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ABSTRACT

Background and objectives: Pregnancy, heat stress, and physical activity (PA) are all known to inde-
pendently increase human water requirements. We hypothesize that climate conditions and behavioral
strategies interact to shape water needs in highly active pregnancies.

Methodology: We recruited 20 female endurance runners who were pregnant (8-16 weeks gestational
age; n=13) or planning to be pregnant (n = 7) for an observational, prospective cohort study. At three
timepoints in the study (preconception, 8-16 weeks, and 32-35 weeks), we measured water turnover
(WT) using the deuterium dilution and elimination technique, PA using ActiGraph wGT3X-BT accelerom-
eters, and heat index (HI) using historical temperature and humidity data. We also compared athletes to
nonathletes from a previously published study.

Results: Athletes maintained high WT from preconception through the end of pregnancy. PA was posi-
tively associated with WT among athletes for preconception and early pregnancy time periods but not for
the third trimester. HI weakly moderated the relationship between PA and WT in predicting a more posi-
tive slope in hotter and more humid weather conditions. WT in athletes was higher than in nonathletes,
but this difference attenuated during the third trimester, as nonathletes increased their WT.
Conclusions and implications: Athletes experience higher WT with greater levels of PA, and this relation-
ship is somewhat stronger in higher HI conditions. With the threat of climate change expected to exac-
erbate extreme heat conditions, evidence-based, global policies are required for particularly vulnerable
populations.

Lay Summary Physical activity and environmental conditions shape water needs in pregnancy. Endurance
athletes experience higher water turnover with more exercise during pregnancy, which is somewhat
related to hotter and more humid weather conditions. Because of climate change, highly active pregnant
populations may be particularly vulnerable to the effects of warming temperatures.
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INTRODUCTION

Water needs and water turnover (WT; L/day) increase during
pregnancy in step with increased daily energy expenditure and
total body water (TBW; kg) to accommodate the growing fetus [1,
2]. In nonpregnant cohorts, high physical activity (PA) and high
ambient temperature also increase water needs through water
loss via sweating for evaporative cooling [1, 3-5]. In this paper,
we consider how pregnancy, PA, and weather conditions interact
to shape water needs. We examine changes to WT in pregnant
athletes who train during pregnancy under varied environmental
conditions. Water needs are often estimated in pregnant popu-
lations [6] but this study employs the gold-standard deuterium
dilution method to measure TBW and WT.

Water intake requirements

The National Academy of Medicine recommends daily water
intake as: 3.7 |/day for males; 2.7 |/day for nonpregnant, non-
lactating females; 3.0 |/day for pregnant females; and 3.8 |/day
for lactating females [7]. In 458 American adults, measured WT
was 3.0 |/day for males and 2.5 |/day for females [8], similar to
self-reported NHANES water intake data [5]. In a global sample
of 5604 adults, WT was higher: 4.3 |/day for males and 3.4 |/day
for females [1]. Globally, water intake varies widely, from 1 to 10
|/day, which, in addition to age, sex, and body mass, reflects dif-
ferences in environment and behavior [1, 3-5].

In pregnancy, TBW expands by 7-8 |, making up nearly 61%
of total gestational weight gain (GWG), due to the modified
effects of the renin-angiotensin-aldosterone and atrial natriuretic
peptide pathways [2, 9]. Notably, TBW accretion, through blood
plasma volume expansion, is positively correlated with neonatal
birth weight and outcomes [2, 9]. Greater fluid intake is also pos-
itively associated with amniotic fluid index, which affects fetal
outcomes [10]. From a clinical perspective, ensuring that water
intake requirements are met during pregnancy reduces the risk
of adverse outcomes in expecting mothers [2, 9, 11-16].

