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ABSTRACT: The viability of the P==Se bond to serve as a monitor of the strength of a ’
noncovalent bond was tested in the context of the (CH;);PSe molecule. Density @ P

functional theory (DFT) computations paired this base with a collection of Lewis acids @ ‘ ¢ noncovalent
that spanned hydrogen, halogen, chalcogen, pnicogen, and tetrel bonding interactions @ ! bond

and covered a wide range of bond strengths. A very strong linear correlation was J &l

observed between the interaction energy and the nuclear magnetic resonance (NMR) @ '7;$

'J(PSe) coupling constant, which could serve as an accurate indicator of bond strength. ‘

Also correlating very well with the interaction energy is the stretch of the P=Se bond H IR and NMR of P=Se bond
caused by complexation and the red shift of its stretching frequency. Moderate ; as matker of noncovalent bond
correlations arise in the chemical shifts of the P and Se nuclei. The 6—hole depth on the
Lewis acid is poorly correlated with the energetics, and the same is true for the full
electrostatic contribution to the bond energy. Of the various components, it is the polarization energy that correlates most closely
with the interaction energy.

strength

Bl INTRODUCTION sion."””** Also in common with the HB, each o—hole bond
is strengthened by electron-withdrawing substituents on the
Lewis acid, which intensify this hole. Another factor that enters
into the equation is the row of the periodic table. The
increasing polarizability and diminishing electronegativity

The prevalence and importance of the H-bond (HB) has
motivated intense scrutiny over the last century. This
noncovalent interaction is a major player in solvation and
the structure and function of a wide range of biological

systems.' > The HB is partly responsible for the stability of enhance the bond as the bridging atom moves down further
proteins and the mechanism of numerous enzymes. A key in the periodic table, for example, the Cl < Br < I sequence for
means of probing this phenomenon is spectroscopy. One can halogen bonds. First-row atoms, i.e,, F, O, N, and C, engage in
take as a quantitative measure of the strength of each such only weak bonds of this type, if at all, but can be coaxed into
bond the degree of shift and intensification that occurs in measurable interactions by appropriate substituents or adding
certain infrared (IR) bands; an alternate metric is associated a charge.”*™*
with the displacement of various nuclear magnetic resonance Unlike the wide-ranging study of the connection between
(NMR) peaks.s_8 The Badger—Bauer rule relates strength of a HB strength and its spectroscopic parameters, such relation-
given HB to the red shift observed in the covalent A—H ships are only now beginning to appear with regard to these
stretching frequency of the proton donor,”™"" NMR spectros- o—hole bonds. As is typical in such emerging studies, the
copy offers a similar window, using the downfield shift of the Prevjous Work34’41_56 has been falrly scattered’ Vjewjng each
NMR peak of the bridging proton as its key parameter. particular system individually. The time is ripe for a thorough
The last few decades have reawakened interest in a set of and systematic treatment of the way in which this bonding
noncovalent bonds that bear a striking resemblance to the HB. affects the spectra as well as an understanding by which these

In each, the HB proton bridge is replaced by a larger atom,
many but not all more electronegative than H. The overall
partial charge of the original H occurs instead as a 6—hole, a
smaller positive region, surrounded by a negative belt.
Depending upon the family of elements from which this
replacement atom is drawn, each such o—hole bond is
commonly categorized as a halogen, chalcogen, pnicogen
bond, and so forth. But the basics of the HB remain: these
noncovalent interactions derive their strength from a mixture
of electrostatic, polarization, charge transfer, and disper-

perturbations occur. Such information would permit their
unambiguous detection in a given chemical or biological
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system. It would also be especially useful if correlations could
be established between certain spectroscopic parameters and
the strength or geometry of a given bond, as it has proven to be
very informative for HBs over the ears.

Work from this laboratory®””’ ™" has examined this
question for a number of types of noncovalent bonds. While
a certain correlation was observed between bond strength and
IR and NMR features of the Lewis acid, these correlations are
generally too tenuous to serve as a true quantitative yardstick
or only apply to a limited subset of molecules. In contrast to
the acid, relationships have been found to be more robust in
the context of the Lewis base unit.**®"%* As an early example, a
theoretical study in 1990,°* based on prior observations,**®’
observed a strong linear relationship between the interaction
energy and the shift of the C=O stretching frequency of
H,CO when paired with a number of ions.

