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ABSTRACT: Me2CO was allowed to interact with 20 different Lewis acids
so as to engage in various sorts of noncovalent interactions, encompassing
hydrogen, halogen, chalcogen, pnictogen, and tetrel bonds. Density functional
theory computations evaluated the interaction energy of each dyad, which
was compared with spectroscopic, geometric, AIM, and energy decom-
position elements so as to elucidate any correlations. The red shift of the
C�O stretching frequency, and the changes in the nuclear magnetic
resonance shielding of the O and C atoms of acetone, are closely correlated
with the interaction energy so can be used to estimate the latter from
experimental measurements. The standard AIM measures at the bond critical
point, ρ, ∇2ρ, and V also correlate with the energy, albeit not as well as the
spectroscopic parameters. The σ-hole depth on the Lewis acid is not well
correlated with the energetics, due in part to the fact that electrostatics in general are not an accurate metric of bond strength.

■ INTRODUCTION
An enormous amount has been learned about the H-bond (HB)
in the century since its first appearance in the literature. This
phenomenon represents a linchpin in solvation and the structure
and function of biological systems.1−6 The HB is intimately
connected in the stability of proteins and the mechanism of
numerous enzymes. One of the tools that has proved its value
over and over again is spectroscopy. In particular, the shifts in
certain infrared (IR) bands or nuclear magnetic resonance
(NMR) peaks are frequently interpreted as quantitative
measures of the strength of each such bond.7−9 As one
example,2,10,11 the Badger−Bauer rule relates the red shift of
the covalent A−H stretching frequency of the proton donor unit
to the strength of the AH···B HB. A similar relationship appears
to exist with the downfield shift of the NMR peak of the bridging
proton.
Recent years have witnessed a growing recognition of a set of

newly rediscovered noncovalent bonds. The proton bridge is
replaced by any of a range of different atoms, many ostensibly
more electronegative than H. Despite an overall partial negative
charge, the electrostatic potential that surrounds this new bridge
atom contains a so-called σ-hole, a small positive region that lies
along the extension of the covalent bond connecting it to the rest
of the molecule. These σ-hole bonds are commonly subdivided
based upon the column of the periodic table from which this
bridging atom is drawn, as for example the halogen (XB),
chalcogen (YB), pnictogen (ZB) or tetrel (TB) bond. In
common with its HB parent, this class of bonds12−36 base their
attraction on a Coulombic force, supplemented by charge
transfer, polarization, and dispersion. Also like the HB, these
bonds are strengthened by electron-withdrawing substituents on

the Lewis acid which intensify the σ-hole. They are strengthened
as one moves down each column of the periodic table, e.g., Cl <
Br < I. First-row atoms, i.e., F, O, N, and C, engage in only weak
bonds of this type if at all, but can be coaxed into measurable
interactions by appropriate substituents or adding a charge.37−43

While research has led to a good deal of fundamental
information about these noncovalent bonds, their IR and NMR
spectral manifestations have garnered far less attention. The data
that has appeared37,44−59 has been informative to be sure, but
does not consider these systems in a systematic manner. As such,
there is not now available a thorough understanding of the
manner in which each sort of interaction modulates the spectra,
nor the processes by which they might do so. Such information
would be essential in detecting their presence in a given chemical
or biological system. It would also be especially useful if
correlations could be established, between certain spectroscopic
parameters and the strength or geometry of a given bond, as has
proven so very useful for HBs over the years.
Work from this laboratory40,60−64 has examined this question

for a number of types of noncovalent bonds. While a certain
degree of correlation has been noted between bond strength and
IR and NMR characteristics of the Lewis acid, these correlations
are generally too tenuous to serve as a true quantitative yardstick,
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or only apply to a limited subset of molecules. The same
weakness of correlation was noted in other measures of bond
strength, some of them derived from AIM analysis of the
electron density topology.
In contrast to the acid, the relationship does appear to be