Maintaining water balance in pregnancy

With various physiological and environmental challenges faced
by mother and fetus, pregnancy acts as a strong selective force
in determining initial survival and long-term health over the life
course [17]. Due to increased water needs paired with high rates
of water excretion [2], pregnant females are at greater risk of dehy-
dration, which can negatively impact maternal and fetal health [2,
11, 14, 16, 18]. Previous research has shown total fluid intake
(i.e. WT rate) increases to mitigate dehydration in pregnancy, as
measured by urinary biomarkers of hydration [19]. Water needs
also increase with PA [1, 3, 4, 20], and endurance athletes rou-
tinely experience acute dehydration during competitions [20,

21]. It is unknown how water intake requirements change during
highly active pregnancies, especially in chronically hot environ-
mental conditions [11]. These variables likely interacted in the
human evolutionary past as pregnant females undertook active,
subsistence-based lifestyles in variable environments.

In pregnant Gambian farmers, frequent heat exposure during
agricultural tasks was associated with increased maternal heat
exhaustion symptoms and increased maternal and fetal heat
strain [15]. Participants reported behavioral changes to mitigate
heat stress when possible [22]. Indeed, Yamada et al. found a
smaller effect of outdoor temperature on WT in industrialized
populations that are buffered by indoor climate control.

Climate change poses a particular threat to pregnancies in popu-
lations without adequate indoor climate control. Globally, 1.8—4.1 bil-
lion people lack indoor cooling solutions, many of whom undertake
physically demanding occupations, even in pregnancy [23]. Current
pregnancy guidelines support =150 min per week of moderate-
intensity PA in mild-moderate temperatures and avoidance of high
heat/humidity exposure during exercise [24-26]. However, these
guidelines lack consistency, are not fully evidence-based, and are not
speciﬁc about exposure time, gestational age, temperature ranges,
heat acclimatization, and PA types. It is imperative to understand
how both PA and environmental conditions affect water needs in
pregnancy to mitigate health risks [11, 13].

Hypothesis and predictions

We hypothesize that weather conditions and behavioral strate-
gies interact to shape water needs in pregnant athletes:

«  Prediction 1: Mean daily WT is greater in athletes compared
to relatively sedentary nonathletes.

« Prediction 2: Moderate-to-vigorous PA (MVPA) and mean
daily step count are independently and positively associated
with WT in the preconception period and across pregnancy.
The slope of this association is expected to be greater with a
higher heat index (HI).

« Prediction 3: Irrespective of PA, there is a positive associ-
ation between daytime HI and WT in the preconception
period and across pregnancy.

To test these predictions, we investigated behavioral and physi-
ological changes over pregnancy in endurance athletes living in
diverse climatic regions. We also compare water needs between
athlete and nonathlete pregnancies [27].

METHODOLOGY

Participant recruitment and study design

Female participants who were either pregnant (<16 weeks ges-
tational age) or planning a pregnancy were recruited for an
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observational, prospective cohort study. We recruited participants
aged 18-35 years with preconception BMI 18.5-26.0 kg/m? who
resided in the USA or Canada and who did not use medications
that alter metabolism. Participants were required to self-report at
least 300 min/week MVPA prior to conception, inclusive of >32 km/
week of running and training at Tier 2: at least 3 times/week with the
purpose of competing at the local level or above [28]. This research
was approved by the Institutional Review Board of Duke University
(Pro00108341). All participants provided informed consent upon
recruitment. All study activities were conducted remotely for nation-
wide recruitment and study compliance with COVID-19 restrictions.

Deuterium dilution and elimination method

We measured TBW (kg) and WT (L/day) 2-3 times (preconcep-
tion, if applicable; 8-16 weeks; 32-35 weeks) using the deuterium
dilution and elimination technique [29]. This method enriches the
participant’s body water pool in deuterium (D), a stable, naturally
occurring isotope of hydrogen. The rate of deuterium depletion was
measured over a 7-day period from isotopic enrichments in the 3
postdose urine samples using the slope-intercept method. Details
on this method are found in Supplementary Materials.

PA variables

Participants continuously wore a hip-worn ActiGraph wGT3X-BT
accelerometer (Actigraph, LLC) during each deuterium dilution
week, including during sleep. This triaxial device measures dis-
placement and acceleration at a 30 Hz sampling rate to quantify
movement [30, 31]. Participants self-reported when they placed
and removed the device. Files were downloaded from the ActiLife
6 software (Version 6.13.5, ActiGraph, LLC). Data processing took
place in R [32] using GGIR (version 3.0.9) and PhysicalActivity
(version 0.2.4) packages [33, 34]. Wear-time validation and data
processing details can be found in Supplementary Materials.
The PA outcomes were daily step counts over 7 days from the
PhysicalActivity package and mean MVPA in 10-minute bouts
over 7 days from the GGIR package.