Later investigations expanded the scope beyond the HB to
its related noncovalent sisters. It was found®” that the spectral
and other perturbations caused by these sorts of bonds upon a
peptide mimic Lewis base correlated with the bond energy
much better than correlatlons involving the Lewis acid unit. A
more recent work® observed that the change in the stretching
frequency of the C=O bond of a carboxyl group might
accurately gauge noncovalent bond strength 1n certain
situations. Further tests of this idea were fruitful,’’ revealing
a strong linear relationship between the red shift of the C=0
stretching frequency of acetone, as well as the NMR shielding
on its C and O atoms, with the strength of a diversity of
noncovalent bonds, covering the full range of hydrogen,
halogen, chalcogen, pnicogen, and tetrel bonds.

The immediate question arises as to whether it is only the
carbonyl C=0 for which spectroscopic quantities serve as an
accurate measure of intermolecular bond strength. Other work
has suggested that the heavier elements involved in the P===Se
bond might harbor similar possibilities. An early work®
suggested the (CH;);P==Se molecule as a possible model,
focusmg on the 'J(PSe) spin—spin coupling constant. A 2014
paper® bore directly on the P=Se bond in the context of
PSe---I halogen bonding between triphenyl phosphine and a set
of iodoperfluorobenzene derivatives. Direct relationships were
observed among halogen bond strength, the 'J(PSe) coupling
constant, and the Se chemical shift, albeit with only three
different systems examined. A pair of very recent studies’””'
have highlighted the usefulness of R;PSe molecules as potential
probes of such bonding via their NMR properties.

The present work is designed to examine this issue in a
thorough and systematic manner so as to evaluate the viability
of molecules of the R;PSe type to act as an accurate probe of
noncovalent bond strength. Rather than limit the bond type to
one particular sort, the quantum calculations cover the full
gamut, from H-bonds to halogen, chalcogen, pnicogen, and
tetrel bonds. The selection of Lewis acids used to pair with the
P==Se base range from quite weak to very strong so as to
explore the entire range of bond strength.

B METHODS

Geometry optimizations were carried out via the Gaussian 16
(Rev. C.01) package.”” The density functional theory (DFT)
protocol was applied using the M06-2X functional,””~"> within
the framework of the def2-TZVPP basis set. M06-2X has been
repeatedly assessed to be one of the most accurate functionals
for noncovalent interactions.”*”®* The lack of imaginary

harmonic frequencies affirmed the structures as true minima.
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The Boys—Bernardi counterpoise procedure®® corrected the
basis set superposition error (BSSE). The molecular electro-
static potential (MEP) was analyzed so as to locate and
quantify the extrema on the 0.001 au electronic isodensity
contour of the isolated monomers, utilizing the MultiWFN
software.*®” Graphical postprocessing of MEP results was
performed using the visual molecular dynamics (VMD)
software.*® QTAIM analysis®””® of the electron density
topology, by way of the AIMAIl program’' located bond
paths and their associated bond critical point parameters.
Decomposition of the interaction energy into its various
components was accomplished in the framework of the
ALMO-EDA scheme via Q-Chem 6% software.

B RESULTS AND DISCUSSION

The molecular electrostatic potential (MEP) surrounding
Me;PSe is illustrated in Figure 1, where the red and blue

Figure 1. Molecular electrostatic potential (MEP) surrounding
Me;PSe. Blue and red regions refer respectively to positive and
negative MEP. A small red ball indicates the position of minimum on
0.001 au isodensity surface, distance in A, and angle in degs.

areas correspond, respectively, to negative and positive
potential. The minimum on the 0.001 au isodensity surface
is indicated by the small red ball, which lies 2.384 A from the
Se and which makes an angle of 107.3° with the P=Se bond
axis. The value of this MEP minimum is —29.4 kcal/mol. A
diverse set of Lewis acids was chosen to pair with Me;PSe.
This list displayed in Scheme 1 results in the formation of
hydrogen (HB), halogen (XB), chalcogen (YB), pnicogen
(ZB), and tetrel (TB) bonds. The central atom of each acid

Scheme 1. Dimers Examined”

by

b —cu
HB XB,YB, ZB,TB
b‘% N
H Lewis Acid
)