more robust when comparing bond strength to the spectro-
scopic properties of the Lewis base unit.49,64,65 As an early
example, based on prior observations,66,67 one theoretical
study68 paired H2CO with a number of ions and observed a
linear relationship between the interaction energy and the shift
of the C�O stretching frequency. More modern investigations
have expanded the scope to HBs and their related noncovalent
cousins. One study62 was promising in this respect in that the
spectral and other perturbations caused by these sorts of bonds
upon a peptidemimic Lewis base seemed to correlate nicely with
the bond energy, much better than correlations involving the
Lewis acid unit. Another more recent work69 observed that the
change in the stretching frequency of the C�O of a carboxyl
group might accurately gauge noncovalent bond strength in
certain situations.
The current study is thus aimed to further explore the

potential ability of the spectroscopic changes in the Lewis base
unit caused by noncovalent bond formation to act as a reliable
and accurate probe of bond strength. The prior analysis of the IR
spectra of the amide unit62 involved the amide O as electron
donor atom. However, analysis of the spectrum was complicated
by the intimate coupling of the C�O stretching motion with
that of C−N, into the well-known amide I and II stretching
modes. A similar complication relates to the modemixing within
the carboxyl group.69 In order to more directly focus attention
on the carbonyl O which directly donates charge to the Lewis
acid, the base chosen for study here is acetone Me2CO, which
contains a much purer C�O stretching mode, and can thus
serve as a better model of the carbonyl group in the general case.
As a means of broadening the entire picture, a list of 20 different
Lewis acid molecules were paired with acetone, covering
hydrogen, halogen, chalcogen, pnictogen and tetrel bonds.
Substituents that replace H on the pertinent Lewis acids include
F, CF3, and phenyl groups, so as to cover a broad swath of
molecular properties. As a further extension, the degree to which
the correlations might persist when a given noncovalent bond is
weakened by a systematic stretch is assessed so as to offer a
window into the occurrence of these bonds within the context of
an intramolecular or crystal setting.

■ METHODS
Full optimizations of isolated monomers and dimers were
performed at the M06-2X/def2tzvp level of theory70−72 using
the Gaussian 16 (Rev. C.01) package.73 Harmonic frequency
analysis confirmed their nature as true minima. The counter-
poise approach proposed by Boys and Bernardi74 was
implemented to correct the basis set superposition error. The
molecular electrostatic potential (MEP) was analyzed to identify
the extrema on the 0.001 au electronic isodensity contour of the
isolated monomers, utilizing the MultiWFN software.75,76

Graphical postprocessing of MEP results was performed using
the VMD software.77 Using the AIMAll program,78 the QTAIM
topological analysis79,80 of the electron density added
information about interaction between atoms, represented by
bond paths and their bond critical points. NBO analysis81

identified and quantified the interorbital interactions within
dimers and the occupancies of selected orbitals, applying the
NBO 7.0 set of codes. Decomposition of interaction energy into

its components was achieved in the framework of the ALMO-
EDA scheme via Q-Chem 682,83 software.

■ RESULTS AND DISCUSSION
Scheme 1 lays out the set of systems to be considered and the
placement of the monomers relative to one another. Each Lewis

acid was permitted to approach the O atom of Me2CO, and the
geometry of the dyad fully optimized. The set of Lewis acids
listed in Scheme 1 encompassed a variety of different sorts of
noncovalent bonds, including hydrogen (HB), halogen (XB),
chalcogen (YB), pnictogen (ZB), and tetrel (TB). The atom
which interacts directly with the negative regions surrounding
the O of acetone contains a positive σ-hole, accounting for a
certain amount of electrostatic attraction. The depth of each σ-
hole is measured as the maximum of the MEP on a 0.001 au
isodensity surface. This quantity is termed Vmax and is listed in
the first column of Table 1 for each of the Lewis acids. There is a
large range of this value, varying between 9 and 70 kcal/mol.