Comparative nonathlete data

We extracted TBW and WT data from a comparative study of
energy requirements during pregnancy in nonathlete partici-
pants of normal BMI (19.8-26.0 kg/m? n = 34) from Butte et al.
[27]. For recruitment, participants self-reported “moderate activ-
ity,” defined as 20-30 min of moderate exercise at least three
times per week [27]. Gestational age of 0 weeks was assigned as
“preconception,” 22 weeks as “early pregnancy,” and 36 weeks
as “third trimester” to allow for comparison with the athlete par-
ticipants. Slopes of deuterium depletion (kD) and the dilution
spaces of hydrogen (NH; kg) and oxygen (NO; kg) were extracted

from Table 4 in Butte et al. [27] and used to calculate TBW and
WT (Supplementary Materials).

HI variable

Historical weather data was downloaded from The National
Weather Service (www.wunderground.com/) based on partici-
pant zip codes. We collected daily weather metrics for the 7 days
spanning the deuterium dilution week. For temperatures greater
than or equal to 80°F, HI was calculated with the Rothfusz equa-
tion [35]. For temperatures below 80°F, HI was calculated with
the simplified Rothfusz equation (Supplementary Materials). To
ensure we captured daytime HI, we averaged HI values per day
between 6:00 and 18:00 and then averaged all daily values across
the 7-day deuterium dilution period.

Statistical analysis

All data manipulation and analyses were conducted in R [32]
(Supplementary Materials). We used one-way ANOVA tests and
Bonferroni post hoc tests to assess potential changes in mean
PA and WT between time periods.

We used random-effects linear panel regression to test for the
independent effects of HI and PA on WT, as well as an interaction
effect of HI*PA on WT. Gestational age and BMI were included
as covariates. Models were indexed by subject and time period:

WTHI + MVPA + HI*MVPA + BMI + gestational age

WTHI + step count + HI*step count + BMI + gestational age

We used multiple linear regression to test for the independent
effects of HI and PA on WT within each time period:

WT™HI + MVPA + BMI + gestational age

WTHI + step count 4+ BMI + gestational age

We compared TBW and WT results between the athletes and
nonathletes using a one-way repeated measures ANOVA test
(Type I11), as well as an ANCOVA test (Type II1) to include body
mass and gestational age as covariates. To assess differences in
WT between athletes and nonathletes at each time period, we
employed a Bonferroni post hoc test.

RESULTS

Demographic summary and descriptive statistics

A total of 20 athlete participants were included in this study.
Demographic and anthropometric variables are listed in Table 1
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and Supplementary Table S1. At enrollment, participants had a
mean age of 32.1+ 1.9 years. Seven participants began data col-
lection in the preconception period, while 13 participants began
data collection in early pregnancy at a mean gestational age of
15.2 + 5.4 weeks. Participants remained in the study for 10.8 + 3.4
months. Total GWG was 12.7 £ 3.9 kg. Mean daily WT did not dif-
fer between time periods (F=1.51, P=.23) (Fig. 1; Table 2). Mean
TBW increased over gestation (F = 6.75, p =0.003) (Table 2).

Data on PA are summarized in Table 2. There were 315 days
of accelerometry with a 92.7% adherence, yielding 292 wear days
with an average of 6.5 days per participant per measurement
period. For participants recruited in the preconception period
(n=7), step count was 14 075+ 3795 steps/day, and MVPA
was 461.6 + 164.5 min/week. Preconception running distance
was 48.3 £ 17.6 km/week. Weekly running distance decreased
from early pregnancy (44.4 £ 19.5 km/week) to the third trimes-
ter (16.7 £ 22.8 km/week) (F=9.01, P=.0006), with 11 partic-
ipants stopping their running activities altogether by the third
trimester. Participants maintained MVPA (461.6 + 164.5 min/
week in preconception, 410.2 + 163.8 min/week in early preg-
nancy, and 402.4 +380.0 min/week in the third trimester)
(F=1.61, P=.21), though the range and variability in MVPA
were greater during the third trimester (SD: 163.8 vs. 380.0 min/
week). Participants reported more low-impact endurance activi-
ties as alternatives to running in late pregnancy to mitigate pain,
soreness, and changes to gait and pacing. Alternative activities
included swimming, cycling, and brisk walking. Daily step count
was reduced from preconception (14 075 + 3795 steps/day) to
the third trimester (9226 + 3962 steps/day) (F=5.10, P=.0T).