Lewis acids in complexes with Me3;P=Se

HB XB YB 7B TB
HZO CﬁHsBI‘ CéHsseF CeHsASFz CGHssnF3
CHa CF3Br SF> PF3 GeF4
HF FCl SeF4 AsF3 SnF4
HCl FI TeF> SbF3 PbF,4

“Abbreviations: HB — hydrogen bond, XB — halogen bond, YB —
chalcogen bond, ZB — pnicogen bond, TB — tetrel bond.
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Table 1. Electrostatic Extrema of Monomers, Interaction Energies, and Geometrical Parameters of Dimers of Lewis Acids with

(CH,),P=Se”

dimer Vimax Ei R (P=Se) AR (P=Se) R (Se--L) 6 (P=Se---L)

(CH;);P=Se —29.4° 2.101

HB

H,0 443 —-8.98 2.118 0.017 2.550 78.3
CH, 8.7 -1.59 2.103 0.002 3211 74.9
HF 69.7 -11.73 2.122 0.021 2313 80.1
HCI 452 —8.63 2.119 0.018 2363 83.8
XB

CHBr 92 —3.14 2.106 0.005 3.647 83.1
CF,Br 244 —4.62 2.110 0.009 3.467 86.1
FCl 42 -15.33 2.133 0.032 2.666 86.7
FI 60.8 —21.69 2.141 0.040 2.883 92.4
YB

CHSeF 28 —12.51 2125 0.024 3.124 95.0
SF, 359 —8.84 2.119 0.018 3.052 87.6
SeF, 47.5 —-17.42 2.137 0.036 2.998 96.2
TeF, 56.4 —20.61 2.143 0.042 2.944 93.5
ZB

CHASF, 272 —6.75 2.112 0.011 3.534 93.9
PF, 284 —4.18 2.108 0.007 3.486 87.8
AsF, 40.6 —11.42 2122 0.021 3.247 96.0
SbE, 50 —18.61 2.136 0.035 3.156 97.0
TB

CH,SnF, 269 —52.65 2.176 0.075 2675 98.0
GeF, 526 —33.49 2152 0.051 2.683 97.1
SnF, 69.5 —50.88 2172 0.071 2.701 96.8
PbF, 702 —55.79 2.186 0.085 2.706 96.2

“Electrostatic potential and energy in kcal/mol,

distances in A, angles in degrees. by,

s,min

Figure 2. Geometries of representative dyads of Me;PSe with (a) HCI, (b) CF;Br, (c) TeF,, (d) AsF;, (e) SnF,.

contains a positive 6—hole, which would naturally align with
the negative Se region of the base. The depth of each 6—hole is
labeled V., and is listed in the first column of Table 1 for
each of the Lewis acids. There is a large range of this value,
varying between 9 and 70 kcal/mol.

Geometries and IR Spectra. After each Lewis acid
molecule was placed in the vicinity of the Se atom of Me;PSe,

the geometry of the dyad was fully optimized, after which a
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number of properties were elucidated, some of which are
reported in Table 1. The optimized structures of some selected
dyads are displayed in Figure 2. Just as the o-hole depths, the
interaction energy covers a wide range, varying from less than
1.6 kcal/mol for the very weak CH---Se HB with CH, to up to
56 kcal/mol for the tetrel bond with PbF,. Formation of each
noncovalent bond causes the P=Se bond of the base to
stretch in the amounts listed in the fourth column of Table 1.

https://doi.org/10.1021/acs.jpca.4c08283
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The stretch is quite substantial for the more strongly bound
dyads, nearly 0.1 A. Finally, the last two columns contain the
most important intermolecular parameters, both the distance
between Se and the attacking atom of the Lewis acid L and the
angle that this bond makes with the P—Se axis of the base.
These angles are fairly small, considerably less than the 107,°
which marks the position of the minimum of the MEP. The
intermolecular distances cover a wide range, between 2.3 and
3.6 A. The small radius of the H nucleus leads to the shortest
distances in the upper part of Table 1.