Optimized Dyads. Subsequent to the optimization of each
dyad with Me2CO, a number of properties were elucidated,
some of which are reported in Table 1. Just as the σ-hole depths,
the interaction energy covers a wide range, varying from less
than 1 kcal/mol for the very weak HB with CH4, up to 36 kcal/
mol for the tetrel bond with SnF4. Formation of each
noncovalent bond causes the C�O bond of acetone to
lengthen by as much as 0.024 Å in the most extreme cases, as
witness the fourth column of Table 1. Also listed in the last two
columns are the intermolecular parameters, both the distance
between O and the attacking atom of the Lewis acid L, and the
angle this bond makes with the C�O axis of acetone. These
angles are in the neighborhood of 120°, consistent with a “rabbit
ears” view of the two O lone pairs.
In line with the C�O stretching is a red shift of its stretching

frequency, as is clear from the first two columns of Table 2.
These shifts are roughly proportional to the bond strength, and
range up to as high as 98 cm−1. Also of interest from a
spectroscopic perspective are the NMR chemical shifts of the C
and O atoms of acetone. The calculated shielding of these atoms
is listed in Table 2, along with their changes occasioned by the
complexation with each Lewis acid. It is clear that the shielding
on the C atom diminishes while that of the O center is boosted
by the interaction.
The amounts of each shift, whether IR orNMR, closely mirror

the noncovalent bond strength. This pattern is clearly depicted

Scheme 1. Dimers Examineda

aAbbreviations: HB-hydrogen bond, XB-halogen bond, YB-chalcogen
bond, ZB-pnicogen bond, TB-tetrel bond.
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by the close coincidence between the various points in Figure 1
and the broken line which represents the best linear fit. The R2

correlation coefficients between Eint and Δν(CO), Δσ(C), and
Δσ(O) are all equal to 0.96. Each of course has a different slope.

Table 1. σ-Hole Depth on Lewis Acid Monomer and Characteristics of Optimized Dimers with Me2CO
a

dimer Vmax Eint R(C�O) ΔR(C�O) R(O···L) θ(C�O···L)
HB

H2O 44.3 −6.92 1.210 0.006 1.910 114.9
CH4 8.7 −0.74 1.204 0.001 2.651 119.3
HF 69.7 −11.72 1.213 0.010 1.636 116.9
HCl 45.2 −7.07 1.211 0.007 1.804 120.8

XB
C6H5Br 9.2 −1.72 1.205 0.002 3.115 102.5
CF3Br 24.4 −3.33 1.207 0.003 2.921 127.9
FCl 42.0 −7.14 1.209 0.006 2.485 125.8
FI 60.8 −13.27 1.214 0.011 2.548 128.5

YB
C6H5SeF 28.0 −4.30 1.207 0.003 3.115 95.0
SF2 35.9 −6.90 1.209 0.006 2.618 122.2
SeF4 47.5 −10.78 1.213 0.010 2.617 130.4
TeF2 56.4 −15.29 1.217 0.013 2.533 128.8

ZB
C6H5AsF2 27.2 −5.09 1.208 0.004 2.908 121.6
PF3 28.4 −5.33 1.208 0.004 2.812 126.9
AsF3 40.6 −9.56 1.212 0.008 2.664 128.7
SbF3 50.0 −15.33 1.217 0.014 2.571 130.9

TB
C6H5GeF3 36.5 −7.04 1.208 0.004 2.723 127.5
GeF4 52.6 −29.31 1.224 0.021 2.111 129.3
SnF4 69.5 −36.36 1.228 0.024 2.210 129.5
PbF4 70.2 −31.09 1.227 0.023 2.323 127.8

aVmax and Eint in kcal/mol, distances in Å, angles in degrees.

