler nodes.

Weight Storage: Each Pi has an SD card storage, for storing
the weights, which is relatively inexpensive compared to the
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Fig. 9: Case study I: Recovery latency with & without CDC.

main memory. All trained weights are loaded to each Pi’s
storage (16 GB storage in our system), so each Pi can be
assigned to execute any part of a layer. If local storage is
limited, the assigned weight can also be shared on the network
from a network-storage filesystem. This approach makes a
tradeoff between how fast the switching time between different
models can be and per-device storage usage. Additionally, note
that the distribution method does not replace other methods,
such as offloading to servers. The decision is on a per-case basis
and depends on several system-level decisions. The distribution
offers the additional option of processing data locally.

A. System Recovery Case Studies

Case Study I: To depict the impact of how failures affect
a system, we deploy AlexNet [17] on two IoT systems. The
first system (Figure 8a) contains five devices. The first fully-
connected layer is split with the output-splitting between
two devices with no robustness method. The black bars in
Figure 9 show the latency of the system when performing
single-batch inferences. If device C experiences failure, as
shown in Figure 8b, other devices need to perform the task
assigned to the failed device. Since device C computes half of
the first fully-connected layer, device D needs to perform this
extra task. After the failure is detected, which takes tens of
seconds, the red bars in Figure 9 depict the new shifted latency
histogram of the system. Based on our measurements, on
average, the system experiences 2.4x slowdown after recovery.
The system does not perform beneficial work during failure
detection and experiences a significant slowdown afterward.
However, with our method, the system does not experience
any slowdown or service interruption.
Case Study II: As a remedy to failures, we deploy AlexNet
on a six-device system. Figure 10a shows this system, in
which an extra device is added for robustness using CDC.
Note that our goal is to create robustness only for the first
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Fig. 10: Case Study II: AlexNet on a six-device system.
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fully-connected layer and the extra device provides robustness
to all the computations done on devices D and E. If we
experience failure (Figure 10b), the performance of the system
does not change. Additionally, during the operation without
failure, we use the extra device to mitigate the straggler
problem. Figures 11 and 12 show the system latency with
and without this mitigation, respectively. As shown, the range
and the distribution of latencies are improved towards a better
performance. Thus, in addition to robustness, we can exploit
the extra device to increase the performance.

B. Straggler Mitigation

We study straggler mitigation benefits by extending the
previous system. To initiate recovery, a device waits for a
particular amount of time. By adjusting this waiting threshold
in a device, we can treat our method as a solution for the
straggler problem after receiving the necessary amount of
data. A lower threshold reduces latency and thus increases
performance. The straggler problem is more prominent with
more devices, so we set up an experiment for a system with four
devices, each of which performs a split in a fully-connected
layer (Figure 13a). Figure 13b shows performance improvement
of straggler mitigation with a diffident number of devices.
The performance improvement is compared with the same
system, with the same number of devices, and with no straggler
mitigation. As seen, for more devices, straggler mitigation has
better performance (up to 35%) compared with a no-straggler-
mitigation system with the same number of devices.

C. Full Model Coverage

In the system in Figure 10, devices with model parallelism
are robust with CDC. For other devices, by replicating the
device’s task (N-modular redundancy with N = 2, or 2MR),
we can tolerate one failure. A hybrid approach (CDC+2MR) can
cover the system for failures. Our method covers any number
of devices in one layer with just one additional device (for
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Number of Devices
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Improvement
(%)
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o583

(a)
Fig. 13: Straggler mitigation study. (a) A system setup for four devices.
(b) Straggler mitigation performance.
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robustness to one failure). However, 2MR requires an additional
device for each device, resulting in a linear number of additional
devices. Our method has a constant cost with an additional
number of devices, whereas 2MR requires a linear number
of additional devices. Figure 14 examines several DNNs [18]—
[20] with distributed implementations, showcasing tolerance
to one failure with 2MR-only and CDC+2MR. Since CDC
requires fewer devices than 2MR to cover devices with model
parallelism, the number of additional devices for full coverage
in CDC+2MR is smaller than that of 2MR. The amount of
difference depends on the number of layers distributed with
model parallelism and the number of devices used per layer.
For example, Figure 14c and d depict two C3D distributions
with different numbers of devices for the layers utilizing model
parallelism (two vs. three devices). In Figures 14c and d, with
two additional devices, CDC+2MR achieves coverage of 67%
and 73% compared to 2MR’s coverage of 44% and 36%. This is
because C3D distribution has two layers with model parallelism.
Therefore, CDC+2MR achieves better coverage compared to
2MR. To summarize, by utilizing model parallelism for a layer
with N devices, our method allows hiding a single node’s
failure at a cost of (1+ %) times the hardware cost, as opposed
to 2MR’s cost of 2x hardware.

V. DISCUSSIONS

The Introduced Computation: The introduced new com-
putations for our CDC-based method are similar to that of
underlying GEMM computations. This is because the newly
added weights are added to the weight matrix and can be
calculated without the user’s input at the library level. Therefore,
there are no additional costs for reprogramming the applications.
Moreover, since the nature of the computations for these new
weights is similar to that of DNNs, there is no need to design
new kernels or distribution methods.

Extending Robustness to More Failures: Our discussions
focused on tolerating up to one failure. However, Extending to
more than one failure is possible by adding new devices that
compute based on the summation of some rows of weights
instead of all. Figure 15 illustrates three setups in order of
increasing tolerance to failures. The last setup tolerates two
failures because new devices perform partial sums on the
weights.! Thus, by utilizing idle devices with an overlapping
set of weights, the system’s robustness increases.

VI. RELATED WORK
CDC [13] introduces coding for MapReduce-type workloads
for large-scale computing. By coding, which increases the

! Note that the coverage to two failures is almost complete (partial error
correction). We need Hamming-style coverage for full error correction.
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computation of mapping functions, communication can be
reduced in the reduction phase. The authors of the CDC
theoretically study the limits and trade-offs of such distribution
and illustrate an inverse relationship between the amount of
computation and communication. Usually, coding in CDC is
applied over bit-level representation of numbers. Instead of
coding over floats/bits, we apply coding to the application
level by introducing new weights. Furthermore, in contrast, to
reduce communication overhead in other studies, our goal is
to increase robustness and tolerate unstable latencies. CDC
helps mitigate the straggler problem in computing clusters [21],
[22], besides other methods such as straggler detection algo-
rithms [23], [24] and replication-based approaches [25], [26].
Several studies also utilize CDC to mitigate the straggler prob-
lem in distributed storage systems [27]. Distributed learning
algorithms have also used CDC opportunities [14]. Since these
algorithms use data parallelism for learning, CDC facilitates
the mapping phase in learning algorithms with data shuffling.
Particularly, Lee et al. [14] focused on two basic blocks of
learning algorithms, matrix multiplication, and data shuffling.
None of the above works has studied CDC in the context
of robustness. In contrast with our work, distributed learning
studies [14] examine large-scale learning algorithms, which
employ data parallelism, whereas our work focuses on loT-
based inferencing, which utilizes model parallelism.

VII. CONCLUSION

We proposed a method to introduce tolerance for the
single-batch inferencing of DNNs, a key operation in IoT. Our
method exploits model-parallelism methods in prevalent DNN
layers to add balanced computation for robustness. Model
parallelism helps us achieve efficient system distribution. We
extended CDC to provide a trade-off between computations
and robustness on distributed IoT.
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