Given the substantial stretching of the P=Se bonds upon
complexation, it is not surprising to note the ensuing red shift
of this bond’s stretching frequency. These quantities in Table 2

Table 2. Computed Vibrational Spectral Parameters of
Dyads

v (P=Se) Av (P=Se) I (P=Se)
dimer cm™ cm™ /mol [——
(CHy), 461 25
P==Se

HB

H,0 452 -9 29 1.16
CH, 460 -1 24 0.98
HF 449 —-12 26 1.04
HCI 450 —-11 25 1.01
XB

C¢H,Br 457 —4 23 0.92
CF;Br 456 =5 25 1.01
FCl 442 -19 46 1.83
FI 438 -23 41 1.64
YB

CeH,SeF 446 -15 30 121
SE, 450 —11 27 1.08
SeF, 440 =21 25 1.00
TeF, 436 =25 32 1.27
7B

C4HASF, 455 -6 25 1.02
PF; 456 =5 27 1.07
AsF, 449 -12 31 125
SbF, 441 20 35 1.38
TB

C4HSnF, 427 —34 19 0.76
GeF, 43S -26 19 0.75
SnF, 424 -37 23 0.93
PbF, 416 —45 28 1.14

vary from 1 cm™! for the very weakly bound CHj all the way
up to 45 cm™ in the case of the tightly bound tetrel bond with
PbF,. The last two columns of Table 2 report the calculated
intensity of this band and the ratio between that in the
complex and the intensity of the monomer. In most cases, this
intensity is magnified, but there are also cases where it is
diminished, particularly for the tetrel bonds at the bottom of
the Table.

The stretch of the P=Se bond and the red shift of its
stretching frequency serve as excellent markers of the strength
of the bond. Figure 3 shows that there is a strong linear
correlation between each of these quantities and E;,. The
correlation coefficients R” for AR and Av are equal to 0.97 and
0.92, respectively. The slope of the Av line is such that each 10
cm™' decrement of the stretching frequency translates to some
13 kcal/mol rise in the interaction energy.
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Figure 3. Relation between interaction energy and stretch of
intermolecular distance and red shift of P===Se stretching frequency.
The equations of best fit are AR = 1.41(-E;,,) + 5.0 and Av =
—0.68(—E,,,) — 4.4, with respective correlation coefficients equal to
0.97 and 0.92.

NMR Properties. In addition to IR data, NMR
spectroscopic parameters have proven their worth for assessing
H-bond strengths. Some of the NMR properties of electron
donor Me;PSe are reported in Table 3. The first column lists
the chemical shielding ¢ of the P atom, followed in the next
column by the chemical shift § relative to the H;PO, standard.
The following column calculates the change in this shift
induced in the base by the interaction with the indicated Lewis
acid. The positive quantities for AS(P) reflect a reduced
shielding and are as large as 11 ppm. The next three columns
collect analogous data for the Se nucleus, which has ¢ values
between —276 and +137 ppm. Due in large measure to its
direct interaction with the acid, the perturbations of ¢ for the
Se nucleus are much larger than for P, some as large as 400
ppm. Again, the positive values of these changes in J indicate
deshielding caused by the bonding. The final two columns of
Table 3 display the coupling constant between the P and Se
nuclei, which is —636 Hz for the unperturbed base. The
noncovalent bonding with the various acids causes this
quantity to become less negative and by a substantial amount.
The largest AJ of 257 Hz constitutes a drop in magnitude by
some 40%.

The NMR spectroscopic perturbations arising from
complexation correlate with the interaction energy, albeit not
as closely as does the red shift of the P=Se stretch. The
relationships are delineated in Figure 4, where the orange curve
corresponds to the change in the P—Se coupling constant. The
blue and green points refer to the change in the chemical shifts
of Se and P, respectively (with the latter multiplied by a factor
of 10 to fit into the same diagram as the others). The Se
shielding changes are rather scattered, with a correlation
coefficient of only 0.58. The corresponding P shifts are a bit
more focused with R*> = 0.64. But these correlations are
probably not strong enough that these changes can be used as
an accurate barometer of bond strength. The coupling
constant, however, does correlate very well with E; . Its
correlation coefficient is 0.96, allowing it to provide a very
strong connection between NMR spectroscopy and the bond
strength.