Table 2. C�OVibrational Frequency (cm−1) andChemical Shielding (ppm) of C andOAtoms ofMe2CO, andChanges Incurred
by Complexation

dimer ν(C�O) Δν(C�O) σ(C) Δσ(C) σ(O) Δσ(O)

acetone 1854 −42.5 −457.4
HB

H2O 1832 −22 −52.3 −9.8 −403.7 53.7
CH4 1851 −3 −43.8 −1.3 −452.3 5.0
HF 1818 −36 −57.3 −14.7 −366.0 91.4
HCl 1823 −31 −53.7 −11.1 −398.1 59.3

XB
C6H5Br 1845 −8 −46.1 −3.6 −449.2 8.2
CF3Br 1842 −12 −47.2 −4.7 −432.7 24.7
FCl 1829 −24 −51.4 −8.8 −399.4 58.0
FI 1807 −46 −59.5 −16.9 −343.2 114.2

YB
C6H5SeF 1838 −16 −49.2 −6.7 −425.9 31.4
SF2 1829 −25 −51.8 −9.2 −407.0 50.4
SeF4 1812 −42 −58.0 −15.4 −379.3 78.0
TeF2 1811 −43 −62.6 −20.1 −341.1 116.2

ZB
C6H5AsF2 1835 −18 −50.6 −8.1 −420.0 37.4
PF3 1836 −18 −50.3 −7.8 −419.3 38.1
AsF3 1819 −34 −56.5 −13.9 −387.8 69.6
SbF3 1795 −59 −64.4 −21.8 −345.4 112.0

TB
C6H5GeF3 1837 −17 −50.0 −7.5 −409.3 48.1
GeF4 1777 −77 −71.0 −28.4 −285.0 172.4
SnF4 1759 −95 −77.7 −35.2 −258.0 199.4
PbF4 1756 −98 −75.6 −33.0 −283.3 174.1
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For example, the O shielding is more sensitive to noncovalent
bond formation than is that of C, not unexpected given that it is
the former atom that interacts directly with the Lewis acid. For
example, an interaction energy of 20 kcal/mol is associated with
a 125 ppm increase in the O shielding, while that of C drops by
only 20 ppm. The corresponding red shift of the C�O
stretching frequency is 60 cm−1. But importantly, these close
proportionalities are highly suggestive that one can arrive at a
good estimate of the bonding energy by a measurement of any
one of these spectroscopic quantities. It is interesting to note
finally that in contrast to the excellent correlation between bond
strength and C�O red shift, the intensity of this mode is poorly
correlated with Eint, with R2 equal to only 0.51. In fact, this
intensity enhancement is also poorly correlated (0.63) with the
frequency.
It is common in numerous studies of noncovalent interactions

to establish bonding by the presence of a bond path between
atoms via AIM interpretation of the electron density topology.
The numerical value of certain properties at the bond critical
point is frequently taken as a measure of the strength of any such
bond. In particular, the most commonly used in this regard are
the density ρ at this point, its Laplacian ∇2ρ, and the total
potential energy density V. These quantities are all displayed in
Table 3, along with the total kinetic energyG, and the ratio of the
two latter quantities in the final column. The relationship
between these AIM properties and the interaction energy can be
seen in Figure 2 to be very nearly linear. The correlation
coefficients for such a linear relationship are equal to 0.82 for ρ,
0.92 for ∇2ρ, and 0.87 for V. Hence, while the linearity is fairly
good, these AIM properties are not as accurate a yardstick of
bond energy as are the spectroscopic parameters above, with R2