Linear panel regression analysis of the effects of PA, Hl, and
PA*HI on WT

There was no relationship between MVPA and WT (5 = -0.0026,
P =.30), nor between HI and WT (8=-0.021, P=.16) (Table
3). There was a positive, nonsignificant trend in the interaction
effect of MVPA*HI on WT (5 =0.000067, P =.05). For the step
count outcome, there was no relationship between daily step
count and WT (5 =-0.000046, P=.65), nor between HI and

WT (B =-0.025, P=.18) (Table 3). There was no relationship in
the interaction effect of step count*HIl on WT (3 =0.0000026,
P=.10). By visualizing the postestimation plots of the panel
regression models (Supplementary Fig. S1), we found possible
evidence of a more positive relationship (slope) between MVPA
and WT, as well as step count and WT, as HI increased.

Multiple linear regression analysis of the independent effects
of MVPA and HI on WT during each time period

In the preconception period, there was no relationship between
MVPA and WT (8=0.052, P=.54), nor between HI and WT
(f=0.017, P=.81) (Fig. 2a and c; Supplementary Table S8).
In early pregnancy, there was a significant, positive relation-
ship between MVPA and WT (8 =0.0043, P=.02), where there
was a 0.13 | increase in daily WT with every 30-min weekly
increase in MVPA (Fig. 2a; Supplementary Table S9). There was
no relationship between HI and WT (8=0.016, P=.27) (Fig.
2¢; Supplementary Table S9). In the third trimester, there was
no relationship between MVPA and WT (8=0.001, P=.38),
nor between HI and WT (6=-0.018, P=.14) (Fig. 2a and ¢;
Supplementary Table S10).

Multiple linear regression analysis of the independent effects
of step count and HI on WT during each time period

In the preconception period, there was a significant, pos-
itive relationship between step count and WT (f =0.00034,
P =.02), where there was a 0.34 | increase in daily WT with
each 1000-step daily increase (Fig. 2b; Supplementary Table
S8). There was no relationship between HI and WT (8 =0.019,
P =.20) (Fig. 2c; Supplementary Table S8). In early pregnancy,
there was a significant, positive relationship between step
count and WT (5 =0.00025, P=.004), where there was a
0.25 Lincrease in daily WT with every 1,000-step daily increase
(Fig. 2b; Supplementary Table S9). There was a positive, non-
significant trend between Hl and WT (8 = 0.023, P = .07) (Fig.
2¢c; Supplementary Table S9). In the third trimester, there
was no relationship between step count and WT ($=0.00005,

” Table 1. Age and anthropometric variables at enrollment, as well as total GWG in athletes (n = 20) and nonathletes

(n =34) (mean + SD).

Variables at enrollment

Athletes (n = 20)

Nonathletes (n = 34)

Age (years) 32119 30.3+4.3
Preconception body mass (kg) 59.0 £ 8.2 59.3+6.0
Preconception BMI (kg/m?) 21.6£24 -

Total gestational weight gain (kg) 12.7£3.9 14.5+4.5

SDs were not computed for the nonathlete group, since these data were drawn from published, aggregated data tables [8].
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Figure 1. Combined violin-boxplots demonstrate no significant difference in WT across preconception, early pregnancy, and third trimester time periods in

athletes (n = 20). Mean WT from nonathletes (n = 34) across the three-time points are represented by diamonds. Results from one-way ANOVA investigating
WT differences between study (athletes vs. nonathletes) indicate no significant difference: df = 1, Sum Sq = 4.12, Mean Sq =4.12, F=3.38, P=.07.

p = 0.43), nor between HI and WT (8 =-0.019, P=.13) (Fig.
2b and ¢; Supplementary Table S10).