There is experimental verification of some of the trends
observed here. Earlier studies® of PSe--I halogen bonding
found that strengthening of the noncovalent bond diminishes
the magnitude of J(PSe), as was noted here in Table 3. Also
consistent with the computational data is the increase in the
chemical shift of both P and Se. Another aspect of the

https://doi.org/10.1021/acs.jpca.4c08283
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Table 3. Computed NMR Parameters of Dimers

dimer o(P)? 5(P)° AS(P)? o(Se) 5(Se) AS5(Se) Tose AJps.
(CH,),P=Se" 250.8 402 21359 —273.0 —636
HB
H,0 2453 45.8 5.6 2129.6 —266.7 6.3 —582 54
CH, 2503 40.7 0.5 21384 —275.5 25 —630 7
HF 2442 46.9 6.6 2123.0 —260.1 13.0 —559 78
HCI 246.1 45.0 4.7 2082.8 —219.9 532 —571 66
XB
C4H,Br 249.7 414 12 21213 —258.4 14.6 —622 15
CF,Br 249.0 42.1 1.9 2106.0 —243.1 30.0 —608 29
FCl 2419 492 9.0 1972.8 —~109.9 163.1 -516 121
FI 241.7 49.4 92 2075.1 —2122 60.9 —500 137
YB
CH,SeF 246.7 444 42 20163 —153.4 119.7 —572 65
SF, 245.8 45.3 5.1 1998.3 —1354 137.7 —577 59
SeF, 244.0 47.1 6.8 1907.4 —44.5 228.5 —526 110
TeF, 2423 48.8 8.6 1885.1 -222 250.8 —510 126
7B
C4H,ASF, 247.6 434 32 2099.6 —236.7 36.4 —604 32
PF, 250.0 41.1 0.9 2084.5 —221.6 514 -610 27
AsF, 246.1 45.0 4.8 2036.0 —-173.1 99.9 —-570 66
SbE, 243.8 472 7.0 19722 —-109.3 163.7 -529 107
TB
CeH,SnF, 240.7 50.4 10.1 1947.8 —84.9 188.1 —407 229
GeF, 244.6 46.4 62 1957.8 —94.9 178.1 —470 166
SnF, 2419 49.1 8.9 1945.7 —82.8 190.2 —411 225
PbF, 239.7 514 112 1725.5 1374 410.5 -379 257

Shielding (o) and shift (8) in ppm, coupling constant (J) in Hz “data for the (CH;);P==Se monomer, b - shielding constant, “5 - chemical shift

calculated from the formula:5 = o(reference) — oo (reference) for *'P is 291.1 ppm (reference compound H;PO,), while for "’Se the o(reference)
is 1862.9 ppm (reference Se(CH,),). NS = &(complex) — (monomer)

100 ®

300

e . -~ ®
Adg. ppmM_-— _ —o®
200 ‘ zl/l/// ST
R AJ, Hz

100 e —

<7 10x ASp, ppm

0 10 20 30 10 50 60

-E. ., kcal/mol

nt>

Figure 4. Relation between interaction energy and NMR parameters.
The equations of best fit are A, = 4.78(=E,,) + 314, A] =
4.29(—E,,,) + 19.6, and 10 X ASp = 1.51(—E,,) + 29.9 with respective
correlation coefficients equal to 0.58, 0.96, and 0.64.

computations supported by the X-ray data is the stretch of the
P=Se bond caused by complexation. With regard to absolute
values, the J(PSe) computed here for Me;PSe of 636 Hz is
quite similar to a measurement of 635 Hz in solution.”’ R;PSe
was directly involved in Se---I and Se--Br halogen bonding
with aromatic Lewis acids.”" This bonding led to a decrease in
J(PSe) and a deshielding of the Se nucleus, consistent with the
calculations described above.

Electron Density. The topology of the electron density
offers other sorts of insights into the nature and strength of
bonding. Whether the density is elucidated directly from
diffraction data or calculated quantum mechanically, one can
apply the Atoms in Molecules (AIM) methodology to
elucidate bond paths connecting atoms to one another. The

numerical values of certain properties at the bond critical point
joining Se to the Lewis acid atom L are thought to accurately
assess the strength of each bond. The most commonly used
parameters for this purpose are listed in Table 4, where p refers
to the density at the bond critical point, and V?p its Laplacian.
V and G correspond to the potential and kinetic energy
densities, respectively, and their ratios are listed in the final
column. The relationship between some of these AIM
properties and the interaction energy can be seen in Figure 5
to be nearly linear. The correlation coefficients for such a linear
relationship are equal to 0.83 for p but only 0.31 for V?p, so
the latter quantity is ruled out as a useful measure of bond
strength. The best correlation is achieved for the potential
energy density V, for which R* = 0.89.