= 0.96.
There has been some sentiment expressed in the literature

that the value of V is closely related to the noncovalent bond
energy.84−86 For example, the equation Eint = 0.5 × V has been
applied to HBs. When both are expressed in the same units, the
slope of the V curve in Figure 2 translates to a relationship of Eint
= 0.66 × V. If one were to extract a similar relationship from the
other parameters, they would be Eint = −1.00 × ρ and Eint =
−0.27× ∇2ρ. Note that these linear relationships encompass not
only HBs, but the wider panoply of other noncovalent bonds as
well.
In connection with AIM analysis, the full molecular diagrams

of each dyad are displayed in Figure S1. It may be noted there
that in addition to the noncovalent bond of interest to the

acetoneO, the AIM protocol draws a bond path inmany cases to
a methyl H atom. Although this bond is a weak one as judged by
the bond critical point density, its presence may be a factor in
worsening the correlation between Eint and the primary
noncovalent bond parameters.
Delving into the fundamental nature of each noncovalent

bond can offer clues as to their ultimate origin. The total
interaction energy of each bond was deconstructed into its
component parts by ALMO-EDA decomposition, which
provides electrostatic, dispersion, polarization, and charge
transfer as separate attractive elements, all countered by Pauli
repulsion. The magnitudes of these components are listed in
Table 4, along with their percentage contribution to the total
attractive energy. One feature that all of these bonds have in
common is the large electrostatic term. ES makes up more than
half of the total attraction, although this percentage contribution

Figure 1. Relationship between interaction energy and spectroscopic
measures of noncovalent bond strength.

Table 3. QTAIM Parameters (au) of Bond Critical Point
Connecting O of Me2CO with Lewis Base

dimer ρ ∇2ρ V G −G/V
HB

H2O 0.027 0.089 −0.024 0.023 0.958
CH4 0.006 0.022 −0.003 0.004 1.333
HF 0.053 0.094 −0.057 0.040 0.702
HCl 0.038 0.086 −0.035 0.028 0.800

XB
C6H5Br 0.010 0.039 −0.006 0.008 1.333
CF3Br 0.014 0.057 −0.010 0.012 1.200
FCl 0.029 0.119 −0.026 0.028 1.077
FI 0.034 0.113 −0.032 0.030 0.938

YB
C6H5SeF 0.010 0.037 −0.006 0.008 1.333
SF2 0.023 0.084 −0.019 0.020 1.053
SeF4 0.029 0.087 −0.022 0.022 1.000
TeF2 0.035 0.103 −0.032 0.029 0.906

ZB
C6H5AsF2 0.015 0.048 −0.010 0.011 1.100
PF3 0.016 0.052 −0.011 0.012 1.091
AsF3 0.023 0.068 −0.017 0.017 1.000
SbF3 0.032 0.090 −0.027 0.025 0.926

TB
C6H5GeF3 0.016 0.054 −0.013 0.013 1.000
GeF4 0.063 0.199 −0.082 0.066 0.805
SnF4 0.064 0.252 −0.085 0.074 0.871
PbF4 0.060 0.219 −0.071 0.063 0.887

Figure 2. Relationship between interaction energy and AIM measures
of noncovalent bond strength at bond critical point.
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is variable. ES ranges from 53% up to a maximum of 74%. Even
more varied are the other three terms. In some cases, it is charge
transfer that is the largest of the three, while in others it is
dispersion which can account for as much as 27%. There are
other cases where polarization energy is larger than either
dispersion (DISP) or charge transfer (CT).
Given this variability, it is perhaps not surprising that there is

likewise variation in terms of level of correlation with the
interaction energy. The polarization energy tracks most closely
with Eint, with R2 = 0.97, followed by 0.94 for CT. These
correlations are interesting given their small contributions to the
total in most cases. The proportionality drops off for the other
quantities. R2 is equal to 0.76 for ES, the largest contributor, and
only 0.68 for DISP.
One aspect of the electrostatic energy is associated with the