Comparative analysis between athletes and nonathletes

Mean TBW for nonathletes was 31.68 + 3.90 kg in preconcep-
tion, 33.97 +3.81kg in early pregnancy, and 38.70 + 4.05 kg
in the third trimester (Table 2). Mean WT for nonathletes was
3.59 £0.43 |/day in preconception, 3.78 +0.42 |/day in early
pregnancy, and 4.39 + 0.45 |/day in the third trimester (Table 2).

Athletes did not have greater TBW than nonathletes (F = 2.87,
P =.09). However, when accounting for body mass and gesta-
tional age, group was a significant predictor of TBW (F=6.81,
P=.01) (Supplementary Table S11). Body mass (F=239.11,
P <.0001) and gestational age (F=141.61, P <.0001) were sig-
nificant predictors of TBW, with greater effects than group des-
ignation (Supplementary Table S11). TBW was only greater in
athletes compared to nonathletes in preconception (P <.000T)
(Supplementary Table S12). There was no difference in TBW
between groups in early pregnancy (P =.48) and in the third tri-
mester (P=.36) (Supplementary Table S12).

Athletes had greater daily WT overall compared to nonathletes
(F=27.29, P <.0001) (Supplementary Table S13). When account-
ing for body mass and gestational age, group was still a signifi-
cant predictor of WT (F = 17.54, P <.0001) (Supplementary Table
S13). Body mass (F = 3.66, P = .06) and gestational age (F = 3.35,

P =.07) were marginal predictors of WT (Supplementary Table
S13). The difference in WT between athletes and nonathletes
was driven by preconception (P<.0001) and early pregnancy
(P<.0001) time periods (Supplementary Table S14). There
was no difference in WT between groups in the third trimester
(P=.99) (Supplementary Table S14).

DISCUSSION

Our results somewhat support the hypothesis that weather
conditions and behavioral strategies interact to shape water
needs in pregnant athletes. While athletes did not reduce
MVPA from preconception to the third trimester, daily step
count was significantly reduced. Step count includes habitual
activities throughout the 24-h cycle, whereas MVPA may rep-
resent more intentional PA bouts in this population [36-38].
Athletes accommodated MVPA by reducing nonintentional
PA throughout the day, or by moving to lower-impact, lower-
intensity activities. In doing so, WT did not increase through-
out pregnancy. Since HI did not predict WT, athletes may have
moved indoors, shifted activity patterns to different times
of the day, or moved to more amenable locations for PA to
reduce sweating and water intake needs. Despite the role of
behavioral modification, we were able to detect a slight pos-
itive interaction effect of PA and HI on water requirements
across gestation.
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” Table 3. Randome-effects linear panel regression models to test for the independent effects of HI and PA on WT, as well
as an interaction effect of HI*PA on WT, in panel (longitudinal) data for athletes only.

WT ~ HI + MVPA + HI*MVPA + BMI + gestational age WT ~ HI + step count + HI*step count + BMI + gestational age

Covariate [ Coefficient (SE) P-value Covariate [ Coefficient (SE) P-value
(intercept) 3.28 (1.84) .08 (intercept) 3.36 (1.97) .08
HI -0.021 (0.015) 16 HI -0.025 (0.018) 18
MVPA -0.0026 (0.0024) .30 Step count -0.000046 (0.00010) .65
BMI 0.089 (0.075) .23 BMI 0.061 (0.077) .86
Gestational age -0.0090 (0.017) A1 Gestational age -0.0023 (0.016) .99
HI*MVPA 0.000067" (0.000036) 05" HI*step count 0.0000026 (0.0000015) .10

Total Sum of Squares
Residual Sum of Squares
R-Squared

13.39
13.60
0.09

Total Sum of Squares
Residual Sum of Squares
R-Squared

14.90
13.96
0.12

“P < .05, P <.01; "P < .001.