Some previous papers have taken the value of V as a
proportional measure of the noncovalent bond energy.”*~"°
For example, the equation E;,, = 0.5 x V has been applied to H-
bonds. When both are expressed in the same units, the slope of
the V curve in Figure S for the Se---L bond translates to a much
steeper relationship of E;, = 1.8 X V. In other words, each 0.01
au (equal to 6.3 kcal/mol) increment in the magnitude of V
corresponds to a 10 kcal/mol rise in the interaction energy.

In connection with the AIM analysis, the full molecular
diagrams of each dyad are displayed in Figure S1. It may be
noted there that in addition to the noncovalent bond of
interest to the Se on the base, the AIM protocol draws a bond
path in many cases to a methyl H atom. Although these bonds
are weak as judged by their bond critical point densities, their
presence would tend to deteriorate the correlation between E;,

549 https://doi.org/10.1021/acs.jpca.4c08283
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Table 4. QTAIM Parameters for Dyads, All in au of Electron
Density (electron/Bohr’) or Energy (Hartree)

dimer p Vp v G -G/V

HB

H,O 0.017 0.039 —0.009 0.010 1.11
CH, 0.006 0.014 —0.002 0.003 1.50
HF 0.027 0.037 —0.017 0.013 0.76
HCI 0.027 0.036 —0.015 0.012 0.80
XB

C¢HsBr 0.009 0.024 —0.004 0.005 1.25
CF;Br 0.012 0.031 —0.006 0.007 1.17
FCl 0.048 0.069 —0.031 0.024 0.77
FI 0.043 0.051 —0.028 0.020 0.71
YB

CsH;SeF 0.023 0.042 —0.012 0.012 1.00
SE, 0.024 0.046 —0.013 0.012 0.92
SeF, 0.034 0.038 —0.017 0.013 0.76
TeF, 0.038 0.041 —0.024 0.017 0.71
7B

C4H;AsF, 0.012 0.024 —0.005 0.006 1.20
PF; 0.012 0.023 —0.005 0.006 1.20
AsF; 0.020 0.030 —0.010 0.008 0.80
SbF, 0.027 0.029 —-0.014 0.011 0.79
TB

CH,SnF, 0.056 0.065 —0.045 0.031 0.69
GeF, 0.049 0.008 —-0.037 0.020 0.54
SnF, 0.054 0.057 —0.042 0.028 0.67
PbF, 0.061 0.059 —0.046 0.030 0.65
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Figure S. Relation between interaction energy and AIM properties of
Se-L bond critical point. The equations of best fit are p =
0.0009(—E,,) + 0.013, V% = 0.0005(=E,,) + 0.028, and V =
0.0008(—E,,.) — 0.0004 with respective correlation coefficients equal
to 0.83, 0.31, and 0.89.

that represents an aggregate of any bonding interactions and
the primary noncovalent bond parameters.

Energy Decomposition. One can extract fundamental
insights into the nature of a given noncovalent bond by
partitioning the total interaction energy into its physically
meaningful components. The total interaction energy of each
dyad was separated into its components by ALMO-EDA
decomposition, which provides electrostatic (ELEC), dis-
persion (DISP), polarization (POL), and charge transfer
(CT) as separate attractive elements, all countered by Pauli
repulsion. The magnitudes of these components are listed in
Table S, supplemented by their percentage contribution to the
total attractive energy. The first feature that arises from the
inspection of these quantities is the major contribution arising
from electrostatics. ELEC accounts for between half and 2:3 of
the total attractive force. Dispersion and charge transfer are
comparable to one another, with their relative contributions
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being variable across the spectrum of systems. In general, CT is
the larger of these two for the tetrel bonds, while the reverse is
true for the pnicogen bonds. The polarization energy is
typically the smallest component but does account for a larger
share of the tetrel bonds.