Coulombic attraction between the negatively charged O atom of
the acetone and the positive σ-hole of the Lewis acid. Since the
correlation between Eint and the entire ES component is less
than perfect, R2 = 0.76, it is sensible that the correlation with
simply Vmax is somewhat poorer. As listed in Table 5, which
summarizes all of these correlation coefficients, R2 is equal to
only 0.61 for Vmax.
As there appears to be a strong correlation between

polarization and charge transfer and Eint, it is instructive to
consider another perspective on these quantities. NBO analysis
of each of the dyads provides a number of quantitative measures
of these phenomena. Table S1 reports the energetic
consequence of the transfer of charge from each of the carbonyl
O lone pairs to the σ* antibonding orbital of the Lewis acid,
followed by their sum in the last column. These quantities vary
from 0.6 to 66 kcal/mol and are roughly proportional to the full
interaction energy. A linear relationship between these two

properties has a correlation coefficient R2 equal to 0.91. This
correlation is only moderate, and reflects the fact that this charge
transfer quantity is only one component of the full interaction
energy.
Overall, then, the most quantitatively accurate indicators of

noncovalent bond energy are the spectroscopic quantities:
NMR chemical shifts of O and C, and IR red shift of ν(CO),
along with the stretch of the C�O bond. The correlation
coefficients of all of these properties exceed 0.96. AIM
parameters are in reasonable accord with Eint, with R2 between
0.82 and 0.92; likewise for NBO E2. Within the context of the

Table 4. ALMO-EDA Decomposition of Interaction Energies (kcal/mol)a

dimer ES % PAULI DISP % POL % CT %

HB
H2O −20.00 74 20.05 −3.10 12 −1.71 6 −2.16 8
CH4 −2.52 66 3.10 −0.98 25 −0.17 4 −0.17 4
HF −33.78 72 35.36 −3.55 8 −4.13 9 −5.61 12
HCl −20.66 67 23.78 −3.26 11 −2.67 9 −4.25 14

XB
C6H5Br −6.57 63 8.67 −2.81 27 −0.40 4 −0.61 6
CF3Br −10.91 72 11.90 −2.58 17 −0.81 5 −0.94 6
FCl −21.54 66 25.43 −4.17 13 −1.85 6 −5.02 15
FI −21.21 53 26.50 −6.45 16 −5.19 13 −6.91 17

YB
C6H5SeF −11.87 64 14.34 −5.05 27 −0.82 4 −0.91 5
SF2 −21.93 67 25.68 −5.45 17 −1.82 6 −3.37 10
SeF4 −32.07 70 35.24 −6.25 14 −3.75 8 −3.98 9
TeF2 −26.34 55 32.99 −8.29 17 −6.90 14 −6.75 14

ZB
C6H5AsF2 −17.30 68 20.37 −5.35 21 −1.38 5 −1.39 5
PF3 −18.13 70 20.58 −4.87 19 −1.40 5 −1.50 6
AsF3 −29.08 70 31.87 −6.20 15 −3.26 8 −2.86 7
SbF3 −27.47 57 32.48 −8.27 17 −7.21 15 −4.82 10

TB
C6H5GeF3 −30.51 73 34.80 −7.14 17 −2.10 5 −2.07 5
GeF4 −86.21 67 99.32 −10.74 8 −18.85 15 −12.84 10
SnF4 −56.03 57 61.51 −9.11 9 −19.63 20 −13.09 13
PbF4 −47.92 56 54.48 −9.05 11 −14.79 17 −13.82 16

aES = electrostatic term, PAULI = Pauli repulsion, DISP = dispersion, POL = polarization, CT = charge transfer. Percentage contributions refer to
fraction of sum of attractive elements.

Table 5. Correlation Coefficients Relating Interaction Energy
with Indicated Property

property R2

Δν(C�O) 0.96
Δσ(C) 0.96
Δσ(O) 0.96
Δr(C�O) 0.98
θ(C�O···L) 0.21
ρ 0.82
∇2ρ 0.92
V 0.87
G 0.82
ES 0.76
Pauli 0.75
DISP 0.68
POL 0.97
CT 0.94
Vmax 0.61
E(2) 0.91
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energy components, POL is best (0.97), followed by CT (0.94).
The other parameters are in poorer coincidence with Eint,
despite their larger magnitudes. It is gratifying to note finally the
recent observation69 that stretching frequencies of the C�O
group computed by quantum calculations of the sort employed
here can provide excellent reproductions of its red shift caused
by noncovalent bonding when compared to experimental data,
particularly within the context of the M06-2X functional which
was applied here.
Geometry Variations. The data discussed above were all