Models are indexed by participant and measurement time period. The interaction effect HI*MVPA was the only marginally significant factor in the models.
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Figure 2. Relationship between environmental factors and WT in athletes. (a) MVPA in 10-minute bouts positively predicts WT in early pregnancy only. (b) Step
count positive predicts WT in preconception and early pregnancy only. (c) There is no relationship between mean daytime Hl and WT at any time period during
preconception and pregnancy.
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Expansion of TBW occurred similarly in both athlete and non-
athlete pregnancies, given similar body sizes between groups, so
WT rate is the primary physiological strategy to deal with water
stress. Athletes in preconception had a higher WT (5.26 |/day) than
nonathlete participants (3.59 |/day), a global sample of nonpreg-
nant females (3.4 |/day), and an American sample of nonpregnant
females (2.5 |/day), reflecting the additional water needs with high
PA [1, 8]. Both the athlete (4.40 |/day) and nonathlete (4.39 |/day)
cohorts had higher WT in the third trimester compared to the global
and American samples [1, 8], reflecting the additional water needs
associated with pregnancy.

We are unsure of PA differences between the athletes and non-
athletes, since accelerometry was not routinely employed in studies
until the 2010s [39]. However, studies of pregnancy in other non-
athlete cohorts report low MVPA, particularly in the third trimester
[40—46]. A PA recruitment criterion was included for the non-athlete
comparative sample, which was lower than athlete recruitment
(Methodology). Given the prevalence of overreporting bias in survey-
based PA measurements [47], preconception PA in the nonathlete
sample was likely lower than the athlete sample in this study.

Pregnant people across the world face multiple stressors to
water balance, including lack of indoor climate control; expo-
sure to hot, water-scarce, and nonpotable water environments;
and high workloads [15, 23]. While pregnant people are told to
avoid high heat and humidity during PA, not enough data exists
to establish thresholds [24-26]. Our results suggest that the
current water intake guidelines that exist are too low for highly
active pregnant populations experiencing high heat stress. With
the threat of climate change expected to exacerbate extreme heat
conditions, evidence-based policies are required to protect par-
ticularly vulnerable populations.

When comparing humans with other apes, Pontzer and col-
leagues [48] found that humans have evolved better water conser-
vation strategies, despite having a higher sweating capacity through
high eccrine gland density [49, 50]. These strategies may include the
development of external noses for water recovery [48] and lower hair
density to reduce sweating [49, 50]. It is also unknown how water
requirements differ in pregnancy between ape species, since inter-
species TBW expansion, urine concentrating abilities, and other
pregnancy traits may be variable. In addition, social buffering of
water stress may be more prevalent in humans, as interdependence
within social groups (e.g. cooperative breeding) may better allow
pregnant individuals to seek amenable environmental conditions
and reduce PA [51]. Conversely, females of other ape species often
undertake pregnancy without assistance from group members [51].

Limitations

We were unable to account for specific microclimates experi-
enced by athletes. Indoor heat stress is an important driver of

global heat-related morbidity and mortality [52]. Athletes were
likely buffered by indoor climate control, which has been found
in other higher-income populations [1]. As a result of higher-
income status, this population may experience better economic/
social buffering to accommodate PA during pregnancy, even in
climates with high heat stress, without suffering negative health
outcomes. Thus, athletes in this study are not representative of
global climate experience across all pregnant populations.

This study relied on PA measured by accelerometry, which
tracks acceleration-based activities. For this reason, we restricted
recruitment of athletes who predominantly undertake other
modes of exercise, like weight training. It is likely that we did not
capture stationary activities through accelerometry, which still
contribute to overall water needs.

CONCLUSION

We report on water requirements for pregnant endurance athletes,
which were higher than nonathletes but attenuated in the third tri-
mester. PA was positively associated with WT among athletes for
preconception and early pregnancy but not for the third trimester.
HI weakly predicted a more positive slope in hotter, more humid
weather conditions. Yet, pregnant athletes overall had good control
of their environment to mitigate the risk of extreme dehydration,
with no adverse outcomes reported [2, 14, 16]. Adverse pregnancy
outcomes are expected to increase with climate change. To better
understand dynamic water needs, a greater diversity of human pop-
ulations and nonhuman primate species is required for study.

SUPPLEMENTARY DATA

Supplementary data is available at EMPH online.
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