Given this variability, it is logical that none of these
quantities in and of themselves serve as a suitable barometer of
the full interaction energy. The polarization tracks the best,
with R* = 0.91. DISP is worse, with a correlation coefficient of
only 0.59. Given its fairly large share of the total, the
performance of ELEC is disappointing in this respect, with a
correlation coefficient of 0.22, with CT even worse at 0.18.
One component of the electrostatic energy is associated with
the Coulombic attraction between the negatively charged Se
atom of the base and the positive 6—hole of each Lewis acid.
Since the correlation between E,,, and the entire ES
component is poor, it is sensible that the correlation with
simply V.., is equally weak, only 0.31.

Comparison with Carbonyl Group. The double-bonded
P=Se group of Me;PSe has certain similarities with the C=0
carbonyl of Me,CO, so a direct comparison offers the
opportunity to learn more about each from a fundamental
perspective. The similarly methylated Me,CO was studied
recently by an identical theoretical approach®” which facilitates
such comparisons. The interaction energies involving Se as the
electron donor tend to be somewhat larger. The halogen bond
to IF, for example, rises from 13.3 kcal/mol for Me,CO up to
21.7 for Me;PSe. The tetrel bonds are particularly enhanced:
for example, the bonds to PbF, are 31.1 and 55.8 kcal/mol,
respectively. The stronger interactions with the Se arise despite
the V;, on this atom being less negative at —29.4 kcal/mol, as
compared to —37.2 on the O center of Me,CO. As a second
distinction, the P==Se bond is much more “stretchable” than
C=O0. The changes in the former bond length arising from the
interactions with each Lewis acid are considerably larger.
Another distinction related to the geometries is that the O(P=
Se---L) angles are much more acute than those for (C=0--
L), which hover around 120°.

With regard to spectroscopic data, the red shifts of the P—=
Se stretching frequency are considerably smaller than those of
C=O0. For example, the largest such shift observed here for
P=Se is —45 cm™}, as compared to —98 cm™! for the
carbonyl. Some of this contrast may be due to the heavier P
and Se atoms. NMR chemical shifts on the P atom caused by
complexation are in the same direction as the C of C=0, with
both experiencing a reduced shielding. The magnitudes are
quite a bit smaller for P than C, however, by a factor of 3 in
some cases. It is the atom directly involved in the interaction
where the two types of systems most strongly diverge. Whereas
the shielding on the carbonyl O atom is increased by the
various noncovalent bonds, that on the Se drops. There is a
slightly lesser dependence of the Se---L interaction energies on
the electrostatic component, as compared to carbonyl, which is
compensated by a larger charge transfer element.

B CONCLUSIONS

Table 6 summarizes the ability of each quantity considered
above to predict the interaction energy. The table is organized
with a diminishing correlation coefficient from top to bottom.
As may be seen, the stretch of the P=Se bond length tracks
the best with bond energy, with a correlation coefficient of
0.97. Also, an excellent predictor is the NMR P—Se coupling
constant, with R* = 0.96. Related to the P=Se bond stretch is
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Table 5. ALMO-EDA Decomposition of Interaction Energies (kcal/mol)”

dimer Eine ELEC % PAULI DISP

HB

H,0 —-8.98 —-19.24 67 19.56 —4.78
CH, -1.59 —4.64 ss 691 -2.84
HF —-11.73 -22.01 64 22.77 —4.62
HCI -8.63 -1822 57 23.60 -5.00
XB

CeHBr -3.14 —8.75 s8 11.96 —4.08
CF,Br —4.62 —11.49 60 14.69 —4.35
FCl -15.33 -31.94 44 57.77 -8.13
FI —21.69 —41.49 48 64.33 —11.16
YB

CeH;SeF —12.51 —28.46 3 40.99 -12.28
SF, —8.84 —22.37 ss 32.01 743
SeF, —17.42 —38.76 56 51.76 —10.14
TeF, —20.61 —41.10 50 60.95 —11.66
7B

CHASF, —6.75 —17.69 62 21.66 -6.87
PF, —4.18 —-11.92 8 16.54 522
AsF, —11.42 —26.50 61 31.69 -7.93
SbF, —18.61 —32.02 54 41.00 -10.94
TB

CHSnF, —52.65 —77.47 3) 95.21 -13.20
GeF, —33.49 —64.46 56 82.11 —12.67
SnF, -50.88 —71.55 52 86.45 -12.71
PbF, —55.79 —80.26 50 103.38 —13.85