extracted from full geometry optimization of each dyad. Such a
situation would be most appropriate when each system is free of
any external forces that might influence the most favored
structure. On the other hand, some of these types of noncovalent
bonds may occur in an intramolecular setting, where the two
interacting elements are part of an overall molecular backbone
that prevents the two components from achieving their desired
geometry. Another relevant situation places the bonding species
in the solid state, where the geometry between the two species of
interest is altered by crystal packing forces.
In an effort to examine how such external forces, and their

perturbing effect on the noncovalent bond geometry, influence
the various spectroscopic facets, five of the complexes, each
representing a different sort of bond, were examined in more
detail. The intermolecular distance of each was systematically
lengthened in uniform increments. Beginning with the fully
optimized structure, the intermolecular distance was stretched
by 1.0 Å in 5 increments of 0.2 Å. For each such distance, the
intermolecular angle was held as that of the optimized dimer, but
the remainder of the geometry was optimized.
The data describing the energetic, geometric, and spectro-

scopic variations arising from these elongations are contained in
Tables S2 and S3. Figure 3 illustrates how these stretches affect

the energetics and spectroscopic markers of one particular
system pairing acetone with FCl in a halogen bond. The
horizontal axis refers to the interaction energy, which becomes
progressively less negative from left to right as the XB stretches
and weakens. The weakening is reflected in a continuous drop of
the magnitude of the red shift of the C�O stretching frequency,
as indicated by the red curve. Also dropping inmagnitude are the
shielding increase of O and the decrease of C, the green and blue
curves, respectively. Of particular note are the very near linear
dependencies of each of these quantities upon the weakening

interaction energy. Indeed, the correlation coefficients R2 for
these relationships are all equal to 0.96.
This pattern is not unique to the XB involving FCl. Diagrams

akin to Figure 3 were also generated for the other four complexes
subject to the same analysis. The corresponding diagrams
presented in Figure S2 are remarkably similar to that for the XB,
as is the very near linearity of the spectroscopic indicators to the
interaction energy. The correlation coefficients are all between
0.93 and 1.00. So one may conclude that the pertinent
spectroscopic indices, both IR and NMR, can be used as
accurate indicators of bond strength, as external forces stretch
and weaken each sort of bond. Not only does this linear
relationship apply to five different sorts of noncovalent bond, but
also to those of widely varying strength, from 7 to 30 kcal/mol.

■ CONCLUSIONS
There is a clear and definitive linear relationship between the
bond strength and several of the spectral characteristics of the
Me2CO electron donor. This relationship spans a wide gamut of
noncovalent interactions, from hydrogen to halogen, chalcogen,
pnictogen, and tetrel bonds. Equally diverse is the range of
interaction energies, from 1 to as much as 36 kcal/mol. The
frequency of the C�O stretching band of H2CO is red-shifted
proportionately to the strength of the bond, such that each 10
cm−1 reduction in ν(C�O) signals a bond strengthening of
some 3.7 kcal/mol. The NMR shielding of the O nucleus is
enhanced by the interaction, rising by 55 ppm for an energy
increase of 10 kcal/mol. This same energy rise lowers the C
shielding, but by a somewhat lesser amount, of 10 ppm. AIM
measures of bond strength are highly accurate, closely correlated
with interaction energies for the full set of different bond types.
These close relationships persist as the various bonds are
weakened by stretching the two units apart, so would be useful
when considering intramolecular bonds, and those occurring
within crystals. The reader should, however, exercise due
caution in applying the principles extracted here from
calculations of isolated dimers to systems enmeshed in a crystal
where other interactions and crystal packing effects might
weaken and even obscure the expected correlations.87
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