% POL % CT % total
17 —-1.89 7 -2.63 9 —8.98
33 —-0.41 S —0.60 7 —-1.59
13 -2.93 8 —4.94 14 —-11.73
16 —-2.38 7 —6.62 21 —8.63
27 —0.68 S -1.56 10 -3.11
23 —0.99 S —2.46 13 —4.60
11 —4.42 6 —28.58 39 —15.30
13 —-8.30 10 —25.06 29 —21.68
23 -3.99 7 —8.78 16 —12.51
18 —2.22 S —8.80 22 —8.82
15 -5.69 8 —14.60 21 —17.43
14 —8.76 11 —-20.03 25 —20.60
24 —1.44 S —2.45 9 —6.78
25 -1.14 S —2.46 12 —4.19
18 -3.01 7 —5.65 13 —11.40
18 —6.59 11 —10.01 17 —18.56
9 —28.08 19 -29.11 20 —52.64
11 —17.53 15 —-20.97 18 —-33.51
9 —25.32 18 —-27.75 20 —50.88
9 —24.43 15 —40.67 26 —55.83

“Electrostatic term (ELEC), Pauli repulsion (PAULI), dispersion (DISP), polarization (POL), charge transfer (CT). Percentage contributions are

listed as fraction of sum of attractive elements.

Table 6. Correlation Coefficients Relating Interaction
Energy with Indicated Property for a Set of 20 Dimers

property R?
AR (P=Se) 0.97
Alpse 0.96
Av (P=Se) 0.92
%POL 091
\%4 0.89
P 0.82
A5(P) 0.64
%DISP 0.59
A5(Se) 0.58
-G/V 0.49
£(P=Se--L) 0.40
V2 0.31
Vi max 0.31
%ELEC 0.22
R (Se-L) 0.21
%CT 0.18
Leomp/ T 0.03

the red shift of its vibrational frequency, where the correlation
coefficient is still excellent at 0.92. Given the small
contribution of the polarization energy to the total interaction,
it is surprising to note that it is a fairly good match with the
latter, with R* = 0.91. Of the various AIM quantities, it is the
potential energy density that best matches the interaction
energy, with a correlation coefficient of 0.89, followed by the
density for which R* = 0.82.

There is marked deterioration as one progresses down the
remainder of Table 6, with all correlation coefficients
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appreciably below 0.7. Only modest correlations are observed
for the NMR shifts of both the P and Se nuclei. Given the
heavy reliance of the interaction energy upon the electrostatic
component, the weak correlations of both ELEC and V., are
notable. Whereas the red shift of the P==Se stretching
frequency correlates quite well with the interaction energy,
the opposite is true for its intensity change.

The IR correlations for the P=Se systems are not quite as
good as those for the carbonyl. The correlation coefficient for
the C=0 red shift with the interaction energy is 0.96, slightly
better than the 0.92 for the P=Se analogue. The chemical
shifts of the related atoms suffer more from the switch from
carbonyl. The correlation coefficient of both the C and the O
shielding was 0.96, which is much poorer for P and Se at 0.64
and 0.58, respectively. What is identified here as the best
parameter by which to gauge the strength of the interaction
with the P=Se group is the NMR coupling constant, with a
correlation coefficient of 0.96. (Correlations between all pairs
of properties are displayed in Figure S2.)

It should finally be underscored that Badger-Bauer and
related relations that have found so much use over the years
can perhaps attribute much of their success to the narrowness
of their applications. They are limited to H-bonds and usually
applied to a set of closely related systems that cover only a
narrow range of energetics. In contrast, the systems considered
here are quite diverse, varying from H-bonds to halogen,
chalcogen, pnicogen, and tetrel bonds, each with somewhat
different origins. Also, the bond strengths cover a wide
spectrum, from less than 2 to nearly 60 kcal/mol. The nearly
perfect linear relation between the J(PSe) coupling constant
and the interaction energy over this entire set of systems can
thus be considered quite remarkable. The same can be said of
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the red shift of the P===Se stretching frequency, even if the
correlation coeflicient is not quite as close to unity. Even the
chemical shifts of the P and Se atoms bear a reasonable
correlation with the interaction energy, so they might be used
in a semiquantitative manner, if the other data are not
amenable to measurement.
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